1
|
Sen S, Sarkar M. Insights on Rigidity and Flexibility at the Global and Local Levels of Protein Structures and Their Roles in Homologous Psychrophilic, Mesophilic, and Thermophilic Proteins: A Computational Study. J Chem Inf Model 2022; 62:1916-1932. [PMID: 35412825 DOI: 10.1021/acs.jcim.1c01381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rigidity and flexibility of homologous psychrophilic (P), mesophilic (M), and thermophilic (T) proteins have been investigated at the global and local levels in terms of "packing factors" and "atomic fluctuations" obtained from B-factors. For comparison of atomic fluctuations, correction of errors by considering errors in B-factors from all sources in a consolidated manner and conversion of the fluctuations to the same temperature have been suggested and validated. The results indicate no differences in the global values like the average packing factor among the three classes of protein homologues, but at local levels there are differences. A comparison of homologous protein triplets show that the average atomic fluctuations at a given temperature mainly obey the order P > M > T. Packing factors and the atomic fluctuations are anti-correlated, suggesting that altering the rigidity of the active site might be a potential strategy to make tailor-made psychrophilic or thermophilic proteins from their mesophilic homologues. The computer codes developed and used in this work are available at the link https://github.com/Munna-Sarkar/proteins-rigidity-flexibility.git.
Collapse
Affiliation(s)
- Srikanta Sen
- Molecular Modeling Section, Biolab, Chembiotek, TCG Lifesciences Limited, Bengal Intelligent Park, Salt Lake Electronic Complex, Sector-V, Kolkata 700091, India
| | - Munna Sarkar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| |
Collapse
|
2
|
Kadtsyn ED, Nichiporenko VA, Medvedev NN. Volumetric properties of solutions on the perspective of Voronoi tessellation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Staritzbichler R, Ristic N, Goede A, Preissner R, Hildebrand PW. Voronoia 4-ever. Nucleic Acids Res 2021; 49:W685-W690. [PMID: 34107038 PMCID: PMC8265189 DOI: 10.1093/nar/gkab466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/07/2021] [Accepted: 06/07/2021] [Indexed: 11/12/2022] Open
Abstract
We present an updated version of the Voronoia service that enables fully automated analysis of the atomic packing density of macromolecules. Voronoia combines previous efforts to analyse 3D protein and RNA structures into a single service, combined with state-of-the-art online visualization. Voronoia uses the Voronoi cell method to calculate the free space between neighbouring atoms to estimate van der Waals interactions. Compared to other methods that derive van der Waals interactions by calculating solvent-free surfaces, it explicitly considers volume or packing defects. Large internal voids refer either to water molecules or ions unresolved by X-ray crystallography or cryo-EM, cryptic ligand binding pockets, or parts of a structural model that require further refinement. Voronoia is, therefore mainly used for functional analyses of 3D structures and quality assessments of structural models. Voronoia 4-ever updates the database of precomputed packing densities of PDB entries, allows uploading multiple structures, adds new filter options and facilitates direct access to the results through intuitive display with the NGL viewer. Voronoia is available at: htttp://proteinformatics.org/voronoia.
Collapse
Affiliation(s)
- Rene Staritzbichler
- University of Leipzig, Institute of Medical Physics and Biophysics, Leipzig, Germany
| | - Nikola Ristic
- University of Leipzig, Institute of Medical Physics and Biophysics, Leipzig, Germany
| | - Andrean Goede
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Structural Bioinformatics Group, Berlin 10117, Germany
| | - Robert Preissner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Physiology, Structural Bioinformatics Group, Berlin 10117, Germany.,Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Information Technology, Science IT, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter W Hildebrand
- University of Leipzig, Institute of Medical Physics and Biophysics, Leipzig, Germany.,Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Charitéplatz 1, 10117 Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
4
|
Plamitzer L, Bouř P. Pressure dependence of vibrational optical activity of model biomolecules. A computational study. Chirality 2020; 32:710-721. [PMID: 32150771 DOI: 10.1002/chir.23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/07/2022]
Abstract
Change of molecular properties with pressure is an attracting means to regulate molecular reactivity or biological activity. However, the effect is usually small and so far explored rather scarcely. To obtain a deeper insight and estimate the sensitivity of vibrational optical activity spectra to pressure-induced conformational changes, we investigate small model molecules. The Ala-Ala dipeptide, isomaltose disaccharide and adenine-uracil dinucleotide were chosen to represent three different biomolecular classes. The pressure effects were modeled by molecular dynamics and density functional theory simulations. The dinucleotide was found to be the most sensitive to the pressure, whereas for the disaccharide the smallest changes are predicted. Pressure-induced relative intensity changes in vibrational circular dichroism and Raman optical activity spectra are predicted to be 2-3-times larger than for non-polarized IR and Raman techniques.
Collapse
Affiliation(s)
- Luboš Plamitzer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 166 10, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Ke Karlovu 2027/3, Prague 2, 121 16, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 166 10, Czech Republic
| |
Collapse
|
5
|
Affiliation(s)
- Filip Persson
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Bertil Halle
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
6
|
Krobath H, Chen T, Chan HS. Volumetric Physics of Polypeptide Coil–Helix Transitions. Biochemistry 2016; 55:6269-6281. [DOI: 10.1021/acs.biochem.6b00802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Heinrich Krobath
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tao Chen
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hue Sun Chan
- Departments of Biochemistry
and Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
7
|
Structural investigation of ribonuclease A conformational preferences using high pressure protein crystallography. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Manet S, Cuvier AS, Valotteau C, Fadda GC, Perez J, Karakas E, Abel S, Baccile N. Structure of Bolaamphiphile Sophorolipid Micelles Characterized with SAXS, SANS, and MD Simulations. J Phys Chem B 2015; 119:13113-33. [DOI: 10.1021/acs.jpcb.5b05374] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sabine Manet
- Sorbonne Universités, UPMC Univ Paris 06,
CNRS, Collège de France, UMR 7574, Chimie de la Matière
Condensée de Paris, F-75005 Paris, France
| | - Anne-Sophie Cuvier
- Sorbonne Universités, UPMC Univ Paris 06,
CNRS, Collège de France, UMR 7574, Chimie de la Matière
Condensée de Paris, F-75005 Paris, France
| | - Claire Valotteau
- Sorbonne Universités, UPMC Univ Paris 06,
CNRS, Collège de France, UMR 7574, Chimie de la Matière
Condensée de Paris, F-75005 Paris, France
| | - Giulia C. Fadda
- Laboratoire
Léon
Brillouin, LLB, CEA Saclay, F-91191 CEDEX Gif-sur-Yvette, France
| | - Javier Perez
- SWING, Synchrotron
Soleil, BP 48, F-91192 Gif-sur-Yvette, France
| | - Esra Karakas
- Maison
de la Simulation, USR 3441, CEA − CNRS − INRIA, Univ. Paris-Sud − Univ. de Versailles, 91191 CEDEX Gif-sur-Yvette, France
- Institute
for Integrative Biology of the Cell (I2BC), Commissariat à
l’Energie Atomique et aux Energies Alternatives (CEA), Centre
National de la Recherche Scientifique (CNRS), Université Paris-Sud, CEA-Saclay, F-91191 Gif-sur-Yvette, France
| | - Stéphane Abel
- Institute
for Integrative Biology of the Cell (I2BC), Commissariat à
l’Energie Atomique et aux Energies Alternatives (CEA), Centre
National de la Recherche Scientifique (CNRS), Université Paris-Sud, CEA-Saclay, F-91191 Gif-sur-Yvette, France
| | - Niki Baccile
- Sorbonne Universités, UPMC Univ Paris 06,
CNRS, Collège de France, UMR 7574, Chimie de la Matière
Condensée de Paris, F-75005 Paris, France
| |
Collapse
|
9
|
Ergometric studies of proteins: New insights into protein functionality in food systems. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Hickman SJ, Ross JF, Paci E. Prediction of stability changes upon mutation in an icosahedral capsid. Proteins 2015; 83:1733-41. [PMID: 26178267 PMCID: PMC4737204 DOI: 10.1002/prot.24859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/24/2015] [Accepted: 07/04/2015] [Indexed: 11/08/2022]
Abstract
Identifying the contributions to thermodynamic stability of capsids is of fundamental and practical importance. Here we use simulation to assess how mutations affect the stability of lumazine synthase from the hyperthermophile Aquifex aeolicus, a T = 1 icosahedral capsid; in the simulations the icosahedral symmetry of the capsid is preserved by simulating a single pentamer and imposing crystal symmetry, in effect simulating an infinite cubic lattice of icosahedral capsids. The stability is assessed by estimating the free energy of association using an empirical method previously proposed to identify biological units in crystal structures. We investigate the effect on capsid formation of seven mutations, for which it has been experimentally assessed whether they disrupt capsid formation or not. With one exception, our approach predicts the effect of the mutations on the capsid stability. The method allows the identification of interaction networks, which drive capsid assembly, and highlights the plasticity of the interfaces between subunits in the capsid. Proteins 2015; 83:1733–1741. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc
Collapse
Affiliation(s)
- Samuel J Hickman
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - James F Ross
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
11
|
Abstract
At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.
Collapse
|
12
|
Abstract
The partial specific (or molar) volume, expansibility, and compressibility of a protein are fundamental thermodynamic quantities for characterizing its structure in solution. We review the definitions, measurements, and implications of these volumetric quantities in relation to protein structural biology. The partial specific volumes under constant molality (isomolal) and chemical potential (isopotential) conditions of the cosolvent (multicomponent systems) are explained in terms of preferential solvent interactions relevant to the solubility and stability of proteins. The partial expansibility is briefly discussed in terms of the effects of temperature on protein-solvent interactions (hydration) and internal packing defects (cavities). We discuss the compressibility-structure-function relationships of proteins based on analyses of the correlations between the partial adiabatic compressibilities and the structures or functions of various globular proteins (including mutants), focusing on the roles of the internal cavities in structural fluctuations. The volume and compressibility changes associated with various conformational transitions are also discussed in terms of the changes in hydration and cavities in order to elucidate the nonnative structures and the transition mechanisms, especially those associated with pressure denaturation.
Collapse
|
13
|
Medvedev NN, Voloshin VP, Kim AV, Anikeenko AV, Geiger A. Culation of partial molar volume and its components for molecular dynamics models of dilute solutions. J STRUCT CHEM+ 2014. [DOI: 10.1134/s0022476613080088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Kim A, Medvedev N, Geiger A. Molecular dynamics study of the volumetric and hydrophobic properties of the amphiphilic molecule C8E6. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2013.05.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Abel S, Lorieau A, de Foresta B, Dupradeau FY, Marchi M. Bindings of hMRP1 transmembrane peptides with dodecylphosphocholine and dodecyl-β-d-maltoside micelles: a molecular dynamics simulation study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:493-509. [PMID: 24157718 DOI: 10.1016/j.bbamem.2013.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/17/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022]
Abstract
In this paper, we describe molecular dynamics simulation results of the interactions between four peptides (mTM10, mTM16, TM17 and KTM17) with micelles of dodecylphosphocholine (DPC) and dodecyl-β-d-maltoside (DDM). These peptides represent three transmembrane fragments (TM10, 16 and 17) from the MSD1 and MSD2 membrane-spanning domains of an ABC membrane protein (hMRP1), which play roles in the protein functions. The peptide-micelle complex structures, including the tryptophan accessibility and dynamics were compared to circular dichroism and fluorescence studies obtained in water, trifluoroethanol and with micelles. Our work provides additional results not directly accessible by experiments that give further support to the fact that these peptides adopt an interfacial conformation within the micelles. We also show that the peptides are more buried in DDM than in DPC, and consequently, that they have a larger surface exposure to water in DPC than in DDM. As noted previously by simulations and experiments we have also observed formation of cation-π bonds between the phosphocholine DPC headgroup and Trp peptide residue. Concerning the peptide secondary structures (SS), we find that in TFE their initial helical conformations are maintained during the simulation, whereas in water their initial SS are lost after few nanoseconds of simulation. An intermediate situation is observed with micelles, where the peptides remain partially folded and more structured in DDM than in DPC. Finally, our results show no sign of β-strand structure formation as invoked by far-UV CD experiments even when three identical peptides are simulated either in water or with micelles.
Collapse
Affiliation(s)
- Stéphane Abel
- Commissariat à l'Energie Atomique et aux Energies Alternatives, DSV/iBiTEC-S/SB2SM/LBMS & CNRS UMR 8221, Saclay, France.
| | | | | | | | | |
Collapse
|
16
|
Louw TM, Budhiraja G, Viljoen HJ, Subramanian A. Mechanotransduction of ultrasound is frequency dependent below the cavitation threshold. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1303-19. [PMID: 23562015 PMCID: PMC4183372 DOI: 10.1016/j.ultrasmedbio.2013.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/18/2013] [Accepted: 01/27/2013] [Indexed: 05/11/2023]
Abstract
This study provides evidence that low-intensity ultrasound directly affects nuclear processes, and the magnitude of the effect varies with frequency. In particular, we show that the transcriptional induction of first load-inducible genes, which is independent of new protein synthesis, is frequency dependent. Bovine chondrocytes were exposed to low-intensity (below the cavitational threshold) ultrasound at 2, 5 and 8 MHz. Ultrasound elevated the expression of early response genes c-Fos, c-Jun and c-Myc, maximized at 5 MHz. The phosphorylated ERK inhibitor PD98059 abrogated any increase in c-series gene expression, suggesting that signaling occurs via the MAPPK/ERK pathway. However, phosphorylated ERK levels did not change with ultrasound frequency, indicating that processes downstream of ERK phosphorylation (such as nuclear transport and chromatin reorganization) respond to ultrasound with frequency dependence. A quantitative, biphasic mathematical model based on Biot theory predicted that cytoplasmic and nuclear stress is maximized at 5.2 ± 0.8 MHz for a chondrocyte, confirming experimental measurements.
Collapse
Affiliation(s)
- Tobias M Louw
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | |
Collapse
|
17
|
Abel S, Dupradeau FY, Marchi M. Molecular Dynamics Simulations of a Characteristic DPC Micelle in Water. J Chem Theory Comput 2012; 8:4610-23. [DOI: 10.1021/ct3003207] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Stéphane Abel
- Commissariat à l’Energie Atomique et aux Energies Alternatives, DSV/iBiTEC-S/SB2SM/LBMS, Saclay, France, CNRS UMR 8221, Saclay,
France
| | - François-Yves Dupradeau
- Laboratoire des glucides, UFR de Pharmacie & CNRS FRE 3517, Université de Picardie-Jules Verne, Amiens, France
| | - Massimo Marchi
- Commissariat à l’Energie Atomique et aux Energies Alternatives, DSV/iBiTEC-S/SB2SM/LBMS, Saclay, France, CNRS UMR 8221, Saclay,
France
| |
Collapse
|
18
|
Mimura S, Yamato T, Kamiyama T, Gekko K. Nonneutral evolution of volume fluctuations in lysozymes revealed by normal-mode analysis of compressibility. Biophys Chem 2012; 161:39-45. [DOI: 10.1016/j.bpc.2011.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 11/25/2011] [Indexed: 11/28/2022]
|
19
|
Voloshin VP, Medvedev NN, Andrews MN, Burri RR, Winter R, Geiger A. Volumetric Properties of Hydrated Peptides: Voronoi–Delaunay Analysis of Molecular Simulation Runs. J Phys Chem B 2011; 115:14217-28. [DOI: 10.1021/jp2050788] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vladimir P. Voloshin
- Institute of Chemical Kinetics and Combustion, SB RAS, 630090 Novosibirsk, Russia
| | - Nikolai N. Medvedev
- Institute of Chemical Kinetics and Combustion, SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - R. Reddy Burri
- Physikalische Chemie, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Roland Winter
- Physikalische Chemie, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Alfons Geiger
- Physikalische Chemie, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
20
|
Sarupria S, Ghosh T, García AE, Garde S. Studying pressure denaturation of a protein by molecular dynamics simulations. Proteins 2010; 78:1641-51. [PMID: 20146357 DOI: 10.1002/prot.22680] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Many globular proteins unfold when subjected to several kilobars of hydrostatic pressure. This "unfolding-up-on-squeezing" is counter-intuitive in that one expects mechanical compression of proteins with increasing pressure. Molecular simulations have the potential to provide fundamental understanding of pressure effects on proteins. However, the slow kinetics of unfolding, especially at high pressures, eliminates the possibility of its direct observation by molecular dynamics (MD) simulations. Motivated by experimental results-that pressure denatured states are water-swollen, and theoretical results-that water transfer into hydrophobic contacts becomes favorable with increasing pressure, we employ a water insertion method to generate unfolded states of the protein Staphylococcal Nuclease (Snase). Structural characteristics of these unfolded states-their water-swollen nature, retention of secondary structure, and overall compactness-mimic those observed in experiments. Using conformations of folded and unfolded states, we calculate their partial molar volumes in MD simulations and estimate the pressure-dependent free energy of unfolding. The volume of unfolding of Snase is negative (approximately -60 mL/mol at 1 bar) and is relatively insensitive to pressure, leading to its unfolding in the pressure range of 1500-2000 bars. Interestingly, once the protein is sufficiently water swollen, the partial molar volume of the protein appears to be insensitive to further conformational expansion or unfolding. Specifically, water-swollen structures with relatively low radii of gyration have partial molar volume that are similar to that of significantly more unfolded states. We find that the compressibility change on unfolding is negligible, consistent with experiments. We also analyze hydration shell fluctuations to comment on the hydration contributions to protein compressibility. Our study demonstrates the utility of molecular simulations in estimating volumetric properties and pressure stability of proteins, and can be potentially extended for applications to protein complexes and assemblies.
Collapse
Affiliation(s)
- Sapna Sarupria
- Howard P Isermann Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
21
|
Ascone I, Kahn R, Girard E, Prangé T, Dhaussy AC, Mezouar M, Ponikwicki N, Fourme R. Isothermal compressibility of macromolecular crystals and macromolecules derived from high-pressure X-ray crystallography. J Appl Crystallogr 2010. [DOI: 10.1107/s0021889810003055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The compressibility of several nucleic acid and globular protein crystals has been investigated by high-pressure macromolecular crystallography. Further, crystal structures at four different pressures allowed the determination of the intrinsic compressibilityversuspressure of d(GGTATACC)2and hen egg-white lysozyme. For lysozyme, the values for the intrinsic molecular compressibility at atmospheric pressure and the nonlinearity index were 0.070 GPa−1and 8.15, respectively. On the basis of two crystal structures at atmospheric and high pressure, similar, albeit less complete, information was derived for d(CGCGAATTCGCG)2and bovine erythrocyte Cu,Zn superoxide dismutase. Using these data and accurate calculations of the solvent-excluded volume, the apparent solvent compressibility in the crystalline state was determined as a function of pressure and compared with results from a simple model that assumes invariant unit-cell content, with the conclusion that solvent compressibility was abnormal for three out of the five crystals investigated. Experimental results suggest that macromolecular crystals submitted to high pressure may have a variable unit-cell mass due to solvent exchange with the surrounding pool, as already observed in other hydrated crystals such as zeolites.
Collapse
|
22
|
Brovchenko I, Andrews MN, Oleinikova A. Volumetric properties of human islet amyloid polypeptide in liquid water. Phys Chem Chem Phys 2010; 12:4233-8. [DOI: 10.1039/b918706e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Rose A, Lorenzen S, Goede A, Gruening B, Hildebrand PW. RHYTHM--a server to predict the orientation of transmembrane helices in channels and membrane-coils. Nucleic Acids Res 2009; 37:W575-80. [PMID: 19465378 PMCID: PMC2703963 DOI: 10.1093/nar/gkp418] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RHYTHM is a web server that predicts buried versus exposed residues of helical membrane proteins. Starting from a given protein sequence, secondary and tertiary structure information is calculated by RHYTHM within only a few seconds. The prediction applies structural information from a growing data base of precalculated packing files and evolutionary information from sequence patterns conserved in a representative dataset of membrane proteins ('Pfam-domains'). The program uses two types of position specific matrices to account for the different geometries of packing in channels and transporters ('channels') or other membrane proteins ('membrane-coils'). The output provides information on the secondary structure and topology of the protein and specifically on the contact type of each residue and its conservation. This information can be downloaded as a graphical file for illustration, a text file for analysis and statistics and a PyMOL file for modeling purposes. The server can be freely accessed at: URL: http://proteinformatics.de/rhythm.
Collapse
Affiliation(s)
- Alexander Rose
- Institute for Medical Physics and Biophysics, Charité, University Medicine Berlin, Ziegelstrasse 5-9, 10098 Berlin, Germany
| | | | | | | | | |
Collapse
|
24
|
Feng Y, Jernigan RL, Kloczkowski A. Orientational distributions of contact clusters in proteins closely resemble those of an icosahedron. Proteins 2008; 73:730-41. [PMID: 18498111 PMCID: PMC3018876 DOI: 10.1002/prot.22092] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The orientational geometry of residue packing in proteins was studied in the past by superimposing clusters of neighboring residues with several simple lattices (Bagci et al., Proteins 2003;53:56-67; Raghunathan et al., Protein Sci 1997;6:2072-2083). In this work, instead of a lattice we use the regular polyhedron, the icosahedron, as the model to describe the orientational distribution of contacts in clusters derived from a high-resolution protein dataset (522 protein structures with high resolution < 1.5 A). We find that the order parameter (orientation function) measuring the angular overlap of directions in coordination clusters with directions of the icosahedron is 0.91, which is a significant improvement in comparison with the value 0.82 for the order parameter with the face-centered cubic (fcc) lattice. Close packing tendencies and patterns of residue packing in proteins are considered in detail and a theoretical description of these packing regularities is proposed.
Collapse
Affiliation(s)
- Yaping Feng
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University Ames, IA 50011-0320, USA
- L.H.Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames IA 50011-3020, USA
| | - Robert L. Jernigan
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University Ames, IA 50011-0320, USA
- L.H.Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames IA 50011-3020, USA
| | - Andrzej Kloczkowski
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University Ames, IA 50011-0320, USA
- L.H.Baker Center for Bioinformatics and Biological Statistics, Iowa State University, Ames IA 50011-3020, USA
| |
Collapse
|
25
|
Rother K, Hildebrand PW, Goede A, Gruening B, Preissner R. Voronoia: analyzing packing in protein structures. Nucleic Acids Res 2008; 37:D393-5. [PMID: 18948293 PMCID: PMC2686436 DOI: 10.1093/nar/gkn769] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The packing of protein atoms is an indicator for their stability and functionality, and applied in determining thermostability, in protein design, ligand binding and to identify flexible regions in proteins. Here, we present Voronoia, a database of atomic-scale packing data for protein 3D structures. It is based on an improved Voronoi Cell algorithm using hyperboloid interfaces to construct atomic volumes, and to resolve solvent-accessible and -inaccessible regions of atoms. The database contains atomic volumes, local packing densities and interior cavities calculated for 61 318 biological units from the PDB. A report for each structure summarizes the packing by residue and atom types, and lists the environment of interior cavities. The packing data are compared to a nonredundant set of structures from SCOP superfamilies. Both packing densities and cavities can be visualized in the 3D structures by the Jmol plugin. Additionally, PDB files can be submitted to the Voronoia server for calculation. This service performs calculations for most full-atomic protein structures within a few minutes. For batch jobs, a standalone version of the program with an optional PyMOL plugin is available for download. The database can be freely accessed at: http://bioinformatics.charite.de/voronoia.
Collapse
Affiliation(s)
- Kristian Rother
- International Institute for Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warszawa, Poland.
| | | | | | | | | |
Collapse
|
26
|
Mori K, Seki Y, Yamada Y, Matsumoto H, Soda K. Evaluation of intrinsic compressibility of proteins by molecular dynamics simulation. J Chem Phys 2007; 125:054903. [PMID: 16942254 DOI: 10.1063/1.2219741] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular dynamics simulation has been performed on five native proteins in water to evaluate their intrinsic isothermal compressibilities beta(T,int). To identify physical factors contributing to protein compressibility, a general method is presented for analyzing the compressibility of mechanically inhomogeneous systems. The value of beta(T,int) varies with protein species considerably: beta-lactoglobulin (14.15 x 10(-2) GPa(-1)) is more than twice as compressible as ribonuclease A (6.77 x 10(-2) GPa(-1)). Beta-lactoglobulin and myoglobin (13.95 x 10(-2) GPa(-1)) have similar values of beta(T,int), but the mechanisms responsible for them are significantly different. The volume fluctuations of internal cavities and the magnitudes of the crosscorrelation between them are the key factors determining beta(T,int) of proteins. Though the volume fractions of internal cavity for the five studied proteins are nearly equal to one another, the mean cavity compressibilities beta(T,cav) vary considerably with protein species and range from 0.35 to 0.69 GPa(-1), which are much smaller than those of normal organic liquids such as methanol, ethanol, and benzene and close to that of glycerol (0.55 GPa(-1)), a strongly associated liquid.
Collapse
Affiliation(s)
- Kazuki Mori
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | | | | | | | | |
Collapse
|
27
|
Dadarlat VM, Post CB. Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions. Biophys J 2006; 91:4544-54. [PMID: 16997864 PMCID: PMC1779936 DOI: 10.1529/biophysj.106.087726] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The experimental determination of protein compressibility reflects both the protein intrinsic compressibility and the difference between the compressibility of water in the protein hydration shell and bulk water. We use molecular dynamics simulations to explore the dependence of the isothermal compressibility of the hydration shell surrounding globular proteins on differential contributions from charged, polar, and apolar protein-water interfaces. The compressibility of water in the protein hydration shell is accounted for by a linear combination of contributions from charged, polar, and apolar solvent-accessible surfaces. The results provide a formula for the deconvolution of experimental data into intrinsic and hydration contributions when a protein of known structure is investigated. The physical basis for the model is the variation in water density shown by the surface-specific radial distribution functions of water molecules around globular proteins. The compressibility of water hydrating charged atoms is lower than bulk water compressibility, the compressibility of water hydrating apolar atoms is somewhat larger than bulk water compressibility, and the compressibility of water around polar atoms is about the same as the compressibility of bulk water. We also assess whether hydration water compressibility determined from small compound data can be used to estimate the compressibility of hydration water surrounding proteins. The results, based on an analysis from four dipeptide solutions, indicate that small compound data cannot be used directly to estimate the compressibility of hydration water surrounding proteins.
Collapse
Affiliation(s)
- Voichita M Dadarlat
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Cancer Center, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
28
|
Trzesniak D, Lins RD, van Gunsteren WF. Protein under pressure: Molecular dynamics simulation of the arc repressor. Proteins 2006; 65:136-44. [PMID: 16917942 DOI: 10.1002/prot.21034] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Experimental nuclear magnetic resonance results for the Arc Repressor have shown that this dimeric protein dissociates into a molten globule at high pressure. This structural change is accompanied by a modification of the hydrogen-bonding pattern of the intermolecular beta-sheet: it changes its character from intermolecular to intramolecular with respect to the two monomers. Molecular dynamics simulations of the Arc Repressor, as a monomer and a dimer, at elevated pressure have been performed with the aim to study this hypothesis and to identify the major structural and dynamical changes of the protein under such conditions. The monomer appears less stable than the dimer. However, the complete dissociation has not been seen because of the long timescale needed to observe this phenomenon. In fact, the protein structure altered very little when increasing the pressure. It became slightly compressed and the dynamics of the side-chains and the unfolding process slowed down. Increasing both, temperature and pressure, a tendency of conversion of intermolecular into intramolecular hydrogen bonds in the beta-sheet region has been detected, supporting the mentioned hypothesis. Also, the onset of denaturation of the separated chains was observed.
Collapse
Affiliation(s)
- Daniel Trzesniak
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
29
|
Melchionna S, Sinibaldi R, Briganti G. Explanation of the stability of thermophilic proteins based on unique micromorphology. Biophys J 2006; 90:4204-12. [PMID: 16533850 PMCID: PMC1459513 DOI: 10.1529/biophysj.105.078972] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two mesophilic/thermophilic variants of the G-domain of the elongation factor Tu were studied via molecular dynamics simulations. By analyzing the simulation data via the Voronoi space tessellation, we have found that the two proteins have the same macromolecular packing, while the water-exposed surface area is larger for the thermophile. A larger coordination with water is probably due to a peculiar corrugation of the exposed surface of this species. From an enthalpic point of view, the thermophile shows a larger number of intramolecular hydrogen bonds, stronger electrostatic interactions, and a flatter free-energy landscape. Overall, the data suggest that the specific hydration state enhances macromolecular fluctuations but, at the same time, increases thermal stability.
Collapse
Affiliation(s)
- Simone Melchionna
- Istituto Nazionale di Fisica della Materia-SOFT, Department of Physics, Università di Roma La Sapienza, Rome, Italy.
| | | | | |
Collapse
|
30
|
Gee P, van Gunsteren W. Numerical Simulation of the Pressure Denaturation of a Helicalβ-Peptide Heptamer Solvated in Methanol. Helv Chim Acta 2006. [DOI: 10.1002/hlca.200690048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Smolin N, Winter R. A molecular dynamics simulation of SNase and its hydration shell at high temperature and high pressure. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:522-34. [PMID: 16469548 DOI: 10.1016/j.bbapap.2006.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2005] [Revised: 12/09/2005] [Accepted: 01/02/2006] [Indexed: 11/19/2022]
Abstract
Temperature- and pressure-induced unfolding of staphylococcal nuclease (SNase) was studied by Royer, Winter et al. using a variety of experimental techniques (SAXS, FT-IR and fluorescence spectroscopy, DSC, PPC, densimetry). For a more detailed understanding of the underlying mechanistic processes of the different unfolding scenarios, we have carried out a series of molecular dynamics (MD) computer simulations on SNase. We investigated the initial changes of the structure of the protein upon application of pressure (up to 5 kbar) and discuss volumetric and structural differences between the native and pressure pre-denatured state. Additionally, we have obtained the compressibility of the protein and hydration water and compare these data with experimental results. As water plays a crucial role in determining the structure, dynamics and function of proteins, we undertook a detailed analysis of the structure of the interfacial water and the protein-solvent H-bond network as well. Moreover, we report here also MD results on the temperature-induced unfolding of SNase. The time evolution of the protein volume and solvent accessible surface area during thermal unfolding have been investigated, and we present a detailed discussion of the temperature-induced unfolding pathway of SNase in terms of secondary and tertiary structural changes.
Collapse
Affiliation(s)
- Nikolai Smolin
- Physical Chemistry I-Biophysical Chemistry, Department of Chemistry, University of Dortmund, Otto-Hahn-Str. 6, D-44227 Dortmund, Germany. nikolai.smolin @uni-dortmund.de
| | | |
Collapse
|
32
|
Meinhold L, Smith JC. Pressure-dependent transition in protein dynamics at about revealed by molecular dynamics simulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:061908. [PMID: 16485975 DOI: 10.1103/physreve.72.061908] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Indexed: 05/06/2023]
Abstract
Molecular dynamics simulations of a crystalline protein, Staphylococcal nuclease, over the pressure range 1 bar to 15 kbar reveal a qualitative change in the internal protein motions at approximately 4 kbar. This change involves the existence of two linear regimes in the mean-square displacement for internal protein motion, <mu2>(P) with a twofold decrease in the slope for P>4 kbar. The major effect of pressure on the dynamics is a loss, with increasing pressure of large amplitude, collective protein modes below 2 THz effective frequency, accompanied by restriction of large-scale solvent translational motion.
Collapse
Affiliation(s)
- Lars Meinhold
- Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
| | | |
Collapse
|
33
|
Girard E, Kahn R, Mezouar M, Dhaussy AC, Lin T, Johnson JE, Fourme R. The first crystal structure of a macromolecular assembly under high pressure: CpMV at 330 MPa. Biophys J 2005; 88:3562-71. [PMID: 15731378 PMCID: PMC1305503 DOI: 10.1529/biophysj.104.058636] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of cubic Cowpea mosaic virus crystals, compressed at 330 MPa in a diamond anvil cell, was refined at 2.8 A from data collected using ultrashort-wavelength (0.331 A) synchrotron radiation. With respect to the structure at atmospheric pressure, order is increased with lower Debye Waller factors and a larger number of ordered water molecules. Hydrogen-bond lengths are on average shorter and the cavity volume is strongly reduced. A tentative mechanistic explanation is given for the coexistence of disordered and ordered cubic crystals in crystallization drops and for the disorder-order transition observed in disordered crystals submitted to high pressure. Based on such explanation, it can be concluded that pressure would in general improve, albeit to a variable extent, the order in macromolecular crystals.
Collapse
|
34
|
Canalia M, Malliavin TE, Kremer W, Kalbitzer HR. Molecular dynamics simulations of HPr under hydrostatic pressure. Biopolymers 2004; 74:377-88. [PMID: 15222017 DOI: 10.1002/bip.20089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The histidine-containing protein (HPr) plays an important role in the phosphotransferase system (PTS). The deformations induced on the protein structure at high hydrostatic pressure values (4, 50, 100, 150, and 200 MPa) were previously (H. Kalbitzer, A. Görler, H. Li, P. Dubovskii, A. Hengstenberg, C. Kowolik, H. Yamada, and K. Akasaka, Protein Science 2000, Vol. 9, pp. 693-703) analyzed by NMR experiments: the nonlinear variations of the amide chemical shifts at high pressure values were supposed to arise from induced shifts in the protein conformational equilibrium. Molecular dynamics (MD) simulations are here performed, to analyze the protein internal mobility at 0.1 MPa, and to relate the nonlinear variations of chemical shifts observed at high pressure, to variations in conformational equilibrium. The global features of the protein structure are only slightly modified along the pressure. Nevertheless, the values of the Voronoi residues volumes show that the residues of alpha-helices are more compressed that those belonging to the beta-sheet. The alpha-helices are also displaying the largest internal mobility and deformation in the simulations. The nonlinearity of the 1H chemical shifts, computed from the MD simulation snapshots, is in qualitative agreement with the nonlinearity of the experimentally observed chemical shifts.
Collapse
Affiliation(s)
- Muriel Canalia
- Laboratoire de Biochimie Théorique, CNRS UPR 9080, Institut de Biologie Physico-Chimique, Paris, France
| | | | | | | |
Collapse
|
35
|
Zhao J, Davis JJ, Sansom MSP, Hung A. Exploring the electronic and mechanical properties of protein using conducting atomic force microscopy. J Am Chem Soc 2004; 126:5601-9. [PMID: 15113232 DOI: 10.1021/ja039392a] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In interfacing man-made electronic components with specifically folded biomacromolecules, the perturbative effects of junction structure on any signal generated should be considered. We report herein on the electron-transfer characteristics of the blue copper metalloprotein, azurin, as characterized at a refined level by conducting atomic force microscopy (C-AFM). Specifically, the modulation of current-voltage (I-V) behavior with compressional force has been examined. In the absence of assignable resonant electron tunneling within the confined bias region, from -1 to 1 V, the I-V behavior was analyzed with a modified Simmons formula. To interpret the variation of tunneling barrier height and barrier length obtained by fitting with the modified Simmons formula, an atom packing density model associated with protein mechanical deformation was proposed and simulated by molecular dynamics. The barrier heights determined at the minimum forces necessary for stable electrical contact correlate reasonably well with those estimated from bulk biophysical (electroanalytical and photochemical) experiments previously reported. At higher forces, the tunnel barrier decreases to fall within the range observed with saturated organic systems. Molecular dynamics simulations revealed changes in secondary structure and atomic density of the protein with respect to compression. At low compression, where transport measurements are made, secondary structure is retained, and atomic packing density is observed to increase linearly with force. These predictions, and those made at higher compression, are consistent with both experimentally observed modulations of tunneling barrier height with applied force and the applicability of the atom packing density model of electron tunneling in proteins to molecular-level analyses.
Collapse
Affiliation(s)
- Jianwei Zhao
- Inorganic Chemistry Laboratory, Department of Chemistry, South Parks Road, Oxford, OX1 3QR United Kingdom
| | | | | | | |
Collapse
|
36
|
Speziale S, Jiang F, Caylor CL, Kriminski S, Zha CS, Thorne RE, Duffy TS. Sound velocity and elasticity of tetragonal lysozyme crystals by Brillouin spectroscopy. Biophys J 2004; 85:3202-13. [PMID: 14581220 PMCID: PMC1303596 DOI: 10.1016/s0006-3495(03)74738-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Quasilongitudinal sound velocities and the second-order elastic moduli of tetragonal hen egg-white lysozyme crystals were determined as a function of relative humidity (RH) by Brillouin scattering. In hydrated crystals the measured sound velocities in the [110] plane vary between 2.12 +/- 0.03 km/s along the [001] direction and 2.31 +/- 0.08 km/s along the [110] direction. Dehydration from 98% to 67% RH increases the sound velocities and decreases the velocity anisotropy in (110) from 8.2% to 2.0%. A discontinuity in velocity and an inversion of the anisotropy is observed with increasing dehydration providing support for the existence of a structural transition below 88% RH. Brillouin linewidths can be described by a mechanical model in which the phonon is coupled to a relaxation mode of hydration water with a single relaxation time of 55 +/- 5 ps. At equilibrium hydration (98% RH) the longitudinal moduli C(11) + C(12) + 2C(66) = 12.81 +/- 0.08 GPa, C(11) = 5.49 +/- 0.03 GPa, and C(33) = 5.48 +/- 0.05 GPa were directly determined. Inversion of the measured sound velocities in the [110] plane constrains the combination C(44) + (1/2)C(13) to 2.99 +/- 0.05 GPa. Further constraints on the elastic tensor are obtained by combining the Brillouin quasilongitudinal results with axial compressibilities determined from high-pressure x-ray diffraction. We constrain the adiabatic bulk modulus to the range 2.7-5.3 GPa.
Collapse
Affiliation(s)
- S Speziale
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Liu X, Zhou D, Szabelski P, Guiochon G. Influence of pressure on the retention and separation of insulin variants under linear conditions. Anal Chem 2004; 75:3999-4009. [PMID: 14632111 DOI: 10.1021/ac0205964] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of pressure on the retention behavior of insulin variants in RPLC on a YMC-ODS C18 column was investigated under linear conditions. The retention factors of these variants increase nearly 2-fold when the average column pressure is increased from 55 to 250 bar while their separation factors remain nearly unchanged. This effect is explained by a change of the partial molar volume of the insulin variants associated with their adsorption that decreases from -99 to -80 mL/mol for mobile-phase concentrations of acetonitrile increasing from 29 to 33% (v/v). This volume change is much larger than the one observed with low molecular weight compounds. For the same pressure variation, the average number Z of acetonitrile molecules displaced from the protein and the stationary phase upon adsorption increases from 22 to 23.3. The pressure-induced relative increase of the term b[S]/[D0]z (which corresponds to the initial slope of the adsorption isotherm) is approximately twice as large for Lispro than for porcine insulin. Because the binding constant of insulin decreases with increasing pressure, this suggests that the number of binding sites on the stationary phase increases even faster. Finally, it was observed that the column efficiency at flow rates higher than 0.6 mL/min increases slightly with increasing pressure. It is suggested that these observations are also valid for other proteins analyzed in RPLC.
Collapse
Affiliation(s)
- Xiaoda Liu
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Structural and thermodynamic characterizations of a variety of intra- and intermolecular interactions stabilizing/destabilizing protein systems represent a major part of multidisciplinary efforts aimed at solving the problems of protein folding and binding. To this end, volumetric techniques have been successfully used to gain insights into protein hydration and intraglobular packing. Despite the fact that the use of volumetric measurements in protein-related studies dates back to the 1950s, such measurements still represent a relatively untapped yet potentially informative means for tackling the problems of protein folding and binding. This notion has been further emphasized by recent advances in the development of highly sensitive volumetric instrumentation that has led to intensifying volumetric investigations of protein systems. This paper reviews the volumetric properties of proteins and their low-molecular-weight analogs, in particular, discussing the recent progress in the use of volumetric data for studying conformational transitions of proteins as well as protein-ligand, protein-protein, and protein-nucleic acid interactions.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario Canada.
| |
Collapse
|
39
|
Imai T, Hirata F. Partial molar volume and compressibility of a molecule with internal degrees of freedom. J Chem Phys 2003. [DOI: 10.1063/1.1600437] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
40
|
Marchi M. Compressibility of Cavities and Biological Water from Voronoi Volumes in Hydrated Proteins. J Phys Chem B 2003. [DOI: 10.1021/jp0342935] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Massimo Marchi
- Commissariat à l'Énergie Atomique, DSV-DBJC-SBFM, Centre d'Études, Saclay, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
41
|
Refaee M, Tezuka T, Akasaka K, Williamson MP. Pressure-dependent changes in the solution structure of hen egg-white lysozyme. J Mol Biol 2003; 327:857-65. [PMID: 12654268 DOI: 10.1016/s0022-2836(03)00209-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The "rules" governing protein structure and stability are still poorly understood. Important clues have come from proteins that operate under extreme conditions, because these clarify the physical constraints on proteins. One obvious extreme is pressure, but so far little is known of the behavior of proteins under pressure, largely for technical reasons. We have therefore developed new methodology for calculating structure change in solution with pressure, using NMR chemical shift changes, and we report the change in structure of lysozyme on going from 30 bar to 2000 bar, this being the first solution structure of a globular protein under pressure. The alpha-helical domain is compressed by approximately 1%, due to tighter packing between helices. The interdomain region is also compressed. By contrast, the beta-sheet domain displays very little overall compression, but undergoes more structural distortion than the alpha-domain. The largest volume changes tend to occur close to hydrated cavities. Because isothermal compressibility is related to volume fluctuation, this suggests that buried water molecules play an important role in conformational fluctuation at normal pressures, and are implicated as the nucleation sites for structural changes leading to pressure denaturation or channel opening.
Collapse
Affiliation(s)
- Mohamed Refaee
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, PO Box 594, Sheffiled S10 2UH, UK
| | | | | | | |
Collapse
|
42
|
Abstract
Pressure is a thermodynamic variable which is particularly suitable for exploration of the properties of biological macromolecules. For proteins, in particular, denaturation induced by pressure is different from that induced by temperature or denaturants. The response of proteins to pressure changes can provide information on properties of their native and non-native states. This review focuses on molecular dynamics studies of the effect of pressure on detailed atomic models of proteins. It also reports on other theoretical approaches, such as Monte Carlo simulations, which have been used to study simplified models. Another purpose of this review is to try to point out potential future studies that may be both interesting and feasible, with constantly increasing computing power.
Collapse
Affiliation(s)
- Emanuele Paci
- Laboratoire de Chimie Biophysique, ISIS, Université Louis Pasteur, Strasbourg, France.
| |
Collapse
|
43
|
Abstract
We review the results of compressibility studies on proteins and low molecular weight compounds that model the hydration properties of these biopolymers. In particular, we present an analysis of compressibility changes accompanying conformational transitions of globular proteins. This analysis, in conjunction with experimental compressibility data on protein transitions, were used to define the changes in the hydration properties and intrinsic packing associated with native-to-molten globule, native-to-partially unfolded, and native-to-fully unfolded transitions of globular proteins. In addition, we discuss the molecular origins of predominantly positive changes in compressibility observed for pressure-induced denaturation transitions of globular proteins. Throughout this review, we emphasize the importance of compressibility data for characterizing protein transitions, while also describing how such data can be interpreted to gain insight into role that hydration and intrinsic packing play in modulating the stability of and recognition between proteins and other biologically important compounds.
Collapse
Affiliation(s)
- Nicolas Taulier
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
44
|
Ghosh T, García AE, Garde S. Molecular dynamics simulations of pressure effects on hydrophobic interactions. J Am Chem Soc 2001; 123:10997-1003. [PMID: 11686704 DOI: 10.1021/ja010446v] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report results on the pressure effects on hydrophobic interactions obtained from molecular dynamics simulations of aqueous solutions of methanes in water. A wide range of pressures that is relevant to pressure denaturation of proteins is investigated. The characteristic features of water-mediated interactions between hydrophobic solutes are found to be pressure-dependent. In particular, with increasing pressure we find that (1) the solvent-separated configurations in the solute-solute potential of mean force (PMF) are stabilized with respect to the contact configurations; (2) the desolvation barrier increases monotonically with respect to both contact and solvent-separated configurations; (3) the locations of the minima and the barrier move toward shorter separations; and (4) pressure effects are considerably amplified for larger hydrophobic solutes. Together, these observations lend strong support to the picture of the pressure denaturation process proposed previously by Hummer et al. (Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 1552): with increasing pressure, the transfer of water into protein interior becomes key to the pressure denaturation process, leading to the dissociation of close hydrophobic contacts and subsequent swelling of the hydrophobic protein interior through insertions of water molecules. The pressure dependence of the PMF between larger hydrophobic solutes shows that pressure effects on the interaction between hydrophobic amino acids may be considerably amplified compared to those on the methane-methane PMF.
Collapse
Affiliation(s)
- T Ghosh
- Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | |
Collapse
|
45
|
Kahlow UH, Schmid RD, Pleiss J. A model of the pressure dependence of the enantioselectivity of Candida rugosalipase towards (+/-)-menthol. Protein Sci 2001; 10:1942-52. [PMID: 11567085 PMCID: PMC2374222 DOI: 10.1110/ps.12301] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Transesterification of (+/-)-menthol using propionic acid anhydride and Candida rugosa lipase was performed in chloroform and water at different pressures (1, 10, 50, and 100 bar) to study the pressure dependence of enantioselectivity E. As a result, E significantly decreased with increasing pressure from E = 55 (1 bar) to E = 47 (10 bar), E = 37 (50 bar), and E = 9 (100 bar). To rationalize the experimental findings, molecular dynamics simulations of Candida rugosa lipase were carried out. Analyzing the lipase geometry at 1, 10, 50, and 100 bar revealed a cavity in the Candida rugosa lipase. The cavity leads from a position on the surface distinct from the substrate binding site to the core towards the active site, and is limited by F415 and the catalytic H449. In the crystal structure of the Candida rugosa lipase, this cavity is filled with six water molecules. The number of water molecules in this cavity gradually increased with increasing pressure: six molecules in the simulation at 1 bar, 10 molecules at 10 bar, 12 molecules at 50 bar, and 13 molecules at 100 bar. Likewise, the volume of the cavity progressively increased from about 1864 A(3) in the simulation at 1 bar to 2529 A(3) at 10 bar, 2526 A(3) at 50 bar, and 2617 A(3) at 100 bar. At 100 bar, one water molecule slipped between F415 and H449, displacing the catalytic histidine side chain and thus opening the cavity to form a continuous water channel. The rotation of the side chain leads to a decreased distance between the H449-N epsilon and the (+)-menthyl-oxygen (nonpreferred enantiomer) in the acyl enzyme intermediate, a factor determining the enantioselectivity of the lipase. Although the geometry of the preferred enantiomer is similar in all simulations, the geometry of the nonpreferred enantiomer gets gradually more reactive. This observation correlates with the gradually decreasing enantioselectivity E.
Collapse
Affiliation(s)
- U H Kahlow
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | | | | |
Collapse
|
46
|
Marchi M, Akasaka K. Simulation of Hydrated BPTI at High Pressure: Changes in Hydrogen Bonding and Its Relation with NMR Experiments. J Phys Chem B 2000. [DOI: 10.1021/jp002539p] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Massimo Marchi
- Section de Biophysique des Protéines et des Membranes, DBCM, DSV, CEA, Centre d'Études, Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Kazuyuki Akasaka
- Department of Molecular Science, Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
47
|
Dadarlat VM, Post CB. Insights into Protein Compressibility from Molecular Dynamics Simulations. J Phys Chem B 2000. [DOI: 10.1021/jp0024118] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Voichita M. Dadarlat
- Department of Medicinal Chemistry and Molecular Pharmacology, 1333 RHPH Bldg., Purdue University, West Lafayette, Indiana 47907-1333
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, 1333 RHPH Bldg., Purdue University, West Lafayette, Indiana 47907-1333
| |
Collapse
|
48
|
Abstract
The relationship between the elastic and dynamic properties of native globular proteins is considered on the basis of a wide set of reported experimental data. The formation of a small cavity, capable of accommodating water, in the protein interior is associated with the elastic deformation, whose contribution to the free energy considerably exceeds the heat motion energy. Mechanically, the protein molecule is a highly nonlinear system. This means that its compressibility sharply decreases upon compression. The mechanical nonlinearity results in the following consequences related to the intramolecular dynamics of proteins: 1) The sign of the electrostriction effect in the protein matrix is opposite that observed in liquids-this is an additional indication that protein behaves like a solid particle. 2) The diffusion of an ion from the solvent to the interior of a protein should depend on pressure nonmonotonically: at low pressure diffusion is suppressed, while at high pressure it is enhanced. Such behavior is expected to display itself in any dynamic process depending on ion diffusion. Qualitative and quantitative expectations ensuing from the mechanical properties are concordant with the available experimental data on hydrogen exchange in native proteins at ambient and high pressure.
Collapse
Affiliation(s)
- D P Kharakoz
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, 142290 Pushchino, Moscow, Russia.
| |
Collapse
|
49
|
Kalbitzer HR, Görler A, Li H, Dubovskii PV, Hengstenberg W, Kowolik C, Yamada H, Akasaka K. 15N and 1H NMR study of histidine containing protein (HPr) from Staphylococcus carnosus at high pressure. Protein Sci 2000; 9:693-703. [PMID: 10794411 PMCID: PMC2144620 DOI: 10.1110/ps.9.4.693] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The pressure-induced changes in 15N enriched HPr from Staphylococcus carnosus were investigated by two-dimensional (2D) heteronuclear NMR spectroscopy at pressures ranging from atmospheric pressure up to 200 MPa. The NMR experiments allowed the simultaneous observation of the backbone and side-chain amide protons and nitrogens. Most of the resonances shift downfield with increasing pressure indicating generalized pressure-induced conformational changes. The average pressure-induced shifts for amide protons and nitrogens are 0.285 ppm GPa(-1) at 278 K and 2.20 ppm GPa(-1), respectively. At 298 K the corresponding values are 0.275 and 2.41 ppm GPa(-1). Proton and nitrogen pressure coefficients show a significant but rather small correlation (0.31) if determined for all amide resonances. When restricting the analysis to amide groups in the beta-pleated sheet, the correlation between these coefficients is with 0.59 significantly higher. As already described for other proteins, the amide proton pressure coefficients are strongly correlated to the corresponding hydrogen bond distances, and thus are indicators for the pressure-induced changes of the hydrogen bond lengths. The nitrogen shift changes appear to sense other physical phenomena such as changes of the local backbone conformation as well. Interpretation of the pressure-induced shifts in terms of structural changes in the HPr protein suggests the following picture: the four-stranded beta-pleated sheet of HPr protein is the least compressible part of the structure showing only small pressure effects. The two long helices a and c show intermediary effects that could be explained by a higher compressibility and a concomitant bending of the helices. The largest pressure coefficients are found in the active center region around His15 and in the regulatory helix b which includes the phosphorylation site Ser46 for the HPr kinase. This suggests that this part of the structure occurs in a number of different structural states whose equilibrium populations are shifted by pressure. In contrast to the surrounding residues of the active center loop that show large pressure effects, Ile14 has a very small proton and nitrogen pressure coefficient. It could represent some kind of anchoring point of the active center loop that holds it in the right place in space, whereas other parts of the loop adapt themselves to changing external conditions.
Collapse
Affiliation(s)
- H R Kalbitzer
- University of Regensburg, Institute of Biophysics and Physical Biochemistry, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Strambini GB, Cioni P. Pressure−Temperature Effects on Oxygen Quenching of Protein Phosphorescence. J Am Chem Soc 1999. [DOI: 10.1021/ja9915596] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giovanni B. Strambini
- Contribution from the CNR, Istituto di Biofisica, Via S. Lorenzo 26, 56127 Pisa, Italy
| | - Patrizia Cioni
- Contribution from the CNR, Istituto di Biofisica, Via S. Lorenzo 26, 56127 Pisa, Italy
| |
Collapse
|