1
|
Palo MZ, Zhu J, Mishanina TV, Landick R. Conserved Trigger Loop Histidine of RNA Polymerase II Functions as a Positional Catalyst Primarily through Steric Effects. Biochemistry 2021; 60:3323-3336. [PMID: 34705427 DOI: 10.1021/acs.biochem.1c00528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In all domains of life, multisubunit RNA polymerases (RNAPs) catalyze both the extension of mRNA transcripts by nucleotide addition and the hydrolysis of RNA, which enables proofreading by removal of misincorporated nucleotides. A highly conserved catalytic module within RNAPs called the trigger loop (TL) functions as the key controller of these activities. The TL is proposed to act as a positional catalyst of phosphoryl transfer and transcript cleavage via electrostatic and steric contacts with substrates in its folded helical form. The function of a near-universally conserved TL histidine that contacts NTP phosphates is of particular interest. Despite its exceptional conservation, substitutions of the TL His with Gln support efficient catalysis in bacterial and yeast RNAPs. Unlike bacterial TLs, which contain a nearby Arg, the TL His is the only acid-base catalyst candidate in the eukaryotic RNAPII TL. Nonetheless, replacement of the TL His with Leu is reported to support cell growth in yeast, suggesting that even hydrogen bonding and polarity at this position may be dispensable for efficient catalysis by RNAPII. To test how a TL His-to-Leu substitution affects the enzymatic functions of RNAPII, we compared its rates of nucleotide addition, pyrophosphorolysis, and RNA hydrolysis to those of the wild-type RNAPII enzyme. The His-to-Leu substitution slightly reduced rates of phosphoryl transfer with little if any effect on intrinsic transcript cleavage. These findings indicate that the highly conserved TL His is neither an obligate acid-base catalyst nor a polar contact for NTP phosphates but instead functions as a positional catalyst mainly through steric effects.
Collapse
Affiliation(s)
- Michael Z Palo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Junqiao Zhu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Tatiana V Mishanina
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Merkl PE, Pilsl M, Fremter T, Schwank K, Engel C, Längst G, Milkereit P, Griesenbeck J, Tschochner H. RNA polymerase I (Pol I) passage through nucleosomes depends on Pol I subunits binding its lobe structure. J Biol Chem 2020; 295:4782-4795. [PMID: 32060094 DOI: 10.1074/jbc.ra119.011827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/11/2020] [Indexed: 02/02/2023] Open
Abstract
RNA polymerase I (Pol I) is a highly efficient enzyme specialized in synthesizing most ribosomal RNAs. After nucleosome deposition at each round of rDNA replication, the Pol I transcription machinery has to deal with nucleosomal barriers. It has been suggested that Pol I-associated factors facilitate chromatin transcription, but it is unknown whether Pol I has an intrinsic capacity to transcribe through nucleosomes. Here, we used in vitro transcription assays to study purified WT and mutant Pol I variants from the yeast Saccharomyces cerevisiae and compare their abilities to pass a nucleosomal barrier with those of yeast Pol II and Pol III. Under identical conditions, purified Pol I and Pol III, but not Pol II, could transcribe nucleosomal templates. Pol I mutants lacking either the heterodimeric subunit Rpa34.5/Rpa49 or the C-terminal part of the specific subunit Rpa12.2 showed a lower processivity on naked DNA templates, which was even more reduced in the presence of a nucleosome. Our findings suggest that the lobe-binding subunits Rpa34.5/Rpa49 and Rpa12.2 facilitate passage through nucleosomes, suggesting possible cooperation among these subunits. We discuss the contribution of Pol I-specific subunit domains to efficient Pol I passage through nucleosomes in the context of transcription rate and processivity.
Collapse
Affiliation(s)
- Philipp E Merkl
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Michael Pilsl
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Tobias Fremter
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Katrin Schwank
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Christoph Engel
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Gernot Längst
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Philipp Milkereit
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| | - Herbert Tschochner
- Lehrstuhl Biochemie III, Universität Regensburg, Regensburg Center of Biochemistry (RCB), 93053 Regensburg, Germany
| |
Collapse
|
3
|
Gallagher JEG. Proteins and RNA sequences required for the transition of the t-Utp complex into the SSU processome. FEMS Yeast Res 2019; 19:5184469. [PMID: 30445532 DOI: 10.1093/femsyr/foy120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
Ribosomes are synthesized by large ribonucleoprotein complexes cleaving and properly assembling highly structured rRNAs with ribosomal proteins. Transcription and processing of pre-rRNAs are linked by the transcription-Utp sub-complex (t-Utps), a sub-complex of the small subunit (SSU) processome and prompted the investigations for the requirements of t-Utp formation and transition into the SSU processome. The rDNA promoter, the first 44 nucleotides of the 5΄ETS, and active transcription by pol I were sufficient to recruit the t-Utps to the rDNA. Pol5, accessory factor, dissociated as t-Utps matured into the UtpA complex which permitted later recruitment of the UtpB, U3 snoRNP and the Mpp10 complex into the SSU processome. The t-Utp complex associated with short RNAs 121 and 138 nucleotides long transcribed from the 5΄ETS. These transcripts were not present when pol II transcribed the rDNA or in nondividing cells. Depletion of a t-Utp, but not of other SSU processome components led to decreased levels of the short transcripts. However, ectopic expression of the short transcripts slowed the growth of yeast with impaired rDNA transcription. These results provide insight into how transcription of the rRNA primes the assemble of t-Utp complex with the pre-rRNA into the UtpA complex and the later association of SSU processome components.
Collapse
|
4
|
Genetic analyses led to the discovery of a super-active mutant of the RNA polymerase I. PLoS Genet 2019; 15:e1008157. [PMID: 31136569 PMCID: PMC6555540 DOI: 10.1371/journal.pgen.1008157] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 06/07/2019] [Accepted: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Most transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I. The nuclear genome of eukaryotic cells is transcribed by three RNA polymerases. RNA polymerase I (Pol I) is a multimeric enzyme specialized in the synthesis of ribosomal RNA. Deregulation of the Pol I function is linked to the etiology of a broad range of human diseases. Understanding the Pol I activity and regulation represents therefore a major challenge. We chose the budding yeast Saccharomyces cerevisiae as a model, because Pol I transcription apparatus is genetically amenable in this organism. Analyses of phenotypic consequences of deletion/truncation of Pol I subunits-coding genes in yeast indeed provided insights into the activity and regulation of the enzyme. Here, we characterized mutations in Pol I that can alleviate the growth defect caused by the absence of Rpa49, one of the subunits composing this multi-protein enzyme. We mapped these mutations on the Pol I structure and found that they all cluster in a well-described structural element, the jaw-lobe module. Combining genetic and biochemical approaches, we showed that Pol I bearing one of these mutations in the Rpa135 subunit is able to produce more ribosomal RNA in vivo and in vitro. We propose that this super-activity is explained by structural rearrangement of the Pol I jaw/lobe interface.
Collapse
|
5
|
Multisubunit DNA-Dependent RNA Polymerases from Vaccinia Virus and Other Nucleocytoplasmic Large-DNA Viruses: Impressions from the Age of Structure. Microbiol Mol Biol Rev 2017; 81:81/3/e00010-17. [PMID: 28701329 DOI: 10.1128/mmbr.00010-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The past 17 years have been marked by a revolution in our understanding of cellular multisubunit DNA-dependent RNA polymerases (MSDDRPs) at the structural level. A parallel development over the past 15 years has been the emerging story of the giant viruses, which encode MSDDRPs. Here we link the two in an attempt to understand the specialization of multisubunit RNA polymerases in the domain of life encompassing the large nucleocytoplasmic DNA viruses (NCLDV), a superclade that includes the giant viruses and the biochemically well-characterized poxvirus vaccinia virus. The first half of this review surveys the recently determined structural biology of cellular RNA polymerases for a microbiology readership. The second half discusses a reannotation of MSDDRP subunits from NCLDV families and the apparent specialization of these enzymes by virus family and by subunit with regard to subunit or domain loss, subunit dissociability, endogenous control of polymerase arrest, and the elimination/customization of regulatory interactions that would confer higher-order cellular control. Some themes are apparent in linking subunit function to structure in the viral world: as with cellular RNA polymerases I and III and unlike cellular RNA polymerase II, the viral enzymes seem to opt for speed and processivity and seem to have eliminated domains associated with higher-order regulation. The adoption/loss of viral RNA polymerase proofreading functions may have played a part in matching intrinsic mutability to genome size.
Collapse
|
6
|
Pilsl M, Crucifix C, Papai G, Krupp F, Steinbauer R, Griesenbeck J, Milkereit P, Tschochner H, Schultz P. Structure of the initiation-competent RNA polymerase I and its implication for transcription. Nat Commun 2016; 7:12126. [PMID: 27418187 PMCID: PMC4947174 DOI: 10.1038/ncomms12126] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/02/2016] [Indexed: 01/12/2023] Open
Abstract
Eukaryotic RNA polymerase I (Pol I) is specialized in rRNA gene transcription synthesizing up to 60% of cellular RNA. High level rRNA production relies on efficient binding of initiation factors to the rRNA gene promoter and recruitment of Pol I complexes containing initiation factor Rrn3. Here, we determine the cryo-EM structure of the Pol I-Rrn3 complex at 7.5 Å resolution, and compare it with Rrn3-free monomeric and dimeric Pol I. We observe that Rrn3 contacts the Pol I A43/A14 stalk and subunits A190 and AC40, that association re-organizes the Rrn3 interaction interface, thereby preventing Pol I dimerization; and Rrn3-bound and monomeric Pol I differ from the dimeric enzyme in cleft opening, and localization of the A12.2 C-terminus in the active centre. Our findings thus support a dual role for Rrn3 in transcription initiation to stabilize a monomeric initiation competent Pol I and to drive pre-initiation complex formation. Eukaryotic RNA polymerase I (Pol I) is responsible for the transcription of rRNA genes. Here the authors determine the cryo-EM structure of the Pol I-Rrn3 complex, providing insight into how Rrn3 stabilizes the monomeric initiation competent Pol I to drive pre-initiation complex formation.
Collapse
Affiliation(s)
- Michael Pilsl
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Corinne Crucifix
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404 Illkirch, France
| | - Gabor Papai
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404 Illkirch, France
| | - Ferdinand Krupp
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404 Illkirch, France
| | - Robert Steinbauer
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Joachim Griesenbeck
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Philipp Milkereit
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Herbert Tschochner
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Institut für Biochemie, Genetik und Mikrobiologie, Lehrstuhl Biochemie III, 93053 Regensburg, Germany
| | - Patrick Schultz
- Department of Integrated Structural Biology, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire) INSERM, U964; CNRS/Strasbourg University, UMR7104 1, rue Laurent Fries, BP10142, 67404 Illkirch, France
| |
Collapse
|
7
|
Čabart P, Jin H, Li L, Kaplan CD. Activation and reactivation of the RNA polymerase II trigger loop for intrinsic RNA cleavage and catalysis. Transcription 2015; 5:e28869. [PMID: 25764335 PMCID: PMC4574878 DOI: 10.4161/trns.28869] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In addition to RNA synthesis, multisubunit RNA polymerases (msRNAPs) support enzymatic reactions such as intrinsic transcript cleavage. msRNAP active sites from different species appear to exhibit differential intrinsic transcript cleavage efficiency and have likely evolved to allow fine-tuning of the transcription process. Here we show that a single amino-acid substitution in the trigger loop (TL) of Saccharomyces RNAP II, Rpb1 H1085Y, engenders a gain of intrinsic cleavage activity where the substituted tyrosine appears to participate in acid-base chemistry at alkaline pH for both intrinsic cleavage and nucleotidyl transfer. We extensively characterize this TL substitution for each of these reactions by examining the responses RNAP II enzymes to catalytic metals, altered pH, and factor inputs. We demonstrate that TFIIF stimulation of the first phosphodiester bond formation by RNAP II requires wild type TL function and that H1085Y substitution within the TL compromises or alters RNAP II responsiveness to both TFIIB and TFIIF. Finally, Mn(2+) stimulation of H1085Y RNAP II reveals possible allosteric effects of TFIIB on the active center and cooperation between TFIIB and TFIIF.
Collapse
Affiliation(s)
- Pavel Čabart
- a Department of Biochemistry and Biophysics; Texas A&M University; College Station, TX
| | | | | | | |
Collapse
|
8
|
Binding of the termination factor Nsi1 to its cognate DNA site is sufficient to terminate RNA polymerase I transcription in vitro and to induce termination in vivo. Mol Cell Biol 2014; 34:3817-27. [PMID: 25092870 DOI: 10.1128/mcb.00395-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Different models have been proposed explaining how eukaryotic gene transcription is terminated. Recently, Nsi1, a factor involved in silencing of ribosomal DNA (rDNA), was shown to be required for efficient termination of rDNA transcription by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae. Nsi1 contains Myb-like DNA binding domains and associates in vivo near the 3' end of rRNA genes to rDNA, but information about which and how DNA sequences might influence Nsi1-dependent termination is lacking. Here, we show that binding of Nsi1 to a stretch of 11 nucleotides in the correct orientation was sufficient to pause elongating Pol I shortly upstream of the Nsi1 binding site and to release the transcripts in vitro. The same minimal DNA element triggered Nsi1-dependent termination of pre-rRNA synthesis using an in vivo reporter assay. Termination efficiency in the in vivo system could be enhanced by inclusion of specific DNA sequences downstream of the Nsi1 binding site. These data and the finding that Nsi1 blocks efficiently only Pol I-dependent RNA synthesis in an in vitro transcription system improve our understanding of a unique mechanism of transcription termination.
Collapse
|
9
|
RNA polymerase I structure and transcription regulation. Nature 2013; 502:650-5. [DOI: 10.1038/nature12712] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/24/2013] [Indexed: 01/25/2023]
|
10
|
Gómez-Herreros F, de Miguel-Jiménez L, Morillo-Huesca M, Delgado-Ramos L, Muñoz-Centeno MC, Chávez S. TFIIS is required for the balanced expression of the genes encoding ribosomal components under transcriptional stress. Nucleic Acids Res 2012; 40:6508-19. [PMID: 22544605 PMCID: PMC3413141 DOI: 10.1093/nar/gks340] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcription factor IIS (TFIIS) stimulates RNA cleavage by RNA polymerase II by allowing backtracked enzymes to resume transcription elongation. Yeast cells do not require TFIIS for viability, unless they suffer severe transcriptional stress due to NTP-depleting drugs like 6-azauracil or mycophenolic acid. In order to broaden our knowledge on the role of TFIIS under transcriptional stress, we carried out a genetic screening for suppressors of TFIIS-lacking cells’ sensitivity to 6-azauracil and mycophenolic acid. Five suppressors were identified, four of which were related to the transcriptional regulation of those genes encoding ribosomal components [rRNAs and ribosomal proteins (RP)], including global regulator SFP1. This led us to discover that RNA polymerase II is hypersensitive to the absence of TFIIS under NTP scarcity conditions when transcribing RP genes. The absence of Sfp1 led to a profound alteration of the transcriptional response to NTP-depletion, thus allowing the expression of RP genes to resist these stressful conditions in the absence of TFIIS. We discuss the effect of transcriptional stress on ribosome biogenesis and propose that TFIIS contributes to prevent a transcriptional imbalance between rDNA and RP genes.
Collapse
Affiliation(s)
- Fernando Gómez-Herreros
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avda Reina Mercedes 6. E-41012 Seville, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Ibaragi S, Yoshioka N, Kishikawa H, Hu JK, Sadow PM, Li M, Hu GF. Angiogenin-stimulated rRNA transcription is essential for initiation and survival of AKT-induced prostate intraepithelial neoplasia. Mol Cancer Res 2009; 7:415-24. [PMID: 19258415 PMCID: PMC2668135 DOI: 10.1158/1541-7786.mcr-08-0137] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Angiogenin (ANG), originally identified as an angiogenic ribonuclease, has recently been shown to play a direct role in prostate cancer cell proliferation by mediating rRNA transcription. ANG is up-regulated in human prostate cancer and is the most significantly up-regulated gene in AKT-driven prostate intraepithelial neoplasia (PIN) in mice. Enhanced cell proliferation in the PIN lesions requires increased ribosome biogenesis, a multistep process involving an orchestrated production of ribosomal proteins and rRNA. AKT is known to enhance ribosomal protein production through the mammalian target of rapamycin pathway. However, it was unknown how rRNA is proportionally increased. Here, we report that ANG is essential for AKT-driven PIN formation and survival. We showed that up-regulation of ANG in the AKT-overexpressing mouse prostates is an early and lasting event. It occurs before PIN initiation and lasts beyond PIN is fully developed. Knocking down ANG expression by intraprostate injection of lentivirus-mediated ANG-specific small interfering RNA prevents AKT-induced PIN formation without affecting AKT expression and its signaling through the mammalian target of rapamycin pathway. Neomycin, an aminoglycoside that blocks nuclear translocation of ANG, and N65828, a small-molecule enzymatic inhibitor of the ribonucleolytic activity of ANG, both prevent AKT-induced PIN formation and reverse established PIN. They also decrease nucleolar organizer region, restore cell size, and normalize luminal architectures of the prostate despite continuous activation of AKT. All three types of the ANG inhibitor suppress rRNA transcription of the prostate luminal epithelial cells and inhibit AKT-induced PIN, indicating an essential role of ANG in AKT-mediated cell proliferation and survival.
Collapse
Affiliation(s)
- Soichiro Ibaragi
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Norie Yoshioka
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Hiroko Kishikawa
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Jamie K. Hu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Peter M. Sadow
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ming Li
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Guo-fu Hu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Kuhn CD, Geiger SR, Baumli S, Gartmann M, Gerber J, Jennebach S, Mielke T, Tschochner H, Beckmann R, Cramer P. Functional architecture of RNA polymerase I. Cell 2008; 131:1260-72. [PMID: 18160037 DOI: 10.1016/j.cell.2007.10.051] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 10/02/2007] [Accepted: 10/26/2007] [Indexed: 01/10/2023]
Abstract
Synthesis of ribosomal RNA (rRNA) by RNA polymerase (Pol) I is the first step in ribosome biogenesis and a regulatory switch in eukaryotic cell growth. Here we report the 12 A cryo-electron microscopic structure for the complete 14-subunit yeast Pol I, a homology model for the core enzyme, and the crystal structure of the subcomplex A14/43. In the resulting hybrid structure of Pol I, A14/43, the clamp, and the dock domain contribute to a unique surface interacting with promoter-specific initiation factors. The Pol I-specific subunits A49 and A34.5 form a heterodimer near the enzyme funnel that acts as a built-in elongation factor and is related to the Pol II-associated factor TFIIF. In contrast to Pol II, Pol I has a strong intrinsic 3'-RNA cleavage activity, which requires the C-terminal domain of subunit A12.2 and, apparently, enables ribosomal RNA proofreading and 3'-end trimming.
Collapse
MESH Headings
- Binding Sites
- Cryoelectron Microscopy
- Crystallography, X-Ray
- DNA Polymerase I/chemistry
- DNA Polymerase I/genetics
- DNA Polymerase I/metabolism
- Models, Molecular
- Mutation
- Peptide Elongation Factors/chemistry
- Peptide Elongation Factors/metabolism
- Peptide Initiation Factors/chemistry
- Peptide Initiation Factors/metabolism
- Promoter Regions, Genetic
- Protein Conformation
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping
- Protein Structure, Tertiary
- Protein Subunits
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Structure-Activity Relationship
- Transcription Factors, TFII/chemistry
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
- Transcriptional Elongation Factors/chemistry
- Transcriptional Elongation Factors/metabolism
Collapse
Affiliation(s)
- Claus-D Kuhn
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Gerber J, Reiter A, Steinbauer R, Jakob S, Kuhn CD, Cramer P, Griesenbeck J, Milkereit P, Tschochner H. Site specific phosphorylation of yeast RNA polymerase I. Nucleic Acids Res 2007; 36:793-802. [PMID: 18084032 PMCID: PMC2241885 DOI: 10.1093/nar/gkm1093] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
All nuclear RNA polymerases are phosphoprotein complexes. Yeast RNA polymerase I (Pol I) contains approximately 15 phosphate groups, distributed to 5 of the 14 subunits. Information about the function of the single phosphosites and their position in the primary, secondary and tertiary structure is lacking. We used a rapid and efficient way to purify yeast RNA Pol I to determine 13 phosphoserines and –threonines. Seven of these phosphoresidues could be located in the 3D-homology model for Pol I, five of them are more at the surface. The single phosphorylated residues were systematically mutated and the resulting strains and Pol I preparations were analyzed in cellular growth, Pol I composition, stability and genetic interaction with non-essential components of the transcription machinery. Surprisingly, all Pol I phosphorylations analyzed were found to be non-essential post-translational modifications. However, one mutation (subunit A190 S685D) led to higher growth rates in the presence of 6AU or under environmental stress conditions, and was synthetically lethal with a deletion of the Pol I subunit A12.2, suggesting a role in RNA cleavage/elongation or termination. Our results suggest that individual major or constitutively phosphorylated residues contribute to non-essential Pol I-functions.
Collapse
Affiliation(s)
- Jochen Gerber
- Institut für Biochemie, Mikrobiologie und Genetik, Universität Regensburg, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Alic N, Ayoub N, Landrieux E, Favry E, Baudouin-Cornu P, Riva M, Carles C. Selectivity and proofreading both contribute significantly to the fidelity of RNA polymerase III transcription. Proc Natl Acad Sci U S A 2007; 104:10400-5. [PMID: 17553959 PMCID: PMC1965525 DOI: 10.1073/pnas.0704116104] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examine here the mechanisms ensuring the fidelity of RNA synthesis by RNA polymerase III (Pol III). Misincorporation could only be observed by using variants of Pol III deficient in the intrinsic RNA cleavage activity. Determination of relative rates of the reactions producing correct and erroneous transcripts at a specific position on a tRNA gene, combined with computational methods, demonstrated that Pol III has a highly efficient proofreading activity increasing its transcriptional fidelity by a factor of 10(3) over the error rate determined solely by selectivity (1.8 x 10(-4)). We show that Pol III slows down synthesis past a misincorporation to achieve efficient proofreading. We discuss our findings in the context of transcriptional fidelity studies performed on RNA Pols, proposing that the fidelity of transcription is more crucial for Pol III than Pol II.
Collapse
Affiliation(s)
- Nazif Alic
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
| | - Nayla Ayoub
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
| | - Emilie Landrieux
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
| | - Emmanuel Favry
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
| | - Peggy Baudouin-Cornu
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
| | - Michel Riva
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
- To whom correspondence should be addressed. E-mail:
| | - Christophe Carles
- Commissariat à l'Énergie Atomique, Institut de Biologie et de Technologies de Saclay, F-91191 Gif sur Yvette Cedex, France
| |
Collapse
|
15
|
Abstract
In the extensive network of interdependent biochemical processes required for cell growth and division, there is mounting evidence that ribosomal DNA transcription by RNA polymerase I (pol I) not only drives cell growth via its direct role in production of the ribosomal RNA (rRNA) component of the protein-synthesis machinery, but that it is also crucial in determining the fate of the cell. Considerable progress has been made in recent years towards understanding both the function of components of the pol I transcription machinery and how cells accomplish the tight control of pol I transcription, balancing the supply of rRNA with demand under different growth conditions.
Collapse
Affiliation(s)
- Jackie Russell
- Division of Gene Regulation and Expression, Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | |
Collapse
|
16
|
Poole AM, Logan DT. Modern mRNA proofreading and repair: clues that the last universal common ancestor possessed an RNA genome? Mol Biol Evol 2005; 22:1444-55. [PMID: 15774424 PMCID: PMC7107533 DOI: 10.1093/molbev/msi132] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RNA repair has now been demonstrated to be a genuine biological process and appears to be present in all three domains of life. In this article, we consider what this might mean for the transition from an early RNA-dominated world to modern cells possessing genetically encoded proteins and DNA. There are significant gaps in our understanding of how the modern protein-DNA world could have evolved from a simpler system, and it is currently uncertain whether DNA genomes evolved once or twice. Against this backdrop, the discovery of RNA repair in modern cells is timely food for thought and brings us conceptually one step closer to understanding how RNA genomes were replaced by DNA genomes. We have examined the available literature on multisubunit RNA polymerase structure and function and conclude that a strong case can be made that the Last Universal Common Ancestor (LUCA) possessed a repair-competent RNA polymerase, which would have been capable of acting on an RNA genome. However, while this lends credibility to the proposal that the LUCA had an RNA genome, the alternative, that LUCA had a DNA genome, cannot be completely ruled out.
Collapse
Affiliation(s)
- Anthony M Poole
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
17
|
Wery M, Shematorova E, Van Driessche B, Vandenhaute J, Thuriaux P, Van Mullem V. Members of the SAGA and Mediator complexes are partners of the transcription elongation factor TFIIS. EMBO J 2004; 23:4232-42. [PMID: 15359273 PMCID: PMC524382 DOI: 10.1038/sj.emboj.7600326] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2003] [Accepted: 06/21/2004] [Indexed: 11/09/2022] Open
Abstract
TFIIS, an elongation factor encoded by DST1 in Saccharomyces cerevisiae, stimulates transcript cleavage in arrested RNA polymerase II. Two components of the RNA polymerase II machinery, Med13 (Srb9) and Spt8, were isolated as two-hybrid partners of the conserved TFIIS N-terminal domain. They belong to the Cdk8 module of the Mediator and to a subform of the SAGA co-activator, respectively. Co-immunoprecipitation experiments showed that TFIIS can bind the Cdk8 module and SAGA in cell-free extracts. spt8Delta and dst1Delta mutants were sensitive to nucleotide-depleting drugs and epistatic to null mutants of the RNA polymerase II subunit Rpb9, suggesting that their elongation defects are mediated by Rpb9. rpb9Delta, spt8Delta and dst1Delta were lethal in cells lacking the Rpb4 subunit. The TFIIS N-terminal domain is also strictly required for viability in rpb4Delta, although it is not needed for binding to RNA polymerase II or for transcript cleavage. It is proposed that TFIIS and the Spt8-containing form of SAGA co-operate to rescue RNA polymerase II from unproductive elongation complexes, and that the Cdk8 module temporarily blocks transcription during transcript cleavage.
Collapse
Affiliation(s)
- Maxime Wery
- Laboratoire de Génétique Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgique
| | - Elena Shematorova
- Laboratoire de Physiogénomique, Service de Biochimie et Génétique Moléculaire, Gif-sur-Yvette Cedex, France
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Benoît Van Driessche
- Laboratoire de Génétique Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgique
| | - Jean Vandenhaute
- Laboratoire de Génétique Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgique
| | - Pierre Thuriaux
- Laboratoire de Physiogénomique, Service de Biochimie et Génétique Moléculaire, Gif-sur-Yvette Cedex, France
- Laboratoire de Physiogénomique, Service de Biochimie et Génétique Moléculaire, CEA-Saclay, Bât. 144, 91191 Gif-sur-Yvette Cedex, France. Tel.: +33 1 69 08 35 86; Fax: +33 1 69 08 47 12; E-mail:
| | - Vincent Van Mullem
- Laboratoire de Génétique Moléculaire (URBM), Facultés Universitaires Notre-Dame de la Paix, Namur, Belgique
| |
Collapse
|
18
|
Bier M, Fath S, Tschochner H. The composition of the RNA polymerase I transcription machinery switches from initiation to elongation mode. FEBS Lett 2004; 564:41-6. [PMID: 15094040 DOI: 10.1016/s0014-5793(04)00311-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2004] [Revised: 03/12/2004] [Accepted: 03/14/2004] [Indexed: 11/30/2022]
Abstract
The amounts of RNA polymerase I (Pol I) and basal rDNA transcription factors were determined in yeast whole cell extracts. A 17-fold excess of Pol I was found compared to the Pol I-specific initiation factors upstream activating factor (UAF) and core factor (CF) which underlines that both initiation factors interact with a minor fraction of Pol I when rDNA transcription is active. Surprisingly, Rrn3p, another Pol I-specific initiation factor, is more abundant in cell lysates than UAF and CF. Our analyses revealed that a large fraction of cellular Rrn3p is not associated with Pol I. However, the amount of initiation-active Rrn3p which forms a stable complex with Pol I corresponds to the levels of UAF and CF which have been shown to bind the promoter. Initiation-active Rrn3p dissociates from the template during or immediately after Pol I has switched from initiation to elongation. Our data support a model in which the elongating Pol I leaves the initiation factors UAF, CF and Rrn3p close by the promoter.
Collapse
Affiliation(s)
- Mirko Bier
- Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
19
|
Fath S, Kobor MS, Philippi A, Greenblatt J, Tschochner H. Dephosphorylation of RNA polymerase I by Fcp1p is required for efficient rRNA synthesis. J Biol Chem 2004; 279:25251-9. [PMID: 15073185 DOI: 10.1074/jbc.m401867200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Differently phosphorylated forms of RNA polymerase (Pol) II are required to guide the enzyme through the transcription cycle. Here, we show that a phosphorylation/dephosphorylation cycle is also important for RNA polymerase I-dependent synthesis of rRNA precursors. A key component of the Pol II transcription system is Fcp1p, a phosphatase that dephosphorylates the C-terminal domain of the largest Pol II subunit. Fcp1p stimulates transcription elongation and is required for Pol II recycling after transcription termination. We found that Fcp1p is also part of the RNA Pol I transcription apparatus. Fcp1p is required for efficient rDNA transcription in vivo, and also, recombinant Fcp1p stimulates rRNA synthesis both in promoter-dependent and in nonspecific transcription assays in vitro. We demonstrate that Fcp1 activity is not involved in the formation of the initiation-active form of Pol I (the Pol I-Rrn3p complex) and propose that dephosphorylation of Pol I by Fcp1p facilitates chain elongation during rRNA synthesis.
Collapse
Affiliation(s)
- Stephan Fath
- Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
20
|
Weilbaecher RG, Awrey DE, Edwards AM, Kane CM. Intrinsic transcript cleavage in yeast RNA polymerase II elongation complexes. J Biol Chem 2003; 278:24189-99. [PMID: 12692127 DOI: 10.1074/jbc.m211197200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcript elongation can be interrupted by a variety of obstacles, including certain DNA sequences, DNA-binding proteins, chromatin, and DNA lesions. Bypass of many of these impediments is facilitated by elongation factor TFIIS through a mechanism that involves cleavage of the nascent transcript by the RNA polymerase II/TFIIS elongation complex. Highly purified yeast RNA polymerase II is able to perform transcript hydrolysis in the absence of TFIIS. The "intrinsic" cleavage activity is greatly stimulated at mildly basic pH and requires divalent cations. Both arrested and stalled complexes can carry out the intrinsic cleavage reaction, although not all stalled complexes are equally efficient at this reaction. Arrested complexes in which the nascent transcript was cleaved in the absence of TFIIS were reactivated to readthrough blocks to elongation. Thus, cleavage of the nascent transcript is sufficient for reactivating some arrested complexes. Small RNA products released following transcript cleavage in stalled ternary complexes differ depending upon whether the cleavage has been induced by TFIIS or has occurred in mildly alkaline conditions. In contrast, both intrinsic and TFIIS-induced small RNA cleavage products are very similar when produced from an arrested ternary complex. Although alpha-amanitin interferes with the transcript cleavage stimulated by TFIIS, it has little effect on the intrinsic cleavage reaction. A mutant RNA polymerase previously shown to be refractory to TFIIS-induced transcript cleavage is essentially identical to the wild type polymerase in all tested aspects of intrinsic cleavage.
Collapse
Affiliation(s)
- Rodney G Weilbaecher
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
21
|
De Carlo S, Carles C, Riva M, Schultz P. Cryo-negative staining reveals conformational flexibility within yeast RNA polymerase I. J Mol Biol 2003; 329:891-902. [PMID: 12798680 DOI: 10.1016/s0022-2836(03)00510-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The structure of the yeast DNA-dependent RNA polymerase I (RNA Pol I), prepared by cryo-negative staining, was studied by electron microscopy. A structural model of the enzyme at a resolution of 1.8 nm was determined from the analysis of isolated molecules and showed an excellent fit with the atomic structure of the RNA Pol II Delta4/7. The high signal-to-noise ratio (SNR) of the stained molecular images revealed a conformational flexibility within the image data set that could be recovered in three-dimensions after implementation of a novel strategy to sort the "open" and "closed" conformations in our heterogeneous data set. This conformational change mapped in the "wall/flap" domain of the second largest subunit (beta-like) and allows a better accessibility of the DNA-binding groove. This displacement of the wall/flap domain could play an important role in the transition between initiation and elongation state of the enzyme. Moreover, a protrusion was apparent in the cryo-negatively stained model, which was absent in the atomic structure and was not detected in previous 3D models of RNA Pol I. This structure could, however, be detected in unstained views of the enzyme obtained from frozen hydrated 2D crystals, indicating that this novel feature is not induced by the staining process. Unexpectedly, negatively charged molybdenum compounds were found to accumulate within the DNA-binding groove, which is best explained by the highly positive electrostatic potential of this region of the molecule, thus, suggesting that the stain distribution reflects the overall surface charge of the molecule.
Collapse
Affiliation(s)
- Sacha De Carlo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 rue Laurent Fries, BP163, F-67404 Illkirch Cedex, C.U. de Strasbourg, France.
| | | | | | | |
Collapse
|
22
|
Fish RN, Kane CM. Promoting elongation with transcript cleavage stimulatory factors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:287-307. [PMID: 12213659 DOI: 10.1016/s0167-4781(02)00459-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcript elongation by RNA polymerase is a dynamic process, capable of responding to a number of intrinsic and extrinsic signals. A number of elongation factors have been identified that enhance the rate or efficiency of transcription. One such class of factors facilitates RNA polymerase transcription through blocks to elongation by stimulating the polymerase to cleave the nascent RNA transcript within the elongation complex. These cleavage factors are represented by the Gre factors from prokaryotes, and TFIIS and TFIIS-like factors found in archaea and eukaryotes. High-resolution structures of RNA polymerases and the cleavage factors in conjunction with biochemical investigations and genetic analyses have provided insights into the mechanism of action of these elongation factors. However, there are yet many unanswered questions regarding the regulation of these factors and their effects on target genes.
Collapse
Affiliation(s)
- Rachel N Fish
- Department of Molecular and Cell Biology, University of California-Berkeley, 401 Barker Hall, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
23
|
Van Mullem V, Landrieux E, Vandenhaute J, Thuriaux P. Rpa12p, a conserved RNA polymerase I subunit with two functional domains. Mol Microbiol 2002; 43:1105-13. [PMID: 11918799 DOI: 10.1046/j.1365-2958.2002.02824.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rpa12p is a subunit of RNA polymerase I formed of two zinc-binding domains. The N-terminal zinc region (positions 1-60) is poorly conserved from yeast to man. The C-terminal domain contains an invariant Q.RSADE.T.F motif shared with the TFIIS elongation factor of RNA polymerase II and its archaeal counterpart. Deletions removing the N-terminal domain fail to grow at 34 degrees C, are sensitive to nucleotide-depleting drugs and become lethal in rpa14-Delta mutants lacking the non-essential RNA polymerase I subunit Rpa14p. They also strongly alter the immunofluorescent properties of RNA polymerase I in the nucleolus. Finally, they prevent the binding of Rpa12p to immunopurified polymerase I and impair a specific two-hybrid interaction with the second largest subunit. In all these respects, N-terminal deletions behave like full deletions. In contrast, C-terminal deletions retaining only the first N-terminal 60 amino acids are indistinguishable from wild type. Thus, the N-terminal zinc domain of Rpa12p determines its anchoring to RNA polymerase I and is the only critical part of that subunit in vivo.
Collapse
Affiliation(s)
- Vincent Van Mullem
- Laboratoire de Génétique Moléculaire, URBM, Facultés Universitaires Notre-Dame de la Paix, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | |
Collapse
|
24
|
Maraia RJ, Intine RV. La protein and its associated small nuclear and nucleolar precursor RNAs. Gene Expr 2002; 10:41-57. [PMID: 11868987 PMCID: PMC5977531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
After transcription by RNA polymerase (pol) III, nascent Pol III transcripts pass through RNA processing, modification, and transport machineries as part of their posttranscriptional maturation process. The first factor to interact with Pol III transcripts is La protein, which binds principally via its conserved N-terminal domain (NTD), to the UUU-OH motif that results from transcription termination. This review includes a sequence Logo of the most conserved region of La and its refined modeling as an RNA recognition motif (RRM). La protects RNAs from 3' exonucleolytic digestion and also contributes to their nuclear retention. The variety of modifications found on La-associated RNAs is reviewed in detail and considered in the contexts of how La may bind the termini of structured RNAs without interfering with recognition by modification enzymes, and its ability to chaperone RNAs through multiple parts of their maturation pathways. The CTD of human La recognizes the 5' end region of nascent RNA in a manner that is sensitive to serine 366 phosphorylation. Although the CTD can control pre-tRNA cleavage by RNase P, a rate-limiting step in tRNASerUGA maturation, the extent to which it acts in the maturation pathway(s) of other transcripts is unknown but considered here. Evidence that a fraction of La resides in the nucleolus together with recent findings that several Pol III transcripts pass through the nucleolus is also reviewed. An imminent goal is to understand how the bipartite RNA binding, intracellular trafficking, and signal transduction activities of La are integrated with the maturation pathways of the various RNAs with which it associates.
Collapse
Affiliation(s)
- Richard J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA.
| | | |
Collapse
|
25
|
Fath S, Milkereit P, Peyroche G, Riva M, Carles C, Tschochner H. Differential roles of phosphorylation in the formation of transcriptional active RNA polymerase I. Proc Natl Acad Sci U S A 2001; 98:14334-9. [PMID: 11717393 PMCID: PMC64682 DOI: 10.1073/pnas.231181398] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of rDNA transcription depends on the formation and dissociation of a functional complex between RNA polymerase I (pol I) and transcription initiation factor Rrn3p. We analyzed whether phosphorylation is involved in this molecular switch. Rrn3p is a phosphoprotein that is predominantly phosphorylated in vivo when it is not bound to pol I. In vitro, Rrn3p is able both to associate with pol I and to enter the transcription cycle in its nonphosphorylated form. By contrast, phosphorylation of pol I is required to form a stable pol I-Rrn3p complex for efficient transcription initiation. Furthermore, association of pol I with Rrn3p correlates with a change in the phosphorylation state of pol I in vivo. We suggest that phosphorylation at specific sites of pol I is a prerequisite for proper transcription initiation and that phosphorylation/dephosphorylation of pol I is one possibility to modulate cellular rDNA transcription activity.
Collapse
Affiliation(s)
- S Fath
- Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Toulmé F, Mosrin-Huaman C, Sparkowski J, Das A, Leng M, Rahmouni AR. GreA and GreB proteins revive backtracked RNA polymerase in vivo by promoting transcript trimming. EMBO J 2000; 19:6853-9. [PMID: 11118220 PMCID: PMC305891 DOI: 10.1093/emboj/19.24.6853] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The GreA and GreB proteins of Escherichia coli show a multitude of effects on transcription elongation in vitro, yet their physiological functions are poorly understood. Here, we investigated whether and how these factors influence lateral oscillations of RNA polymerase (RNAP) in vivo, observed at a protein readblock. When RNAP is stalled within an (ATC/TAG)(n) sequence, it appears to oscillate between an upstream and a downstream position on the template, 3 bp apart, with concomitant trimming of the transcript 3' terminus and its re-synthesis. Using a set of mutant E.coli strains, we show that the presence of GreA or GreB in the cell is essential to induce this trimming. We show further that in contrast to a ternary complex that is stabilized at the downstream position, the oscillating complex relies heavily on the GreA/GreB-induced 'cleavage-and-restart' process to become catalytically competent. Clearly, by promoting transcript shortening and re-alignment of the catalytic register, the Gre factors function in vivo to rescue RNAP from being arrested at template positions where the lateral stability of the ternary complex is impaired.
Collapse
Affiliation(s)
- F Toulmé
- Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans cédex 2, France
| | | | | | | | | | | |
Collapse
|
27
|
Fath S, Milkereit P, Podtelejnikov AV, Bischler N, Schultz P, Bier M, Mann M, Tschochner H. Association of yeast RNA polymerase I with a nucleolar substructure active in rRNA synthesis and processing. J Cell Biol 2000; 149:575-90. [PMID: 10791972 PMCID: PMC2174860 DOI: 10.1083/jcb.149.3.575] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel ribonucleoprotein complex enriched in nucleolar proteins was purified from yeast extracts and constituents were identified by mass spectrometry. When isolated from rapidly growing cells, the assembly contained ribonucleic acid (RNA) polymerase (pol) I, and some of its transcription factors like TATA-binding protein (TBP), Rrn3p, Rrn5p, Rrn7p, and Reb1p along with rRNA processing factors, like Nop1p, Cbf5p, Nhp2p, and Rrp5p. The small nucleolar RNAs (snoRNAs) U3, U14, and MRP were also found to be associated with the complex, which supports accurate transcription, termination, and pseudouridylation of rRNA. Formation of the complex did not depend on pol I, and the complex could efficiently recruit exogenous pol I into active ribosomal DNA (rDNA) transcription units. Visualization of the complex by electron microscopy and immunogold labeling revealed a characteristic cluster-forming network of nonuniform size containing nucleolar proteins like Nop1p and Fpr3p and attached pol I. Our results support the idea that a functional nucleolar subdomain formed independently of the state of rDNA transcription may serve as a scaffold for coordinated rRNA synthesis and processing.
Collapse
Affiliation(s)
- S Fath
- Biochemie-Zentrum Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kulish D, Lee J, Lomakin I, Nowicka B, Das A, Darst S, Normet K, Borukhov S. The functional role of basic patch, a structural element of Escherichia coli transcript cleavage factors GreA and GreB. J Biol Chem 2000; 275:12789-98. [PMID: 10777576 DOI: 10.1074/jbc.275.17.12789] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcript cleavage factors GreA and GreB of Escherichia coli are involved in the regulation of transcription elongation. The surface charge distribution analysis of their three-dimensional structures revealed that the N-terminal domains of GreA and GreB contain a small and large basic "patch," respectively. To elucidate the functional role of basic patch, mutant Gre proteins were engineered in which the size and charge distribution of basic patch were modified and characterized biochemically. We found that Gre mutants lacking basic patch or carrying basic patch of decreased size bind to RNA polymerase and induce transcript cleavage reaction in minimally backtracked ternary elongation complex (TEC) with the same efficiency as the wild type factors. However, they exhibit substantially lower readthrough and cleavage activities toward extensively backtracked and arrested TECs and display decreased efficiency of photocross-linking to the RNA 3'-terminus. Unlike wild type factors, basic patch-less Gre mutants are unable to complement the thermosensitive phenotype of GreA(-):GreB(-) E. coli strain. The large basic patch is required but not sufficient for the induction of GreB-type cleavage reaction and for the cleavage of arrested TECs. Our results demonstrate that the basic patch residues are not directly involved in the induction of transcript cleavage reaction and suggest that the primary role of basic patch is to anchor the nascent RNA in TEC. These interactions are essential for the readthrough and antiarrest activities of Gre factors and, apparently, for their in vivo functions.
Collapse
Affiliation(s)
- D Kulish
- Department of Microbiology and Immunology, State University of New York, Health Science Center at Brooklyn, New York 11203, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Hausner W, Lange U, Musfeldt M. Transcription factor S, a cleavage induction factor of the archaeal RNA polymerase. J Biol Chem 2000; 275:12393-9. [PMID: 10777522 DOI: 10.1074/jbc.275.17.12393] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the function of an archaeal protein (now called transcription factor S (TFS)) that shows sequence similarity to eukaryotic transcription factor IIS (TFIIS) as well as to small subunits of eukaryotic RNA polymerases I (A12.6), II (B12.2), and III (C11). Western blot analysis with antibodies against recombinant TFS demonstrated that this protein is not a subunit of the RNA polymerase. In vitro transcription experiments with paused elongation complexes at position +25 showed that TFS is able to induce cleavage activity in the archaeal RNA polymerase in a similar manner to TFIIS. In the presence of TFS, the cleavage activity of the RNA polymerase truncates the RNA back to position +15 by releasing mainly dinucleotides from the 3'-end of the nascent RNA. Furthermore, TFS reduces the amount of non-chaseable elongation complexes at position +25 as well as position +45. These findings clearly demonstrate that this protein has a similar function to eukaryotic TFIIS.
Collapse
Affiliation(s)
- W Hausner
- Institut für Allgemeine Mikrobiologie, University of Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Federal Republic of Germany.
| | | | | |
Collapse
|
30
|
Bhargava P, Kassavetis GA. Abortive initiation by Saccharomyces cerevisiae RNA polymerase III. J Biol Chem 1999; 274:26550-6. [PMID: 10473618 DOI: 10.1074/jbc.274.37.26550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Promoter escape can be rate-limiting for transcription by bacterial RNA polymerases and RNA polymerase II of higher eukaryotes. Formation of a productive elongation complex requires disengagement of RNA polymerase from promoter-bound eukaryotic transcription factors or bacterial sigma factors. RNA polymerase III (pol III) stably associates with the TFIIIB-DNA complex even in the absence of localized DNA unwinding associated with the open promoter complex. To explore the role that release of pol III from the TFIIIB-DNA complex plays in limiting the overall rate of transcription, we have examined the early steps of RNA synthesis. We find that, on average, only three rounds of abortive initiation precede the formation of each elongation complex and that nearly all pol III molecules escape the abortive initiation phase of transcription without significant pausing or arrest. However, when elongation is limited to 5 nucleotides, the intrinsic exoribonuclease activity of pol III cleaves 5-mer RNA at a rate considerably faster than product release or reinitiation. This cleavage also occurs in the normal process of forming a productive elongation complex. The possible role of nucleolytic retraction in disengaging pol III from TFIIIB is discussed.
Collapse
Affiliation(s)
- P Bhargava
- Department of Biology and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA.
| | | |
Collapse
|
31
|
Loizos N, Darst SA. Mapping interactions of Escherichia coli GreB with RNA polymerase and ternary elongation complexes. J Biol Chem 1999; 274:23378-86. [PMID: 10438515 DOI: 10.1074/jbc.274.33.23378] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli GreA and GreB modulate transcription elongation by interacting with the ternary elongation complex (containing RNA polymerase, DNA template, and RNA transcript) to induce hydrolytic cleavage of the transcript and release of the 3'-terminal fragment. Hydroxyl radical protein footprinting and alanine-scanning mutagenesis were used to investigate the interactions of GreB with RNA polymerase alone and in a ternary elongation complex. A major determinant for binding GreB to both RNA polymerase and the ternary elongation complex was identified. In addition, the hydroxyl radical footprinting indicated major conformational changes of GreB, in terms of reorientations of the N- and C-terminal domains with respect to each other, particularly upon interactions with the ternary elongation complex.
Collapse
Affiliation(s)
- N Loizos
- The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
32
|
Chédin S, Riva M, Schultz P, Sentenac A, Carles C. The RNA cleavage activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is important for transcription termination. Genes Dev 1998; 12:3857-71. [PMID: 9869639 PMCID: PMC317263 DOI: 10.1101/gad.12.24.3857] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Budding yeast RNA polymerase III (Pol III) contains a small, essential subunit, named C11, that is conserved in humans and shows a strong homology to TFIIS. A mutant Pol III, heterocomplemented with Schizosaccharomyces pombe C11, was affected in transcription termination in vivo. A purified form of the enzyme (Pol III Delta), deprived of C11 subunit, initiated properly but ignored pause sites and was defective in termination. Remarkably, Pol III Delta lacked the intrinsic RNA cleavage activity of complete Pol III. In vitro reconstitution experiments demonstrated that Pol III RNA cleavage activity is mediated by C11. Mutagenesis in C11 of two conserved residues, which are critical for the TFIIS-dependent cleavage activity of Pol II, is lethal. Immunoelectron microscopy data suggested that C11 is localized on the mobile thumb-like stalk of the polymerase. We propose that C11 allows the enzyme to switch between an RNA elongation and RNA cleavage mode and that the essential role of the Pol III RNA cleavage activity is to remove the kinetic barriers to the termination process. The integration of TFIIS function into a specific Pol III subunit may stem from the opposite requirements of Pol III and Pol II in terms of transcript length and termination efficiency.
Collapse
Affiliation(s)
- S Chédin
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, F-91191 Gif sur Yvette Cedex, France
| | | | | | | | | |
Collapse
|
33
|
Mote J, Reines D. Recognition of a human arrest site is conserved between RNA polymerase II and prokaryotic RNA polymerases. J Biol Chem 1998; 273:16843-52. [PMID: 9642244 PMCID: PMC3371603 DOI: 10.1074/jbc.273.27.16843] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA sequences that arrest transcription by either eukaryotic RNA polymerase II or Escherichia coli RNA polymerase have been identified previously. Elongation factors SII and GreB are RNA polymerase-binding proteins that enable readthrough of arrest sites by these enzymes, respectively. This functional similarity has led to general models of elongation applicable to both eukaryotic and prokaryotic enzymes. Here we have transcribed with phage and bacterial RNA polymerases, a human DNA sequence previously defined as an arrest site for RNA polymerase II. The phage and bacterial enzymes both respond efficiently to the arrest signal in vitro at limiting levels of nucleoside triphosphates. The E. coli polymerase remains in a template-engaged complex for many hours, can be isolated, and is potentially active. The enzyme displays a relatively slow first-order loss of elongation competence as it dwells at the arrest site. Bacterial RNA polymerase arrested at the human site is reactivated by GreB in the same way that RNA polymerase II arrested at this site is stimulated by SII. Very efficient readthrough can be achieved by phage, bacterial, and eukaryotic RNA polymerases in the absence of elongation factors if 5-Br-UTP is substituted for UTP. These findings provide additional and direct evidence for functional similarity between prokaryotic and eukaryotic transcription elongation and readthrough mechanisms.
Collapse
Affiliation(s)
| | - Daniel Reines
- To whom correspondence should be addressed. Tel.: 404-727-3361; Fax: 404-727-3452;
| |
Collapse
|
34
|
Milkereit P, Tschochner H. A specialized form of RNA polymerase I, essential for initiation and growth-dependent regulation of rRNA synthesis, is disrupted during transcription. EMBO J 1998; 17:3692-703. [PMID: 9649439 PMCID: PMC1170705 DOI: 10.1093/emboj/17.13.3692] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Only a small proportion (<2%) of RNA polymerase I (pol I) from whole-cell extracts appeared to be competent for specific initiation at the ribosomal gene promoter in a yeast reconstituted transcription system. Initiation-competent pol I molecules were found exclusively in salt-resistant complexes that contain the pol I-specific initiation factor Rrn3p. Levels of initiation-competent complexes in extracts were independent of total Rrn3p content and varied with the growth state of the cells. Although extracts from stationary phase cells contained substantial amounts of Rrn3p and pol I, they lacked the pol I-Rrn3p complex and were inactive in promoter-dependent transcription. Activity was restored by adding purified pol I-Rrn3p complex to extracts from stationary phase cells. The pol I-Rrn3p complex dissociated during transcription and lost its capacity for subsequent reinitiation in vitro, suggesting a stoichiometric rather than a catalytic activity in initiation. We propose that the formation and disruption of the pol I-Rrn3p complex reflects a molecular switch for regulating rRNA synthesis and its growth rate-dependent regulation.
Collapse
Affiliation(s)
- P Milkereit
- BZH Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | |
Collapse
|
35
|
Abstract
Following isolation of the genes encoding the putative subunits of RNA polymerase in both budding and fission yeasts, combined biochemical and genetic studies, together with a structural approach applicable to large assemblies, have begun to reveal the protein-protein interactions not only between RNA polymerase subunits but also between the RNA polymerases and transcription factors. These protein-protein interactions ultimately lead to control of the activity and specificity of the RNA polymerases.
Collapse
Affiliation(s)
- A Ishihama
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411, Japan.
| | | | | |
Collapse
|
36
|
Koulich D, Nikiforov V, Borukhov S. Distinct functions of N and C-terminal domains of GreA, an Escherichia coli transcript cleavage factor. J Mol Biol 1998; 276:379-89. [PMID: 9512710 DOI: 10.1006/jmbi.1997.1545] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prokaryotic transcription factors GreA and GreB are involved in the regulation of transcript elongation by RNA polymerase (RNAP). Their known activities include suppression of transcription arrest, enhancement of transcription fidelity, and facilitation of the transition from abortive initiation to productive elongation. Presumably, Gre proteins exert their functions by altering the conformation of the enzyme in ternary elongation complexes (TEC) and inducing the cleavage of nascent RNA. GreA and GreB have a similar structural organization and consist of two domains: a C-terminal globular and an extended N-terminal coiled-coil domain. To investigate the functional roles of Gre domains, we expressed separately the N and C-terminal domains of GreA (NTD and CTD, respectively) and characterized their activities with in vitro assays. We demonstrate that the NTD possesses the residual transcript cleavage activity of the wild-type GreA. The CTD does not display any nucleolytic activity; however, it substantially increases the cleavage activity of the NTD. In contrast to NTD, the CTD competes with GreA and GreB for binding to RNAP and inhibits their transcript cleavage and antiarrest activities. Both domains individually and together inhibit transcription elongation. From these results we conclude that the NTD is responsible for the GreA induction of nucleolytic activity while the CTD determines the binding of GreA to RNAP. Both domains are required for full functional activity of GreA.
Collapse
Affiliation(s)
- D Koulich
- Department of Microbiology and Immunology, State University of New York Health Science Center at Brooklyn 11203, USA
| | | | | |
Collapse
|
37
|
Bobkova EV, Hall BD. Substrate specificity of the RNase activity of yeast RNA polymerase III. J Biol Chem 1997; 272:22832-9. [PMID: 9278445 DOI: 10.1074/jbc.272.36.22832] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Using yeast RNA polymerase III ternary complexes stalled at various positions on the template, we have analyzed the cleavage products that are retained and released by the transcription complexes. The retained 5' products result from cleavage at uridine residues during retraction, whereas the yield of mononucleotides and dinucleotides released indicates that multiple cuts occur near the 3' end. Comparison of the cleavage patterns of uridine-containing and 5-bromouridine-containing transcripts suggests that RNA within an RNA-DNA hybrid duplex is the substrate for the 3'-5' exonuclease. During transcription of the SUP4 tRNATyr gene, RNA polymerase III produces not only full-length pre-tRNATyr but also short oligonucleotides, indicating that exonuclease digestion and transcription are concurrent processes. To explore the possibility that these oligonucleotides are released by the action of the RNA polymerase III nuclease at previously observed uridine-rich pause sites, we tested modified templates lacking the arrest sites present in the SUP4 tRNATyr gene. Comparative studies of cleavage during transcription for these templates show a direct correlation between the number of natural pause sites and the yield of 3' products made. At the natural arrest sites and the terminator, RNA polymerase III carries out multiple cleavage resynthesis steps, producing short oligoribonucleotides with uridine residues at the 3' terminus.
Collapse
Affiliation(s)
- E V Bobkova
- Department of Genetics, University of Washington, Seattle, Washington 98195-7360, USA
| | | |
Collapse
|
38
|
Tschochne H, Milkereit P. RNA polymerase I from S. cerevisiae depends on an additional factor to release terminated transcripts from the template. FEBS Lett 1997; 410:461-6. [PMID: 9237683 DOI: 10.1016/s0014-5793(97)00636-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Terminated transcripts were generated at the ends of linearized DNA templates and at DNA-bound lac repressor by in vitro transcription with highly enriched or purified yeast RNA polymerase I (pol I). The release of the synthesized transcripts from the DNA was analyzed using immobilized DNA as template for the transcription reaction. An additional activity distinguishable from pol I was necessary to remove the terminated RNA from the template. Efficiency of transcript release could be improved if a thymidine-rich DNA fragment was located upstream of the transcriptional arrest caused by the DNA-bound lac repressor. The release activity interacted with different forms of polymerases, pol I able to initiate on the ribosomal gene promoter and pol I only active in non-specific transcription.
Collapse
|
39
|
Labhart P. Transcript cleavage in an RNA polymerase I elongation complex. Evidence for a dissociable activity similar to but distinct from TFIIS. J Biol Chem 1997; 272:9055-61. [PMID: 9083031 DOI: 10.1074/jbc.272.14.9055] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Stalled Xenopus RNA polymerase I (pol I) elongation complexes bearing a 52-nucleotide RNA were prepared by promoter-initiated transcription in the absence of UTP. When such complexes were isolated and incubated in the presence of Mg2+, the associated RNA was shortened from the 3'-end, and mono- and dinucleotides were released. Shortened transcripts were still associated with the DNA and were quantitatively reelongated upon addition of NTPs. The cleavage activity could be removed from the pol I-ternary complex with buffers containing 0.25% Sarkosyl. These findings indicate that a factor with characteristics similar to elongation factor TFIIS is associated with the pol I elongation complex. However, addition of recombinant Xenopus TFIIS to Sarkosyl-washed pol I elongation complexes had no effect, whereas it showed the expected effects in control reactions with identically prepared pol II elongation complexes. The results thus suggest the existence of a pol I-specific cleavage/elongation factor. I also report the sequence of a novel type of Xenopus TFIIS. The predicted amino acid sequences of the present and previously identified Xenopus TFIIS are less than 65% conserved. Thus, like mammalian species, Xenopus has at least two highly divergent forms of TFIIS.
Collapse
Affiliation(s)
- P Labhart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|