1
|
Guo Y, Kitamoto S, Caballero-Flores G, Kim Y, Watanabe D, Sugihara K, Núñez G, Alteri CJ, Inohara N, Kamada N. Oral pathobiont Klebsiella chaperon usher pili provide site-specific adaptation for the inflamed gut mucosa. Gut Microbes 2024; 16:2333463. [PMID: 38545880 PMCID: PMC10984132 DOI: 10.1080/19490976.2024.2333463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
The ectopic gut colonization by orally derived pathobionts has been implicated in the pathogenesis of various gastrointestinal diseases, including inflammatory bowel disease (IBD). For example, gut colonization by orally derived Klebsiella spp. has been linked to IBD in mice and humans. However, the mechanisms whereby oral pathobionts colonize extra-oral niches, such as the gut mucosa, remain largely unknown. Here, we performed a high-density transposon (Tn) screening to identify genes required for the adaptation of an oral Klebsiella strain to different mucosal sites - the oral and gut mucosae - at the steady state and during inflammation. We find that K. aerogenes, an oral pathobiont associated with both oral and gut inflammation in mice, harbors a newly identified genomic locus named "locus of colonization in the inflamed gut (LIG)" that encodes genes related to iron acquisition (Sit and Chu) and host adhesion (chaperon usher pili [CUP] system). The LIG locus is highly conserved among K. aerogenes strains, and these genes are also present in several other Klebsiella species. The Tn screening revealed that the LIG locus is required for the adaptation of K. aerogenes in its ectopic niche. In particular, we determined K. aerogenes employs a CUP system (CUP1) present in the LIG locus for colonization in the inflamed gut, but not in the oral mucosa. Thus, oral pathobionts likely exploit distinct adaptation mechanisms in their ectopically colonized intestinal niche compared to their native niche.
Collapse
Affiliation(s)
- Yijie Guo
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Sho Kitamoto
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Gustavo Caballero-Flores
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA
| | - Yeji Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Daisuke Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kohei Sugihara
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Gabriel Núñez
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Naohiro Inohara
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Application of spherical substrate to observe bacterial motility machineries by Quick-Freeze-Replica Electron Microscopy. Sci Rep 2019; 9:14765. [PMID: 31611568 PMCID: PMC6791848 DOI: 10.1038/s41598-019-51283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/19/2019] [Indexed: 11/28/2022] Open
Abstract
3-D Structural information is essential to elucidate the molecular mechanisms of various biological machineries. Quick-Freeze Deep-Etch-Replica Electron Microscopy is a unique technique to give very high-contrast surface profiles of extra- and intra-cellular apparatuses that bear numerous cellular functions. Though the global architecture of those machineries is primarily required to understand their functional features, it is difficult or even impossible to depict side- or highly-oblique views of the same targets by usual goniometry, inasmuch as the objects (e.g. motile microorganisms) are placed on conventional flat substrates. We introduced silica-beads as an alternative substrate to solve such crucial issue. Elongated Flavobacterium and globular Mycoplasmas cells glided regularly along the bead’s surface, similarly to those on a flat substrate. Quick-freeze replicas of those cells attached to the beads showed various views; side-, oblique- and frontal-views, enabling us to study not only global but potentially more detailed morphology of complicated architecture. Adhesion of the targets to the convex surface could give surplus merits to visualizing intriguing molecular assemblies within the cells, which is relevant to a variety of motility machinery of microorganisms.
Collapse
|
3
|
The HMW1 and HMW2 Adhesins Enhance the Ability of Nontypeable Haemophilus influenzae To Colonize the Upper Respiratory Tract of Rhesus Macaques. Infect Immun 2016; 84:2771-8. [PMID: 27430270 DOI: 10.1128/iai.00153-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/09/2016] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) initiates infection by colonizing the upper respiratory tract and is a common cause of localized respiratory tract disease. Previous work has established that the NTHi HMW1 and HMW2 proteins are potent adhesins that mediate efficient in vitro adherence to cultured human respiratory epithelial cells. In this study, we used a rhesus macaque model to assess the contributions of HMW1 and HMW2 to in vivo colonization. In experiments involving inoculation of individual isogenic derivatives of NTHi strain 12, the parent strain expressing both HMW1 and HMW2 and the mutant strains expressing either HMW1 or HMW2 were able to colonize more frequently than the double mutant strain lacking HMW1 and HMW2. In competition experiments, the parent strain efficiently outcompeted the double mutant lacking HMW1 and HMW2. Colonization with strains expressing HMW2 resulted in development of antibody against HMW2 in a number of the animals, demonstrating that colonization can stimulate an antibody response. In conclusion, we have established that the HMW1 and HMW2 adhesins play a major role in facilitating colonization of the upper respiratory tract of rhesus macaques, in some cases associated with stimulation of an immune response.
Collapse
|
4
|
Abstract
During the first step of biofilm formation, initial attachment is dictated by physicochemical and electrostatic interactions between the surface and the bacterial envelope. Depending on the nature of these interactions, attachment can be transient or permanent. To achieve irreversible attachment, bacterial cells have developed a series of surface adhesins promoting specific or nonspecific adhesion under various environmental conditions. This article reviews the recent advances in our understanding of the secretion, assembly, and regulation of the bacterial adhesins during biofilm formation, with a particular emphasis on the fimbrial, nonfimbrial, and discrete polysaccharide adhesins in Gram-negative bacteria.
Collapse
|
5
|
Finney LJ, Ritchie A, Pollard E, Johnston SL, Mallia P. Lower airway colonization and inflammatory response in COPD: a focus on Haemophilus influenzae. Int J Chron Obstruct Pulmon Dis 2014; 9:1119-32. [PMID: 25342897 DOI: 10.2147/copd.s54477] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial infection of the lower respiratory tract in chronic obstructive pulmonary disease (COPD) patients is common both in stable patients and during acute exacerbations. The most frequent bacteria detected in COPD patients is Haemophilus influenzae, and it appears this organism is uniquely adapted to exploit immune deficiencies associated with COPD and to establish persistent infection in the lower respiratory tract. The presence of bacteria in the lower respiratory tract in stable COPD is termed colonization; however, there is increasing evidence that this is not an innocuous phenomenon but is associated with airway inflammation, increased symptoms, and increased risk for exacerbations. In this review, we discuss host immunity that offers protection against H. influenzae and how disturbance of these mechanisms, combined with pathogen mechanisms of immune evasion, promote persistence of H. influenzae in the lower airways in COPD. In addition, we examine the role of H. influenzae in COPD exacerbations, as well as interactions between H. influenzae and respiratory virus infections, and review the role of treatments and their effect on COPD outcomes. This review focuses predominantly on data derived from human studies but will refer to animal studies where they contribute to understanding the disease in humans.
Collapse
Affiliation(s)
- Lydia J Finney
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Andrew Ritchie
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Patrick Mallia
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
6
|
King P. Haemophilus influenzae and the lung (Haemophilus and the lung). Clin Transl Med 2012; 1:10. [PMID: 23369277 PMCID: PMC3567431 DOI: 10.1186/2001-1326-1-10] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 06/14/2012] [Indexed: 12/26/2022] Open
Abstract
Haemophilus influenzae is present as a commensal organism in the nasopharynx of most healthy adults from where it can spread to cause both systemic and respiratory tract infection. This bacterium is divided into typeable forms (such as type b) or nontypeable forms based on the presence or absence of a tough polysaccharide capsule. Respiratory disease is predominantly caused by the nontypeable forms (NTHi). Haemophilus influenzae has evolved a number of strategies to evade the host defense including the ability to invade into local tissue. Pathogenic properties of this bacterium as well as defects in host defense may result in the spread of this bacterium from the upper airway to the bronchi of the lung. This can result in airway inflammation and colonization particularly in chronic obstructive pulmonary disease. Treatment of respiratory tract infection with Haemophilus influenzae is often only partially successful with ongoing infection and inflammation. Improvement in patient outcome will be dependent on a better understanding of the pathogenesis and host immune response to this bacterium.
Collapse
Affiliation(s)
- Paul King
- Department of Respiratory and Sleep Medicine and Department of Medicine, Monash University, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, 3168, Australia.
| |
Collapse
|
7
|
Nanoscale structural and mechanical properties of nontypeable Haemophilus influenzae biofilms. J Bacteriol 2009; 191:2512-20. [PMID: 19218382 DOI: 10.1128/jb.01596-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) bacteria are commensals in the human nasopharynx, as well as pathogens associated with a spectrum of acute and chronic infections. Two important factors that influence NTHI pathogenicity are their ability to adhere to human tissue and their ability to form biofilms. Extracellular polymeric substances (EPS) and bacterial appendages such as pili critically influence cell adhesion and intercellular cohesion during biofilm formation. Structural components in the outer cell membrane, such as lipopolysaccharides, also play a fundamental role in infection of the host organism. In spite of their importance, these pathogenic factors are not yet well characterized at the nanoscale. Here, atomic force microscopy (AFM) was used in aqueous environments to visualize structural details, including probable Hif-type pili, of live NTHI bacteria at the early stages of biofilm formation. Using single-molecule AFM-based spectroscopy, the molecular elasticities of lipooligosaccharides present on NTHI cell surfaces were analyzed and compared between two strains (PittEE and PittGG) with very different pathogenicity profiles. Furthermore, the stiffness of single cells of both strains was measured and subsequently their turgor pressure was estimated.
Collapse
|
8
|
Mu XQ, Savarino SJ, Bullitt E. The three-dimensional structure of CFA/I adhesion pili: traveler's diarrhea bacteria hang on by a spring. J Mol Biol 2008; 376:614-20. [PMID: 18166195 PMCID: PMC2265596 DOI: 10.1016/j.jmb.2007.10.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 10/16/2007] [Accepted: 10/26/2007] [Indexed: 11/23/2022]
Abstract
To survive the harsh environment of a churning intestinal tract, bacteria attach to the host epithelium via thin fibers called pili (or fimbriae). Enterotoxigenic Escherichia coli bacteria expressing colonization factor antigen I (CFA/I) pili and related pili are the most common known bacterial cause of diarrheal disease, including traveler's diarrhea. CFA/I pili, assembled via the alternate chaperone pathway, are essential for binding and colonization of the small bowel by these pathogenic bacteria. Herein, we elucidate unique structural features of CFA/I pili that appear to optimize their function as bacterial tethers in the intestinal tract. Using transmission electron microscopy of negatively stained samples in combination with iterative three-dimensional helical reconstruction methods for image processing, we determined the structure of the CFA/I pilus filament. Our results indicate that strong end-to-end protein interactions and weak interactions between the coils of a sturdy spring-like helix provide the combination of strength, stability, and flexibility required to sustain bacterial adhesion and incite intestinal disease. We propose that CFA/I pili behave like a spring to maintain attachment to the gut lining during vortex mixing and downward flow of the intestinal contents, thereby persisting long enough for these bacteria to colonize the host epithelium and cause enteric disease.
Collapse
Affiliation(s)
- Xiang-Qi Mu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
9
|
Nuccio SP, Bäumler AJ. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 2007; 71:551-75. [PMID: 18063717 PMCID: PMC2168650 DOI: 10.1128/mmbr.00014-07] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many Proteobacteria use the chaperone/usher pathway to assemble proteinaceous filaments on the bacterial surface. These filaments can curl into fimbrial or nonfimbrial surface structures (e.g., a capsule or spore coat). This article reviews the phylogeny of operons belonging to the chaperone/usher assembly class to explore the utility of establishing a scheme for subdividing them into clades of phylogenetically related gene clusters. Based on usher amino acid sequence comparisons, our analysis shows that the chaperone/usher assembly class is subdivided into six major phylogenetic clades, which we have termed alpha-, beta-, gamma-, kappa-, pi-, and sigma-fimbriae. Members of each clade share related operon structures and encode fimbrial subunits with similar protein domains. The proposed classification system offers a simple and convenient method for assigning newly discovered chaperone/usher systems to one of the six major phylogenetic groups.
Collapse
Affiliation(s)
- Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645, USA
| | | |
Collapse
|
10
|
Bakkali M. Genome dynamics of short oligonucleotides: the example of bacterial DNA uptake enhancing sequences. PLoS One 2007; 2:e741. [PMID: 17710141 PMCID: PMC1939737 DOI: 10.1371/journal.pone.0000741] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 06/29/2007] [Indexed: 11/19/2022] Open
Abstract
Among the many bacteria naturally competent for transformation by DNA uptake-a phenomenon with significant clinical and financial implications- Pasteurellaceae and Neisseriaceae species preferentially take up DNA containing specific short sequences. The genomic overrepresentation of these DNA uptake enhancing sequences (DUES) causes preferential uptake of conspecific DNA, but the function(s) behind this overrepresentation and its evolution are still a matter for discovery. Here I analyze DUES genome dynamics and evolution and test the validity of the results to other selectively constrained oligonucleotides. I use statistical methods and computer simulations to examine DUESs accumulation in Haemophilus influenzae and Neisseria gonorrhoeae genomes. I analyze DUESs sequence and nucleotide frequencies, as well as those of all their mismatched forms, and prove the dependence of DUESs genomic overrepresentation on their preferential uptake by quantifying and correlating both characteristics. I then argue that mutation, uptake bias, and weak selection against DUESs in less constrained parts of the genome combined are sufficient enough to cause DUESs accumulation in susceptible parts of the genome with no need for other DUES function. The distribution of overrepresentation values across sequences with different mismatch loads compared to the DUES suggests a gradual yet not linear molecular drive of DNA sequences depending on their similarity to the DUES. Other genomically overrepresented sequences, both pro- and eukaryotic, show similar distribution of frequencies suggesting that the molecular drive reported above applies to other frequent oligonucleotides. Rare oligonucleotides, however, seem to be gradually drawn to genomic underrepresentation, thus, suggesting a molecular drag. To my knowledge this work provides the first clear evidence of the gradual evolution of selectively constrained oligonucleotides, including repeated, palindromic and protein/transcription factor-binding DNAs.
Collapse
Affiliation(s)
- Mohammed Bakkali
- Institute of Genetics, Queen's Medical Center, University of Nottingham, Nottingham, United Kingdom.
| |
Collapse
|
11
|
Mu XQ, Bullitt E. Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament. Proc Natl Acad Sci U S A 2006; 103:9861-6. [PMID: 16782819 PMCID: PMC1502544 DOI: 10.1073/pnas.0509620103] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-resolution structures of macromolecular complexes offer unparalleled insight into the workings of biological systems and hence the interplay of these systems in health and disease. We have adopted a multifaceted approach to understanding the pathogenically important structure of P-pili, the class I adhesion pili from pyelonephritic Escherichia coli. Our approach combines electron cryomicroscopy, site-directed mutagenesis, homology modeling, and energy calculations, resulting in a high-resolution model of PapA, the major structural element of these pili. Fitting of the modeled PapA subunit into the electron cryomicroscopy data provides a detailed view of these pilins within the supramolecular architecture of the pilus filament. A structural hinge in the N-terminal region of the subunit is located at the site of a newly resolved electron density that protrudes from the P-pilus surface. The structural flexibility provided by this hinge is necessary for assembly of P-pili, illustrating one solution to construction of large macromolecular complexes from small repeating units. These data support our hypothesis that domain-swapped pilin subunits transit the outer cell membrane vertically and rotate about the hinge for final positioning into the pilus filament. Our data confirm and supply a structural basis for much previous genetic, biochemical, and structural data. This model of the P-pilus filament provides an insight into the mechanism of assembly of a macromolecular complex essential for initiation of kidney infection by these bacteria.
Collapse
Affiliation(s)
- Xiang-Qi Mu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
- *To whom correspondence should be addressed at:
Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, W302, Boston, MA 02118-2526. E-mail:
| |
Collapse
|
12
|
Avadhanula V, Rodriguez CA, Ulett GC, Bakaletz LO, Adderson EE. Nontypeable Haemophilus influenzae adheres to intercellular adhesion molecule 1 (ICAM-1) on respiratory epithelial cells and upregulates ICAM-1 expression. Infect Immun 2006; 74:830-8. [PMID: 16428725 PMCID: PMC1360337 DOI: 10.1128/iai.74.2.830-838.2006] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is an important respiratory pathogen. NTHI initiates infection by adhering to the airway epithelium. Here, we report that NTHI interacts with intracellular adhesion molecule 1 (ICAM-1) expressed by respiratory epithelial cells. A fourfold-higher number of NTHI bacteria adhered to Chinese hamster ovary (CHO) cells transfected with human ICAM-1 (CHO-ICAM-1) than to control CHO cells (P < or = 0.005). Blocking cell surface ICAM-1 with specific antibody reduced the adhesion of NTHI to A549 respiratory epithelial cells by 37% (P = 0.001) and to CHO-ICAM-1 cells by 69% (P = 0.005). Preincubating the bacteria with recombinant ICAM-1 reduced adhesion by 69% (P = 0.003). The adherence to CHO-ICAM-1 cells of NTHI strains deficient in the adhesins P5, P2, HMW1/2, and Hap or expressing a truncated lipooligosaccharide was compared to that of parental strains. Only strain 1128f-, which lacks the outer membrane protein (OMP) P5-homologous adhesin (P5 fimbriae), adhered less well than its parental strain. The numbers of NTHI cells adhering to CHO-ICAM-1 cells were reduced by 67% (P = 0.009) following preincubation with anti-P5 antisera. Furthermore, recombinant ICAM bound to an OMP preparation from strain 1128f+, which expresses P5, but not to that from its P5-deficient mutant, confirming a specific interaction between ICAM-1 and P5 fimbriae. Incubation of respiratory epithelial cells with NTHI increased ICAM-1 expression fourfold (P=0.001). Adhesion of NTHI to the respiratory epithelium, therefore, upregulates the expression of its own receptor. Blocking interactions between NTHI P5 fimbriae and ICAM-1 may reduce respiratory colonization by NTHI and limit the frequency and severity of NTHI infection.
Collapse
Affiliation(s)
- Vasanthi Avadhanula
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
13
|
Wick CH, Jabbour RE, McCubbin PE, Deshpande SV. Detecting Bacteria by Direct Counting of Structural Protein Units by IVDS and Mass Spectrometry. Toxicol Mech Methods 2006; 16:485-93. [PMID: 20020990 DOI: 10.1080/15376510600910477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This report explores the direct counting of "hair-like" struc-tures specific for Gram-positive bacteria. Indications show that these structures are intact after removal from the cell and are sufficiently different from species to species of bacteria to give an indication of bacteria type if not actual identification. Their detection would represent a new approach to bacteria detection and identification. This report documents the detection of the bacterial structures using the physical nanometer counting methodology in the Integrated Virus Detection System (IVDS) and electrospray ionization-mass spectrometry.
Collapse
Affiliation(s)
- Charles H Wick
- Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | | | | | | |
Collapse
|
14
|
Mu XQ, Jiang ZG, Bullitt E. Localization of a critical interface for helical rod formation of bacterial adhesion P-pili. J Mol Biol 2004; 346:13-20. [PMID: 15663923 DOI: 10.1016/j.jmb.2004.11.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 11/10/2004] [Accepted: 11/16/2004] [Indexed: 11/30/2022]
Abstract
Pyelonephritic Escherichia coli cause urinary tract infections that involve the kidneys. Initiation of infection is dependent on P-pili expressed on the bacterial surface. In this work, an essential interface for assembly of the helical rod structure of P-pili has been located on the major pilin subunit, PapA. Based on primary sequence alignment, secondary structure analysis, and quaternary structure modeling of the PapA subunit, we predicted the location of a site that is critical for in vivo assembly of the native macromolecular structure of P-pili. A rigid helical rod of PapA subunits comprising most of the pilus length is stabilized by n to n+3 subunit-subunit interactions, and is important for normal function of these pili. Using site-directed mutagenesis, ultrastructural analysis by electron cryomicroscopy, immunocytochemistry, and molecular modeling we show that residues 106-109 (Asn, Gly, Ala, Gly) are essential for assembly of native P-pilus filaments. Mutation of these residues disrupts assembly of the native P-pilus helix. Extended fibrillar structures do still assemble, verifying that n to n+1 subunit-subunit interactions are maintained in the mutant fiber morphology. Observation of this fibrillar morphology in the mutant fiber was predicted by our modeling studies. These mutant P-pili data validate the predictive value of our model for understanding subunit-subunit interactions between PapA monomers. Alteration of the pilus structure from a 7-8 nm helical rod to a 2 nm fibrillar structure may compromise the ability of these bacteria to adhere and remain bound to the host cell, thus providing a possible therapeutic target for antimicrobial drugs.
Collapse
Affiliation(s)
- Xiang-Qi Mu
- Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2526, USA
| | | | | |
Collapse
|
15
|
Sauer FG, Remaut H, Hultgren SJ, Waksman G. Fiber assembly by the chaperone–usher pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:259-67. [PMID: 15546670 DOI: 10.1016/j.bbamcr.2004.02.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 02/10/2004] [Indexed: 11/22/2022]
Abstract
Bacterial pathogens utilize the chaperone-usher pathway to assemble extracellular multi-subunit fibers essential for virulence. The periplasmic chaperone facilitates the initial folding of fiber subunits but then traps them in activated folding transition states. Chaperone dissociation releases the folding energy that drives subunit incorporation into the fiber, which grows through a pore formed by the outer-membrane usher.
Collapse
Affiliation(s)
- Frederic G Sauer
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Ave., New Haven, CT 06536, USA
| | | | | | | |
Collapse
|
16
|
O'Neill JM, St Geme JW, Cutter D, Adderson EE, Anyanwu J, Jacobs RF, Schutze GE. Invasive disease due to nontypeable Haemophilus influenzae among children in Arkansas. J Clin Microbiol 2003; 41:3064-9. [PMID: 12843045 PMCID: PMC165342 DOI: 10.1128/jcm.41.7.3064-3069.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Revised: 11/05/2002] [Accepted: 05/06/2003] [Indexed: 11/20/2022] Open
Abstract
In this study, we reviewed cases of invasive disease due to nontypeable Haemophilus influenzae among children hospitalized at Arkansas Children's Hospital from 1993 to 2001. A total of 28 cases were examined, including 21 associated with bacteremia and 4 associated with meningitis. Of the patients examined, 86% were =4 years of age, and 68% had underlying medical conditions. Characterization of the bacterial isolates by multilocus sequence type genotyping revealed significant overall genetic diversity, similar to the diversity in the general population structure for nontypeable H. influenzae. However, four separate pairs of isolates were closely related genetically, a relationship confirmed by pulsed-field gel electrophoresis and Southern hybridization studies using probes for the major H. influenzae adhesin genes. These results suggest that selected strains of nontypeable H. influenzae may have more invasive potential, especially in young children and patients with underlying medical conditions. At this point, the specific factors that contribute to enhanced virulence remain unclear.
Collapse
Affiliation(s)
- Joshua M O'Neill
- Department of Pediatrics, University of Arkansas for Medical Sciences/Arkansas Children's Hospital, Little Rock, Arkansas, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Rodriguez CA, Avadhanula V, Buscher A, Smith AL, St Geme JW, Adderson EE. Prevalence and distribution of adhesins in invasive non-type b encapsulated Haemophilus influenzae. Infect Immun 2003; 71:1635-42. [PMID: 12654775 PMCID: PMC152026 DOI: 10.1128/iai.71.4.1635-1642.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion to the respiratory epithelium plays an important role in Haemophilus influenzae infection. The distribution of H. influenzae adhesins in type b and nontypeable strains has been characterized, but little is known about the prevalence of these factors in non-type b encapsulated strains. We analyzed 53 invasive type a, type e, and type f strains for the presence of hap, hia, hmw, and hif genes; Hap, Hia, and HMW1/2 adhesins; and hemagglutinating pili. The hap gene was ubiquitous, and homologs of hmw and hia were present in 7 of 53 (13.2%) and 45 of 53 (84.9%) strains, respectively. Hap was detected in 28 of 45 (62.2%) hap(+) strains, HMW1/2 was detected in 5 of 7 (71.4%) hmw(+) strains, and Hia was detected in 31 of 45 (68.8%) hia(+) strains. The hif gene cluster was present in 26 of 53 strains (49.1%), and 21 of 26 hif(+) strains (80.8%) agglutinated (HA) red blood cells. Nine isolates exhibited HA but lacked the hif gene cluster. The distribution of adhesin genes correlated with the genetic relatedness of the strains. Strains belonging to one type a clonotype and the major type e clonotype possessed hia but lacked the hif cluster. Strains belonging to the second type a clonotype possessed both hia and hif genes. All type f strains belonging to the major type f clonotype possessed hia and lacked hifB. Although the specific complement of adhesin genes in non-type b encapsulated H. influenzae varies, most invasive strains express Hap and Hia, suggesting these adhesins may be especially important to the virulence of these organisms.
Collapse
Affiliation(s)
- Carina A Rodriguez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 N. Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
18
|
Fink DL, Green BA, St Geme JW. The Haemophilus influenzae Hap autotransporter binds to fibronectin, laminin, and collagen IV. Infect Immun 2002; 70:4902-7. [PMID: 12183535 PMCID: PMC128251 DOI: 10.1128/iai.70.9.4902-4907.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) initiates infection by colonizing the upper respiratory tract mucosa. NTHI disease frequently occurs in the context of respiratory tract inflammation, where organisms encounter damaged epithelium and exposed basement membrane. In this study, we examined interactions between the H. influenzae Hap adhesin and selected extracellular matrix proteins. Hap is an autotransporter protein that undergoes autoproteolytic cleavage, with release of the adhesive passenger domain, Hap(s), from the bacterial cell surface. We found that Hap promotes bacterial adherence to purified fibronectin, laminin, and collagen IV and that Hap-mediated adherence is enhanced by inhibition of autoproteolysis. Adherence is inhibited by pretreatment of bacteria with a polyclonal antiserum recognizing Hap(s). Purified Hap(s) binds with high affinity to fibronectin, laminin, and collagen IV but not to collagen II. Binding of Hap(s) to fibronectin involves interaction with the 45-kDa gelatin-binding domain but not the 30-kDa heparin-binding domain of fibronectin. Taken together, these observations suggest that interactions between Hap and extracellular matrix proteins may play an important role in NTHI colonization of the respiratory tract.
Collapse
Affiliation(s)
- Doran L Fink
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
19
|
Mu XQ, Egelman EH, Bullitt E. Structure and function of Hib pili from Haemophilus influenzae type b. J Bacteriol 2002; 184:4868-74. [PMID: 12169612 PMCID: PMC135281 DOI: 10.1128/jb.184.17.4868-4874.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic bacteria are specifically adapted to bind to their customary host. Disease is then caused by subsequent colonization and/or invasion of the local environmental niche. Initial binding of Haemophilus influenzae type b to the human nasopharynx is facilitated by Hib pili, filaments expressed on the bacterial surface. With three-dimensional reconstruction of electron micrograph images, we show that Hib pili comprise a helix 70 A in diameter with threefold symmetry. The Hib pilus filament has 3.0 subunits per turn, with each set of three subunits translated 26.9 A along and rotated 53 degrees about the helical axis. Amino acid sequence analysis of pilins from Hib pili and from P-pili expressed on uropathogenic Escherichia coli were used to predict the physical location of the highly variable and immunogenic region of the HifA pilin in the Hib pilus structure. Structural differences between Hib pili and P-pili suggest a difference in the strategies by which bacteria remain bound to their host cells: P-pili were shown to be capable of unwinding to five times their original length (E. Bullitt and L. Makowski, Nature 373:164-167, 1995), while damage to Hib pili occurs by slight shearing of subunits with respect to those further along the helical axis. This capacity to resist unwinding may be important for continued adherence of H. influenzae type b to the nasopharynx, where the three-stranded Hib pilus filaments provide a robust tether to withstand coughs and sneezes.
Collapse
Affiliation(s)
- Xiang-Qi Mu
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118-2526, USA
| | | | | |
Collapse
|
20
|
St Geme JW. Molecular and cellular determinants of non-typeable Haemophilus influenzae adherence and invasion. Cell Microbiol 2002; 4:191-200. [PMID: 11952636 DOI: 10.1046/j.1462-5822.2002.00180.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Non-typeable Haemophilus influenzae is a common cause of human disease and initiates infection by colonizing the upper respiratory tract. Based on information from histopathologic specimens and in vitro studies with human cells and tissues in culture, non-typeable H. influenzae is capable of efficient adherence and appreciable invasion, properties that facilitate the process of colonization. A number of adhesive factors exist, each recognizing a distinct host cell structure and influencing cellular binding specificity. In addition, at least three invasion pathways exist, including one resembling macropinocytosis, a second mediated via the PAF receptor and a third involving beta-glucan receptors. Organisms are also capable of disrupting cell-cell junctions and passing between cells to the subepithelial space.
Collapse
Affiliation(s)
- Joseph W St Geme
- Edward Mallinckrodt Department of Pediatrics and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63117, USA.
| |
Collapse
|
21
|
Clemans DL, Marrs CF, Bauer RJ, Patel M, Gilsdorf JR. Analysis of pilus adhesins from Haemophilus influenzae biotype IV strains. Infect Immun 2001; 69:7010-9. [PMID: 11598076 PMCID: PMC100081 DOI: 10.1128/iai.69.11.7010-7019.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of nontypeable Haemophilus influenzae (NTHI) biotype IV isolates from the human genital tract or from infected newborn infants forms a cryptic genospecies characterized by, among other features, the presence of peritrichous pili. The objective of this study was to determine the similarity of these pili to hemagglutinating, HifA- and HifE-containing pili expressed by respiratory H. influenzae isolates. For this analysis, the presence of hifA and hifE and their gene products in NTHI biotype IV strains was assessed, the binding of H. influenzae biotype IV strains to human epithelial cells was characterized, possible genital tissue tropism of these isolates was explored, and the role of HifA- and HifE-possessing pili in the adhesion of NTHI biotype IV strains to human epithelial cells was determined. None of the six biotype IV NTHI isolates tested agglutinated human red blood cells, nor could they be enriched for hemagglutinating variants. Although hifA, which encodes the major structural subunit of hemagglutinating pili, and hifE, which encodes the tip adhesin of hemagglutinating pili, were detected by PCR from six and five, respectively, of the six biotype IV strains tested, neither HifA nor HifE (the gene products of hifA and hifE) were detected in any of these strains by Western blot analysis using antisera that recognize HifA and HifE of respiratory strains. Transmission electron microscopy showed no surface pili on the two biotype IV H. influenzae isolates examined; strain 4162 containing an insertional mutation in hifA also showed no surface pili, whereas strain 1595 containing an insertional mutation in hifB showed pilus-like structures that were shorter and thicker than hemagglutinating pili of the respiratory strains AAr176 and M43. In enzyme-linked immunosorbent assays, biotype IV strains adhered to 16HBE14o(-) and HEp-2 cells of respiratory origin as well as to ME180 and HeLa cells of genital origin. This adherence was not pilus specific, however, as GM-1, a known pilus receptor analog, did not inhibit binding of biotype IV strains to ME180, HEp-2, or HeLa cells, and GM-1 inhibition of binding to 16HBE14o(-) cells did not correlate with the presence of hifE. While both nonpiliated variants and hifA and hifB (encoding the pilus chaperone) mutants of respiratory strain AAr176 showed reduced binding (64 to 87% of that of piliated AAr176) to 16HBE14o(-) and ME180 cells, hifA and hifB mutants of the biotype IV strains showed minimal reduction in binding to these cell lines (91 to 98% of that of wild-type strains). Thus, although biotype IV H. influenzae isolates of the cryptic genospecies possess the genes that code for HifA- and HifE-containing hemagglutinating pili, epithelial cell adherence exhibited by these strains is not mediated by expression of hemagglutinating pili.
Collapse
Affiliation(s)
- D L Clemans
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Nontypable Haemophilus influenzae is a common cause of otitis media and initiates infection by colonizing the upper respiratory tract. In this article, I review our current understanding of the molecular determinants of H. influenzae colonization and discuss the relationship between colonization and otitis media.
Collapse
Affiliation(s)
- J W St Geme
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8208, St Louis, MO 63110, USA
| |
Collapse
|
23
|
Virkola R, Brummer M, Rauvala H, van Alphen L, Korhonen TK. Interaction of fimbriae of Haemophilus influenzae type B with heparin-binding extracellular matrix proteins. Infect Immun 2000; 68:5696-701. [PMID: 10992473 PMCID: PMC101525 DOI: 10.1128/iai.68.10.5696-5701.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of the fimbriae of Haemophilus influenzae type b (Hib) with two heparin-binding extracellular matrix proteins, human fibronectin (Fn) and heparin-binding growth-associated molecule (HB-GAM) from mouse, were studied. The fimbriated Hib strain 770235 fim+, as well as the recombinant strain E. coli HB101(pMH140), which expressed Hib fimbriae, adhered strongly to Fn and HB-GAM immobilized on glass. Purified Hib fimbriae bound to Fn and HB-GAM, and within the Fn molecule, the binding was localized to the N-terminal 30,000-molecular-weight (30K) and 40K fragments, which contain heparin-binding domains I and II, respectively. Fimbrial binding to Fn, HB-GAM, and the 30K and the 40K fragments was inhibited by high concentrations of heparin. The results show that fimbriae of Hib interact with heparin-binding extracellular matrix proteins. The nonfimbriated Hib strain 770235 fim- exhibited a low level of adherence to Fn but did not react with HB-GAM, indicating that Hib strains also possess a fimbria-independent mechanism to interact with Fn.
Collapse
Affiliation(s)
- R Virkola
- Division of General Microbiology, and Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
24
|
Sauer FG, Barnhart M, Choudhury D, Knight SD, Waksman G, Hultgren SJ. Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struct Biol 2000; 10:548-56. [PMID: 11042452 DOI: 10.1016/s0959-440x(00)00129-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bacterial pili assembled by the chaperone-usher pathway can mediate microbial attachment, an early step in the establishment of an infection, by binding specifically to sugars present in host tissues. Recent work has begun to reveal the structural basis both of chaperone function in the biogenesis of these pili and of bacterial attachment.
Collapse
Affiliation(s)
- F G Sauer
- Department of Molecular Microbiology, Washington University School of Medicine, Missouri 63110, St Louis, USA
| | | | | | | | | | | |
Collapse
|
25
|
Krasan GP, Sauer FG, Cutter D, Farley MM, Gilsdorf JR, Hultgren SJ, St Geme JW. Evidence for donor strand complementation in the biogenesis of Haemophilus influenzae haemagglutinating pili. Mol Microbiol 2000; 35:1335-47. [PMID: 10760135 DOI: 10.1046/j.1365-2958.2000.01816.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haemophilus influenzae haemagglutinating pili are surface appendages that promote attachment to host cells and facilitate respiratory tract colonization, an essential step in the pathogenesis of disease. In contrast to other well-characterized forms of pili, H. influenzae haemagglutinating pili are two-stranded helical structures. Nevertheless, haemagglutinating pili are assembled by a pathway that involves a periplasmic chaperone and an outer membrane usher, analogous to the prototype pathway involved in the biogenesis of Escherichia coli P pili. In this study, we performed site-directed mutagenesis of the H. influenzae HifB chaperone and HifA major pilus subunit at positions homologous to sites important for chaperone-subunit interactions and subunit oligomerization in P pili. Mutations at putative subunit binding pocket residues in HifB or at the penultimate tyrosine in HifA abolished formation of HifB-HifA periplasmic complexes, whereas mutations at the -14 glycine in HifA had no effect on HifB-HifA interactions but abrogated HifA oligomerization. To define further the constraints of the interaction between HifA and HifB, we examined the interchangeability of pilus gene cluster components from H. influenzae type b strain Eagan (hifA-hifEEag) and the related H. influenzae biogroup aegyptius strain F3031 (hifA-hifEF3031). Functional pili were assembled both with HifAEag and the strain F3031 gene cluster and with HifAF3031 and the strain Eagan gene cluster, underscoring the flexibility of the H. influenzae chaperone/usher pathway in incorporating HifA subunits with significant sequence diversity. To gain additional insight into the interactive surfaces of HifA and HifB, we aligned HifA sequences from 20 different strains and then modelled the HifA structure based on the recently crystallized PapD-PapK complex. Analysis of the resulting structure revealed high levels of sequence conservation in regions predicted to interact with HifB, and maximal sequence diversity in regions potentially exposed on the surface of assembled pili. These results suggest broad applicability of structure-function relationships identified in studies of P pili, including the concepts of donor strand complementation and donor strand exchange. In addition, they provide insight into the structure of HifA and suggest a basis for antigenic variation in H. influenzae haemagglutinating pili.
Collapse
Affiliation(s)
- G P Krasan
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, 63110, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Collinson SK, Parker JM, Hodges RS, Kay WW. Structural predictions of AgfA, the insoluble fimbrial subunit of Salmonella thin aggregative fimbriae. J Mol Biol 1999; 290:741-56. [PMID: 10395827 DOI: 10.1006/jmbi.1999.2882] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The unusually stable and multifunctional, thin aggregative fimbriae common to all Salmonella spp. are principally polymers of the fimbrin subunit, AgfA. AgfA of Salmonella enteritidis consists of two domains: a protease-sensitive, 22 amino acid residue N-terminal region and a protease-resistant, 109 residue C-terminal core. The unusual amino acid sequence of the AgfA core region comprises two-, five- and tenfold internal sequence homology patterns reflected in five conserved, 18-residue tandem repeats. These repeats have the consensus sequence, Sx5QxGx2NxAx3Q and are linked together by four or five residues, (x)xAx2. The predicted secondary structure for this unusual arrangement of tandem repeats in AgfA indicates mainly extended conformation with the beta strands linked by four to six residues. Candidate proteins of known structure with motifs of alternating beta strands and short loops were selected from folds described in SCOP as a source of coordinates for AgfA model construction. Three all-beta class motifs selected from the Serratia marcescens metalloprotease, myelin P2 protein or vitelline membrane outer protein I were used for initial AgfA homology build-up procedures ultimately resulting in three structural models; beta barrel, beta prism and parallel beta helix. The beta barrel model is a compact, albeit irregular structure, with the beta strands arranged in two antiparallel beta sheet faces. The beta prism model does not reflect the 5 or 10-fold symmetry of the AgfA primary sequence. However, the favored, parallel beta helix model is a compact coil of ten helically arranged beta strands forming two parallel beta sheet faces. This arrangement predicts a regular, potentially stable, C-terminal core region consistent with the observed tandem repeat sequences, protease-resistance and strong tendency of this fimbrin to oligomerize and aggregate. Positional conservation of amino acid residues in AgfA and the Escherichia coli AgfA homologue, CsgA, provides strong support for this model. The parallel beta helix model of AgfA offers an interesting solution to a multifunctional fimbrin molecular surface having solvent exposed areas, regions for major and minor subunit interactions as well as fiber-fiber interactions common to many bacterial fimbriae.
Collapse
Affiliation(s)
- S K Collinson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | | | | | | |
Collapse
|
27
|
Rao VK, Krasan GP, Hendrixson DR, Dawid S, St Geme JW. Molecular determinants of the pathogenesis of disease due to non-typable Haemophilus influenzae. FEMS Microbiol Rev 1999; 23:99-129. [PMID: 10234841 DOI: 10.1111/j.1574-6976.1999.tb00393.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Non-typable Haemophilus influenzae is a common commensal organism in the human upper respiratory tract and an important cause of localized respiratory tract disease. The pathogenesis of disease begins with bacterial colonization of the nasopharynx, a process that involves establishment on the mucosal surface and evasion of local immune mechanisms. Under the proper circumstances, the organism spreads contiguously to the middle ear, the sinuses, or the lungs, and then stimulates a brisk inflammatory response, producing symptomatic infection. In this review, we summarize our present understanding of the molecular determinants of this sequence of events. Continued investigation of the molecular mechanism of non-typable H. influenzae pathogenicity should facilitate development of novel approaches to the treatment and prevention of H. influenzae disease.
Collapse
Affiliation(s)
- V K Rao
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
28
|
Krasan GP, Cutter D, Block SL, St Geme JW. Adhesin expression in matched nasopharyngeal and middle ear isolates of nontypeable Haemophilus influenzae from children with acute otitis media. Infect Immun 1999; 67:449-54. [PMID: 9864255 PMCID: PMC96336 DOI: 10.1128/iai.67.1.449-454.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HMW1 and HMW2 proteins, Hia, and hemagglutinating pili are important adherence factors in nontypeable Haemophilus influenzae. To gain insight into the relative importance of these adhesins in nasopharyngeal colonization and localized respiratory tract disease, we assessed their expression in matched nasopharyngeal and middle ear isolates of nontypeable H. influenzae from 17 children with acute otitis media. In all patients, including 11 with bilateral disease, the matched isolates were isogenic based on total protein profiles and genomic fingerprints. Of the nasopharyngeal isolates, 14 expressed only HMW1/HMW2-like proteins, 1 expressed only Hia, 1 expressed only pili, and 1 expressed both Hia and pili. Further analysis revealed concordance between nasopharyngeal isolates and the matched middle ear isolates for expression of the HMW1/HMW2-like proteins and Hia. In contrast, in the two children whose nasopharynges were colonized by piliated organisms, the corresponding middle ear isolates were nonpiliated and could not be enriched for piliation. Nevertheless, Southern analysis revealed that these two middle ear isolates contained all five hif genes required for pilus biogenesis and had no evidence of major genetic rearrangement. In summary, the vast majority of isolates of nontypeable H. influenzae associated with acute otitis media express HMW1/HMW2-like proteins, with expression present in both the nasopharynx and the middle ear. A smaller fraction of nasopharyngeal isolates express pili, while isogenic strains recovered from the middle ear are often refractory to enrichment for piliation. We speculate that the HMW adhesins and Hia are important at multiple steps in the pathogenesis of otitis media while pili contribute to early colonization and then become dispensable.
Collapse
Affiliation(s)
- G P Krasan
- Edward Mallinckrodt Department of Pediatrics and Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| | | | | | | |
Collapse
|
29
|
McCrea KW, Sauver JL, Marrs CF, Clemans D, Gilsdorf JR. Immunologic and structural relationships of the minor pilus subunits among Haemophilus influenzae isolates. Infect Immun 1998; 66:4788-96. [PMID: 9746580 PMCID: PMC108591 DOI: 10.1128/iai.66.10.4788-4796.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two proteins, HifD and HifE, have been identified as structural components of Haemophilus influenzae pili. Both are localized at the pilus tip, and HifE appears to mediate pilus adherence to host cells. In this study we examined the immunologic and structural diversity of these pilus subunits among type b H. influenzae (Hib) and nontypeable H. influenzae (NTHI) strains. Western immunoblot analysis revealed that antibodies directed against the C terminus of HifD and HifE from Hib strain Eagan bound to HifD and HifE proteins, respectively, of all piliated Hib and NTHI strains tested. Whole-cell enzyme-linked immunosorbent assays showed that antibodies specific for native HifD or HifE of strain Eagan also bound to all piliated Hib strains but did not bind to the piliated NTHI strains. Antibodies against HifE of strain Eagan inhibited the binding of Hib to human erythrocytes but did not inhibit the binding of NTHI strains. Restriction fragment length polymorphism (RFLP) analysis was used to determine strain-to-strain structural differences within hifD and hifE genes, either by PCR or by nucleotide sequence analysis. DNA and derived amino acid sequence analyses of HifD and HifE confirmed the uniqueness of the RFLP types. The hifD and hifE genes of all type b strains showed identical restriction patterns. Analysis of hifD and hifE genes from the NTHI strains, however, revealed seven unique RFLP patterns, suggesting that these genes encode proteins with diverse primary structures. These results indicate that HifD and HifE are immunologically and structurally similar among the Hib strains but vary among the NTHI strains.
Collapse
Affiliation(s)
- K W McCrea
- Departments of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109-0244, USA
| | | | | | | | | |
Collapse
|
30
|
Clouthier SC, Collinson SK, Lippert D, Ausio J, White AP, Kay WW. Periplasmic and fimbrial SefA from Salmonella enteritidis. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1387:355-68. [PMID: 9748652 DOI: 10.1016/s0167-4838(98)00150-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salmonella enteritidis produces thin, filamentous fimbriae composed of the fimbrin subunit SefA. Although insoluble in most detergents and chaotropic agents, these fimbriae were soluble at pH 10.5. Furthermore, in sodium dodecyl sulfate, these fibers depolymerized into monomers, dimers and other multimers of SefA, which precipitated on removal of the detergent. In contrast, unassembled periplasmic SefA fimbrins purified from Escherichia coli expressing cloned sefA and sefB were readily soluble in aqueous solution. Fimbrial and periplasmic SefA also differed in their reaction with an anti-SEF14 monoclonal antibody and in their surface hydrophobicity, indicating that the two forms had different properties. Precise mass measurements of periplasmic and fimbrial SefA by mass spectroscopy showed that these variations were not due to post-translational modifications. Periplasmic SefA consisted primarily of intact as well as some N-terminally truncated forms. The main 24 amino acid, N-terminally truncated form of periplasmic SefA was present as a 12.2 kDa monomer which had a low tendency to dimerize whereas intact periplasmic SefA was present as a 34.1 kDa homodimer. Intact periplasmic SefA also formed stable multimers at low concentrations of chemical cross-linker but multimerization of the truncated form required high concentrations of protein or cross-linker. Thus, SefA fimbrins appear to multimerize through their N-termini and undergo a conformational change prior to assembly into fibers. Within these fibers, subunit-subunit contact is maintained through strong hydrophobic interactions.
Collapse
Affiliation(s)
- S C Clouthier
- Department of Biochemistry and Microbiology, Petch Building, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6, Canada
| | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Read TD, Satola SW, Opdyke JA, Farley MM. Copy number of pilus gene clusters in Haemophilus influenzae and variation in the hifE pilin gene. Infect Immun 1998; 66:1622-31. [PMID: 9529090 PMCID: PMC108097 DOI: 10.1128/iai.66.4.1622-1631.1998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Brazilian purpuric fever (BPF)-associated Haemophilus influenzae biogroup aegyptius strain F3031 contains two identical copies of a five gene cluster (hifA to hifE) encoding pili similar to well-characterized Hif fimbriae of H. influenzae type b. HifE, the putative pilus tip adhesin of F3031, shares only 40% amino acid sequence similarity with the same molecule from type b strains, whereas the other four proteins have 75 to 95% identity. To determine whether pilus cluster duplication and the hifE(F3031) allele were special features of BPF-associated bacteria, we analyzed a collection of H. influenzae strains by PCR with hifA- and hifE-specific oligonucleotides, by Southern hybridization with a hifC gene probe, and by nucleotide sequencing. The presence of two pilus clusters was limited to some H. influenzae biogroup aegyptius strains. The hifE(F3031) allele was limited to H. influenzae biogroup aegyptius. Two strains contained one copy of hifE(F3031) and one copy of a variant hifE allele. We determined the nucleotide sequences of four hifE genes from H. influenzae biogroup aegyptius and H. influenzae capsule serotypes a and c. The predicted proteins produced by these genes demonstrated only 35 to 70% identity to the three published HifE proteins from nontypeable H. influenzae, serotype b, and BPF strains. The C-terminal third of the molecules implicated in chaperone binding was the most highly conserved region. Three conserved domains in the otherwise highly variable N-terminal putative receptor-binding region of HifE were similar to conserved portions in the N terminus of Neisseria pilus adhesin PilC. We concluded that two pilus clusters and hifE(F3031) were not specific for BPF-causing H. influenzae, and we also identified portions of HifE possibly involved in binding mammalian cell receptors.
Collapse
Affiliation(s)
- T D Read
- Veterans Affairs Medical Center and Department of Medicine, Emory University School of Medicine, Decatur, Georgia 30033, USA
| | | | | | | |
Collapse
|
33
|
Clemans DL, Marrs CF, Patel M, Duncan M, Gilsdorf JR. Comparative analysis of Haemophilus influenzae hifA (pilin) genes. Infect Immun 1998; 66:656-63. [PMID: 9453623 PMCID: PMC107953 DOI: 10.1128/iai.66.2.656-663.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adherence of Haemophilus influenzae to epithelial cells plays a central role in colonization and is the first step in infection with this organism. Pili, which are large polymorphic surface proteins, have been shown to mediate the binding of H. influenzae to cells of the human respiratory tract. Earlier experiments have demonstrated that the major epitopes of H. influenzae pili are highly conformational and immunologically heterogenous; their subunit pilins are, however, immunologically homogenous. To define the extent of structural variation in pilins, which polymerize to form pili, the pilin genes (hifA) of 26 type a to f and 16 nontypeable strains of H. influenzae were amplified by PCR and subjected to restriction fragment length polymorphism (RFLP) analysis with AluI and RsaI. Six different RFLP patterns were identified. Four further RFLP patterns were identified from published hifA sequences from five nontypeable H. influenzae strains. Two patterns contained only nontypeable isolates; one of these contained H. influenzae biotype aegyptius strains F3031 and F3037. Another pattern contained predominantly H. influenzae type f strains. All other patterns were displayed by a variety of capsular and noncapsular types. Sequence analysis of selected hifA genes confirmed the 10 RFLP patterns and showed strong identity among representatives displaying the same RFLP patterns. In addition, the immunologic reactivity of pili with antipilus antisera correlated with the groupings of strains based on hifA RFLP patterns. Those strains that show greater reactivity with antiserum directed against H. influenzae type b strain M43 pili tend to fall into one RFLP pattern (pattern 3); while those strains that show equal or greater reactivity with antiserum directed against H. influenzae type b strain Eagan pili tend to fall in a different RFLP pattern (pattern 1). Sequence analysis of representative HifA pilins from typeable and nontypeable H. influenzae identified several highly conserved regions that play a role in bacterial pilus assembly and other regions with considerable amino acid heterogeneity. These regions of HifA amino acid sequence heterogeneity may explain the immunologic diversity seen in intact pili.
Collapse
Affiliation(s)
- D L Clemans
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor 48109-2029, USA.
| | | | | | | | | |
Collapse
|
34
|
St Geme JW. Insights into the mechanism of respiratory tract colonization by nontypable Haemophilus influenzae. Pediatr Infect Dis J 1997; 16:931-5. [PMID: 9380466 DOI: 10.1097/00006454-199710000-00005] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J W St Geme
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Gilsdorf JR, McCrea KW, Marrs CF. Role of pili in Haemophilus influenzae adherence and colonization. Infect Immun 1997; 65:2997-3002. [PMID: 9234745 PMCID: PMC175422 DOI: 10.1128/iai.65.8.2997-3002.1997] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- J R Gilsdorf
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor 48109, USA.
| | | | | |
Collapse
|
36
|
McCrea KW, Watson WJ, Gilsdorf JR, Marrs CF. Identification of two minor subunits in the pilus of Haemophilus influenzae. J Bacteriol 1997; 179:4227-31. [PMID: 9209037 PMCID: PMC179243 DOI: 10.1128/jb.179.13.4227-4231.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Haemophilus influenzae type b (Hib) organisms produce pili, which mediate attachment to human cells and are multimeric structures composed of a 24-kDa subunit called pilin or HifA. Although pili from other organisms contain additional proteins accessory to pilin, no structural components other than pilin have been identified in Hib pili. Previous analysis of a Hib pilus gene cluster, however, suggested that two genes, hifD and hifE, may encode additional pilus subunits. To determine if hifD and hifE encode pilus components, the genes were overexpressed in Escherichia coli and the resulting proteins were purified and used to raise polyclonal antisera. Antisera raised against C-terminal HifD and HifE fragments reacted with H. influenzae HifD and HifE proteins, respectively, on Western immunoblots. Western immunoblot analysis of immunoprecipitated Hib pili demonstrated that HifD and HifE copurified with pili. In enzyme-linked immunosorbent assays, antisera raised against a recombinant HifE protein that contained most of the mature protein reacted more to piliated Hib than to nonpiliated Hib or to a mutant containing a hifE gene insertion. Immunoelectron microscopy confirmed that the HifE antiserum bound to pili and demonstrated that the antiserum bound predominantly to the pilus tips. These data indicate that HifD and HifE are pilus subunits. Adherence inhibition studies demonstrated that the HifE antiserum completely blocked pilus-mediated hemagglutination, suggesting that HifE mediates pilus adherence.
Collapse
Affiliation(s)
- K W McCrea
- Department of Epidemiology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|