1
|
Sato K, Kakuda S, Yukitake H, Kondo Y, Shoji M, Takebe K, Narita Y, Naito M, Nakane D, Abiko Y, Hiratsuka K, Suzuki M, Nakayama K. Immunoglobulin‐like domains of the cargo proteins are essential for protein stability during secretion by the type IX secretion system. Mol Microbiol 2018; 110:64-81. [DOI: 10.1111/mmi.14083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Keiko Sato
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Shinji Kakuda
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Hideharu Yukitake
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Yoshio Kondo
- Department of Pediatric Dentistry Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Katsuki Takebe
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Yuka Narita
- Department of Functional Bioscience, Infection Biology Fukuoka Dental College Matsudo, Tamura, Sawara, Fukuoka 814‐0913Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Daisuke Nakane
- Department of Physics, Faculty of Science Gakushuin University Toshima‐ku, Tokyo 171‐8588Japan
| | - Yoshimitsu Abiko
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Mamoru Suzuki
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| |
Collapse
|
2
|
Wu M, Xu S, Zhu W, Mao X. The archaic chaperone–usher pathways may depend on donor strand exchange for intersubunit interactions. Microbiology (Reading) 2014; 160:2200-2207. [DOI: 10.1099/mic.0.080457-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Subunit–subunit interactions of the classical and alternate chaperone–usher (CU) systems have been shown to proceed through a donor strand exchange (DSE) mechanism. However, it is not known whether DSE is required for intersubunit interactions in the archaic CU system. We have previously shown that the Myxococcus xanthus Mcu system, a member of the archaic CU family that functions in spore coat formation, is likely to use the principle of donor strand complementation to medicate chaperone–subunit interactions analogous to the classical CU pathway. Here we describe the results of studies on Mcu subunit–subunit interactions. We constructed a series of N-terminal-deleted, single amino acid-mutated and donor strand-complemented Mcu subunits, and characterized their abilities to participate in subunit–subunit interactions. It appears that certain residues in both the N and C termini of McuA, a subunit of the Mcu system, play a critical role in intersubunit interactions and these interactions may involve the general principle of DSE of the classical and alternate CU systems. In addition, the specificity of the M. xanthus CU system for Mcu subunits over other spore coat proteins is demonstrated.
Collapse
Affiliation(s)
- Miaomiao Wu
- Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Shihui Xu
- Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Wei Zhu
- Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Xiaohua Mao
- Department of Biochemistry, Southeast University School of Medicine, Nanjing, Jiangsu 210009, PR China
- Key Laboratory of Ministry of Education for Developmental Genes and Human Diseases, Southeast University, Nanjing, Jiangsu 210009, PR China
| |
Collapse
|
3
|
Domain activities of PapC usher reveal the mechanism of action of an Escherichia coli molecular machine. Proc Natl Acad Sci U S A 2012; 109:9563-8. [PMID: 22645361 DOI: 10.1073/pnas.1207085109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
P pili are prototypical chaperone-usher pathway-assembled pili used by Gram-negative bacteria to adhere to host tissues. The PapC usher contains five functional domains: a transmembrane β-barrel, a β-sandwich Plug, an N-terminal (periplasmic) domain (NTD), and two C-terminal (periplasmic) domains, CTD1 and CTD2. Here, we delineated usher domain interactions between themselves and with chaperone-subunit complexes and showed that overexpression of individual usher domains inhibits pilus assembly. Prior work revealed that the Plug domain occludes the pore of the transmembrane domain of a solitary usher, but the chaperone-adhesin-bound usher has its Plug displaced from the pore, adjacent to the NTD. We demonstrate an interaction between the NTD and Plug domains that suggests a biophysical basis for usher gating. Furthermore, we found that the NTD exhibits high-affinity binding to the chaperone-adhesin (PapDG) complex and low-affinity binding to the major tip subunit PapE (PapDE). We also demonstrate that CTD2 binds with lower affinity to all tested chaperone-subunit complexes except for the chaperone-terminator subunit (PapDH) and has a catalytic role in dissociating the NTD-PapDG complex, suggesting an interplay between recruitment to the NTD and transfer to CTD2 during pilus initiation. The Plug domain and the NTD-Plug complex bound all of the chaperone-subunit complexes tested including PapDH, suggesting that the Plug actively recruits chaperone-subunit complexes to the usher and is the sole recruiter of PapDH. Overall, our studies reveal the cooperative, active roles played by periplasmic domains of the usher to initiate, grow, and terminate a prototypical chaperone-usher pathway pilus.
Collapse
|
4
|
Chan CH, Chen FJ, Huang YJ, Chen SY, Liu KL, Wang ZC, Peng HL, Yew TR, Liu CH, Liou GG, Hsu KY, Chang HY, Hsu L. Identification of protein domains on major pilin MrkA that affects the mechanical properties of Klebsiella pneumoniae type 3 fimbriae. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7428-7435. [PMID: 22524463 DOI: 10.1021/la300224w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Klebsiella pneumoniae type 3 fimbriae are mainly composed of MrkA pilins that assemble into a helixlike filament. This study determined the biomechanical properties of the fimbriae and analyzed 11 site-directed MrkA mutants to identify domains that are critical for the properties. Escherichia coli strains expressing type 3 fimbriae with an Ala substitution at either F34, V45, C87, G189, T196, or Y197 resulted in a significant reduction in biofilm formation. The E. coli strain expressing MrkAG189A remained capable of producing a normal number of fimbriae. Although F34A, V45A, T196A, and Y197A substitutions expressed on E. coli strains produced sparse quantities of fimbriae, no fimbriae were observed on the cells expressing MrkAC87A. Further investigations of the mechanical properties of the MrkAG189A fimbriae with optical tweezers revealed that, unlike the wild-type fimbriae, the uncoiling force for MrkAG189A fimbriae was not constant. The MrkAG189A fimbriae also exhibited a lower enthalpy in the differential scanning calorimetry analysis. Together, these findings indicate that the mutant fimbriae are less stable than the wild-type. This study has demonstrated that the C-terminal β strands of MrkA are required for the assembly and structural stability of fimbriae.
Collapse
Affiliation(s)
- Chia-Han Chan
- Institute and Department of Electrophysics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Puorger C, Vetsch M, Wider G, Glockshuber R. Structure, Folding and Stability of FimA, the Main Structural Subunit of Type 1 Pili from Uropathogenic Escherichia coli Strains. J Mol Biol 2011; 412:520-35. [DOI: 10.1016/j.jmb.2011.07.044] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/16/2011] [Accepted: 07/20/2011] [Indexed: 11/26/2022]
|
6
|
Nenninger AA, Robinson LS, Hammer ND, Epstein EA, Badtke MP, Hultgren SJ, Chapman MR. CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation. Mol Microbiol 2011; 81:486-99. [PMID: 21645131 PMCID: PMC3134098 DOI: 10.1111/j.1365-2958.2011.07706.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Curli are extracellular amyloid fibres produced by Escherichia coli that are critical for biofilm formation and adhesion to biotic and abiotic surfaces. CsgA and CsgB are the major and minor curli subunits, respectively, while CsgE, CsgF and CsgG direct the extracellular localization and assembly of curli subunits into fibres. The secretion and stability of CsgA and CsgB are dependent on the outer membrane lipoprotein CsgG. Here, we identified functional interactions between CsgG and CsgE during curli secretion. We discovered that CsgG overexpression restored curli production to a csgE strain under curli-inducing conditions. In antibiotic sensitivity and protein secretion assays, CsgG expression alone allowed translocation of erythromycin and small periplasmic proteins across the outer membrane. Coexpression of CsgE with CsgG blocked non-specific protein and antibiotic passage across the outer membrane. However, CsgE did not block secretion of proteins containing a 22-amino-acid putative outer membrane secretion signal of CsgA (A22). Finally, using purified proteins, we found that CsgE prohibited the self-assembly of CsgA into amyloid fibres. Collectively, these data indicate that CsgE provides substrate specificity to the curli secretion pore CsgG, and acts directly on the secretion substrate CsgA to prevent premature subunit assembly.
Collapse
Affiliation(s)
- Ashley A. Nenninger
- Department of Molecular Microbiology and Microbial Pathogenesis Washington University School of Medicine, Campus Box 8230 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Lloyd S. Robinson
- Department of Molecular Microbiology and Microbial Pathogenesis Washington University School of Medicine, Campus Box 8230 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Neal D. Hammer
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor 830 North University, Ann Arbor, MI 48109, USA
| | - Elisabeth Ashman Epstein
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor 830 North University, Ann Arbor, MI 48109, USA
| | - Matthew P. Badtke
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor 830 North University, Ann Arbor, MI 48109, USA
| | - Scott J. Hultgren
- Department of Molecular Microbiology and Microbial Pathogenesis Washington University School of Medicine, Campus Box 8230 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology University of Michigan, Ann Arbor 830 North University, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Structural homology between the C-terminal domain of the PapC usher and its plug. J Bacteriol 2010; 192:1824-31. [PMID: 20118254 DOI: 10.1128/jb.01677-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P pili are extracellular appendages responsible for the targeting of uropathogenic Escherichia coli to the kidney. They are assembled by the chaperone-usher (CU) pathway of pilus biogenesis involving two proteins, the periplasmic chaperone PapD and the outer membrane assembly platform, PapC. Many aspects of the structural biology of the Pap CU pathway have been elucidated, except for the C-terminal domain of the PapC usher, the structure of which is unknown. In this report, we identify a stable and folded fragment of the C-terminal region of the PapC usher and determine its structure using both X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. These structures reveal a beta-sandwich fold very similar to that of the plug domain, a domain of PapC obstructing its translocation domain. This structural similarity suggests similar functions in usher-mediated pilus biogenesis, playing out at different stages of the process. This structure paves the way for further functional analysis targeting surfaces common to both the plug and the C-terminal domain of PapC.
Collapse
|
8
|
Allen WJ, Phan G, Waksman G. Structural biology of periplasmic chaperones. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009; 78:51-97. [PMID: 20663484 DOI: 10.1016/s1876-1623(08)78003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Proteins often require specific helper proteins, chaperones, to assist with their correct folding and to protect them from denaturation and aggregation. The cell envelope of Gram-negative bacteria provides a particularly challenging environment for chaperones to function in as it lacks readily available energy sources such as adenosine 5' triphosphate (ATP) to power reaction cycles. Periplasmic chaperones have therefore evolved specialized mechanisms to carry out their functions without the input of external energy and in many cases to transduce energy provided by protein folding or ATP hydrolysis at the inner membrane. Structural and biochemical studies have in recent years begun to elucidate the specific functions of many important periplasmic chaperones and how these functions are carried out. This includes not only specific carrier chaperones, such as those involved in the biosynthesis of adhesive fimbriae in pathogenic bacteria, but also more general pathways including the periplasmic transport of outer membrane proteins and the extracytoplasmic stress responses. This chapter aims to provide an overview of protein chaperones so far identified in the periplasm and how structural biology has assisted with the elucidation of their functions.
Collapse
Affiliation(s)
- William J Allen
- Institute of Structural and Molecular Biology, Birkbeck and University College London, London WC1E 7HX, UK
| | | | | |
Collapse
|
9
|
Lugmaier RA, Schedin S, Kühner F, Benoit M. Dynamic restacking of Escherichia Coli P-pili. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:111-20. [PMID: 17554533 DOI: 10.1007/s00249-007-0183-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/27/2007] [Accepted: 05/07/2007] [Indexed: 01/31/2023]
Abstract
P-pili of uropathogenic Escherichia coli mediate the attachment to epithelial cells in the human urinary tract and kidney and therefore play an important role in infection. A better understanding of this mechanism could help to prevent bacteria from spreading but also provides interesting insights into molecular mechanics for future nanotech applications. The helical rod design of P-pili provides an efficient design to withstand hydrodynamic shear forces. The adhesive PapG unit at the distal end of the P-pilus forms a specific bond with the glycolipid Galabiose. This bond has a potential width Deltax = 0.7 +/- 0.15 nm and a dissociation rate K (Off) = 8.0.10(-4) +/- 5.0.10(-4) s(-1). It withstands a force of approximately 49 pN under physiological conditions. Additionally, we analyzed the behavior of unstacking and restacking of the P-pilus with dynamic force spectroscopy at velocities between 200 and 7,000 nm/s. Up to a critical extension of 66% of the totally stretched P-pilus, un/re-stacking was found to be fully reversible at velocities up to 200 nm/s. If the P-pilus is stretched beyond this critical extension a characteristic hysteresis appears upon restacking. This hysteresis originates from a nucleation process comparable to a first-order phase transition in an undercooled liquid. Analysis of the measurement data suggests that 20 PapA monomers are involved in the formation of a nucleation kernel.
Collapse
Affiliation(s)
- Robert A Lugmaier
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstrasse 54, 80799, Munich, Germany.
| | | | | | | |
Collapse
|
10
|
Lee YM, Dodson KW, Hultgren SJ. Adaptor function of PapF depends on donor strand exchange in P-pilus biogenesis of Escherichia coli. J Bacteriol 2007; 189:5276-83. [PMID: 17496084 PMCID: PMC1951870 DOI: 10.1128/jb.01648-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P-pilus biogenesis occurs via the highly conserved chaperone-usher pathway and involves the strict coordination of multiple subunit proteins. All nonadhesin structural P-pilus subunits possess the same topology, consisting of two domains: an incomplete immunoglobulin-like fold (pilin body) and an N-terminal extension. Pilus subunits form interactions with one another through donor strand exchange, occurring at the usher, in which the N-terminal extension of an incoming subunit completes the pilin body of the preceding subunit, allowing the incorporation of the subunit into the pilus fiber. In this study, pilus subunits in which the N-terminal extension was either deleted or swapped with that of another subunit were used to examine the role of each domain of PapF in functions involving donor strand exchange and hierarchical assembly. We found that the N-terminal extension of PapF is required to adapt the PapG adhesin to the tip of the fiber. The pilin body of PapF is required to efficiently initiate assembly of the remainder of the pilus, with the assistance of the N-terminal extension. Thus, distinct functions were assigned to each region of the PapF subunit. In conclusion, all pilin subunits possess the same overall architectural topology; however, each N-terminal extension and pilin body has specific functions in pilus biogenesis.
Collapse
Affiliation(s)
- Yvonne M Lee
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Ave., Campus Box 8230, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
11
|
Mu XQ, Bullitt E. Structure and assembly of P-pili: a protruding hinge region used for assembly of a bacterial adhesion filament. Proc Natl Acad Sci U S A 2006; 103:9861-6. [PMID: 16782819 PMCID: PMC1502544 DOI: 10.1073/pnas.0509620103] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
High-resolution structures of macromolecular complexes offer unparalleled insight into the workings of biological systems and hence the interplay of these systems in health and disease. We have adopted a multifaceted approach to understanding the pathogenically important structure of P-pili, the class I adhesion pili from pyelonephritic Escherichia coli. Our approach combines electron cryomicroscopy, site-directed mutagenesis, homology modeling, and energy calculations, resulting in a high-resolution model of PapA, the major structural element of these pili. Fitting of the modeled PapA subunit into the electron cryomicroscopy data provides a detailed view of these pilins within the supramolecular architecture of the pilus filament. A structural hinge in the N-terminal region of the subunit is located at the site of a newly resolved electron density that protrudes from the P-pilus surface. The structural flexibility provided by this hinge is necessary for assembly of P-pili, illustrating one solution to construction of large macromolecular complexes from small repeating units. These data support our hypothesis that domain-swapped pilin subunits transit the outer cell membrane vertically and rotate about the hinge for final positioning into the pilus filament. Our data confirm and supply a structural basis for much previous genetic, biochemical, and structural data. This model of the P-pilus filament provides an insight into the mechanism of assembly of a macromolecular complex essential for initiation of kidney infection by these bacteria.
Collapse
Affiliation(s)
- Xiang-Qi Mu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
- *To whom correspondence should be addressed at:
Department of Physiology and Biophysics, Boston University School of Medicine, 715 Albany Street, W302, Boston, MA 02118-2526. E-mail:
| |
Collapse
|
12
|
Fällman E, Schedin S, Jass J, Uhlin BE, Axner O. The unfolding of the P pili quaternary structure by stretching is reversible, not plastic. EMBO Rep 2005; 6:52-6. [PMID: 15592451 PMCID: PMC1299220 DOI: 10.1038/sj.embor.7400310] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 11/09/2004] [Accepted: 11/15/2004] [Indexed: 11/09/2022] Open
Abstract
P pili are protein filaments expressed by uropathogenic Escherichia coli that mediate binding to glycolipids on epithelial cell surfaces, which is a prerequisite for bacterial infection. When a bacterium, attached to a cell surface, is exposed to external forces, the pili, which are composed of approximately 10(3) PapA protein subunits arranged in a helical conformation, can elongate by unfolding to a linear conformation. This property is considered important for the ability of a bacterium to withstand shear forces caused by urine flow. It has hitherto been assumed that this elongation is plastic, thus constituting a permanent conformational deformation. We demonstrate, using optical tweezers, that this is not the case; the unfolding of the helical structure to a linear conformation is fully reversible. It is surmised that this reversibility helps the bacteria regain close contact to the host cells after exposure to significant shear forces, which is believed to facilitate their colonization.
Collapse
Affiliation(s)
- Erik Fällman
- Department of Physics, and Electronics, Umeå University, 901 87 Umeå, Sweden
- Tel: +46 90 786 6775; Fax: +46 90 786 6673; E-mail:
| | - Staffan Schedin
- Department of Applied Physics and Electronics, Umeå University, 901 87 Umeå, Sweden
| | - Jana Jass
- Department of Microbiology and Immunology, The Lawson Health Research Institute, University of Western Ontario, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada
| | - Bernt-Eric Uhlin
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Ove Axner
- Department of Physics, and Electronics, Umeå University, 901 87 Umeå, Sweden
- Tel: + 46 90 786 6754; Fax: +46 90 786 6673; E-mail:
| |
Collapse
|
13
|
Jass J, Schedin S, Fällman E, Ohlsson J, Nilsson UJ, Uhlin BE, Axner O. Physical properties of Escherichia coli P pili measured by optical tweezers. Biophys J 2004; 87:4271-83. [PMID: 15377509 PMCID: PMC1304935 DOI: 10.1529/biophysj.104.044867] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Accepted: 09/14/2004] [Indexed: 11/18/2022] Open
Abstract
The mechanical behavior of individual P pili of uropathogenic Escherichia coli has been investigated using optical tweezers. P pili, whose main part constitutes the PapA rod, composed of approximately 10(3) PapA subunits in a helical arrangement, are distributed over the bacterial surface and mediate adhesion to host cells. They are particularly important in the pathogenesis of E. coli colonizing the upper urinary tract and kidneys. A biological model system has been established for in situ measurements of the forces that occur during mechanical stretching of pili. A mathematical model of the force-versus-elongation behavior of an individual pilus has been developed. Three elongation regions of pili were identified. In region I, P pili stretch elastically, up to a relative elongation of 16 +/- 3%. The product of elasticity modulus and area of a P pilus, EA, was assessed to 154 +/- 20 pN (n=6). In region II, the quaternary structure of the PapA rod unfolds under a constant force of 27 +/- 2 pN (n approximately 100) by a sequential breaking of the interactions between adjacent layers of PapA subunits. This unfolding can elongate the pilus up to 7 +/- 2 times. In region III, pili elongate in a nonlinear manner as a result of stretching until the bond ruptures.
Collapse
Affiliation(s)
- Jana Jass
- Department of Microbiology and Immunology, The Lawson Health Research Institute, University of Western Ontario, London, Ontario, N6A 4V2, Canada
| | | | | | | | | | | | | |
Collapse
|
14
|
Verdonck F, Cox E, Goddeeris BM. F4 fimbriae expressed by porcine enterotoxigenic Escherichia coli, an example of an eccentric fimbrial system? J Mol Microbiol Biotechnol 2004; 7:155-69. [PMID: 15383714 DOI: 10.1159/000079825] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An overwhelming number of infectious diseases in both humans and animals are initiated by bacterial adhesion to carbohydrate structures on a mucosal surface. Most bacterial pathogens mediate this adhesion by fimbriae or pili which contain an adhesive lectin subunit. The importance of fimbriae as virulence factors led to research elucidating the regulation of fimbrial expression and their molecular assembly process. This review provides an overview of the current knowledge of induction, expression and assembly of F4 (K88) fimbriae and discusses its unique as well as its identical characteristics compared to other intensively studied fimbriae or pili expressed by Escherichia coli.
Collapse
Affiliation(s)
- F Verdonck
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | |
Collapse
|
15
|
Sauer FG, Remaut H, Hultgren SJ, Waksman G. Fiber assembly by the chaperone–usher pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:259-67. [PMID: 15546670 DOI: 10.1016/j.bbamcr.2004.02.010] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 02/10/2004] [Indexed: 11/22/2022]
Abstract
Bacterial pathogens utilize the chaperone-usher pathway to assemble extracellular multi-subunit fibers essential for virulence. The periplasmic chaperone facilitates the initial folding of fiber subunits but then traps them in activated folding transition states. Chaperone dissociation releases the folding energy that drives subunit incorporation into the fiber, which grows through a pore formed by the outer-membrane usher.
Collapse
Affiliation(s)
- Frederic G Sauer
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Ave., New Haven, CT 06536, USA
| | | | | | | |
Collapse
|
16
|
Khandelwal P, Choudhury D, Birah A, Reddy MK, Gupta GP, Banerjee N. Insecticidal pilin subunit from the insect pathogen Xenorhabdus nematophila. J Bacteriol 2004; 186:6465-76. [PMID: 15375127 PMCID: PMC516617 DOI: 10.1128/jb.186.19.6465-6476.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenorhabdus nematophila is an insect pathogen and produces protein toxins which kill the larval host. Previously, we characterized an orally toxic, large, outer membrane-associated protein complex from the culture medium of X. nematophila. Here, we describe the cloning, expression, and characterization of a 17-kDa pilin subunit of X. nematophila isolated from that protein complex. The gene was amplified by PCR, cloned, and expressed in Escherichia coli. The recombinant protein was refolded in vitro in the absence of its cognate chaperone by using a urea gradient. The protein oligomerized during in vitro refolding, forming multimers. Point mutations in the conserved N-terminal residues of the pilin protein greatly destabilized its oligomeric organization, demonstrating the importance of the N terminus in refolding and oligomerization of the pilin subunit by donor strand complementation. The recombinant protein was cytotoxic to cultured Helicoverpa armigera larval hemocytes, causing agglutination and subsequent release of the cytoplasmic enzyme lactate dehydrogenase. The agglutination of larval cells by the 17-kDa protein was inhibited by several sugar derivatives. The biological activity of the purified recombinant protein indicated that it has a conformation similar to that of the native protein. The 17-kDa pilin subunit was found to be orally toxic to fourth- or fifth-instar larvae of an important crop pest, H. armigera, causing extensive damage to the midgut epithelial membrane. To our knowledge, this is first report describing an insecticidal pilin subunit of a bacterium.
Collapse
|
17
|
Verdonck F, Cox E, Schepers E, Imberechts H, Joensuu J, Goddeeris BM. Conserved regions in the sequence of the F4 (K88) fimbrial adhesin FaeG suggest a donor strand mechanism in F4 assembly. Vet Microbiol 2004; 102:215-25. [PMID: 15327796 DOI: 10.1016/j.vetmic.2004.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 06/07/2004] [Accepted: 06/14/2004] [Indexed: 10/26/2022]
Abstract
Oral immunization of newly weaned piglets with recombinant F4 (K88) fimbrial adhesin FaeG induces a F4-specific immune response, significantly reducing F4+ Escherichia coli excretion following challenge. In order to use FaeG subunits in an oral vaccine against F4+ enterotoxigenic E. coli, it is necessary to determine the conservation of the adhesin subunit. Hereto, the faeG sequence was determined of 21 F4ac+ E. coli field isolates from piglets with diarrhoea and subsequently compared with these of the reference strain GIS26 and previously reported FaeG sequences from F4ab, F4ac and F4ad antigenic variant strains. The FaeG amino acid sequence was 96-100% homologous within each F4 serotype, but only 92 and 88% when the F4ab and F4ad antigenic variants were compared with the F4ac antigenic variant. Furthermore, the conserved regions of the adhesin suggest a donor strand mechanism in F4 fimbriae assembly as reported for type 1 and P pili. In conclusion, the results of the reported experiments support the usefulness FaeG in an oral subunit vaccine against F4+ E. coli infections or as a mucosal carrier since the adhesin is conserved among F4+ E. coli field isolates.
Collapse
Affiliation(s)
- F Verdonck
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
18
|
Barnhart MM, Sauer FG, Pinkner JS, Hultgren SJ. Chaperone-subunit-usher interactions required for donor strand exchange during bacterial pilus assembly. J Bacteriol 2003; 185:2723-30. [PMID: 12700251 PMCID: PMC154394 DOI: 10.1128/jb.185.9.2723-2730.2003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The assembly of type 1 pili on the surface of uropathogenic Escherichia coli proceeds via the chaperone-usher pathway. Chaperone-subunit complexes interact with one another via a process termed donor strand complementation whereby the G1beta strand of the chaperone completes the immunoglobulin (Ig) fold of the pilus subunit. Chaperone-subunit complexes are targeted to the usher, which forms a channel across the outer membrane through which pilus subunits are translocated and assembled into pili via a mechanism known as donor strand exchange. This is a mechanism whereby chaperone uncapping from a subunit is coupled with the simultaneous assembly of the subunit into the pilus fiber. Thus, in the pilus fiber, the N-terminal extension of every subunit completes the Ig fold of its neighboring subunit by occupying the same site previously occupied by the chaperone. Here, we investigated details of the donor strand exchange assembly mechanism. We discovered that the information necessary for targeting the FimC-FimH complex to the usher resides mainly in the FimH protein. This interaction is an initiating event in pilus biogenesis. We discovered that the ability of an incoming subunit (in a chaperone-subunit complex) to participate in donor strand exchange with the growing pilus depended on a previously unrecognized function of the chaperone. Furthermore, the donor strand exchange assembly mechanism between subunits was found to be necessary for subunit translocation across the outer membrane usher.
Collapse
Affiliation(s)
- Michelle M Barnhart
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110-1093, USA
| | | | | | | |
Collapse
|
19
|
Berglund J, Knight SD. Structural Basis for Bacterial Adhesion in the Urinary Tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 535:33-52. [PMID: 14714887 DOI: 10.1007/978-1-4615-0065-0_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Jenny Berglund
- Department of Molecular Biosciences/Structural Biology, Uppsala Biomedical Center, Swedish University of Agricultural Sciences, Box 590, SE-753 24 Uppsala, Sweden
| | | |
Collapse
|
20
|
Jones CH, Dexter P, Evans AK, Liu C, Hultgren SJ, Hruby DE. Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J Bacteriol 2002; 184:5762-71. [PMID: 12270835 PMCID: PMC139609 DOI: 10.1128/jb.184.20.5762-5771.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DegP protein, a multifunctional chaperone and protease, is essential for clearance of denatured or aggregated proteins from the inner-membrane and periplasmic space in Escherichia coli. To date, four natural targets for DegP have been described: colicin A lysis protein, pilin subunits and MalS from E. coli, and high-molecular-weight adherence proteins from Haemophilus influenzae. In vitro, DegP has shown weak protease activity with casein and several other nonnative substrates. We report here the identification of the major pilin subunit of the Pap pilus, PapA, as a natural DegP substrate and demonstrate binding and proteolysis of this substrate in vitro. Using overlapping peptide arrays, we identified three regions in PapA that are preferentially cleaved by DegP. A 7-mer peptide was found to be a suitable substrate for cleavage by DegP in vitro. In vitro proteolysis of model peptide substrates revealed that cleavage is dependent upon the presence of paired hydrophobic amino acids; moreover, cleavage was found to occur between the hydrophobic residues. Finally, we demonstrate that the conserved carboxyl-terminal sequence in pilin subunits, although not a cleavage substrate for DegP, activates the protease and we propose that the activating peptide is recognized by DegP's PDZ domains.
Collapse
Affiliation(s)
- C Hal Jones
- SIGA Technologies, Inc., Corvallis, Oregon 97333, USA.
| | | | | | | | | | | |
Collapse
|
21
|
MacIntyre S, Zyrianova IM, Chernovskaya TV, Leonard M, Rudenko EG, Zav'Yalov VP, Chapman DA. An extended hydrophobic interactive surface of Yersinia pestis Caf1M chaperone is essential for subunit binding and F1 capsule assembly. Mol Microbiol 2001; 39:12-25. [PMID: 11123684 DOI: 10.1046/j.1365-2958.2001.02199.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A single polypeptide subunit, Caf1, polymerizes to form a dense, poorly defined structure (F1 capsule) on the surface of Yersinia pestis. The caf-encoded assembly components belong to the chaperone-usher protein family involved in the assembly of composite adhesive pili, but the Caf1M chaperone itself belongs to a distinct subfamily. One unique feature of this subfamily is the possession of a long, variable sequence between the F1 beta-strand and the G1 subunit binding beta-strand (FGL; F1 beta-strand to G1 beta-strand long). Deletion and insertion mutations confirmed that the FGL sequence was not essential for folding of the protein but was absolutely essential for function. Site-specific mutagenesis of individual residues identified Val-126, in particular, together with Val-128 as critical residues for the formation of a stable subunit-chaperone complex and the promotion of surface assembly. Differential effects on periplasmic polymerization of the subunit were also observed with different mutants. Together with the G1 strand, the FGL sequence has the potential to form an interactive surface of five alternating hydrophobic residues on Caf1M chaperone as well as in seven of the 10 other members of the FGL subfamily. Mutation of the absolutely conserved Arg-20 to Ser led to drastic reduction in Caf1 binding and surface assembled polymer. Thus, although Caf1M-Caf1 subunit binding almost certainly involves the basic principle of donor strand complementation elucidated for the PapD-PapK complex, a key feature unique to the chaperones of this subfamily would appear to be capping via high-affinity binding of an extended hydrophobic surface on the respective single subunits.
Collapse
Affiliation(s)
- S MacIntyre
- Microbiology Division, School of Animal and Microbial Sciences, University of Reading, Reading RG6 6AJ, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Sauer FG, Barnhart M, Choudhury D, Knight SD, Waksman G, Hultgren SJ. Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struct Biol 2000; 10:548-56. [PMID: 11042452 DOI: 10.1016/s0959-440x(00)00129-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bacterial pili assembled by the chaperone-usher pathway can mediate microbial attachment, an early step in the establishment of an infection, by binding specifically to sugars present in host tissues. Recent work has begun to reveal the structural basis both of chaperone function in the biogenesis of these pili and of bacterial attachment.
Collapse
Affiliation(s)
- F G Sauer
- Department of Molecular Microbiology, Washington University School of Medicine, Missouri 63110, St Louis, USA
| | | | | | | | | | | |
Collapse
|
23
|
Saulino ET, Bullitt E, Hultgren SJ. Snapshots of usher-mediated protein secretion and ordered pilus assembly. Proc Natl Acad Sci U S A 2000; 97:9240-5. [PMID: 10908657 PMCID: PMC16852 DOI: 10.1073/pnas.160070497] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Type 1 pilus biogenesis was used as a paradigm to investigate ordered macromolecular assembly at the outer cell membrane. The ability of Gram-negative bacteria to secrete proteins across their outer membrane and to assemble adhesive macromolecular structures on their surface is a defining event in pathogenesis. We elucidated genetic, biochemical, and biophysical requirements for assembly of functional type 1 pili. We discovered that the minor pilus protein FimG plays a critical role in nucleating the formation of the adhesive tip fibrillum. Genetic methods were used to trap pilus subunits during their translocation through the outer membrane usher protein, providing data on the structural interactions that occur between subunit components during type 1 pilus formation. Electron microscopic and biochemical analyses of these stepwise assembly intermediates demonstrated that translocation of pilus subunits occurs linearly through the usher's central channel, with formation of the pilus helix occurring extracellularly. Specialized pilin subunits play unique roles both in this multimerization and in the final ultrastructure of the adhesive pilus.
Collapse
Affiliation(s)
- E T Saulino
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, St. Louis, MO 63110-1010, USA
| | | | | |
Collapse
|
24
|
Barnhart MM, Pinkner JS, Soto GE, Sauer FG, Langermann S, Waksman G, Frieden C, Hultgren SJ. PapD-like chaperones provide the missing information for folding of pilin proteins. Proc Natl Acad Sci U S A 2000; 97:7709-14. [PMID: 10859353 PMCID: PMC16609 DOI: 10.1073/pnas.130183897] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2000] [Indexed: 11/18/2022] Open
Abstract
A fundamental question in molecular biology is how proteins fold into domains that can serve as assembly modules for building up large macromolecular structures. The biogenesis of pili on the surface of Gram-negative bacteria requires the orchestration of a complex process that includes protein synthesis, folding via small chaperones, secretion, and assembly. The results presented here support the hypothesis that pilus subunit folding and biogenesis proceed via mechanisms termed donor strand complementation and donor strand exchange. Here we show that the steric information necessary for pilus subunit folding is not contained in one polypeptide sequence. Rather, the missing information is transiently donated by a strand of a small chaperone to allow folding. Providing the missing information for folding, via a 13-amino acid peptide extension to the C-terminal end of a pilus subunit, resulted in the production of a protein that no longer required the chaperone to fold. This mechanism of small periplasmic chaperone function described here deviates from classical hsp60 chaperone-assisted folding.
Collapse
Affiliation(s)
- M M Barnhart
- Departments of Molecular Microbiology and Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Krasan GP, Sauer FG, Cutter D, Farley MM, Gilsdorf JR, Hultgren SJ, St Geme JW. Evidence for donor strand complementation in the biogenesis of Haemophilus influenzae haemagglutinating pili. Mol Microbiol 2000; 35:1335-47. [PMID: 10760135 DOI: 10.1046/j.1365-2958.2000.01816.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haemophilus influenzae haemagglutinating pili are surface appendages that promote attachment to host cells and facilitate respiratory tract colonization, an essential step in the pathogenesis of disease. In contrast to other well-characterized forms of pili, H. influenzae haemagglutinating pili are two-stranded helical structures. Nevertheless, haemagglutinating pili are assembled by a pathway that involves a periplasmic chaperone and an outer membrane usher, analogous to the prototype pathway involved in the biogenesis of Escherichia coli P pili. In this study, we performed site-directed mutagenesis of the H. influenzae HifB chaperone and HifA major pilus subunit at positions homologous to sites important for chaperone-subunit interactions and subunit oligomerization in P pili. Mutations at putative subunit binding pocket residues in HifB or at the penultimate tyrosine in HifA abolished formation of HifB-HifA periplasmic complexes, whereas mutations at the -14 glycine in HifA had no effect on HifB-HifA interactions but abrogated HifA oligomerization. To define further the constraints of the interaction between HifA and HifB, we examined the interchangeability of pilus gene cluster components from H. influenzae type b strain Eagan (hifA-hifEEag) and the related H. influenzae biogroup aegyptius strain F3031 (hifA-hifEF3031). Functional pili were assembled both with HifAEag and the strain F3031 gene cluster and with HifAF3031 and the strain Eagan gene cluster, underscoring the flexibility of the H. influenzae chaperone/usher pathway in incorporating HifA subunits with significant sequence diversity. To gain additional insight into the interactive surfaces of HifA and HifB, we aligned HifA sequences from 20 different strains and then modelled the HifA structure based on the recently crystallized PapD-PapK complex. Analysis of the resulting structure revealed high levels of sequence conservation in regions predicted to interact with HifB, and maximal sequence diversity in regions potentially exposed on the surface of assembled pili. These results suggest broad applicability of structure-function relationships identified in studies of P pili, including the concepts of donor strand complementation and donor strand exchange. In addition, they provide insight into the structure of HifA and suggest a basis for antigenic variation in H. influenzae haemagglutinating pili.
Collapse
Affiliation(s)
- G P Krasan
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, 63110, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
White AP, Collinson SK, Banser PA, Dolhaine DJ, Kay WW. Salmonella enteritidis fimbriae displaying a heterologous epitope reveal a uniquely flexible structure and assembly mechanism. J Mol Biol 2000; 296:361-72. [PMID: 10669594 DOI: 10.1006/jmbi.1999.3434] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two distinct Salmonella fimbrins, AgfA and SefA, comprising thin aggregative fimbriae SEF17 and SEF14, respectively, were each genetically engineered to carry PT3, an alpha-helical 16-amino acid Leishmania T-cell epitope derived from the metalloprotease gp63. To identify regions within AgfA and SefA fimbrins amenable to replacement with this epitope, PCR-generated chimeric fimbrin genes were constructed and used to replace the native chromosomal agfA and sefA genes in Salmonella enteritidis. Immunoblot analysis using anti-SEF17 and anti-PT3 sera demonstrated that all ten AgfA chimeric fimbrin proteins were expressed by S. enteritidis under normal growth conditions. Immunoelectron microscopy confirmed that eight of the AgfA::PT3 proteins were effectively assembled into cell surface-exposed fimbriae. The PT3 replacements in AgfA altered Congo red (CR) binding, cell-cell adhesion and cell surface properties of S. enteritidis to varying degrees. However, these chimeric fimbriae were still highly stable, being resistant to proteinase K digestion and requiring harsh formic acid treatment for depolymerization. In marked contrast to AgfA, none of the chimeric SefA proteins were expressed or assembled into fimbriae. Since each PT3 replacement constituted over 10% of the AgfA amino acid sequence and all ten replacements collectively represented greater than 75% of the entire AgfA primary sequence, the ability of AgfA to accept large sequence substitutions and still assemble into fibers is unique among fimbriae and other structural proteins. This structural flexibility may be related to the novel fivefold repeating sequence of AgfA and its recently proposed structure Proper formation of chimeric fimbrial fibers suggests an unusual assembly mechanism for thin aggregative fimbriae which tolerates aberrant structures. This study opens a range of possibilities for Salmonella thin aggregative fimbriae as a carrier of heterologous epitopes and as an experimental model for studies of protein structure.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Bacterial Adhesion
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Biopolymers/chemistry
- Biopolymers/genetics
- Biopolymers/immunology
- Biopolymers/metabolism
- Blotting, Western
- Congo Red/metabolism
- Endopeptidase K/metabolism
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Fimbriae Proteins
- Fimbriae, Bacterial/chemistry
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/immunology
- Fimbriae, Bacterial/metabolism
- Formates/metabolism
- Leishmania/genetics
- Leishmania/immunology
- Metalloendopeptidases/genetics
- Metalloendopeptidases/immunology
- Microscopy, Immunoelectron
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Insertional
- Pliability
- Protein Structure, Quaternary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Salmonella enteritidis/cytology
- Salmonella enteritidis/genetics
- Salmonella enteritidis/growth & development
- Salmonella enteritidis/physiology
Collapse
Affiliation(s)
- A P White
- Department of Biochemistry, University of Victoria, Victoria, Canada
| | | | | | | | | |
Collapse
|
27
|
Sauer FG, Knight SD, Waksman and GJ, Hultgren SJ. PapD-like chaperones and pilus biogenesis. Semin Cell Dev Biol 2000; 11:27-34. [PMID: 10736261 DOI: 10.1006/scdb.1999.0348] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The assembly of adhesive pili from individual subunits by periplasmic PapD-like chaperones in Gram-negative bacteria offers insight into the complex process of organelle biogenesis. PapD-like chaperones bind, stabilize, and cap interactive surfaces of subunits until they are assembled into the pilus. Subunits lack the seventh *gb-strand necessary to complete their immunoglobulin-like folds; the chaperone supplies this missing strand. Indeed, the chaperone may act as a template, providing steric information to facilitate subunit folding. In the mature pilus, each subunit is thought to supply the missing strand to complete the fold of its neighbor. Thus, one general function of chaperones in organelle biogenesis may be to cap highly interactive surfaces of subunits until they reach the proper assembly site.
Collapse
Affiliation(s)
- F G Sauer
- Departments of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
28
|
Thanassi DG, Hultgren SJ. Assembly of complex organelles: pilus biogenesis in gram-negative bacteria as a model system. Methods 2000; 20:111-26. [PMID: 10610809 DOI: 10.1006/meth.1999.0910] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathogenic bacteria assemble a variety of adhesive structures on their surface for attachment to host cells. Some of these structures are quite complex. For example, the hair-like organelles known as pili or fimbriae are generally composed of several components and often exhibit composite morphologies. In gram-negative bacteria assembly of pili requires that the subunits cross the cytoplasmic membrane, fold correctly in the periplasm, target to the outer membrane, assemble into an ordered structure, and cross the outer membrane to the cell surface. Thus, pilus biogenesis provides a model for a number of basic biological problems including protein folding, trafficking, secretion, and the ordered assembly of proteins into complex structures. P pilus biogenesis represents one of the best-understood pilus systems. P pili are produced by 80-90% of all pyelonephritic Escherichia coli and are a major virulence determinant for urinary tract infections. Two specialized assembly factors known as the periplasmic chaperone and outer membrane usher are required for P pilus assembly. A chaperone/usher pathway is now known to be required for the biogenesis of more than 30 different adhesive structures in diverse gram-negative pathogenic bacteria. Elucidation of the chaperone/usher pathway was brought about through a powerful combination of molecular, biochemical, and biophysical techniques. This review discusses these approaches as they relate to pilus assembly, with an emphasis on newer techniques.
Collapse
Affiliation(s)
- D G Thanassi
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
29
|
Sauer FG, Fütterer K, Pinkner JS, Dodson KW, Hultgren SJ, Waksman G. Structural basis of chaperone function and pilus biogenesis. Science 1999; 285:1058-61. [PMID: 10446050 DOI: 10.1126/science.285.5430.1058] [Citation(s) in RCA: 321] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many Gram-negative pathogens assemble architecturally and functionally diverse adhesive pili on their surfaces by the chaperone-usher pathway. Immunoglobulin-like periplasmic chaperones escort pilus subunits to the usher, a large protein complex that facilitates the translocation and assembly of subunits across the outer membrane. The crystal structure of the PapD-PapK chaperone-subunit complex, determined at 2.4 angstrom resolution, reveals that the chaperone functions by donating its G(1) beta strand to complete the immunoglobulin-like fold of the subunit via a mechanism termed donor strand complementation. The structure of the PapD-PapK complex also suggests that during pilus biogenesis, every subunit completes the immunoglobulin-like fold of its neighboring subunit via a mechanism termed donor strand exchange.
Collapse
Affiliation(s)
- F G Sauer
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
30
|
Hung DL, Pinkner JS, Knight SD, Hultgren SJ. Structural basis of chaperone self-capping in P pilus biogenesis. Proc Natl Acad Sci U S A 1999; 96:8178-83. [PMID: 10393968 PMCID: PMC22208 DOI: 10.1073/pnas.96.14.8178] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PapD is an immunoglobulin-like chaperone that mediates the assembly of P pili in uropathogenic strains of Escherichia coli. It binds and caps interactive surfaces on pilus subunits to prevent their premature associations in the periplasm. We elucidated the structural basis of a mechanism whereby PapD also interacts with itself, capping its own subunit binding surface. Crystal structures of dimeric forms of PapD revealed that this self-capping mechanism involves a rearrangement and ordering of the C2-D2 and F1-G1 loops upon dimerization which might ensure that a stable dimer is not formed in solution in spite of a relatively large dimer interface. An analysis of site directed mutations revealed that chaperone dimerization requires the same surface that is otherwise used to bind subunits.
Collapse
Affiliation(s)
- D L Hung
- Department of Molecular Microbiology, Box 8230, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
31
|
Manna D, Higgins NP. Phage Mu transposition immunity reflects supercoil domain structure of the chromosome. Mol Microbiol 1999; 32:595-606. [PMID: 10320581 DOI: 10.1046/j.1365-2958.1999.01377.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transposition immunity is the negative influence that the presence of one transposon sequence has on the probability of a second identical element inserting in the same site or in sites nearby. A transposition-defective Mu derivative (MudJr1) produced transposition immunity in both directions from one insertion point in the Salmonella typhimurium chromosome. To control for the sequence preference of Mu transposition proteins, Tn10 elements were introduced as targets at various distances from an immunity-conferring MudJr1 element. Mu transposition into a Tn10 target was not detectable when the distance of separation from MudJr1 was 5 kb, and transposition was unencumbered when the separation was 25 kb. Between 5 kb and 25 kb, immunity decayed gradually with distance. Immunity decayed more sharply in a gyrase mutant than in a wild-type strain. We propose that Mu transposition immunity senses the domain structure of bacterial chromosomes.
Collapse
Affiliation(s)
- D Manna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
32
|
Abstract
PapD is the periplasmic chaperone required for the assembly of P pili in pyelonephritic strains of Escherichia coli. It consists of two immunoglobulin-like domains bisected by a subunit binding cleft. PapD is the prototype member of a super family of immunoglobulin-like chaperones that work in concert with their respective ushers to assemble a plethora of adhesive organelles including pilus- and non-pilus-associated adhesins. Three highly conserved residue clusters have been shown to play critical roles in the structure and function of PapD, as determined by site-directed mutagenesis. The in vivo stability of the chaperone depended on the formation of a buried salt bridge within the cleft. Residues along the G1 beta strand were required for efficient binding of subunits consistent with the crystal structure of PapD-peptide complexes. Finally, Thr-53, a residue that is part of a conserved band of residues located on the amino-terminal domain surface opposite the subunit binding cleft, was also found to be critical for pilus assembly, but mutations at Thr-53 did not interfere with chaperone-subunit complex formation.
Collapse
Affiliation(s)
- D L Hung
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
33
|
Hung DL, Hultgren SJ. Pilus biogenesis via the chaperone/usher pathway: an integration of structure and function. J Struct Biol 1998; 124:201-20. [PMID: 10049807 DOI: 10.1006/jsbi.1998.4049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular basis of how pathogenic bacteria cause disease has been studied by blending a well-developed genetic system with X-ray crystallography, protein chemistry, high resolution electron microscopy, and cell biology. Microbial attachment to host tissues is one of the key events in the early stages of most bacterial infections. Attachment is typically mediated by adhesins that are assembled into hair-like fibers called pili on bacterial surfaces. This article focuses on the structure-function correlates of P pili, which are produced by most pyelonephritic strains of Escherichia coli. P pili are assembled via a chaperone/usher pathway. Similar pathways are responsible for the assembly of over 30 adhesive organelles in various Gram-negative pathogens. P pilus biogenesis has been used as a model system to elucidate common themes in bacterial pathogenesis, namely, the protein folding, secretion, and assembly of virulence factors. The structural basis for pilus biogenesis is discussed as well as the function and consequences of microbial attachment.
Collapse
Affiliation(s)
- D L Hung
- Department of Molecular Microbiology, Washington University, St. Louis, Missouri, 63110, USA
| | | |
Collapse
|
34
|
Soto GE, Dodson KW, Ogg D, Liu C, Heuser J, Knight S, Kihlberg J, Jones CH, Hultgren SJ. Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus. EMBO J 1998; 17:6155-67. [PMID: 9799225 PMCID: PMC1170942 DOI: 10.1093/emboj/17.21.6155] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The class of proteins collectively known as periplasmic immunoglobulin-like chaperones play an essential role in the assembly of a diverse set of adhesive organelles used by pathogenic strains of Gram-negative bacteria. Herein, we present a combination of genetic and structural data that sheds new light on chaperone-subunit and subunit-subunit interactions in the prototypical P pilus system, and provides new insights into how PapD controls pilus biogenesis. New crystallographic data of PapD with the C-terminal fragment of a subunit suggest a mechanism for how periplasmic chaperones mediate the extraction of pilus subunits from the inner membrane, a prerequisite step for subunit folding. In addition, the conserved N- and C-terminal regions of pilus subunits are shown to participate in the quaternary interactions of the mature pilus following their uncapping by the chaperone. By coupling the folding of subunit proteins to the capping of their nascent assembly surfaces, periplasmic chaperones are thereby able to protect pilus subunits from premature oligomerization until their delivery to the outer membrane assembly site.
Collapse
Affiliation(s)
- G E Soto
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Karlsson KF, Walse B, Drakenberg T, Roy S, Bergquist KE, Pinkner JS, Hultgren SJ, Kihlberg J. Binding of peptides in solution by the Escherichia coli chaperone PapD as revealed using an inhibition ELISA and NMR spectroscopy. Bioorg Med Chem 1998; 6:2085-101. [PMID: 9881099 DOI: 10.1016/s0968-0896(98)00162-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PapD is the prototype member of a family of periplasmic chaperones which are required for assembly of virulence associated pili in pathogenic, gram-negative bacteria. In the present investigation, an ELISA has been developed for evaluation of compounds as inhibitors of PapD. Synthetic peptides, including an octamer, derived from the C-terminus of the pilus adhesin PapG were able to inhibit PapD in the ELISA. Evaluation of a panel of octapeptides in the ELISA, in combination with NMR studies, showed that the peptides were bound as extended beta-strands by PapD in aqueous solution. The PapD-peptide complex was stabilized by backbone to backbone hydrogen bonds and interactions involving three hydrophobic peptide side chains. This structural information, together with previous crystal structure data, provides a starting point in efforts to design and synthesize compounds which bind to chaperones and interfere with pilus assembly in pathogenic bacteria.
Collapse
Affiliation(s)
- K F Karlsson
- Center for Chemistry and Chemical Engineering, Lund University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Clouthier SC, Collinson SK, Lippert D, Ausio J, White AP, Kay WW. Periplasmic and fimbrial SefA from Salmonella enteritidis. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1387:355-68. [PMID: 9748652 DOI: 10.1016/s0167-4838(98)00150-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salmonella enteritidis produces thin, filamentous fimbriae composed of the fimbrin subunit SefA. Although insoluble in most detergents and chaotropic agents, these fimbriae were soluble at pH 10.5. Furthermore, in sodium dodecyl sulfate, these fibers depolymerized into monomers, dimers and other multimers of SefA, which precipitated on removal of the detergent. In contrast, unassembled periplasmic SefA fimbrins purified from Escherichia coli expressing cloned sefA and sefB were readily soluble in aqueous solution. Fimbrial and periplasmic SefA also differed in their reaction with an anti-SEF14 monoclonal antibody and in their surface hydrophobicity, indicating that the two forms had different properties. Precise mass measurements of periplasmic and fimbrial SefA by mass spectroscopy showed that these variations were not due to post-translational modifications. Periplasmic SefA consisted primarily of intact as well as some N-terminally truncated forms. The main 24 amino acid, N-terminally truncated form of periplasmic SefA was present as a 12.2 kDa monomer which had a low tendency to dimerize whereas intact periplasmic SefA was present as a 34.1 kDa homodimer. Intact periplasmic SefA also formed stable multimers at low concentrations of chemical cross-linker but multimerization of the truncated form required high concentrations of protein or cross-linker. Thus, SefA fimbrins appear to multimerize through their N-termini and undergo a conformational change prior to assembly into fibers. Within these fibers, subunit-subunit contact is maintained through strong hydrophobic interactions.
Collapse
Affiliation(s)
- S C Clouthier
- Department of Biochemistry and Microbiology, Petch Building, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Saulino ET, Thanassi DG, Pinkner JS, Hultgren SJ. Ramifications of kinetic partitioning on usher-mediated pilus biogenesis. EMBO J 1998; 17:2177-85. [PMID: 9545231 PMCID: PMC1170562 DOI: 10.1093/emboj/17.8.2177] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The biogenesis of diverse adhesive structures in a variety of Gram-negative bacterial species is dependent on the chaperone/usher pathway. Very little is known about how the usher protein translocates protein subunits across the outer membrane or how assembly of these adhesive structures occurs. We have discovered several mechanisms by which the usher protein acts to regulate the ordered assembly of type 1 pili, specifically through critical interactions of the chaperone-adhesin complex with the usher. A study of association and dissociation events of chaperone-subunit complexes with the usher in real time using surface plasmon resonance revealed that the chaperone-adhesin complex has the tightest and fastest association with the usher. This suggests that kinetic partitioning of chaperone-adhesin complexes to the usher is a defining factor in tip localization of the adhesin in the pilus. Furthermore, we identified and purified a chaperone-adhesin-usher assembly intermediate that was formed in vivo. Trypsin digestion assays showed that the usher in this complex was in an altered conformation, which was maintained during pilus assembly. The data support a model in which binding of the chaperone-adhesin complex to the usher stabilizes the usher in an assembly-competent conformation and allows initiation of pilus assembly.
Collapse
Affiliation(s)
- E T Saulino
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8230, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
39
|
Thanassi DG, Saulino ET, Hultgren SJ. The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr Opin Microbiol 1998; 1:223-31. [PMID: 10066482 DOI: 10.1016/s1369-5274(98)80015-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gram-negative bacteria assemble a variety of adhesive organelles on their surface, including the thread-like structures known as pili. Recent studies on pilus assembly by the chaperone/usher pathway have revealed new insights into the mechanisms of pilus subunit export into the periplasm and targeting to the outer membrane. Signaling events controlling pilus biogenesis have begun to emerge and investigations of the usher have yielded insights into pilus translocation across the outer membrane.
Collapse
Affiliation(s)
- D G Thanassi
- Department of Molecular Microbiology, Box 8230, 660 South Euclid Ave, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
40
|
Thanassi DG, Saulino ET, Lombardo MJ, Roth R, Heuser J, Hultgren SJ. The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. Proc Natl Acad Sci U S A 1998; 95:3146-51. [PMID: 9501230 PMCID: PMC19709 DOI: 10.1073/pnas.95.6.3146] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacterial virulence factors are typically surface-associated or secreted molecules that in Gram-negative bacteria must cross the outer membrane (OM). Protein translocation across the bacterial OM is not well understood. To elucidate this process we studied P pilus biogenesis in Escherichia coli. We present high-resolution electron micrographs of the OM usher PapC and show that it forms an oligomeric complex containing a channel approximately 2 nm in diameter. This is large enough to accommodate pilus subunits or the linear tip fibrillum of the pilus but not large enough to accommodate the final 6.8-nm-wide helical pilus rod. We show that P pilus rods can be unraveled into linear fibers by incubation in 50% glycerol. Thus, they are likely to pass through the usher in this unwound form. Packaging of these fibers into their final helical structure would only occur outside the cell, a process that may drive outward growth of the pilus organelles. The usher complex appears to be similar to complexes formed by members of the PulD/pIV family of OM proteins, and thus these two protein families, previously thought to be unrelated, may share structural and functional homologies.
Collapse
Affiliation(s)
- D G Thanassi
- Department of Molecular Microbiology, Box 8230, 660 South Euclid Avenue, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
P-pili on uropathogenic bacteria are 68-A-diameter rods typically 1 microm in length. These structures project from the outer membrane of Escherichia coli, and contain on their distal tip a thin fibrillum, 25 A in diameter and 150 A long, displaying an adhesin protein responsible for the binding of the bacterium to the surface of epithelial cells lining the urinary tract. Operationally, it is possible to identify three morphologically distinct states of the 68-A-diameter P-pili rods, based on the degree of curvature each can adopt. These states are designated "straight," "curved," and "highly curved." The rods can also be unwound to form thin "threads" that are very similar to the tip fibrillae. Electron microscope data are used to distinguish among these four morphological states and to define limits on the shapes of the pilus proteins. The mechanical properties of the PapA polymers are assessed, and implications of rod polymorphism for pilus function are discussed. A wide variety of data are considered in light of the possibility that all pilins are similar in molecular architecture, with specific differences designed to optimize their specialized functions in the pilus assembly.
Collapse
Affiliation(s)
- E Bullitt
- Department of Biophysics, Boston University School of Medicine, Massachusetts 02118-2526, USA.
| | | |
Collapse
|
42
|
Jones CH, Danese PN, Pinkner JS, Silhavy TJ, Hultgren SJ. The chaperone-assisted membrane release and folding pathway is sensed by two signal transduction systems. EMBO J 1997; 16:6394-406. [PMID: 9351822 PMCID: PMC1170246 DOI: 10.1093/emboj/16.21.6394] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The assembly of interactive protein subunits into extracellular structures, such as pilus fibers in the Enterobacteriaceae, is dependent on the activity of PapD-like periplasmic chaperones. The ability of PapD to undergo a beta zippering interaction with the hydrophobic C-terminus of pilus subunits facilitates their folding and release from the cytoplasmic membrane into the periplasm. In the absence of the chaperone, subunits remained tethered to the membrane and were driven off-pathway via non-productive interactions. These off-pathway reactions were detrimental to cell growth; wild-type growth was restored by co-expression of PapD. Subunit misfolding in the absence of PapD was sensed by two parallel pathways: the Cpx two-component signaling system and the sigma E modulatory pathway.
Collapse
Affiliation(s)
- C H Jones
- Department of Molecular Microbiology, Washington University Medical School, St Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|