1
|
Sharma Y, Vo K, Shila S, Paul A, Dahiya V, Fields PE, Rumi MAK. mRNA Transcript Variants Expressed in Mammalian Cells. Int J Mol Sci 2025; 26:1052. [PMID: 39940824 PMCID: PMC11817330 DOI: 10.3390/ijms26031052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Gene expression or gene regulation studies often assume one gene expresses one mRNA. However, contrary to the conventional idea, a single gene in mammalian cells can express multiple transcript variants translated into several different proteins. The transcript variants are generated through transcription from alternative start sites and alternative post-transcriptional processing of the precursor mRNA (pre-mRNA). In addition, gene mutations and RNA editing further enhance the diversity of the transcript variants. The transcript variants can encode proteins with various domains, expanding the functional repertoire of a single gene. Some transcript variants may not encode proteins but function as non-coding RNAs and regulate gene expression. The expression level of the transcript variants may vary between cell types or within the same cells under different biological conditions. Transcript variants are characteristic of cell differentiation in a particular tissue, and the variants may play a key role in normal development and aging. Studies also reported that some transcript variants may have roles in disease pathogenesis. The biological significances urge studying the complexity of gene expression at the transcript level. This article updates the molecular basis of transcript variants in mammalian cells, including the formation mechanisms and potential roles in host biology. Gaining insight into the transcript variants will not only identify novel mechanisms of gene regulation but also unravel the role of the variants in health and disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (Y.S.); (K.V.); (S.S.); (A.P.); (V.D.); (P.E.F.)
| |
Collapse
|
2
|
Manavski N, Vicente A, Chi W, Meurer J. The Chloroplast Epitranscriptome: Factors, Sites, Regulation, and Detection Methods. Genes (Basel) 2021; 12:genes12081121. [PMID: 34440296 PMCID: PMC8394491 DOI: 10.3390/genes12081121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Modifications in nucleic acids are present in all three domains of life. More than 170 distinct chemical modifications have been reported in cellular RNAs to date. Collectively termed as epitranscriptome, these RNA modifications are often dynamic and involve distinct regulatory proteins that install, remove, and interpret these marks in a site-specific manner. Covalent nucleotide modifications-such as methylations at diverse positions in the bases, polyuridylation, and pseudouridylation and many others impact various events in the lifecycle of an RNA such as folding, localization, processing, stability, ribosome assembly, and translational processes and are thus crucial regulators of the RNA metabolism. In plants, the nuclear/cytoplasmic epitranscriptome plays important roles in a wide range of biological processes, such as organ development, viral infection, and physiological means. Notably, recent transcriptome-wide analyses have also revealed novel dynamic modifications not only in plant nuclear/cytoplasmic RNAs related to photosynthesis but especially in chloroplast mRNAs, suggesting important and hitherto undefined regulatory steps in plastid functions and gene expression. Here we report on the latest findings of known plastid RNA modifications and highlight their relevance for the post-transcriptional regulation of chloroplast gene expression and their role in controlling plant development, stress reactions, and acclimation processes.
Collapse
Affiliation(s)
- Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
| | - Alexandre Vicente
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
- Correspondence: ; Tel.: +49-89-218074556
| |
Collapse
|
3
|
Thien VY, Rodrigues KF, Voo CLY, Wong CMVL, Yong WTL. Comparative Transcriptome Profiling of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in Response to Light of Different Wavelengths and Carbon Dioxide Enrichment. PLANTS 2021; 10:plants10061236. [PMID: 34204578 PMCID: PMC8234600 DOI: 10.3390/plants10061236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
Rhodophyta (red algae) comprises over 6000 species, however, there have only been a few comparative transcriptomic studies due to their under-representation in genomic databases. Kappaphycus alvarezii, a Gigartinales algae, is a valuable source of carrageenan and is extensively cultivated in many countries. The majority of seaweed farming in Southeast Asia is done in intertidal zones under varying light (i.e., spectra and irradiance) and carbon dioxide (CO2) conditions, which affects the rate of photosynthesis. This study conducted transcriptome profiling to investigate the photosynthetic mechanisms in K. alvarezii exposed to different wavelengths of light (i.e., blue, green, and red light, in comparison to white light) and CO2 availability. We analyzed the responses of photosynthetic protein complexes to light and observed that light of different wavelengths regulates a similar set of photosynthetic apparatuses. Under CO2 enrichment, genes encoding C3 and C4 enzymes were found to be actively transcribed, suggesting the likely shift in the carbon metabolism pathway or the involvement of these genes in adaptive physiological processes. This study contributes to the understanding of the regulatory mechanisms of photosynthetic carbon metabolism in red algae and has implications for the culture and commercial production of these economically valuable macroalgae.
Collapse
Affiliation(s)
- Vun Yee Thien
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia; (V.Y.T.); (K.F.R.); (C.L.Y.V.); (C.M.V.L.W.)
- Innovation Center, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Malaysia
| | - Kenneth Francis Rodrigues
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia; (V.Y.T.); (K.F.R.); (C.L.Y.V.); (C.M.V.L.W.)
| | - Christopher Lok Yung Voo
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia; (V.Y.T.); (K.F.R.); (C.L.Y.V.); (C.M.V.L.W.)
| | - Clemente Michael Vui Ling Wong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia; (V.Y.T.); (K.F.R.); (C.L.Y.V.); (C.M.V.L.W.)
| | - Wilson Thau Lym Yong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia; (V.Y.T.); (K.F.R.); (C.L.Y.V.); (C.M.V.L.W.)
- Seaweed Research Unit, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
- Correspondence: ; Tel.: +60-88-320-000 (ext. 5593); +60-88-320-027
| |
Collapse
|
4
|
Meade MJ, Proulex GCR, Manoylov KM, Cahoon AB. Chloroplast mRNAs are 3' polyuridylylated in the Green Alga Pithophora roettleri (Cladophorales). JOURNAL OF PHYCOLOGY 2020; 56:1124-1134. [PMID: 32464681 DOI: 10.1111/jpy.13033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Species within the green algal order Cladophorales have an unconventional plastome structure where individual coding regions or small numbers of genes occur as linear single-stranded DNAs folded into hairpin structures. Another group of photosynthetic organisms with an equivalently reduced chloroplast genome are the peridinin dinoflagellates of the Alveolata eukaryotic lineage whose plastomes are mini-circles carrying one or a few genes required for photosynthesis. One unusual aspect of the Alveolata is the polyuridylylation of mRNA 3' ends among peridinin dinoflagellates and the chromerid algae. This study was conducted to understand if an unconventional highly reduced plastome structure co-occurs with unconventional RNA processing. To address this, the 5' and 3' mRNA termini of the known chloroplast genes of Pithophora roettleri (order Cladophorales) were analyzed for evidence of post-transcriptional processing. Circular Reverse Transcriptase PCR (cRT-PCR) followed by deep sequencing of the amplicons was used to analyze 5' and 3' mRNA termini. Evidence of several processing events were collected, most notably the 3' termini of six of the eight genes were polyuridylylated, which has not been reported for any lineage outside of the Alveolata. Other processing events include poly(A) and heteropolymeric 3' additions, 5' primary transcript start sites, as well as the presence of circularized RNAs. Five other species representing other green algal lineages were also tested and poly(U) additions appear to be limited to the order Cladophorales. These results demonstrate that chloroplast mRNA polyuridylylation is not the sole provenance of photosynthetic alveolates and may have convergently evolved in two distinct photosynthetic lineages.
Collapse
Affiliation(s)
- Marcus J Meade
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Ave., Wise, Virginia, 24293, USA
| | - Grayson C R Proulex
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Ave., Wise, Virginia, 24293, USA
| | - Kalina M Manoylov
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia, 31061, USA
| | - A Bruce Cahoon
- Department of Natural Sciences, The University of Virginia's College at Wise, 1 College Ave., Wise, Virginia, 24293, USA
| |
Collapse
|
5
|
Dorrell RG. Convergence in the RNA processing of fractured algal organelle genomes. JOURNAL OF PHYCOLOGY 2020; 56:1121-1123. [PMID: 33460118 DOI: 10.1111/jpy.13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Richard G Dorrell
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| |
Collapse
|
6
|
MacIntosh GC, Castandet B. Organellar and Secretory Ribonucleases: Major Players in Plant RNA Homeostasis. PLANT PHYSIOLOGY 2020; 183:1438-1452. [PMID: 32513833 PMCID: PMC7401137 DOI: 10.1104/pp.20.00076] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/31/2020] [Indexed: 05/05/2023]
Abstract
Organellar and secretory RNases, associated with different cellular compartments, are essential to maintain cellular homeostasis during development and in stress responses.
Collapse
Affiliation(s)
- Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Benoît Castandet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université de Paris, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| |
Collapse
|
7
|
Wang X, Ren X, Ning L, Wang P, Xu K. Stability and absorption mechanism of typical plant miRNAs in an in vitro gastrointestinal environment: basis for their cross-kingdom nutritional effects. J Nutr Biochem 2020; 81:108376. [PMID: 32330841 DOI: 10.1016/j.jnutbio.2020.108376] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
Plant miRNAs, a group of 19-24 nt noncoding RNAs from plant foods, were recently found to have immunomodulatory and nutritional effects on mammalian and human bodies. However, how the miRNAs survive gastrointestinal (GI) environment and how the stable miRNAs are absorbed, which serve the basis for their biological functions, were not unraveled. Here, we investigated the stabilities of six typical plant miRNAs in simulated gastric and intestinal environments, and the absorption mechanisms by Caco-2 cells. The results showed that the miRNAs can survive the environment with certain concentrations. The mixture of food ingredients enhanced the stabilities of the plant miRNAs in the gastric conditions, while 2'-O-methyl modification protects the miRNAs in intestinal juice. The stabilities of the miRNAs vary significantly in the environment and are related to their secondary structures. The stable plant miRNAs can be absorbed by Caco-2 cells via clathrin- and caveolin-mediated endocytosis. Uptake of the miRNAs was sequence dependent, facilitated by NACh and TLR9, two typical receptors on cell membrane. The results suggest that some of plant miRNAs are stable in the mimic GI environment and can be absorbed by Caco-2 cells, underlying the potential of their cross-kingdom regulation effects.
Collapse
Affiliation(s)
- Xingyu Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Xiaoyu Ren
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Lufang Ning
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Pengfei Wang
- College of Food science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Ke Xu
- Department of Joint Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China.
| |
Collapse
|
8
|
Panicum Mosaic Virus and Its Satellites Acquire RNA Modifications Associated with Host-Mediated Antiviral Degradation. mBio 2019; 10:mBio.01900-19. [PMID: 31455653 PMCID: PMC6712398 DOI: 10.1128/mbio.01900-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive-sense RNA viruses in the Tombusviridae family have genomes lacking a 5' cap structure and prototypical 3' polyadenylation sequence. Instead, these viruses utilize an extensive network of intramolecular RNA-RNA interactions to direct viral replication and gene expression. Here we demonstrate that the genomic RNAs of Panicum mosaic virus (PMV) and its satellites undergo sequence modifications at their 3' ends upon infection of host cells. Changes to the viral and subviral genomes arise de novo within Brachypodium distachyon (herein called Brachypodium) and proso millet, two alternative hosts of PMV, and exist in the infections of a native host, St. Augustinegrass. These modifications are defined by polyadenylation [poly(A)] events and significant truncations of the helper virus 3' untranslated region-a region containing satellite RNA recombination motifs and conserved viral translational enhancer elements. The genomes of PMV and its satellite virus (SPMV) were reconstructed from multiple poly(A)-selected Brachypodium transcriptome data sets. Moreover, the polyadenylated forms of PMV and SPMV RNAs copurify with their respective mature icosahedral virions. The changes to viral and subviral genomes upon infection are discussed in the context of a previously understudied poly(A)-mediated antiviral RNA degradation pathway and the potential impact on virus evolution.IMPORTANCE The genomes of positive-sense RNA viruses have an intrinsic capacity to serve directly as mRNAs upon viral entry into a host cell. These RNAs often lack a 5' cap structure and 3' polyadenylation sequence, requiring unconventional strategies for cap-independent translation and subversion of the cellular RNA degradation machinery. For tombusviruses, critical translational regulatory elements are encoded within the 3' untranslated region of the viral genomes. Here we describe RNA modifications occurring within the genomes of Panicum mosaic virus (PMV), a prototypical tombusvirus, and its satellite agents (i.e., satellite virus and noncoding satellite RNAs), all of which depend on the PMV-encoded RNA polymerase for replication. The atypical RNAs are defined by terminal polyadenylation and truncation events within the 3' untranslated region of the PMV genome. These modifications are reminiscent of host-mediated RNA degradation strategies and likely represent a previously underappreciated defense mechanism against invasive nucleic acids.
Collapse
|
9
|
Chrzanowska-Lightowlers Z, Rorbach J, Minczuk M. Human mitochondrial ribosomes can switch structural tRNAs - but when and why? RNA Biol 2017; 14:1668-1671. [PMID: 28786741 PMCID: PMC5731804 DOI: 10.1080/15476286.2017.1356551] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
High resolution cryoEM of mammalian mitoribosomes revealed the unexpected presence of mitochondrially encoded tRNA as a structural component of mitochondrial large ribosomal subunit (mt-LSU). Our previously published data identified that only mitochondrial (mt-) tRNAPhe and mt-tRNAVal can be incorporated into mammalian mt-LSU and within an organism there is no evidence of tissue specific variation. When mt-tRNAVal is limiting, human mitoribosomes can integrate mt-tRNAPhe instead to generate a translationally competent monosome. Here we discuss the possible reasons for and consequences of the observed plasticity of the structural mt-tRNA integration. We also indicate potential direction for further research that could help our understanding of the mechanistic and evolutionary aspects of this unprecedented system.
Collapse
Affiliation(s)
- Zofia Chrzanowska-Lightowlers
- a The Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience , Newcastle University , Newcastle upon Tyne , England , UK
| | - Joanna Rorbach
- b Department of Medical Biochemistry and Biophysics , Karolinska Institutet , Retzius väg 8, Stockholm , Sweden
| | - Michal Minczuk
- c MRC Mitochondrial Biology Unit , Wellcome Trust/MRC Building, Hills Road, Cambridge, England , UK
| |
Collapse
|
10
|
Polyadenylation and degradation of RNA in the mitochondria. Biochem Soc Trans 2017; 44:1475-1482. [PMID: 27911729 DOI: 10.1042/bst20160126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022]
Abstract
Mitochondria have their own gene expression machinery and the relative abundance of RNA products in these organelles in animals is mostly dictated by their rate of degradation. The molecular mechanisms regulating the differential accumulation of the transcripts in this organelle remain largely elusive. Here, we summarize the present knowledge of how RNA is degraded in human mitochondria and describe the coexistence of stable poly(A) tails and the nonabundant tails, which have been suggested to play a role in the RNA degradation process.
Collapse
|
11
|
Silva SR, Diaz YCA, Penha HA, Pinheiro DG, Fernandes CC, Miranda VFO, Michael TP, Varani AM. The Chloroplast Genome of Utricularia reniformis Sheds Light on the Evolution of the ndh Gene Complex of Terrestrial Carnivorous Plants from the Lentibulariaceae Family. PLoS One 2016; 11:e0165176. [PMID: 27764252 PMCID: PMC5072713 DOI: 10.1371/journal.pone.0165176] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/08/2016] [Indexed: 02/06/2023] Open
Abstract
Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed. Comparisons among aquatic and terrestrial forms of Pinguicula, Genlisea, and Utricularia indicate that, whereas the aquatic forms retained functional copies of the eleven ndh genes, these have been lost or truncated in terrestrial forms, suggesting that the ndh function may be dispensable in terrestrial Lentibulariaceae. Phylogenetic scenarios of the ndh gene loss and recovery among Pinguicula, Genlisea, and Utricularia to the ancestral Lentibulariaceae cladeare proposed. Interestingly, RNAseq analysis evidenced that U. reniformis cp genes are transcribed, including the truncated ndh genes, suggesting that these are not completely inactivated. In addition, potential novel RNA-editing sites were identified in at least six U. reniformis cp genes, while none were identified in the truncated ndh genes. Moreover, phylogenomic analyses support that Lentibulariaceae is monophyletic, belonging to the higher core Lamiales clade, corroborating the hypothesis that the first Utricularia lineage emerged in terrestrial habitats and then evolved to epiphytic and aquatic forms. Furthermore, several truncated cp genes were found interspersed with U. reniformis mitochondrial and nuclear genome scaffolds, indicating that as observed in other smaller plant genomes, such as Arabidopsis thaliana, and the related and carnivorous Genlisea nigrocaulis and G. hispidula, the endosymbiotic gene transfer may also shape the U. reniformis genome in a similar fashion. Overall the comparative analysis of the U. reniformis cp genome provides new insight into the ndh genes and cp genome evolution of carnivorous plants from Lentibulariaceae family.
Collapse
Affiliation(s)
- Saura R. Silva
- Instituto de Biociências, UNESP - Univ Estadual Paulista, Câmpus Botucatu, São Paulo, Brazil
| | - Yani C. A. Diaz
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Helen Alves Penha
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Camila C. Fernandes
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Vitor F. O. Miranda
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Todd P. Michael
- Ibis Bioscience, Computational Genomics, Carlsbad, California, United States of America
| | - Alessandro M. Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| |
Collapse
|
12
|
Widespread 3'-end uridylation in eukaryotic RNA viruses. Sci Rep 2016; 6:25454. [PMID: 27151171 PMCID: PMC4858684 DOI: 10.1038/srep25454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/15/2016] [Indexed: 01/08/2023] Open
Abstract
RNA 3′ uridylation occurs pervasively in eukaryotes, but is poorly characterized in viruses. In this study, we demonstrate that a broad array of RNA viruses, including mycoviruses, plant viruses and animal viruses, possess a novel population of RNA species bearing nontemplated oligo(U) or (U)-rich tails, suggesting widespread 3′ uridylation in eukaryotic viruses. Given the biological relevance of 3′ uridylation to eukaryotic RNA degradation, we propose a conserved but as-yet-unknown mechanism in virus-host interaction.
Collapse
|
13
|
Levy S, Allerston CK, Liveanu V, Habib MR, Gileadi O, Schuster G. Identification of LACTB2, a metallo-β-lactamase protein, as a human mitochondrial endoribonuclease. Nucleic Acids Res 2016; 44:1813-32. [PMID: 26826708 PMCID: PMC4770246 DOI: 10.1093/nar/gkw050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/19/2016] [Indexed: 11/23/2022] Open
Abstract
Post-transcriptional control of mitochondrial gene expression, including the
processing and generation of mature transcripts as well as their degradation, is a
key regulatory step in gene expression in human mitochondria. Consequently,
identification of the proteins responsible for RNA processing and degradation in this
organelle is of great importance. The metallo-β-lactamase (MBL) is a candidate
protein family that includes ribo- and deoxyribonucleases. In this study, we
discovered a function for LACTB2, an orphan MBL protein found in mammalian
mitochondria. Solving its crystal structure revealed almost perfect alignment of the
MBL domain with CPSF73, as well as to other ribonucleases of the MBL superfamily.
Recombinant human LACTB2 displayed robust endoribonuclease activity on ssRNA with a
preference for cleavage after purine-pyrimidine sequences. Mutational analysis
identified an extended RNA-binding site. Knockdown of LACTB2 in cultured cells caused
a moderate but significant accumulation of many mitochondrial transcripts, and its
overexpression led to the opposite effect. Furthermore, manipulation of LACTB2
expression resulted in cellular morphological deformation and cell death. Together,
this study discovered that LACTB2 is an endoribonuclease that is involved in the
turnover of mitochondrial RNA, and is essential for mitochondrial function in human
cells.
Collapse
Affiliation(s)
- Shiri Levy
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Charles K Allerston
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Varda Liveanu
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Mouna R Habib
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Opher Gileadi
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Gadi Schuster
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
14
|
Polyuridylation in Eukaryotes: A 3'-End Modification Regulating RNA Life. BIOMED RESEARCH INTERNATIONAL 2015; 2015:968127. [PMID: 26078976 PMCID: PMC4442281 DOI: 10.1155/2015/968127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/23/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022]
Abstract
In eukaryotes, mRNA polyadenylation is a well-known modification that is essential for many aspects of the protein-coding RNAs life cycle. However, modification of the 3′ terminal nucleotide within various RNA molecules is a general and conserved process that broadly modulates RNA function in all kingdoms of life. Numerous types of modifications have been characterized, which are generally specific for a given type of RNA such as the CCA addition found in tRNAs. In recent years, the addition of nontemplated uridine nucleotides or uridylation has been shown to occur in various types of RNA molecules and in various cellular compartments with significantly different outcomes. Indeed, uridylation is able to alter RNA half-life both in positive and in negative ways, highlighting the importance of the enzymes in charge of performing this modification. The present review aims at summarizing the current knowledge on the various processes leading to RNA 3′-end uridylation and on their potential impacts in various diseases.
Collapse
|
15
|
Li W, Zhang Y, Zhang C, Pei X, Wang Z, Jia S. Presence of poly(A) and poly(A)-rich tails in a positive-strand RNA virus known to lack 3׳ poly(A) tails. Virology 2014; 454-455:1-10. [PMID: 24725926 DOI: 10.1016/j.virol.2014.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/08/2013] [Accepted: 02/01/2014] [Indexed: 01/08/2023]
Abstract
Here we show that Tobacco mosaic virus (TMV), a positive-strand RNA virus known to end with 3׳ tRNA-like structures, does possess a small fraction of gRNA bearing polyadenylate tails. Particularly, many tails are at sites corresponding to the 3׳ end of near full length gRNA, and are composed of poly(A)-rich sequences containing the other nucleotides in addition to adenosine, resembling the degradation-stimulating poly(A) tails observed in all biological kingdoms. Further investigations demonstrate that these polyadenylated RNA species are not enriched in chloroplasts. Silencing of cpPNPase, a chloroplast-localized polynucleotide polymerase known to not only polymerize the poly(A)-rich tails but act as a 3׳ to 5׳ exoribonuclease, does not change the profile of polyadenylate tails associated with TMV RNA. Nevertheless, because similar tails were also detected in other phylogenetically distinct positive-strand RNA viruses lacking poly(A) tails, such kind of polyadenylation may reflect a common but as-yet-unknown interface between hosts and viruses.
Collapse
Affiliation(s)
- Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yongqiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhixing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shirong Jia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Rorbach J, Bobrowicz A, Pearce S, Minczuk M. Polyadenylation in bacteria and organelles. Methods Mol Biol 2014; 1125:211-27. [PMID: 24590792 DOI: 10.1007/978-1-62703-971-0_18] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Polyadenylation is a posttranscriptional modification present throughout all the kingdoms of life with important roles in regulation of RNA stability, translation, and quality control. Functions of polyadenylation in prokaryotic and organellar RNA metabolism are still not fully characterized, and poly(A) tails appear to play contrasting roles in different systems. Here we present a general overview of the polyadenylation process and the factors involved in its regulation, with an emphasis on the diverse functions of 3' end modification in the control of gene expression in different biological systems.
Collapse
Affiliation(s)
- Joanna Rorbach
- Mitochondrial Genetics Group, MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK,
| | | | | | | |
Collapse
|
17
|
Chen IH, Cheng JH, Huang YW, Lin NS, Hsu YH, Tsai CH. Characterization of the polyadenylation activity in a replicase complex from Bamboo mosaic virus-infected Nicotiana benthamiana plants. Virology 2013; 444:64-70. [PMID: 23768785 PMCID: PMC7111917 DOI: 10.1016/j.virol.2013.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 12/30/2022]
Abstract
Bamboo mosaic virus (BaMV) has a positive-sense single-stranded RNA genome with a 5' cap and a 3' poly(A) tail. To characterize polyadenylation activity in the BaMV replicase complex, we performed the in vitro polyadenylation with various BaMV templates. We conducted a polyadenylation activity assay for BaMV RNA by using a partially purified BaMV replicase complex. The results showed that approximately 200 adenylates at the 3' end of the RNA were generated on the endogenous RNA templates. Specific fractions derived from uninfected Nicotiana benthamiana plants enhanced the polyadenylation activity, implying that host factors are involved in polyadenylation. Furthermore, polyadenylation can be detected in newly synthesized plus-strand RNA in vitro when using the exogenous BaMV minus-strand minigenome. For polyadenylation on the exogenous plus-strand minigenome, the 3' end requires at least 4A to reach 22% polyadenylation activity. The results indicate that the BaMV replicase complex recognizes the 3' end of BaMV for polyadenylation.
Collapse
Affiliation(s)
- I-Hsuan Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jai-Hong Cheng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Na-Sheng Lin
- The Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Ching-Hsiu Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| |
Collapse
|
18
|
Abstract
BACKGROUND Polyadenylation is present in all three domains of life, making it the most conserved post-transcriptional process compared with splicing and 5'-capping. Even though most mammalian poly(A) sites contain a highly conserved hexanucleotide in the upstream region and a far less conserved U/GU-rich sequence in the downstream region, there are many exceptions. Furthermore, poly(A) sites in other species, such as plants and invertebrates, exhibit high deviation from this genomic structure, making the construction of a general poly(A) site recognition model challenging. We surveyed nine poly(A) site prediction methods published between 1999 and 2011. All methods exploit the skewed nucleotide profile across the poly(A) sites, and the highly conserved poly(A) signal as the primary features for recognition. These methods typically use a large number of features, which increases the dimensionality of the models to crippling degrees, and typically are not validated against many kinds of genomes. RESULTS We propose a poly(A) site model that employs minimal features to capture the essence of poly(A) sites, and yet, produces better prediction accuracy across diverse species. Our model consists of three dior-trinucleotide profiles identified through principle component analysis, and the predicted nucleosome occupancy flanking the poly(A) sites. We validated our model using two machine learning methods: logistic regression and linear discriminant analysis. Results show that models achieve 85-92% sensitivity and 85-96% specificity in seven animals and plants. When we applied one model from one species to predict poly(A) sites from other species, the sensitivity scores correlate with phylogenetic distances. CONCLUSIONS A four-feature model geared towards small motifs was sufficient to accurately learn and predict poly(A) sites across eukaryotes.
Collapse
Affiliation(s)
- Eric S Ho
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
| | | | | |
Collapse
|
19
|
Additive and transcript-specific effects of KPAP1 and TbRND activities on 3' non-encoded tail characteristics and mRNA stability in Trypanosoma brucei. PLoS One 2012; 7:e37639. [PMID: 22629436 PMCID: PMC3357391 DOI: 10.1371/journal.pone.0037639] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/26/2012] [Indexed: 01/09/2023] Open
Abstract
Short, non-encoded oligo(A), oligo(U), or A/U tails can impact mRNA stability in kinetoplastid mitochondria. However, a comprehensive picture of the relative effects of these modifications in RNA stability is lacking. Furthermore, while the U-preferring exoribonuclease TbRND acts on U-tailed gRNAs, its role in decay of uridylated mRNAs has only been cursorily investigated. Here, we analyzed the roles of mRNA 3′ tail composition and TbRND in RNA decay using cells harbouring single or double knockdown of TbRND and the KPAP1 poly(A) polymerase. Analysis of mRNA abundance and tail composition reveals dramatic and transcript-specific effects of adenylation and uridylation on mitochondrial RNAs. Oligo(A) and A-rich tails can stabilize a proportion of edited and never-edited RNAs. However, non-tailed RNAs are not inherently unstable, implicating additional stability determinants and/or spatial segregation of sub-populations of a given RNA in regulation of RNA decay. Oligo(U) tails, which have been shown to contribute to decay of some never-edited RNAs, are not universally destabilizing. We also show that RNAs display very different susceptibility to uridylation in the absence of KPAP1, a factor that may contribute to regulation of decay. Finally, 3′ tail composition apparently impacts the ability of an RNA to be edited.
Collapse
|
20
|
The rnb gene of Synechocystis PCC6803 encodes a RNA hydrolase displaying RNase II and not RNase R enzymatic properties. PLoS One 2012; 7:e32690. [PMID: 22403697 PMCID: PMC3293843 DOI: 10.1371/journal.pone.0032690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/29/2012] [Indexed: 11/19/2022] Open
Abstract
Cyanobacteria are photosynthetic prokaryotic organisms that share characteristics with bacteria and chloroplasts regarding mRNA degradation. Synechocystis sp. PCC6803 is a model organism for cyanobacteria, but not much is known about the mechanism of RNA degradation. Only one member of the RNase II-family is present in the genome of Synechocystis sp PCC6803. This protein was shown to be essential for its viability, which indicates that it may have a crucial role in the metabolism of Synechocystis RNA. The aim of this work was to characterize the activity of the RNase II/R homologue present in Synechocystis sp. PCC6803. The results showed that as expected, it displayed hydrolytic activity and released nucleoside monophosphates. When compared to two E. coli counterparts, the activity assays showed that the Synechocystis protein displays RNase II, and not RNase R characteristics. This is the first reported case where when only one member of the RNase II/R family exists it displays RNase II and not RNase R characteristics.
Collapse
|
21
|
Maes A, Gracia C, Hajnsdorf E, Régnier P. Search for poly(A) polymerase targets in E. coli reveals its implication in surveillance of Glu tRNA processing and degradation of stable RNAs. Mol Microbiol 2011; 83:436-51. [PMID: 22142150 DOI: 10.1111/j.1365-2958.2011.07943.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyadenylation is a universal post-transcriptional modification involved in degradation and quality control of bacterial RNAs. In Escherichia coli, it is admitted that any accessible RNA 3' end can be tagged by a poly(A) tail for decay. However, we do not have yet an overall view of the population of polyadenylated molecules. The sampling of polyadenylated RNAs presented here demonstrates that rRNA fragments and tRNA precursors originating from the internal spacer regions of the rrn operons, in particular, rrnB are abundant poly(A) polymerase targets. Focused analysis showed that Glu tRNA precursors originating from the rrnB and rrnG transcripts exhibit long 3' trailers that are primarily removed by PNPase and to a lesser extent by RNase II and poly(A) polymerase. Moreover, 3' trimming by exoribonucleases precedes 5' end maturation by RNase P. Interestingly, characterization of RNA fragments that accumulate in a PNPase deficient strain showed that Glu tRNA precursors still harbouring the 5' leader can be degraded by a 3' to 5' quality control pathway involving poly(A) polymerase. This demonstrates that the surveillance of tRNA maturation described for a defective tRNA also applies to a wild-type tRNA.
Collapse
Affiliation(s)
- Alexandre Maes
- CNRS UPR9073, associated with University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | | | | |
Collapse
|
22
|
Wang G, Shimada E, Koehler CM, Teitell MA. PNPASE and RNA trafficking into mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:998-1007. [PMID: 22023881 DOI: 10.1016/j.bbagrm.2011.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/26/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
Abstract
The mitochondrial genome encodes a very small fraction of the macromolecular components that are required to generate functional mitochondria. Therefore, most components are encoded within the nuclear genome and are imported into mitochondria from the cytosol. Understanding how mitochondria are assembled, function, and dysfunction in diseases requires detailed knowledge of mitochondrial import mechanisms and pathways. The import of nucleus-encoded RNAs is required for mitochondrial biogenesis and function, but unlike pre-protein import, the pathways and cellular machineries of RNA import are poorly defined, especially in mammals. Recent studies have shown that mammalian polynucleotide phosphorylase (PNPASE) localizes in the mitochondrial intermembrane space (IMS) to regulate the import of RNA. The identification of PNPASE as the first component of the RNA import pathway, along with a growing list of nucleus-encoded RNAs that are imported and newly developed assay systems for RNA import studies, suggest a unique opportunity is emerging to identify the factors and mechanisms that regulate RNA import into mammalian mitochondria. Here we summarize what is known in this fascinating area of mitochondrial biogenesis, identify areas that require further investigation, and speculate on the impact unraveling RNA import mechanisms and pathways will have for the field going forward. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Geng Wang
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
23
|
Johnson JG, Morey JS, Neely MG, Ryan JC, Van Dolah FM. Transcriptome remodeling associated with chronological aging in the dinoflagellate, Karenia brevis. Mar Genomics 2011; 5:15-25. [PMID: 22325718 DOI: 10.1016/j.margen.2011.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/15/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
The toxic dinoflagellate, Karenia brevis, forms dense blooms in the Gulf of Mexico that persist for many months in coastal waters, where they can cause extensive marine animal mortalities and human health impacts. The mechanisms that enable cell survival in high density, low growth blooms, and the mechanisms leading to often rapid bloom demise are not well understood. To gain an understanding of processes that underlie chronological aging in this dinoflagellate, a microarray study was carried out to identify changes in the global transcriptome that accompany the entry and maintenance of stationary phase up to the onset of cell death. The transcriptome of K. brevis was assayed using a custom 10,263 feature oligonucleotide microarray from mid-logarithmic growth to the onset of culture demise. A total of 2958 (29%) features were differentially expressed, with the mid-stationary phase timepoint demonstrating peak changes in expression. Gene ontology enrichment analyses identified a significant shift in transcripts involved in energy acquisition, ribosome biogenesis, gene expression, stress adaptation, calcium signaling, and putative brevetoxin biosynthesis. The extensive remodeling of the transcriptome observed in the transition into a quiescent non-dividing phase appears to be indicative of a global shift in the metabolic and signaling requirements and provides the basis from which to understand the process of chronological aging in a dinoflagellate.
Collapse
Affiliation(s)
- Jillian G Johnson
- NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC 29412, USA.
| | | | | | | | | |
Collapse
|
24
|
Mohanty BK, Kushner SR. Bacterial/archaeal/organellar polyadenylation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:256-76. [PMID: 21344039 PMCID: PMC3041983 DOI: 10.1002/wrna.51] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although the first poly(A) polymerase (PAP) was discovered in Escherichia coli in 1962, the study of polyadenylation in bacteria was largely ignored for the next 30 years. However, with the identification of the structural gene for E. coli PAP I in 1992, it became possible to analyze polyadenylation using both biochemical and genetic approaches. Subsequently, it has been shown that polyadenylation plays a multifunctional role in prokaryotic RNA metabolism. Although the bulk of our current understanding of prokaryotic polyadenylation comes from studies on E. coli, recent limited experiments with Cyanobacteria, organelles, and Archaea have widened our view on the diversity, complexity, and universality of the polyadenylation process. For example, the identification of polynucleotide phosphorylase (PNPase), a reversible phosphorolytic enzyme that is highly conserved in bacteria, as an additional PAP in E. coli caught everyone by surprise. In fact, PNPase has now been shown to be the source of post-transcriptional RNA modifications in a wide range of cells of prokaryotic origin including those that lack a eubacterial PAP homolog. Accordingly, the past few years have witnessed increased interest in the mechanism and role of post-transcriptional modifications in all species of prokaryotic origin. However, the fact that many of the poly(A) tails are very short and unstable as well as the presence of polynucleotide tails has posed significant technical challenges to the scientific community trying to unravel the mystery of polyadenylation in prokaryotes. This review discusses the current state of knowledge regarding polyadenylation and its functions in bacteria, organelles, and Archaea.
Collapse
Affiliation(s)
- Bijoy K. Mohanty
- Department of Genetics, University of Georgia, Athens, Georgia 30605, Tel No. 706-542-8000,
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens, Georgia 30605, Tel No. 706-542-8000,
| |
Collapse
|
25
|
Walter M, Piepenburg K, Schöttler MA, Petersen K, Kahlau S, Tiller N, Drechsel O, Weingartner M, Kudla J, Bock R. Knockout of the plastid RNase E leads to defective RNA processing and chloroplast ribosome deficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:851-63. [PMID: 21105931 DOI: 10.1111/j.1365-313x.2010.04377.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ribonuclease E (RNase E) represents a key enzyme in bacterial RNA metabolism. It plays multifarious roles in RNA processing and also initiates degradation of mRNA by endonucleolytic cleavage. Plastids (chloroplasts) are derived from formerly free-living bacteria and have largely retained eubacterial gene expression mechanisms. Here we report the functional characterization of a chloroplast RNase E that is encoded by a single-copy nuclear gene in the model plant Arabidopsis thaliana. Analysis of knockout plants revealed that, unlike in bacteria, RNase E is not essential for survival. Absence of RNase E results in multiple defects in chloroplast RNA metabolism. Most importantly, polycistronic precursor transcripts overaccumulate in the knockout plants, while several mature monocistronic mRNAs are strongly reduced, suggesting an important function of RNase E in intercistronic processing of primary transcripts from chloroplast operons. We further show that disturbed maturation of a transcript encoding essential ribosomal proteins results in plastid ribosome deficiency and, therefore, provides a molecular explanation for the observed mutant phenotype.
Collapse
Affiliation(s)
- Michael Walter
- Institut für Botanik, Universität Münster, Schlossplatz 4, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang G, Chen HW, Oktay Y, Zhang J, Allen EL, Smith GM, Fan KC, Hong JS, French SW, McCaffery JM, Lightowlers RN, Morse HC, Koehler CM, Teitell MA. PNPASE regulates RNA import into mitochondria. Cell 2010; 142:456-67. [PMID: 20691904 PMCID: PMC2921675 DOI: 10.1016/j.cell.2010.06.035] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/20/2010] [Accepted: 05/13/2010] [Indexed: 02/04/2023]
Abstract
RNA import into mammalian mitochondria is considered essential for replication, transcription, and translation of the mitochondrial genome but the pathway(s) and factors that control this import are poorly understood. Previously, we localized polynucleotide phosphorylase (PNPASE), a 3' --> 5' exoribonuclease and poly-A polymerase, in the mitochondrial intermembrane space, a location lacking resident RNAs. Here, we show a new role for PNPASE in regulating the import of nuclear-encoded RNAs into the mitochondrial matrix. PNPASE reduction impaired mitochondrial RNA processing and polycistronic transcripts accumulated. Augmented import of RNase P, 5S rRNA, and MRP RNAs depended on PNPASE expression and PNPASE-imported RNA interactions were identified. PNPASE RNA processing and import activities were separable and a mitochondrial RNA targeting signal was isolated that enabled RNA import in a PNPASE-dependent manner. Combined, these data strongly support an unanticipated role for PNPASE in mediating the translocation of RNAs into mitochondria.
Collapse
Affiliation(s)
- Geng Wang
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095
| | - Hsiao-Wen Chen
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California at Irvine, Irvine, CA 92697
| | - Yavuz Oktay
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095
| | - Jin Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Eric L. Allen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Geoffrey M. Smith
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Kelly C. Fan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Jason S. Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Samuel W. French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - J. Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Robert N. Lightowlers
- Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, Newcastle upon the Tyne, UK
| | - Herbert C. Morse
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Carla M. Koehler
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095
| | - Michael A. Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, Broad Stem Cell Research Center, California NanoSystems Institute, and Center for Cell Control, University of California at Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
27
|
Betat H, Rammelt C, Mörl M. tRNA nucleotidyltransferases: ancient catalysts with an unusual mechanism of polymerization. Cell Mol Life Sci 2010; 67:1447-63. [PMID: 20155482 PMCID: PMC11115931 DOI: 10.1007/s00018-010-0271-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 12/14/2009] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
RNA polymerases are important enzymes involved in the realization of the genetic information encoded in the genome. Thereby, DNA sequences are used as templates to synthesize all types of RNA. Besides these classical polymerases, there exists another group of RNA polymerizing enzymes that do not depend on nucleic acid templates. Among those, tRNA nucleotidyltransferases show remarkable and unique features. These enzymes add the nucleotide triplet C-C-A to the 3'-end of tRNAs at an astonishing fidelity and are described as "CCA-adding enzymes". During this incorporation of exactly three nucleotides, the enzymes have to switch from CTP to ATP specificity. How these tasks are fulfilled by rather simple and small enzymes without the help of a nucleic acid template is a fascinating research area. Surprising results of biochemical and structural studies allow scientists to understand at least some of the mechanistic principles of the unique polymerization mode of these highly unusual enzymes.
Collapse
Affiliation(s)
- Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| | - Christiane Rammelt
- Institute for Biochemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
28
|
Abstract
The chloroplast genome encodes proteins required for photosynthesis, gene expression, and other essential organellar functions. Derived from a cyanobacterial ancestor, the chloroplast combines prokaryotic and eukaryotic features of gene expression and is regulated by many nucleus-encoded proteins. This review covers four major chloroplast posttranscriptional processes: RNA processing, editing, splicing, and turnover. RNA processing includes the generation of transcript 5' and 3' termini, as well as the cleavage of polycistronic transcripts. Editing converts specific C residues to U and often changes the amino acid that is specified by the edited codon. Chloroplasts feature introns of groups I and II, which undergo protein-facilitated cis- or trans-splicing in vivo. Each of these RNA-based processes involves proteins of the pentatricopeptide motif-containing family, which does not occur in prokaryotes. Plant-specific RNA-binding proteins may underpin the adaptation of the chloroplast to the eukaryotic context.
Collapse
Affiliation(s)
- David B Stern
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
29
|
The Exosome and 3′–5′ RNA Degradation in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:50-62. [DOI: 10.1007/978-1-4419-7841-7_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
30
|
Zimmer SL, Schein A, Zipor G, Stern DB, Schuster G. Polyadenylation in Arabidopsis and Chlamydomonas organelles: the input of nucleotidyltransferases, poly(A) polymerases and polynucleotide phosphorylase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:88-99. [PMID: 19309454 DOI: 10.1111/j.1365-313x.2009.03853.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The polyadenylation-stimulated RNA degradation pathway takes place in plant and algal organelles, yet the identities of the enzymes that catalyze the addition of the tails remain to be clarified. In a search for the enzymes responsible for adding poly(A) tails in Chlamydomonas and Arabidopsis organelles, reverse genetic and biochemical approaches were employed. The involvement of candidate enzymes including members of the nucleotidyltransferase (Ntr) family and polynucleotide phosphorylase (PNPase) was examined. For several of the analyzed nuclear-encoded proteins, mitochondrial localization was established and possible dual targeting to mitochondria and chloroplasts could be predicted. We found that certain members of the Ntr family, when expressed in bacteria, displayed poly(A) polymerase (PAP) activity and partially complemented an Escherichia coli strain lacking the endogenous PAP1 enzyme. Other Ntr proteins appeared to be specific for tRNA maturation. When the expression of PNPase was down-regulated by RNAi in Chlamydomonas, very few poly(A) tails were detected in chloroplasts for the atpB transcript, suggesting that this enzyme may be solely responsible for chloroplast polyadenylation activity in this species. Depletion of PNPase did not affect the number or sequence of mitochondrial mRNA poly(A) tails, where unexpectedly we found, in addition to polyadenylation, poly(U)-rich tails. Together, our results identify several Ntr-PAPs and PNPase in organelle polyadenylation, and reveal novel poly(U)-rich sequences in Chlamydomonas mitochondria.
Collapse
Affiliation(s)
- Sarah L Zimmer
- Boyce Thompson Institute for Plant Research, Tower Rd., Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
31
|
Régnier P, Hajnsdorf E. Poly(A)-assisted RNA decay and modulators of RNA stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:137-85. [PMID: 19215772 DOI: 10.1016/s0079-6603(08)00804-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In Escherichia coli, RNA degradation is orchestrated by the degradosome with the assistance of complementary pathways and regulatory cofactors described in this chapter. They control the stability of each transcript and regulate the expression of many genes involved in environmental adaptation. The poly(A)-dependent degradation machinery has diverse functions such as the degradation of decay intermediates generated by endoribonucleases, the control of the stability of regulatory non coding RNAs (ncRNAs) and the quality control of stable RNA. The metabolism of poly(A) and mechanism of poly(A)-assisted degradation are beginning to be understood. Regulatory factors, exemplified by RraA and RraB, control the decay rates of subsets of transcripts by binding to RNase E, in contrast to regulatory ncRNAs which, assisted by Hfq, target RNase E to specific transcripts. Destabilization is often consecutive to the translational inactivation of mRNA. However, there are examples where RNA degradation is the primary regulatory step.
Collapse
Affiliation(s)
- Philippe Régnier
- CNRS UPR9073, Institut de Biologie Physico-Chimique, Paris, France
| | | |
Collapse
|
32
|
Schuster G, Stern D. RNA polyadenylation and decay in mitochondria and chloroplasts. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:393-422. [PMID: 19215778 DOI: 10.1016/s0079-6603(08)00810-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondria and chloroplasts were originally acquired by eukaryotic cells through endosymbiotic events and retain their own gene expression machinery. One hallmark of gene regulation in these two organelles is the predominance of posttranscriptional control, which is exerted both at the gene-specific and global levels. This review focuses on their mechanisms of RNA degradation, and therefore mainly on the polyadenylation-stimulated degradation pathway. Overall, mitochondria and chloroplasts have retained the prokaryotic RNA decay system, despite evolution in the number and character of the enzymes involved. However, several significant differences exist, of which the presence of stable poly(A) tails, and the location of PNPase in the intermembrane space in animal mitochondria, are perhaps the most remarkable. The known and predicted proteins taking part in polyadenylation-stimulated degradation pathways are described, both in chloroplasts and four mitochondrial types: plant, yeast, trypanosome, and animal.
Collapse
Affiliation(s)
- Gadi Schuster
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
33
|
Genome-based analysis of Chlamydomonas reinhardtii exoribonucleases and poly(A) polymerases predicts unexpected organellar and exosomal features. Genetics 2008; 179:125-36. [PMID: 18493045 DOI: 10.1534/genetics.107.086223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzymes from several gene families modify RNA molecules at their extremities. These reactions occur in several cellular compartments and affect every class of RNA. To assess the diversity of a subclass of these enzymes, we searched Chlamydomonas for open reading frames (ORFs) potentially encoding exoribonucleases, poly(A) polymerases, and proteins known to associate with and/or regulate them. The ORFs were further analyzed for indications of protein localization to the nucleus, cytosol, mitochondrion, and/or chloroplast. By comparing predicted proteins with homologs in Arabidopsis and yeast, we derived several tentative conclusions regarding RNA 5'- and 3'-end metabolism in Chlamydomonas. First, the alga possesses only one each of the following likely organellar enzymes: polynucleotide phosphorylase, hydrolytic exoribonuclease, poly(A) polymerase, and CCA transferase, a surprisingly small complement. Second, although the core of the nuclear/cytosolic exosome decay complex is well conserved, neither nucleus-specific activators nor the cytosolic exosome activators are present. Finally, our discovery of nine noncanonical poly(A) polymerases, a divergent family retaining the catalytic domains of conventional poly(A) polymerases, leads to the hypothesis that polyadenylation may play an especially important regulatory role throughout the Chlamydomonas cell, stabilizing some transcripts and targeting degradation machinery to others.
Collapse
|
34
|
Molecular cloning, characterization and expression of atpA and atpB genes from Ginkgo biloba. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0093-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Portnoy V, Schuster G. Mycoplasma gallisepticum as the first analyzed bacterium in which RNA is not polyadenylated. FEMS Microbiol Lett 2008; 283:97-103. [PMID: 18399989 DOI: 10.1111/j.1574-6968.2008.01157.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The addition of poly(A)-tails to RNA is a phenomenon common to almost all organisms. In addition to most eukaryotic mRNAs possessing a stable poly(A)-tail, RNA is polyadenylated as part of a degradation mechanism in prokaryotes, organelles, and the eukaryotic nucleus. To date, only very few systems have been described wherein RNA is metabolized without polyadenylation, including several archaea and yeast mitochondria. The minimal genome of the parasitic bacteria, Mycoplasma, does not encode homologs of any known polyadenylating enzyme. Here, we analyze polyadenylation in Mycoplasma gallisepticum. Our results suggest this organism as being the first described bacterium in which RNA is not polyadenylated.
Collapse
Affiliation(s)
- Victoria Portnoy
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
36
|
Slomovic S, Schuster G. Stable PNPase RNAi silencing: its effect on the processing and adenylation of human mitochondrial RNA. RNA (NEW YORK, N.Y.) 2008; 14:310-323. [PMID: 18083837 PMCID: PMC2212247 DOI: 10.1261/rna.697308] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 10/24/2007] [Indexed: 05/25/2023]
Abstract
Polynucleotide phosphorylase (PNPase) is a diverse enzyme, involved in RNA polyadenylation, degradation, and processing in prokaryotes and organelles. However, in human mitochondria, PNPase is located in the intermembrane space (IMS), where no mitochondrial RNA (mtRNA) is known to be present. In order to determine the nature and degree of its involvement in mtRNA metabolism, we stably silenced PNPase by establishing HeLa cell lines expressing PNPase short-hairpin RNA (shRNA). Processing and polyadenylation of mt-mRNAs were significantly affected, but, to different degrees in different genes. For instance, the stable poly(A) tails at the 3' ends of COX1 transcripts were abolished, while COX3 poly(A) tails remained unaffected and ND5 and ND3 poly(A) extensions increased in length. Despite the lack of polyadenylation at the 3' end, COX1 mRNA and protein accumulated to normal levels, as was the case for all 13 mt-encoded proteins. Interestingly, ATP depletion also altered poly(A) tail length, demonstrating that adenylation of mtRNA can be manipulated by indirect, environmental means and not solely by direct enzymatic activity. When both PNPase and the mitochondrial poly(A)-polymerase (mtPAP) were concurrently silenced, the mature 3' end of ND3 mRNA lacked poly(A) tails but retained oligo(A) extensions. Furthermore, in mtPAP-silenced cells, truncated adenylated COX1 molecules, considered to be degradation intermediates, were present but harbored significantly shorter tails. Together, these results suggest that an additional mitochondrial polymerase, yet to be identified, is responsible for the oligoadenylation of mtRNA and that PNPase, although located in the IMS, is involved, most likely by indirect means, in the processing and polyadenylation of mtRNA.
Collapse
Affiliation(s)
- Shimyn Slomovic
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | |
Collapse
|
37
|
Slomovic S, Portnoy V, Schuster G. Detection and characterization of polyadenylated RNA in Eukarya, Bacteria, Archaea, and organelles. Methods Enzymol 2008; 447:501-20. [PMID: 19161858 DOI: 10.1016/s0076-6879(08)02224-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The posttranscriptional addition of poly(A) extensions to RNA is a phenomenon common to almost all organisms. In eukaryotes, a stable poly(A) tail is added to the 3'-end of most nucleus-encoded mRNAs, as well as to mitochondrion-encoded transcripts in animal cells. In prokaryotes and organelles, RNA molecules are polyadenylated as part of a polyadenylation-stimulated RNA degradation pathway. In addition, polyadenylation of nucleus-encoded transcripts in yeast and human cells was recently reported to promote RNA degradation. Not only homopolymeric poly(A) tails, composed exclusively of adenosines, but also heteropolymeric poly(A)-rich extensions, which include the other three nucleotides as well, have been observed in bacteria, archaea, chloroplasts, and human cells. In most instances, the detection of nonabundant truncated transcripts with posttranscriptionally added poly(A) or poly(A)-rich extensions serves as a telltale sign of the presence of a polyadenylation-stimulated RNA degradation pathway. In this chapter, we describe several methods found to be efficient in detecting and characterizing polyadenylated transcripts in bacteria, archaea, organelles, and nucleus-encoded RNAs. Detailed protocols for the oligo(dT)- and circularized reverse transcription (cRT) PCR methods, as well as the ribonuclease digestion method, are outlined, along with examples of results obtained with these techniques.
Collapse
Affiliation(s)
- Shimyn Slomovic
- Department of Biology Technion, Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
38
|
Redox Regulation of Chloroplast Gene Expression. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
39
|
Slomovic S, Portnoy V, Yehudai-Resheff S, Bronshtein E, Schuster G. Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2007; 1779:247-55. [PMID: 18177749 DOI: 10.1016/j.bbagrm.2007.12.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 11/29/2007] [Accepted: 12/06/2007] [Indexed: 02/02/2023]
Abstract
The addition of poly(A)-tails to RNA is a phenomenon common to almost all organisms. Not only homopolymeric poly(A)-tails, comprised exclusively of adenosines, but also heteropolymeric poly(A)-rich extensions, which include the other three nucleotides as well, have been observed in bacteria, archaea, chloroplasts, and human cells. Polynucleotide phosphorylase (PNPase) and the archaeal exosome, which bear strong similarities to one another, both functionally and structurally, were found to polymerize the heteropolymeric tails in bacteria, spinach chloroplasts, and archaea. As phosphorylases, these enzymes use diphosphate nucleotides as substrates and can reversibly polymerize or degrade RNA, depending on the relative concentrations of nucleotides and inorganic phosphate. A possible scenario, illustrating the evolution of RNA polyadenylation and its related functions, is presented, in which PNPase (or the archaeal exosome) was the first polyadenylating enzyme to evolve and the heteropolymeric tails that it produced, functioned in a polyadenylation-stimulated RNA degradation pathway. Only at a later stage in evolution, did the poly(A)-polymerases that use only ATP as a substrate, hence producing homopolymeric adenosine extensions, arise. Following the appearance of homopolymeric tails, a new role for polyadenylation evolved; RNA stability. This was accomplished by utilizing stable poly(A)-tails associated with the mature 3' ends of transcripts. Today, stable polyadenylation coexists with unstable heteropolymeric and homopolymeric tails. Therefore, the heteropolymeric poly(A)-rich tails, observed in bacteria, organelles, archaea, and human cells, represent an ancestral stage in the evolution of polyadenylation.
Collapse
Affiliation(s)
- Shimyn Slomovic
- Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
40
|
Fulnecek J, Kovarik A. Low abundant spacer 5S rRNA transcripts are frequently polyadenylated in Nicotiana. Mol Genet Genomics 2007; 278:565-73. [PMID: 17671796 DOI: 10.1007/s00438-007-0273-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 06/22/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
In plants, 5S rRNA genes (5S rDNA) encoding 120-nt structural RNA molecules of ribosomes are organized in tandem arrays comprising thousands of units. Failure to correctly terminate transcription would generate longer inaccurately processed transcripts interfering with ribosome biogenesis. Hence multiple termination signals occur immediately after the 5S rRNA coding sequence. To obtain information about the efficiency of termination of 5S rDNA transcription in plants we analyzed 5S rRNA pools in three Nicotiana species, N. sylvestris, N. tomentosiformis and N. tabacum. In addition to highly abundant 120-nt 5S rRNA transcripts, we also detected RNA species composed of a genic region and variable lengths of intergenic sequences. These genic-intergenic RNA molecules occur at a frequency severalfold lower than the mature 120-nt transcripts, and are posttranscriptionally modified by polyadenylation at their 3' end in contrast to 120-nt transcripts. An absence of 5S small RNAs (smRNA) argue against a dominant role for the smRNA biosynthesis pathway in the degradation of aberrant 5S rRNA in Nicotiana. This work is the first description of polyadenylated 5S rRNA species in higher eukaryotes originating from a read-through transcription into the intergenic spacer. We propose that polyadenylation may function in a "quality control" pathway ensuring that only correctly processed molecules enter the ribosome biogenesis.
Collapse
Affiliation(s)
- Jaroslav Fulnecek
- Institute of Biophysics, Academy of Sciences of the Czech Republic v.v.i, Kralovopolska 135, 612 65, Brno, Czech Republic.
| | | |
Collapse
|
41
|
Kao CY, Read LK. Targeted depletion of a mitochondrial nucleotidyltransferase suggests the presence of multiple enzymes that polymerize mRNA 3' tails in Trypanosoma brucei mitochondria. Mol Biochem Parasitol 2007; 154:158-69. [PMID: 17543398 PMCID: PMC2709527 DOI: 10.1016/j.molbiopara.2007.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/10/2007] [Accepted: 04/22/2007] [Indexed: 10/23/2022]
Abstract
Polyadenylation plays an important role in regulating RNA stability in Trypanosoma brucei mitochondria. To date, little is known about the enzymes responsible for the addition of mRNA 3' tails in this system. In this study, we characterize a trypanosome homolog of the human mitochondrial poly(A) polymerase, which we term kPAP2. kPAP2 is mitochondrially localized and expressed in both bloodstream and procyclic form trypanosomes. Targeted gene depletion using RNAi showed that kPAP2 is not required for T. brucei growth in either bloodstream or procyclic life stages, nor is it essential for differentiation from bloodstream to procyclic form. We also demonstrate that steady state abundance of several mitochondrial RNAs was largely unaffected upon kPAP2 down-regulation. Interestingly, mRNA 3' tail analysis of several mRNAs from both life cycle stages in uninduced kPAP2 RNAi cells demonstrated that tail length and uridine content are both regulated in a transcript-specific manner. mRNA-specific tail lengths were maintained upon kPAP2 depletion. However, the percentage of uridine residues in 3' tails was increased, and conversely the percentage of adenosine residues was decreased, in a distinct subset of mRNAs when kPAP2 levels were down-regulated. Thus, kPAP2 apparently contributes to the incorporation of adenosine residues in 3' tails of some, but not all, mitochondrial mRNAs. Together, these data suggest that multiple nucleotidyltransferases act on mitochondrial mRNA 3' ends, and that these enzymes are somewhat redundant and subject to complex regulation.
Collapse
Affiliation(s)
| | - Laurie K. Read
- Department of Microbiology and Immunology and Witebsky Center for Microbial Pathogenesis and Immunology, SUNY Buffalo School of Medicine, Buffalo, NY 14214
| |
Collapse
|
42
|
Zicker AA, Kadakia CS, Herrin DL. Distinct roles for the 5' and 3' untranslated regions in the degradation and accumulation of chloroplast tufA mRNA: identification of an early intermediate in the in vivo degradation pathway. PLANT MOLECULAR BIOLOGY 2007; 63:689-702. [PMID: 17180456 DOI: 10.1007/s11103-006-9117-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 11/13/2006] [Indexed: 05/13/2023]
Abstract
Elongation factor Tu in Chlamydomonas reinhardtii is a chloroplast-encoded gene (tufA) whose 1.7-kb mRNA has a relatively short half-life. In the presence of chloramphenicol (CAP), which freezes translating chloroplast ribosomes, a 1.5-kb tufA RNA becomes prominent. Rifampicin-chase analysis indicates that the 1.5-kb RNA is a degradation intermediate, and mapping studies show that it is missing 176-180 nucleotides from the 5' end of tufA. The 5' terminus of the intermediate maps to a section of the untranslated region (UTR) predicted to be highly structured and to encode a small ORF. The intermediate could be detected in older cultures in the absence of CAP, indicating that it is not an artifact of drug treatment. Also, it did not overaccumulate in the chloroplast ribosome-deficient mutant, ac20 cr1, indicating its stabilization is specific to elongation-arrested ribosomes. To determine if the 5' UTR of tufA is destabilizing, the corresponding region of the atpA-aadA-rbcL gene was replaced with the tufA sequence, and introduced into the chloroplast genome; the 3' UTR was also substituted for comparison. Analysis of these transformants showed that the transcripts containing the tufA 3'-UTR accumulate to significantly lower levels. Data from constructs based on the vital reporter, Renilla luciferase, confirmed the importance of the tufA 3'-UTR in determining RNA levels, and suggested that the 5' UTR of tufA affects translation efficiency. These data indicate that the in vivo degradation of tufA mRNA begins in the 5' UTR, and is promoted by translation. The data also suggest, however, that the level of the mature RNA is determined more by the 3' UTR than the 5' UTR.
Collapse
Affiliation(s)
- Alicia A Zicker
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, School of Biological Sciences, University of Texas at Austin, 1 University Station A6700, Austin, TX 78712, USA
| | | | | |
Collapse
|
43
|
Processing, degradation, and polyadenylation of chloroplast transcripts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0235] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Portnoy V, Schuster G. RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R. Nucleic Acids Res 2006; 34:5923-31. [PMID: 17065466 PMCID: PMC1635327 DOI: 10.1093/nar/gkl763] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Polyadenylation is a process common to almost all organisms. In eukaryotes, stable poly(A)-tails, important for mRNA stability and translation initiation, are added to the 3′ ends of most mRNAs. Contrarily, polyadenylation can stimulate RNA degradation, a phenomenon witnessed in prokaryotes, organelles and recently, for nucleus-encoded RNA as well. Polyadenylation takes place in hyperthermophilic archaea and is mediated by the archaeal exosome, but no RNA polyadenylation was detected in halophiles. Here, we analyzed polyadenylation in the third archaea group, the methanogens, in which some members contain genes encoding the exosome but others lack these genes. Polyadenylation was found in the methanogen, Methanopyrus kandleri, containing the exosome genes, but not in members which lack these genes. To explore how RNA is degraded in the absence of the exosome and without polyadenylation, we searched for the exoribonuclease that is involved in this process. No homologous proteins for any other known exoribonuclease were detected in this group. However, the halophilic archaea contain a gene homologous to the exoribonuclease RNase R. This ribonuclease is not able to degrade structured RNA better than PNPase. RNase R, which appears to be the only exoribonucleases in Haloferax volcanii, was found to be essential for viability.
Collapse
Affiliation(s)
| | - Gadi Schuster
- To whom correspondence should be addressed. Tel: +972 4 8293171; Fax: +972 4 8295587;
| |
Collapse
|
45
|
Xiao H, Zhang F, Zheng Y. The 5' stem-loop and its role in mRNA stability in maize S cytoplasmic male sterility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:864-72. [PMID: 16961731 DOI: 10.1111/j.1365-313x.2006.02838.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The co-transcribed orf355-orf77 region of the mitochondrial genome is associated with S cytoplasmic male sterility (CMS-S) in maize; the amounts of its 1.6- and 2.8-kb transcripts were previously shown to be greatly reduced in fertility-restored microspores relative to the amounts in sterile plants. To investigate the mechanism underlying this reduction, detailed analysis of the 5' and 3' termini of these transcripts was conducted. Using 3' RACE analysis, the polyadenylation sites of the 1.6- and 2.8-kb transcripts were mapped adjacent to a 3' stem-loop, which may play an important role in stabilizing their 3' ends. No difference was found between the polyadenylation sites in sterile and fertility-restored microspores that could account for the differences in orf355-orf77 transcript levels. The 5' terminus of the 1.6-kb transcript was further studied by primer extension; the result revealed that there was a deletion of nine nucleotides only in fertility-restored microspores, and that this deletion eliminated a 5' stem-loop sequence. We propose that the elimination of the 5' stem-loop in the fertility-restored microspores could be the cause of the degradation of the 1.6-kb transcript. Because the 2.8-kb transcript can be cleaved to generate the 1.6-kb transcript, the amount of the 2.8-kb transcript is also reduced in fertility-restored microspores.
Collapse
Affiliation(s)
- Hailin Xiao
- State Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | |
Collapse
|
46
|
Abstract
The addition of poly(A)-tails to RNA is a process common to almost all organisms. In eukaryotes, stable poly(A)-tails, important for mRNA stability and translation initiation, are added to the 3′ ends of most nuclear-encoded mRNAs, but not to rRNAs. Contrarily, in prokaryotes and organelles, polyadenylation stimulates RNA degradation. Recently, polyadenylation of nuclear-encoded transcripts in yeast was reported to promote RNA degradation, demonstrating that polyadenylation can play a double-edged role for RNA of nuclear origin. Here we asked whether in human cells ribosomal RNA can undergo polyadenylation. Using both molecular and bioinformatic approaches, we detected non-abundant polyadenylated transcripts of the 18S and 28S rRNAs. Interestingly, many of the post-transcriptionally added tails were composed of heteropolymeric poly(A)-rich sequences containing the other nucleotides in addition to adenosine. These polyadenylated RNA fragments are most likely degradation intermediates, as primer extension (PE) analysis revealed the presence of distal fragmented molecules, some of which matched the polyadenylation sites of the proximal cleavage products revealed by oligo(dT) and circled RT–PCR. These results suggest the presence of a mechanism to degrade ribosomal RNAs in human cells, that possibly initiates with endonucleolytic cleavages and involves the addition of poly(A) or poly(A)-rich tails to truncated transcripts, similar to that which operates in prokaryotes and organelles.
Collapse
MESH Headings
- Cell Line, Tumor
- Expressed Sequence Tags
- Humans
- Oligonucleotide Probes
- Poly A/analysis
- Polyadenylation
- RNA Stability
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/analysis
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 28S/analysis
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
| | - David Laufer
- Department of Computer Science, Technion—Israel Institute of TechnologyHaifa 32000, Israel
| | - Dan Geiger
- Department of Computer Science, Technion—Israel Institute of TechnologyHaifa 32000, Israel
| | - Gadi Schuster
- To whom correspondence should be addressed. Tel: 972 4 8293171; Fax: 972 4 8295587;
| |
Collapse
|
47
|
Portnoy V, Evguenieva-Hackenberg E, Klein F, Walter P, Lorentzen E, Klug G, Schuster G. RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus. EMBO Rep 2006; 6:1188-93. [PMID: 16282984 PMCID: PMC1369208 DOI: 10.1038/sj.embor.7400571] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/14/2005] [Accepted: 09/26/2005] [Indexed: 11/08/2022] Open
Abstract
The addition of poly(A) tails to RNA is a phenomenon common to all organisms examined so far. No homologues of the known polyadenylating enzymes are found in Archaea and little is known concerning the mechanisms of messenger RNA degradation in these organisms. Hyperthermophiles of the genus Sulfolobus contain a protein complex with high similarity to the exosome, which is known to degrade RNA in eukaryotes. Halophilic Archaea, however, do not encode homologues of these eukaryotic exosome components. In this work, we analysed RNA polyadenylation and degradation in the archaea Sulfolobus solfataricus and Haloferax volcanii. No RNA polyadenylation was detected in the halophilic archaeon H. volcanii. However, RNA polynucleotidylation occurred in hyperthermophiles of the genus Sulfolobus and was mediated by the archaea exosome complex. Together, our results identify the first organism without RNA polyadenylation and show a polyadenylation activity of the archaea exosome.
Collapse
Affiliation(s)
- Victoria Portnoy
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Elena Evguenieva-Hackenberg
- Institut fur Mikrobiologie und Molekularbiologie, Justus-Liebig-Universitat Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Franziska Klein
- Institut fur Mikrobiologie und Molekularbiologie, Justus-Liebig-Universitat Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Pamela Walter
- Institut fur Mikrobiologie und Molekularbiologie, Justus-Liebig-Universitat Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Esben Lorentzen
- EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gabriele Klug
- Institut fur Mikrobiologie und Molekularbiologie, Justus-Liebig-Universitat Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Gadi Schuster
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Tel: +972 4 829 3171; Fax: +972 4 829 5587; E-mail:
| |
Collapse
|
48
|
Yamamoto N, Tsugane T, Watanabe M, Yano K, Maeda F, Kuwata C, Torki M, Ban Y, Nishimura S, Shibata D. Expressed sequence tags from the laboratory-grown miniature tomato (Lycopersicon esculentum) cultivar Micro-Tom and mining for single nucleotide polymorphisms and insertions/deletions in tomato cultivars. Gene 2005; 356:127-34. [PMID: 15975739 DOI: 10.1016/j.gene.2005.04.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 03/08/2005] [Accepted: 04/07/2005] [Indexed: 11/25/2022]
Abstract
Laboratory-grown miniature tomato (Lycopersicon esculentum) cultivar Micro-Tom has attracted attention as a host for functional genomics research. In this study, we generated 35,824 expressed sequence tags (ESTs) from leaves and fruits of Micro-Tom. The ESTs comprised 10,287 unigenes (5007 contigs and 5280 singletons), including 1858 novel tomato unigenes. Of the 18 unigenes that shared strong homology with tobacco chloroplast genome sequences, one unigene was likely derived from polyadenylated transcripts of the atpH gene. Interestingly, ESTs for vacuolar invertase, pectate lyase and alcohol acyl transferase were underrepresented in the Micro-Tom data set. From all of the ESTs, we mined 2039 candidate single nucleotide polymorphisms (SNPs) and 121 candidate insertions and deletions (indels) based on homology with four tomato inbred lines, E6203, R11-13, Rio Grande PtoR and R11-12, and a wild relative, L. pennellii TA56, for which sequence data was publicly available with more than 5000 entries. Direct genome sequencing of several SNP or indel sites in Micro-Tom and L. esculentum E6203 suggested that more than 69% of the candidate sites were truly polymorphic, making them useful for the preparation of DNA markers.
Collapse
Affiliation(s)
- Naoki Yamamoto
- The Graduate School of Life Sciences, Tohoku University, Kazusa-Kamatari 2-6-7, Kisarazu, Chiba 292-0818, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Slomovic S, Laufer D, Geiger D, Schuster G. Polyadenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol Cell Biol 2005; 25:6427-35. [PMID: 16024781 PMCID: PMC1190340 DOI: 10.1128/mcb.25.15.6427-6435.2005] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polyadenylation serves a purpose in bacteria and organelles opposite from the role it plays in nuclear systems. The majority of nucleus-encoded transcripts are characterized by stable poly(A) tails at their mature 3' ends, which are essential for stabilization and translation initiation. In contrast, in bacteria, chloroplasts, and plant mitochondria, polyadenylation is a transient feature which promotes RNA degradation. Surprisingly, in spite of their prokaryotic origin, human mitochondrial transcripts possess stable 3'-end poly(A) tails, akin to nucleus-encoded mRNAs. Here we asked whether human mitochondria retain truncated and transiently polyadenylated transcripts in addition to stable 3'-end poly(A) tails, which would be consistent with the preservation of the largely ubiquitous polyadenylation-dependent RNA degradation mechanisms of bacteria and organelles. To this end, using both molecular and bioinformatic methods, we sought and revealed numerous examples of such molecules, dispersed throughout the mitochondrial genome. The broad distribution but low abundance of these polyadenylated truncated transcripts strongly suggests that polyadenylation-dependent RNA degradation occurs in human mitochondria. The coexistence of this system with stable 3'-end polyadenylation, despite their seemingly opposite effects, is so far unprecedented in bacteria and other organelles.
Collapse
MESH Headings
- 3' Untranslated Regions
- Cell Line, Tumor
- Cells, Cultured
- Computational Biology
- Cyclooxygenase 1
- Evolution, Molecular
- Expressed Sequence Tags
- Humans
- Membrane Proteins
- Mitochondria/genetics
- Polyadenylation/physiology
- Prokaryotic Cells/metabolism
- Prostaglandin-Endoperoxide Synthases/genetics
- RNA/metabolism
- RNA, Antisense
- RNA, Messenger/metabolism
- RNA, Mitochondrial
- RNA, Ribosomal, 16S/genetics
- RNA, Transfer, Ser/genetics
Collapse
|
50
|
Kao CY, Read LK. Opposing effects of polyadenylation on the stability of edited and unedited mitochondrial RNAs in Trypanosoma brucei. Mol Cell Biol 2005; 25:1634-44. [PMID: 15713623 PMCID: PMC549368 DOI: 10.1128/mcb.25.5.1634-1644.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 10/11/2004] [Accepted: 12/07/2004] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial RNAs in Trypanosoma brucei undergo posttranscriptional RNA editing and polyadenylation. We previously showed that polyadenylation stimulates turnover of unedited RNAs. Here, we investigated the role of polyadenylation in decay of edited RPS12 RNA. In in vitro turnover assays, nonadenylated fully edited RNA degrades significantly faster than its unedited counterpart. Rapid turnover of nonadenylated RNA is facilitated by editing at just six editing sites. Surprisingly, in direct contrast to unedited RNA, turnover of fully edited RNA is dramatically slowed by addition of a poly(A)20 tail. The same minimal edited sequence that stimulates decay of nonadenylated RNA is sufficient to switch the poly(A) tail from a destabilizing to a stabilizing element. Both nucleotide composition and length of the 3' extension are important for stabilization of edited RNA. Titration of poly(A) into RNA degradation reactions has no effect on turnover of polyadenylated edited RNA. These results suggest the presence of a protective protein(s) that simultaneously recognizes the poly(A) tail and small edited element and which blocks the action of a 3'-5' exonuclease. This study provides the first evidence for opposing effects of polyadenylation on RNA stability within a single organelle and suggests a novel and unique regulation of RNA turnover in this system.
Collapse
Affiliation(s)
- Chia-Ying Kao
- Department of Microbiology and Immunology, 138 Farber Hall, SUNY Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| | | |
Collapse
|