1
|
Hackett CS, Hirschhorn D, Tang MS, Purdon TJ, Marouf Y, Piersigilli A, Agaram NP, Liu C, Schad SE, de Stanchina E, Rafiq S, Monette S, Wolchok JD, Merghoub T, Brentjens RJ. TYRP1 directed CAR T cells control tumor progression in preclinical melanoma models. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200862. [PMID: 39308793 PMCID: PMC11415964 DOI: 10.1016/j.omton.2024.200862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Despite therapeutic efficacy observed with immune checkpoint blockade in advanced melanoma, many tumors do not respond to treatment, representing a need for new therapies. Here, we have generated chimeric antigen receptor (CAR) T cells targeting TYRP1, a melanoma differentiation antigen expressed on the surface of melanomas, including rare acral and uveal melanomas. TYRP1-targeted CAR T cells demonstrate antigen-specific activation and cytotoxic activity in vitro and in vivo against human melanomas independent of the MHC alleles and expression. In addition, the toxicity to pigmented normal tissues observed with T lymphocytes expressing TYRP1-targeted TCRs was not observed with TYRP1-targeted CAR T cells. Anti-TYRP1 CAR T cells provide a novel means to target advanced melanomas, serving as a platform for the development of similar novel therapeutic agents and as a tool to interrogate the immunobiology of melanomas.
Collapse
Affiliation(s)
- Christopher S. Hackett
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY 10065, USA
| | - Daniel Hirschhorn
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY 10065, USA
| | - Meixian S. Tang
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Yacine Marouf
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY 10065, USA
| | - Alessandra Piersigilli
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, NY 10065, USA
| | - Narasimhan P. Agaram
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cailian Liu
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY 10065, USA
| | - Sara E. Schad
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY 10065, USA
| | - Elisa de Stanchina
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology, Emory University School of Medicine, and Winship Cancer Institute, Atlanta, GA 30322, USA
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, NY 10065, USA
| | - Jedd D. Wolchok
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY 10065, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
- Parker Institute for Cancer Immunotherapy and Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, New York, NY 10065, USA
| | | |
Collapse
|
2
|
Ramos MJ, Lui AJ, Hollern DP. The Evolving Landscape of B Cells in Cancer Metastasis. Cancer Res 2023; 83:3835-3845. [PMID: 37815800 PMCID: PMC10914383 DOI: 10.1158/0008-5472.can-23-0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Metastasis is the leading cause of cancer mortality. Functional and clinical studies have documented diverse B-cell and antibody responses in cancer metastasis. The presence of B cells in tumor microenvironments and metastatic sites has been associated with diverse effects that can promote or inhibit metastasis. Specifically, B cells can contribute to the spread of cancer cells by enhancing tumor cell motility, invasion, angiogenesis, lymphangiogenesis, and extracellular matrix remodeling. Moreover, they can promote metastatic colonization by triggering pathogenic immunoglobulin responses and recruiting immune suppressive cells. Contrastingly, B cells can also exhibit antimetastatic effects. For example, they aid in enhanced antigen presentation, which helps activate immune responses against cancer cells. In addition, B cells play a crucial role in preventing the dissemination of metastatic cells from the primary tumor and secrete antibodies that can aid in tumor recognition. Here, we review the complex roles of B cells in metastasis, delineating the heterogeneity of B-cell activity and subtypes by metastatic site, antibody class, antigen (if known), and molecular phenotype. These important attributes of B cells emphasize the need for a deeper understanding and characterization of B-cell phenotypes to define their effects in metastasis.
Collapse
Affiliation(s)
- Monika J. Ramos
- Salk Institute for Biological Sciences
- The University of California San Diego School of Biological Sciences
| | - Asona J. Lui
- Salk Institute for Biological Sciences
- Radiation Medicine and Applied Sciences, The University of California School of Medicine
| | - Daniel P. Hollern
- Salk Institute for Biological Sciences
- The University of California San Diego School of Biological Sciences
- Radiation Medicine and Applied Sciences, The University of California School of Medicine
- NOMIS Center for Immunobiology and Microbial Pathogenesis
| |
Collapse
|
3
|
Conde E, Vercher E, Soria-Castellano M, Suarez-Olmos J, Mancheño U, Elizalde E, Rodriguez ML, Glez-Vaz J, Casares N, Rodríguez-García E, Hommel M, González-Aseguinolaza G, Uranga-Murillo I, Pardo J, Alkorta G, Melero I, Lasarte J, Hervas-Stubbs S. Epitope spreading driven by the joint action of CART cells and pharmacological STING stimulation counteracts tumor escape via antigen-loss variants. J Immunother Cancer 2021; 9:jitc-2021-003351. [PMID: 34810235 PMCID: PMC8609946 DOI: 10.1136/jitc-2021-003351] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Background Target antigen (Ag) loss has emerged as a major cause of relapse after chimeric antigen receptor T (CART)-cell therapy. We reasoned that the combination of CART cells, with the consequent tumor debulking and release of Ags, together with an immunomodulatory agent, such as the stimulator of interferon gene ligand (STING-L) 2′3′-cyclic GMP-AMP (2′3′-cGAMP), may facilitate the activation of an endogenous response to secondary tumor Ags able to counteract this tumor escape mechanism. Methods Mice bearing B16-derived tumors expressing prostate-specific membrane Ag or gp75 were treated systemically with cognate CART cells followed by intratumoral injections of 2′3′-cGAMP. We studied the target Ag inmunoediting by CART cells and the effect of the CART/STING-L combination on the control of STING-L-treated and STING-L-non-treated tumors and on the endogenous antitumor T-cell response. The role of Batf3-dependent dendritic cells (DCs), stimulator of interferon gene (STING) signaling and perforin (Perf)-mediated killing in the efficacy of the combination were analyzed. Results Using an immune-competent solid tumor model, we showed that CART cells led to the emergence of tumor cells that lose the target Ag, recreating the cancer immunoediting effect of CART-cell therapy. In this setting, the CART/STING-L combination, but not the monotherapy with CART cells or STING-L, restrained tumor progression and enhanced overall survival, showing abscopal effects on distal STING-L-non-treated tumors. Interestingly, a secondary immune response against non-chimeric antigen receptor-targeted Ags (epitope spreading), as determined by major histocompatibility complex-I-tetramer staining, was fostered and its intensity correlated with the efficacy of the combination. This was consistent with the oligoclonal expansion of host T cells, as revealed by in-depth T-cell receptor repertoire analysis. Moreover, only in the combination group did the activation of endogenous T cells translate into a systemic antitumor response. Importantly, the epitope spreading and the antitumor effects of the combination were fully dependent on host STING signaling and Batf3-dependent DCs, and were partially dependent on Perf release by CART cells. Interestingly, the efficacy of the CART/STING-L treatment also depended on STING signaling in CART cells. Conclusions Our data show that 2′3′-cGAMP is a suitable adjuvant to combine with CART-cell therapy, allowing the induction of an endogenous T-cell response that prevents the outgrowth of Ag-loss tumor variants.
Collapse
Affiliation(s)
- Enrique Conde
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enric Vercher
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Marta Soria-Castellano
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Jesús Suarez-Olmos
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Uxua Mancheño
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Edurne Elizalde
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - M Luis Rodriguez
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Javier Glez-Vaz
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Noelia Casares
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Estefanía Rodríguez-García
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Programa de Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Mirja Hommel
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Programa de Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Gloria González-Aseguinolaza
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Programa de Terapia Génica y Regulación de la Expresión Génica, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Iratxe Uranga-Murillo
- Microbiología Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica de Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Julian Pardo
- Microbiología Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica de Aragón (CIBA), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain.,Fundacion ARAID, Zaragoza, Spain
| | - Gorka Alkorta
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,CIMA LAB Diagnostics, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,Immunología e Immunoterapia, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Juan Lasarte
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain .,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Johnson LE, Frye TP, McNeel DG. Immunization with a prostate cancer xenoantigen elicits a xenoantigen epitope-specific T-cell response. Oncoimmunology 2021; 1:1546-1556. [PMID: 23264901 PMCID: PMC3525610 DOI: 10.4161/onci.22564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vaccines encoding xenoantigens, “non-self” proteins that are highly homologous to their autologous counterparts, have been investigated as a means to increase immunogenicity and overcome tolerance to “self” antigens. We have previously shown that DNA vaccines encoding native prostatic acid phosphatase (PAP) were able to elicit PAP-specific T cells in both rats and humans, but required multiple immunization courses. In this study, we investigated in a preclinical model whether immunizations with a DNA vaccine encoding a xenoantigen could elicit a cross-reactive immune response to the native protein, potentially requiring fewer immunizations. Lewis rats were immunized with a DNA vaccine encoding human PAP and splenocytes from immunized rats were screened with a human peptide library containing overlapping, 15-mer PAP-derived peptides using T-cell proliferation and interferon γ (IFNγ) release as measures of the immune response. One dominant PAP-specific, RT1.Al-restricted, epitope was identified. Direct immunization with the immunodominant peptide (HP201–215) containing this epitope demonstrated that it included a naturally presented MHC Class I epitope recognized by CD8+ T cells in Lewis rats. However, no cross-reactive immune response was elicited to the corresponding rat peptide despite a difference of only three amino acids. Immunization with DNA vaccines encoding rat PAP (rPAP) in which this foreign dominant epitope was included as well as with DNA vaccines coding for a variant of the xenoantigen from which this epitope was deleted, did not elicit responses to the native antigen. Overall, these results indicate that the immunization with a xenoantigen-coding DNA vaccine can lead to an immune response which potentially favors foreign epitopes and hence limits any cross-reactive response to the native antigen.
Collapse
Affiliation(s)
- Laura E Johnson
- Department of Medicine; University of Wisconsin; Madison, WI USA
| | | | | |
Collapse
|
5
|
Combination of novel intravesical xenogeneic urothelial cell immunotherapy and chemotherapy enhances anti-tumor efficacy in preclinical murine bladder tumor models. Cancer Immunol Immunother 2020; 70:1419-1433. [PMID: 33156394 PMCID: PMC8053151 DOI: 10.1007/s00262-020-02775-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors induce robust and durable responses in advanced bladder cancer (BC), but only for a subset of patients. Xenovaccination has been proposed as an effective immunotherapeutic approach to induce anti-tumor immunity. Thus, we proposed a novel intravesical xenogeneic urothelial cell immunotherapy strategy to treat advanced BC based on the hypothesis that implanted xenogeneic urothelial cells not only provoke xeno-rejection immune responses but also elicit bystander anti-tumor immunity. METHODS Mouse advanced bladder cancer models were treated with vehicle control, intravesical xenogeneic urothelial cells, cisplatin + gemcitabine, or the combination and assessed for tumor responses to treatments. Tumors and spleens samples were collected for immunohistological staining, cellular and molecular analysis assessed by antibody staining, ELISA, cytotoxicity, and flow cytometry, respectively. RESULTS The combination treatment of xenogeneic urothelial cell immunotherapy with chemotherapy was more efficacious than either single therapy to extend survival time in MBT-2 graft bladder tumor model and to suppress tumor progression in murine carcinogen BBN-induced bladder tumor model. The single-cell immunotherapy and combined therapy increased more tumor-infiltrating immune cells in MBT-2 graft tumors compared to vehicle control and chemotherapy treatment groups. The activated T-cell proliferation, cytokine production, and cytotoxicity capacities were also higher in mice with xenogeneic urothelial cell immunotherapy and combination treatments. CONCLUSIONS Our results suggest the potential for a novel xenogeneic urothelial cell-based immunotherapy alone and synergy with chemotherapy in the combination therapy. Therefore, our study supports developing xenogeneic urothelial cells as an immunotherapeutic agent in combination with chemotherapy for BC treatment.
Collapse
|
6
|
Hsieh PF, Chueh PJ, Liu PF, Liao JW, Hsieh MK. Immune response evoked by tumor-associated NADH oxidase (tNOX) confers potential inhibitory effect on lung carcinoma in a mouse model. Am J Cancer Res 2019; 9:740-751. [PMID: 31106000 PMCID: PMC6511635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023] Open
Abstract
Tumor-associated NADH oxidase (tNOX, ENOX2), which belongs to a family of growth-related NADH oxidases, was originally identified as a plasma membrane protein of rat hepatoma and is inhibited or downregulated by several anti-cancer drugs. The objective of this study was to evaluate the anti-tumor effects of tNOX used as an immunogen against Lewis lung cancer. Human tNOX was expressed in Escherichia coli, purified by His-Tag affinity chromatography, and emulsified with the adjuvant, ISA 201 VG. Immunological analyses of the generated tNOX vaccine were performed in mice. The results of ELISA and ELISpot were significantly higher in tNOX vaccine group compared to the control group. In vivo, we examined the anti-tumor effects of mice that received the tNOX vaccine via the intraperitoneal or subcutaneous routes. Mice were vaccinated three times at 2-week intervals, challenged at 2 weeks after the final vaccination, and terminated at 34 days post-challenge. Antibody titers, tumor volume and histopathological scores were used to evaluate the anti-tumor effects of the tNOX vaccine. Our results revealed that tNOX-vaccinated mice had significantly higher antibody titers than negative control (NC) and challenge control (CC) mice. When compared to the corresponding CC groups, the intraperitoneal and subcutaneous vaccination with tNOX showed a significantly smaller tumor mass volume (P < 0.05) and a significantly lower histological lesion score (P < 0.05), respectively. Our results demonstrate that the use of a xenogeneic tNOX as an immunogen in mice activates immune responses and anti-tumor effects against Lewis lung cancer.
Collapse
Affiliation(s)
- Pei-Fang Hsieh
- Graduate Institute of Microbiology and Public Health, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing UniversityTaichung 40227, Taiwan
- Graduate Institute of Basic Medicine, Medical Research, China Medical UniversityTaichung 40402, Taiwan
- Department of Medical Research, China Medical University HospitalTaichung 40402, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 41354, Taiwan
| | - Pei-Fen Liu
- Department of Food Science and Biotechnology, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing UniversityTaichung 40227, Taiwan
| | - Ming-Kun Hsieh
- Graduate Institute of Microbiology and Public Health, National Chung Hsing UniversityTaichung 40227, Taiwan
| |
Collapse
|
7
|
Breaking tolerance with engineered class I antigen-presenting molecules. Proc Natl Acad Sci U S A 2019; 116:3136-3145. [PMID: 30728302 DOI: 10.1073/pnas.1807465116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Successful efforts to activate T cells capable of recognizing weak cancer-associated self-antigens have employed altered peptide antigens to activate T cell responses capable of cross-reacting on native tumor-associated self. A limitation of this approach is the requirement for detailed knowledge about the altered self-peptide ligands used in these vaccines. In the current study we considered allorecognition as an approach for activating CTL capable of recognizing weak or self-antigens in the context of self-MHC. Nonself antigen-presenting molecules typically contain polymorphisms that influence interactions with the bound peptide and TCR interface. Recognition of these nonself structures results in peptide-dependent alloimmunity. Alloreactive T cells target their inducing alloantigens as well as third-party alloantigens but generally fail to target self-antigens. Certain residues located on the alpha-1/2 domains of class I antigen-presenting molecules primarily interface with TCR. These residues are more conserved within and across species than are residues that determine peptide antigen binding properties. Class I variants designed with amino acid substitutions at key positions within the conserved helical structures are shown to provide strong activating signals to alloreactive CD8 T cells while avoiding changes in naturally bound peptide ligands. Importantly, CTL activated in this manner can break self-tolerance by reacting to self-peptides presented by native MHC. The ability to activate self-tolerant T cells capable of cross-reacting on self-peptide-MHC in vivo represents an approach for inducing autoimmunity, with possible application in cancer vaccines.
Collapse
|
8
|
Walsh SR, Bastin D, Chen L, Nguyen A, Storbeck CJ, Lefebvre C, Stojdl D, Bramson JL, Bell JC, Wan Y. Type I IFN blockade uncouples immunotherapy-induced antitumor immunity and autoimmune toxicity. J Clin Invest 2018; 129:518-530. [PMID: 30422820 DOI: 10.1172/jci121004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022] Open
Abstract
Despite its success in treating melanoma and hematological malignancies, adoptive cell therapy (ACT) has had only limited effects in solid tumors. This is due in part to a lack of specific antigen targets, poor trafficking and infiltration, and immunosuppression in the tumor microenvironment. In this study, we combined ACT with oncolytic virus vaccines (OVVs) to drive expansion and tumor infiltration of transferred antigen-specific T cells and demonstrated that the combination is highly potent for the eradication of established solid tumors. Consistent with other successful immunotherapies, this approach elicited severe autoimmune consequences when the antigen targeted was a self-protein. However, modulation of IFN-α/-β signaling, either by functional blockade or rational selection of an OVV backbone, ameliorated autoimmune side effects without compromising antitumor efficacy. Our study uncovers a pathogenic role for IFN-α/-β in facilitating autoimmune toxicity during cancer immunotherapy and presents a safe and powerful combinatorial regimen with immediate translational applications.
Collapse
Affiliation(s)
- Scott R Walsh
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Donald Bastin
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lan Chen
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Andrew Nguyen
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Christopher J Storbeck
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Charles Lefebvre
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - David Stojdl
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Jonathan L Bramson
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Designing consensus immunogens to break tolerance to self-antigens for cancer therapy. Oncotarget 2018; 9:35513-35514. [PMID: 30473745 PMCID: PMC6238978 DOI: 10.18632/oncotarget.26275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/22/2018] [Indexed: 11/25/2022] Open
|
10
|
Thadi A, Khalili M, Morano WF, Richard SD, Katz SC, Bowne WB. Early Investigations and Recent Advances in Intraperitoneal Immunotherapy for Peritoneal Metastasis. Vaccines (Basel) 2018; 6:E54. [PMID: 30103457 PMCID: PMC6160982 DOI: 10.3390/vaccines6030054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022] Open
Abstract
Peritoneal metastasis (PM) is an advanced stage malignancy largely refractory to modern therapy. Intraperitoneal (IP) immunotherapy offers a novel approach for the control of regional disease of the peritoneal cavity by breaking immune tolerance. These strategies include heightening T-cell response and vaccine induction of anti-cancer memory against tumor-associated antigens. Early investigations with chimeric antigen receptor T cells (CAR-T cells), vaccine-based therapies, dendritic cells (DCs) in combination with pro-inflammatory cytokines and natural killer cells (NKs), adoptive cell transfer, and immune checkpoint inhibitors represent significant advances in the treatment of PM. IP delivery of CAR-T cells has shown demonstrable suppression of tumors expressing carcinoembryonic antigen. This response was enhanced when IP injected CAR-T cells were combined with anti-PD-L1 or anti-Gr1. Similarly, CAR-T cells against folate receptor α expressing tumors improved T-cell tumor localization and survival when combined with CD137 co-stimulatory signaling. Moreover, IP immunotherapy with catumaxomab, a trifunctional antibody approved in Europe, targets epithelial cell adhesion molecule (EpCAM) and has shown considerable promise with control of malignant ascites. Herein, we discuss immunologic approaches under investigation for treatment of PM.
Collapse
Affiliation(s)
- Anusha Thadi
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - Marian Khalili
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - William F Morano
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| | - Scott D Richard
- Department of Obstetrics and Gynecology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA.
| | - Steven C Katz
- Department of Surgery, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Wilbur B Bowne
- Department of Surgery, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
11
|
|
12
|
A general strategy to optimize immunogenicity of HLA-B*0702 restricted cryptic peptides from tumor associated antigens: Design of universal neo-antigen like tumor vaccines for HLA-B*0702 positive patients. Oncotarget 2018; 7:59417-59428. [PMID: 27506946 PMCID: PMC5312321 DOI: 10.18632/oncotarget.11086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/13/2016] [Indexed: 11/27/2022] Open
Abstract
Tumor Associated Antigens (TAAs) are the privileged targets of almost all the cancer vaccines tested to date. Unfortunately all these vaccines failed to show a clinical efficacy. The main reason for this failure is the immune tolerance to TAAs that are self-proteins expressed by normal and cancer cells. Self-tolerance to TAAs is directed against their dominant rather than against their cryptic epitopes. The best way to overcome self-tolerance to TAAs would therefore be to target their cryptic epitopes. However, because of their low HLA-I affinity, cryptic peptides are non-immunogenic and cannot be used to stimulate an antitumor immune response unless their immunogenicity has been previously enhanced. In this paper we describe a general approach to enhance immunogenicity of almost all the HLA-B*0702 restricted cryptic peptides derived from TAAs. It consists in substituting residues at position 1 or 9 of low HLA-B*0702 affinity cryptic peptides by an Alanine or a Leucine respectively. These substitutions increase affinity of peptides for HLA-B*0702. These optimized cryptic peptides are strongly immunogenic and very importantly CTL they stimulate recognize their native counterparts. TAAs derived optimized cryptic peptides can be considered as universal antitumor vaccine since they escape self-tolerance, are immunogenic and are not patient specific.
Collapse
|
13
|
Abstract
DNA vaccines offer many advantages over other anti-tumor vaccine approaches due to their simplicity, ease of manufacturing, and safety. Results from several clinical trials in patients with cancer have demonstrated that DNA vaccines are safe and can elicit immune responses. However, to date few DNA vaccines have progressed beyond phase I clinical trial evaluation. Studies into the mechanism of action of DNA vaccines in terms of antigen-presenting cell types able to directly present or cross-present DNA-encoded antigens, and the activation of innate immune responses due to DNA itself, have suggested opportunities to increase the immunogenicity of these vaccines. In addition, studies into the mechanisms of tumor resistance to anti-tumor vaccination have suggested combination approaches that can increase the anti-tumor effect of DNA vaccines. This review focuses on these mechanisms of action and mechanisms of resistance using DNA vaccines, and how this information is being used to improve the anti-tumor effect of DNA vaccines. These approaches are then specifically discussed in the context of human prostate cancer, a disease for which DNA vaccines have been and continue to be explored as treatments.
Collapse
Affiliation(s)
- Christopher D Zahm
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Viswa Teja Colluru
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Douglas G McNeel
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
14
|
Intraperitoneal immunotherapy: historical perspectives and modern therapy. Cancer Gene Ther 2016; 23:373-381. [PMID: 27834358 DOI: 10.1038/cgt.2016.49] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
Abstract
Intraperitoneal immunotherapy represents a novel strategy for the management of peritoneal metastases (PM). Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) has remained the gold standard of treatment for patients with PM, yet despite optimal treatment, recurrence rates remain high and long-term survival poor. From Coley's toxins to immune checkpoint inhibitors, the wide variety of anticancer immunotherapeutic strategies are now garnering attention for control of regional disease of the peritoneal cavity. Early studies with vaccine-based therapies, adoptive cell transfer, immune checkpoint inhibitors, and chimeric T cells with tumor-specific antigen receptors (CAR-T cells) are being performed, showing promise for control of peritoneal spread and induction of lasting anticancer immunity. In addition, catumaxomab, a trifunctional antibody, has been approved for intraperitoneal immunotherapy in Europe for the control of malignant ascites in patients with epithelial cell adhesion molecule positive cancers. We review a brief history of immunotherapy and current modalities under investigation for intraperitoneal use in the treatment of PM.
Collapse
|
15
|
Menez-Jamet J, Gallou C, Rougeot A, Kosmatopoulos K. Optimized tumor cryptic peptides: the basis for universal neo-antigen-like tumor vaccines. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:266. [PMID: 27563653 DOI: 10.21037/atm.2016.05.15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The very impressive clinical results recently obtained in cancer patients treated with immune response checkpoint inhibitors boosted the interest in immunotherapy as a therapeutic choice in cancer treatment. However, these inhibitors require a pre-existing tumor specific immune response and the presence of tumor infiltrating T cells to be efficient. This immune response can be triggered by cancer vaccines. One of the main issues in tumor vaccination is the choice of the right antigen to target. All vaccines tested to date targeted tumor associated antigens (TAA) that are self-antigens and failed to show a clinical efficacy because of the immune self-tolerance to TAA. A new class of tumor antigens has recently been described, the neo-antigens that are created by point mutations of tumor expressing proteins and are recognized by the immune system as non-self. Neo-antigens exhibit two main properties: they are not involved in the immune self-tolerance process and are immunogenic. However, the majority of the neo-antigens are patient specific and their use as cancer vaccines requires their previous identification in each patient individualy that can be done only in highly specialized research centers. It is therefore evident that neo-antigens cannot be used for patient vaccination worldwide. This raises the question of whether we can find neo-antigen like vaccines, which would not be patient specific. In this review we show that optimized cryptic peptides from TAA are neo-antigen like peptides. Optimized cryptic peptides are recognized by the immune system as non-self because they target self-cryptic peptides that escape self-tolerance; in addition they are strongly immunogenic because their sequence is modified in order to enhance their affinity for the HLA molecule. The first vaccine based on the optimized cryptic peptide approach, Vx-001, which targets the widely expressed tumor antigen telomerase reverse transcriptase (TERT), has completed a large phase I clinical study and is currently being tested in a randomized phase II trial in non-small cell lung cancer (NSCLC) patients.
Collapse
Affiliation(s)
| | | | - Aude Rougeot
- Vaxon Biotech, 3 rue de l'Arrivée 75015, Paris, France
| | | |
Collapse
|
16
|
Ya Z, Hailemichael Y, Overwijk W, Restifo NP. Mouse model for pre-clinical study of human cancer immunotherapy. CURRENT PROTOCOLS IN IMMUNOLOGY 2015; 108:20.1.1-20.1.43. [PMID: 25640991 PMCID: PMC4361407 DOI: 10.1002/0471142735.im2001s108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This unit describes protocols for developing tumors in mice, including subcutaneous growth, pulmonary metastases of B16 melanoma, and spontaneous melanoma in B-Raf V600E/PTEN deletion transgenic mouse models. Two immunization methods to prevent B16 tumor growth are described using B16.GM-CSF and recombinant vaccinia virus. A therapeutic approach is also included that uses adoptive transfer of tumor antigen-specific T cells. Methods including CTL induction, isolation, testing, and genetic modification of mouse T cells for adoptive transfer by using retrovirus-expressing genes of interest are provided. Additional sections, including growing B16 melanoma, enumerating pulmonary metastases, tumor imaging technique, and use of recombinant viruses for vaccination, are discussed together with safety concerns.
Collapse
MESH Headings
- Animals
- Antibodies/blood
- Antibodies/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/adverse effects
- Cancer Vaccines/immunology
- Cell Culture Techniques
- Cell- and Tissue-Based Therapy/adverse effects
- Cell- and Tissue-Based Therapy/methods
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Female
- Gene Transfer Techniques
- Genetic Vectors/genetics
- Immunization/methods
- Immunotherapy/adverse effects
- Immunotherapy/methods
- Male
- Melanoma, Experimental/diagnosis
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Transgenic
- Molecular Imaging/methods
- Neoplasm Metastasis
- Neoplasms/diagnosis
- Neoplasms/etiology
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transduction, Genetic
- Translational Research, Biomedical
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Zhiya Ya
- National Cancer Institute, Surgery Branch, Bethesda, Maryland
| | - Yared Hailemichael
- Department of Melanoma Medical Oncology-Research, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Willem Overwijk
- Department of Melanoma Medical Oncology-Research, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
17
|
|
18
|
Cavallo F, Aurisicchio L, Mancini R, Ciliberto G. Xenogene vaccination in the therapy of cancer. Expert Opin Biol Ther 2014; 14:1427-42. [DOI: 10.1517/14712598.2014.927433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Stech M, Quast RB, Sachse R, Schulze C, Wüstenhagen DA, Kubick S. A continuous-exchange cell-free protein synthesis system based on extracts from cultured insect cells. PLoS One 2014; 9:e96635. [PMID: 24804975 PMCID: PMC4013096 DOI: 10.1371/journal.pone.0096635] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/09/2014] [Indexed: 11/22/2022] Open
Abstract
In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.
Collapse
Affiliation(s)
- Marlitt Stech
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Robert B. Quast
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Rita Sachse
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Corina Schulze
- Beuth Hochschule für Technik Berlin - University of Applied Sciences Berlin, Life Sciences and Technology, Berlin, Germany
| | - Doreen A. Wüstenhagen
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Biomedical Engineering (IBMT), Branch Potsdam-Golm, Potsdam, Germany
| |
Collapse
|
20
|
|
21
|
Yu WY, Chuang TF, Guichard C, El-Garch H, Tierny D, Laio AT, Lin CS, Chiou KH, Tsai CL, Liu CH, Li WC, Fischer L, Chu RM. Chicken HSP70 DNA vaccine inhibits tumor growth in a canine cancer model. Vaccine 2011; 29:3489-500. [DOI: 10.1016/j.vaccine.2011.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 01/12/2023]
|
22
|
Orlandi F, Guevara-Patiño JA, Merghoub T, Wolchok JD, Houghton AN, Gregor PD. Combination of epitope-optimized DNA vaccination and passive infusion of monoclonal antibody against HER2/neu leads to breast tumor regression in mice. Vaccine 2011; 29:3646-54. [PMID: 21435405 DOI: 10.1016/j.vaccine.2011.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 02/27/2011] [Accepted: 03/05/2011] [Indexed: 12/31/2022]
Abstract
HER2/neu is an oncogene amplified and over-expressed in 20-30% of breast adenocarcinomas. Treatment with the humanized monoclonal antibody trastuzumab has shown efficacy in combination with cytotoxic agents, although resistance occurs over time. Novel approaches are needed to further increase antibody efficacy. In this study, we provide evidence in a mouse breast cancer therapeutic tumor model that the combination of active immunization with a modified HER2/neu DNA vaccine and passive infusion of an anti-HER2/neu monoclonal antibody leads to significant regression of established tumors. Our data indicate that combination therapy with a HER2/neu DNA vaccine and trastuzumab may have clinical activity in breast cancer patients.
Collapse
Affiliation(s)
- Francesca Orlandi
- The Swim Across America Laboratory, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, United States
| | | | | | | | | | | |
Collapse
|
23
|
Tyrosinase related protein 1 (TYRP1/gp75) in human cutaneous melanoma. Mol Oncol 2011; 5:150-5. [PMID: 21324755 DOI: 10.1016/j.molonc.2011.01.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/27/2011] [Indexed: 02/06/2023] Open
Abstract
Melanoma prognosis is based on specific pathological features at the primary lesion. In metastatic patients, the extent of lymph node involvement is also an important prognosis indicator. Many progression markers both in tissues and serum, including circulating tumor cells, have been studied and new molecular markers are awaited from high-throughput screenings to discriminate between clinical stages and predict disease progression. The present review focuses on human tyrosinase related protein 1 also known as gp75 glycoprotein (Tyrp1/gp75), a melanosomal protein involved in the pigmentary machinery of the melanocyte and often used as differentiation marker, with a special emphasis on its emerging roles in the malignant melanocyte and melanoma progression.
Collapse
|
24
|
Ali-Fehmi R, Chatterjee M, Ionan A, Levin NK, Arabi H, Bandyopadhyay S, Shah JP, Bryant CS, Hewitt SM, O'Rand MG, Alekseev OM, Morris R, Munkarah A, Abrams J, Tainsky MA. Analysis of the expression of human tumor antigens in ovarian cancer tissues. Cancer Biomark 2010; 6:33-48. [PMID: 20164540 DOI: 10.3233/cbm-2009-0117] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Biomarkers for early detection of cancer have great clinical diagnostic potential. Numerous reports have documented the generation of humoral immune responses that are triggered in response to changes in protein expression patterns in tumor tissues and these biomarkers are referred to as tumor associated antigens (TAAs). Using a high-throughput technology, we previously identified 65 proteins as diagnostically useful TAAs by profiling the humoral immune responses in ovarian cancer (OVCA) patients. Here we determined the expression status of some of those TAAs in tissues from OVCA patients. The protein expression patterns of 4 of those 65 antigens, namely NASP, RCAS1, Nijmegen breakage syndrome1 (NBS1) and eIF5A, along with p53 and Her2 (known molecular prognosticators) and two proteins that interact with NBS1, MRE11 and RAD50, were assessed by immunohistochemistry (IHC). NASP and RCAS1 proteins were more frequently expressed in ovarian cancer tissues than with normal ovarian tissue and serous cystadenomas and MRE11 was less frequently expressed. When evaluated simultaneously, only NASP and MRE11 remained statistically significant with sensitivity of 66% and specificity of 89%. None of these proteins' expression levels were prognostic for survival. Together, our results indicate that occurrence of humoral immune responses against some of these TAAs in OVCA patients is triggered by antigen protein overexpression.
Collapse
Affiliation(s)
- Rouba Ali-Fehmi
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Thacker EE, Nakayama M, Smith BF, Bird RC, Muminova Z, Strong TV, Timares L, Korokhov N, O'Neill AM, de Gruijl TD, Glasgow JN, Tani K, Curiel DT. A genetically engineered adenovirus vector targeted to CD40 mediates transduction of canine dendritic cells and promotes antigen-specific immune responses in vivo. Vaccine 2009; 27:7116-24. [PMID: 19786146 DOI: 10.1016/j.vaccine.2009.09.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/02/2009] [Accepted: 09/16/2009] [Indexed: 01/06/2023]
Abstract
Targeting viral vectors encoding tumor-associated antigens to dendritic cells (DCs) in vivo is likely to enhance the effectiveness of immunotherapeutic cancer vaccines. We have previously shown that genetic modification of adenovirus (Ad) 5 to incorporate CD40 ligand (CD40L) rather than native fiber allows selective transduction and activation of DCs in vitro. Here, we examine the capacity of this targeted vector to induce immune responses to the tumor antigen CEA in a stringent in vivo canine model. CD40-targeted Ad5 transduced canine DCs via the CD40-CD40L pathway in vitro, and following vaccination of healthy dogs, CD40-targeted Ad5 induced strong anti-CEA cellular and humoral responses. These data validate the canine model for future translational studies and suggest targeting of Ad5 vectors to CD40 for in vivo delivery of tumor antigens to DCs is a feasible approach for successful cancer therapy.
Collapse
Affiliation(s)
- Erin E Thacker
- Division of Human Gene Therapy, Department of Medicine, Birmingham, AL 35294, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol Ther 2009; 17:1814-21. [PMID: 19603003 DOI: 10.1038/mt.2009.154] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Vesicular stomatitis virus (VSV) has proven to be an effective vaccine vector for immunization against viral infection, but its potential to induce an immune response to a self-tumor antigen has not been investigated. We constructed a recombinant VSV expressing human dopachrome tautomerase (hDCT) and evaluated its immunogenicity in a murine melanoma model. Intranasal delivery of VSV-hDCT activated both CD4(+) and CD8(+) DCT-specific T-cell responses. The magnitude of these responses could be significantly increased by booster immunization with recombinant adenovirus (Ad)-hDCT, which led to enhanced efficacy against B16-F10 melanoma in both prophylactic and therapeutic settings. Notably, the interval of VSV/Ad heterologous vaccination could be shortened to as few as 4 days, making it a potential regimen to rapidly expand antigen-specific effector cells. Furthermore, VSV-hDCT could increase DCT-specific T-cell responses primed by Ad-hDCT, suggesting VSV is efficient for both priming and boosting of the immune response against a self-tumor antigen.
Collapse
|
27
|
Clark AJ, Diamond M, Elfline M, Petty HR. Calicum microdomains form within neutrophils at the neutrophil-tumor cell synapse: role in antibody-dependent target cell apoptosis. Cancer Immunol Immunother 2009; 59:149-59. [PMID: 19593564 DOI: 10.1007/s00262-009-0735-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 06/29/2009] [Indexed: 01/03/2023]
Abstract
Ca(2+) messages are broadly important in cellular signal transduction. In immune cells, Ca(2+) signaling is an essential step in many forms of activation. Neutrophil-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) is one form of leukocyte activation that plays an important role in tumor cell killing in vitro and in patient care. Using fluorescence methodologies, we found that neutrophils exhibit Ca(2+) signals during ADCC directed against breast fibrosarcoma cells. Importantly, these signals were localized to Ca(2+) microdomains at the neutrophil-to-tumor cell interface where they display dynamic features such as movement, fusion, and fission. These signals were blocked by the intracellular Ca(2+) buffer BAPTA. At the neutrophil-tumor cell synapse, the neutrophil's cytoplasm was enriched in STIM1, a crucial mediator of Ca(2+) signaling, whereas the Ca(2+)-binding proteins calbindin and parvalbumin were not affected. Our findings suggest that Ca(2+) microdomains are due to an active signaling process. As Ca(2+) signals within neutrophils were necessary for specific tumor cell apoptosis, a central role of microdomains in leukocyte-mediated tumor cell destruction is indicated.
Collapse
Affiliation(s)
- Andrea J Clark
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | | | | | | |
Collapse
|
28
|
Rizzuto GA, Merghoub T, Hirschhorn-Cymerman D, Liu C, Lesokhin AM, Sahawneh D, Zhong H, Panageas KS, Perales MA, Altan-Bonnet G, Wolchok JD, Houghton AN. Self-antigen-specific CD8+ T cell precursor frequency determines the quality of the antitumor immune response. ACTA ACUST UNITED AC 2009; 206:849-66. [PMID: 19332877 PMCID: PMC2715122 DOI: 10.1084/jem.20081382] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A primary goal of cancer immunotherapy is to improve the naturally occurring, but weak, immune response to tumors. Ineffective responses to cancer vaccines may be caused, in part, by low numbers of self-reactive lymphocytes surviving negative selection. Here, we estimated the frequency of CD8+ T cells recognizing a self-antigen to be <0.0001% (∼1 in 1 million CD8+ T cells), which is so low as to preclude a strong immune response in some mice. Supplementing this repertoire with naive antigen-specific cells increased vaccine-elicited tumor immunity and autoimmunity, but a threshold was reached whereby the transfer of increased numbers of antigen-specific cells impaired functional benefit, most likely because of intraclonal competition in the irradiated host. We show that cells primed at precursor frequencies below this competitive threshold proliferate more, acquire polyfunctionality, and eradicate tumors more effectively. This work demonstrates the functional relevance of CD8+ T cell precursor frequency to tumor immunity and autoimmunity. Transferring optimized numbers of naive tumor-specific T cells, followed by in vivo activation, is a new approach that can be applied to human cancer immunotherapy. Further, precursor frequency as an isolated variable can be exploited to augment efficacy of clinical vaccine strategies designed to activate any antigen-specific CD8+ T cells.
Collapse
Affiliation(s)
- Gabrielle A Rizzuto
- Departments of Medicine and Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pavelko KD, Hansen MJ, Pease LR. CTL activation using the natural low-affinity epitope 222-229 from tyrosinase-related protein 1 leads to tumor rejection. Cancer Res 2009; 69:3114-20. [PMID: 19276379 DOI: 10.1158/0008-5472.can-08-2448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vaccine strategies for cancer immunotherapy have focused on peptide ligands with high affinity for MHC class I. Largely, these vaccines have not been therapeutic. We have examined the peptide specificity of a strongly protective T-cell response that eradicates established B16 melanoma and find that the recognized epitope is generated by a low-affinity MHC class I ligand from tyrosinase-related protein 1 (TRP1). Cytotoxic T-cell responses are induced against TRP1(222-229) by several vaccination schemes using a Toll-like receptor agonist, T regulatory cell depletion, or the immune modulator B7-DCXAb to drive immunity. TRP1(222) CTL are generated from multiple antigen sources, including antigens expressed by tumors growing in situ, tumor cell lysates, and peptide vaccines. The key finding in this study is that protection from freshly implanted or established B16 tumors is primarily mediated by TRP1(222)-specific CTL and not by CTL specific for more traditional melanoma antigens such as TRP2 or gp100. This finding challenges the assumption that the optimal peptide antigens for cancer vaccines are high-affinity MHC ligands. We propose that when administered appropriately, native low-affinity MHC ligands are optimal inducers of immunotherapeutic CTL.
Collapse
Affiliation(s)
- Kevin D Pavelko
- Department of Immunology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
30
|
Allogeneic melanoma vaccine expressing alphaGal epitopes induces antitumor immunity to autologous antigens in mice without signs of toxicity. J Immunother 2008; 31:545-54. [PMID: 18528300 DOI: 10.1097/cji.0b013e31817d2f45] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Owing to the absence of alphaGal epitopes in human cells and constant stimulation of the immune system by the symbiotic bacterial flora, humans develop high titers of natural antibodies against these epitopes. It has been demonstrated that syngeneic whole cell vaccines modified to express alphaGal epitopes could be used to generate a potent anticancer vaccine. In this study, we tested whether allogeneic whole cell cancer vaccines modified to express alphaGal epitopes would be effective for the treatment of murine melanoma. The alpha(1,3)galactosyltransferase (alphaGT) knockout mice (H-2) with preexisting subcutaneous and pulmonary tumors [alphaGal B16, H-2] received therapeutic vaccinations with S91M3alphaGal (H-2) whole cell allogeneic vaccines. These mice had better survival and reduced pulmonary metastasis burden compared with control mice treated with S91M3 vaccine cells. Vaccination with S91M3alphaGal-induced cytotoxic CD8 T cells recognizing the syngeneic alphaGal B16 tumors measured by adoptive transfer to recipients bearing pulmonary metastases. The presence of allo-antigens did not dominate the induction of immunity to "cryptic" tumor antigens and had helped in the generation of a more efficient vaccine to treat preexisting tumors when compared with classic autologous vaccines. Vaccination with allogeneic alphaGal vaccines did not induce signs of toxicity including changes in weight, hematology, chemistry, and histopathology of major perfused organs or autoimmunity in long-term murine models for breast, lung, and melanoma. This study established the safety and efficacy data of allogeneic alphaGal whole cell vaccines and constituted the basis for the initiation of human clinical trials to treat human malignancies.
Collapse
|
31
|
Overwijk WW, Restifo NP. B16 as a mouse model for human melanoma. ACTA ACUST UNITED AC 2008; Chapter 20:Unit 20.1. [PMID: 18432774 DOI: 10.1002/0471142735.im2001s39] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This unit details protocols for in vivo models of subcutaneous growth and pulmonary metastases of B16 melanoma. Therapeutic approaches include the use of B16.GM-CSF and rVVmTRP-1 to induce autoimmune vitiligo and tumor protection. The induction and use of gp 100-specific therapeutic cytotoxic T lymphocytes (CTL) are discussed. Methods are also included for CTL induction, isolation and testing, CTL maintenance, and adoptive transfer. Support protocols detail the testing of mouse sera for presence of MDA-specific antibodies by immunoblotting and ELISA, respectively. Additional sections, including growing B16 melanoma, enumerating pulmonary metastases, and use of recombinant viruses for vaccination, are discussed together with safety concerns.
Collapse
Affiliation(s)
- W W Overwijk
- National Cancer Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
32
|
Felicetti P, Mennecozzi M, Barucca A, Montgomery S, Orlandi F, Manova K, Houghton AN, Gregor PD, Concetti A, Venanzi FM. Tumor endothelial marker 8 enhances tumor immunity in conjunction with immunization against differentiation Ag. Cytotherapy 2008; 9:23-34. [PMID: 18236207 DOI: 10.1080/14653240601048369] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND We have previously shown that xenogeneic DNA vaccines encoding rat neu and melanosomal differentiation Ag induce tumor immunity. Others have developed vaccines targeting tumor neovasculature. Tumor endothelial marker 8 (TEM8) is expressed in the neovasculature of human tumors, and in the mouse melanoma B16, but its expression is limited in normal adult tissues. We describe a DNA vaccine combining xenogeneic tumor Ag and TEM8. METHODS In-situ hybridization was used to detect TEM8 RNA in mouse tumors. Mice transgenic for the rat neu proto-oncogene were immunized with DNA vaccines encoding TEM8 and the extracellular domain of rat neu and challenged with the 233-VSGA1 breast cancer cell line. In parallel experiments, C57BL/6 mice were immunized with TEM8 and human tyrosinase-related protein 1 (hTYRP1/hgp75) and challenged with B16F10 melanoma. RESULTS TEM8 was expressed in the stroma of transplantable mouse breast and melanoma tumors. In both model systems, TEM8 DNA had no activity as a single agent but significantly enhanced the anti-tumor immunity of neu and hTYRP1/hgp75 DNA vaccines when given in concert. The observed synergy was dependent upon CD8+ T cells, as depletion of this cell population just prior to tumor challenge obviated the effect of the TEM8 vaccine in both tumor models. DISCUSSION A local immune response to TEM8 may increase inflammation or tumor necrosis within the tumor, resulting in improved Ag presentation of HER2/neu and hTYRP1/hgp75. Alternatively, TEM8 expression in host APC may alter T-cell interactions or homing. In this way, TEM8 may act more as an adjuvant than an immunologic target.
Collapse
Affiliation(s)
- P Felicetti
- Swim Across America Laboratory of Tumor Immunology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hyka-Nouspikel N, Lucian L, Murphy E, McClanahan T, Phillips JH. DAP10 deficiency breaks the immune tolerance against transplantable syngeneic melanoma. THE JOURNAL OF IMMUNOLOGY 2007; 179:3763-71. [PMID: 17785813 DOI: 10.4049/jimmunol.179.6.3763] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
DAP10, an activating adaptor protein, associates with the NKG2D protein to form a multisubunit receptor complex that is expressed in lymphoid and myeloid cells. The ligands for NKG2D-DAP10 receptor are expressed in both normal and tumor cells, suggesting distinct roles for this receptor in autoimmunity and cancer. In this study, we report that constitutive DAP10 activating signaling is part of regulatory mechanisms that control immunity against tumors. Mice lacking DAP10 (DAP10KO), showed enhanced immunity against melanoma malignancies due to hyperactive functioning of NK1.1+CD3+ NKT cells. DAP10 deficiency resulted in substantially increased NKT cell functions, including cytokine production and cytotoxicity, leading to efficient killing of melanoma tumors. Moreover, the antitumor phenotype of DAP10KO mice correlated with impaired activation status of CD4+CD25+ T regulatory cells (Tregs). Upon activation, DAP10KO Tregs maintained higher levels of IL-2 and produced significantly lower amounts of IL-10 and IFN-gamma cytokines when compared with wild-type Tregs. Our data suggest that DAP10 signaling is involved in adjusting the activation threshold and generation of NKT cells and Tregs to avoid autoreactivity, but also modulates antitumor mechanisms.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Immune Tolerance/genetics
- Immunophenotyping
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Lymphocyte Activation/genetics
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/prevention & control
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Transplantation
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Nevila Hyka-Nouspikel
- Cellular Immunology Laboratory, Department of Discovery Research, Schering-Plough Biopharma, Palo Alto, CA 94304, USA.
| | | | | | | | | |
Collapse
|
34
|
Orlandi F, Venanzi FM, Concetti A, Yamauchi H, Tiwari S, Norton L, Wolchok JD, Houghton AN, Gregor PD. Antibody and CD8+ T Cell Responses against HER2/neu Required for Tumor Eradication after DNA Immunization with a Flt-3 Ligand Fusion Vaccine. Clin Cancer Res 2007; 13:6195-203. [DOI: 10.1158/1078-0432.ccr-07-0258] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Suckow MA, Rosen ED, Wolter WR, Sailes V, Jeffrey R, Tenniswood M. Prevention of human PC-346C prostate cancer growth in mice by a xenogeneic tissue vaccine. Cancer Immunol Immunother 2007; 56:1275-83. [PMID: 17242926 PMCID: PMC11030191 DOI: 10.1007/s00262-006-0278-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 12/21/2006] [Indexed: 01/20/2023]
Abstract
Vaccination, as an approach to prostate cancer, has largely focused on immunotherapy utilizing specific molecules or allogeneic cells. Such methods are limited by the focused antigenic menu presented to the immune system and by immunotolerance to antigens recognized as "self". To examine if a xenogeneic tissue vaccine could stimulate protective immunity in a human prostate cancer cell line, a vaccine was produced by glutaraldehyde fixation of harvested PAIII prostate cancer cells tumors (GFT cell vaccine) from Lobund-Wistar rats. Immunocompetent Ncr-Foxn1 mice were vaccinated with the GFT cell vaccine four times, 7 days apart. The control animals were either not vaccinated or vaccinated with media or glutaraldehyde-fixed PC346C human prostate cancer cells and adjuvant. About 8 days after the final boost, serum and spleens were harvested. The splenocytes were co-incubated with PC346C cells and then transplanted orthotopically into sygneneic immunodeficient nude mice. About 10 weeks later, the prostates were weighed and sampled for histolologic examination. The spleens were harvested from additional mice, and the splenocytes were cultured, either with or without pulsing by GFT cells, and the supernatants harvested 72 h later for cytokine analysis. Results showed that vaccination with GFT cells resulted in increased serum antibody to a PAIII cell lysate; reduced weight of the prostate/seminal vesicle complex and reduced incidence of prostate cancer in nude mice; increased splenocyte supernatant levels of TNF-alpha, IL-2, IFN-gamma and IL-12, cytokines associated with Th1 immunity; and increased splenocyte supernatant levels of IL-4 and IL-10, cytokines associated with Th2 immunity. In summary, the results suggest that use of a xenogeneic tissue vaccine can stimulate protective immunity against human prostate cancer cells.
Collapse
Affiliation(s)
- Mark A Suckow
- Freimann Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Kianizad K, Marshall LA, Grinshtein N, Bernard D, Margl R, Cheng S, Beermann F, Wan Y, Bramson J. Elevated frequencies of self-reactive CD8+ T cells following immunization with a xenoantigen are due to the presence of a heteroclitic CD4+ T-cell helper epitope. Cancer Res 2007; 67:6459-67. [PMID: 17616707 DOI: 10.1158/0008-5472.can-06-4336] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immunization of mice with human dopachrome tautomerase (hDCT) provides greater protection against melanoma than immunization with the murine homologue (mDCT). We mapped the CD8(+) and CD4(+) T-cell epitopes in both proteins to better understand the mechanisms of the enhanced protection. The dominant CD8(+) T-cell epitopes were fully conserved between both proteins, yet immunization with hDCT produced frequencies of CD8(+) T cells that were 5- to 10-fold higher than immunization with mDCT. This difference was not intrinsic to the two proteins because comparable frequencies of CD8(+) T cells were elicited by both antigens in DCT-deficient mice. Strikingly, only hDCT elicited a significant level of specific CD4(+) T cells in wild-type (WT) mice. The murine protein was not devoid of CD4(+) T-cell epitopes because immunization of DCT-deficient mice with mDCT resulted in robust CD4(+) T-cell immunity directed against two epitopes that were not identified in WT mice. These results suggested that the reduced immunogenicity of mDCT in WT mice may be a function of insufficient CD4(+) T-cell help. To address this possibility, the dominant CD4(+) T-cell epitope from hDCT was introduced into mDCT. Immunization with the mutated mDCT evoked CD8(+) T-cell frequencies and protective immunity comparable with hDCT. These results reveal a novel mechanism by which xenoantigens overcome tolerance. Our data also suggest that immunologic tolerance is more stringent for CD4(+) T cells than CD8(+) T cells, providing a mechanism of peripheral tolerance where autoreactive CD8(+) T cells fail to be activated due to a lack of autoreactive CD4(+) T cells specific for the same antigen.
Collapse
Affiliation(s)
- Korosh Kianizad
- Center for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Reszka N, Rijsewijk FAM, Zelnik V, Moskwa B, Bieńkowska-Szewczyk K. Haemonchus contortus: characterization of the baculovirus expressed form of aminopeptidase H11. Exp Parasitol 2007; 117:208-13. [PMID: 17482594 DOI: 10.1016/j.exppara.2007.03.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 03/21/2007] [Accepted: 03/27/2007] [Indexed: 11/16/2022]
Abstract
Recombinant form of Haemonchus contortus aminopeptidase H11, an intestinal membrane glycoprotein considered to be in its native form the most promising vaccine candidate, was produced in insect cells, characterised and tested in pilot vaccination-challenge trial on sheep. The sequence of the cloned gene, obtained by RT PCR isolated from adult worms, showed 97% identity to the highly immunogenic H11 clone, described by Graham et al., (database accession number AJ249941.1). A 1305 bp fragment of H11 was expressed in E. coli and used to raise a specific antiserum, which recognized recombinant forms of H11 and 110 kDa protein from H. contortus extract. H11 was expressed by baculovirus recombinants in insect cells in full length and as a fusion protein with H. contortus glutathione S-transferase (GST). The baculovirus produced recombinant antigens were used without adjuvants to immunize sheep, which resulted in 30% (full length H11) and 20% (GST-H11) reduction of worm burden. These animal experiments indicated that, although the protection induced by in vitro produced protein is lower than in case of H11 isolated from worms, recombinant forms of aminopeptidase may be considered as antigens for the control of haemonchosis.
Collapse
Affiliation(s)
- Natalia Reszka
- University of Gdańsk, Department of Molecular Virology, Kładki 24, 80-822 Gdańsk, Poland
| | | | | | | | | |
Collapse
|
38
|
Marrari A, Iero M, Pilla L, Villa S, Salvioni R, Valdagni R, Parmiani G, Rivoltini L. Vaccination therapy in prostate cancer. Cancer Immunol Immunother 2007; 56:429-45. [PMID: 17031640 PMCID: PMC11030671 DOI: 10.1007/s00262-006-0233-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/07/2006] [Indexed: 01/05/2023]
Abstract
Radical prostatectomy and radiation therapy provide excellent localized prostate cancer (PC) control. Although the majority of prostate carcinoma is nowadays diagnosed at early stages with favourable risk features, in patients up to 30-40% it recurs within 10 years. Furthermore, the lack of effective therapies, once prostate carcinoma becomes refractory to androgen deprivation, mandates the development of alternative therapeutic options. There is a growing interest in harnessing the potency and specificity of anti-tumour immunity through the generation of fully competent dendritic cells and tumour reactive effector lymphocytes. Several strategies to treat or prevent the development of metastatic PC have been explored in clinical trials and are summarized in this review, considering also the feasibility and safety of these approaches. In some cases clinical responses were achieved showing that vaccine-primed T cells induced anti-tumour activity in vivo. The present findings and perspectives of the immunologic interventions in PC patients will be discussed.
Collapse
Affiliation(s)
- Andrea Marrari
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hyka-Nouspikel N, Phillips JH. Physiological roles of murine DAP10 adapter protein in tumor immunity and autoimmunity. Immunol Rev 2007; 214:106-17. [PMID: 17100879 DOI: 10.1111/j.1600-065x.2006.00456.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The immune system has evolved to tolerate what is self and reject what is foreign. The recognition of self from non-self is performed by activating and inhibitory receptors, which signal immune cells via adapter molecules, determining the outcome of the immune response. DAP10, a transmembrane adapter protein expressed broadly in hematopoietic cells, associates with NKG2D activating receptor forming a multisubunit complex, which recognizes self-proteins upregulated during tumorigenesis, infection, and autoimmune response. Analysis of immune reactions against syngeneic tumors, as well as autoimmune responses in the DAP10-deficient mice, revealed an important physiological role of DAP10 signaling in maintaining tolerance to self, probably by controlling the development and activation threshold of autoreactive T cells.
Collapse
Affiliation(s)
- Nevila Hyka-Nouspikel
- Cellular Immunology Laboratory, Department of Discovery Research, Schering-Plough Biopharma (formerly DNAX Research, Inc.), Palo Alto, CA 94304, USA
| | | |
Collapse
|
40
|
Seledtsov VI, Niza NA, Felde MA, Shishkov AA, Samarin DM, Seledtsova GV, Seledtsov DV. Xenovaccinotherapy for colorectal cancer. Biomed Pharmacother 2007; 61:125-30. [PMID: 17258887 DOI: 10.1016/j.biopha.2006.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 09/27/2006] [Indexed: 01/08/2023] Open
Abstract
The objectives of this phase I-II trial were to assess the toxicity, immunological and clinical responses induced in 37 patients with stage IV colorectal cancer by the subcutaneous administration of a xenogenic polyantigenic vaccine (XPV) prepared from disrupted murine melanoma (B16) and carcinoma (LLC) cells. An inducing course of vaccinotherapy consisted of 10 immunizations (5 at weekly and 5 at fortnight intervals). Twenty-four hours later each of first 5 vaccinations the patient was subcutaneously given a low dose of the recombinant interleukin-2 (IL-2). A consolidating course of vaccinotherapy consisted of monthly vaccinations. No grade III or IV toxicities, but also laboratory and clinical signs of developing systemic autoimmune disorders were noted in any XPV-treated patient. A significant increase in cell-mediated immunoreactivity to both LLC and B16 antigens (Ags) occurred in the patients after inducing vaccinations, as determined by delayed-type hypersensitivity (DTH) skin reactions, as well as by blood lymphocyte proliferation responses. Vaccinations also led to increased cell-mediated reactivity to murine non-tumor, spleen cell (SC)-associated Ags. This reactivity, however, was not as significant as that to tumor-associated antigens (TAAs). XPV was also found to capable of generating IgG antibody-mediated responses. With immunotherapy concentrations of both interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) detectably elevated in patients' sera, suggesting intensification of T helper 1-/T helper 2-mediated responses in the XPV-treated patients. The average survival of the XPV-treated patients was noticeably superior than was that of the clinically comparable control patients (17 vs 7 months). Collectively the results suggest that xenogenic TAAs are safe to use, able to induce measurable cellular and humoral immune responses, and may be clinically effective in certain colorectal cancer patients.
Collapse
Affiliation(s)
- Victor I Seledtsov
- Department of Cell Biotechnology, Institute of Clinical Immunology, Russian Academy of Medical Science, 14 Yadrintsevskaya Street, 630099 Novosibirsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
41
|
Shafer-Weaver K, Anderson M, Malyguine A, Hurwitz AA. T Cell Tolerance to Tumors and Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 601:357-68. [PMID: 17713024 DOI: 10.1007/978-0-387-72005-0_38] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is widely recognized that the immune system plays a role in cancer progression and that some tumors are inherently immunogenic. The identification of tumor-associated antigens (TAAs) has stimulated research focused on immunotherapies to mediate the regression of established tumors. Cancer-specific immunity has traditionally been aimed at activating CD8+ cytotoxic T lymphocytes (CTLs) directed against major histocompatibility complex (MHC) class I-binding peptide epitopes. Other approaches utilize T cell adoptive therapy where autologous, tumor-specific T cells propagated in vitro are transferred back into recipients. However, these strategies have met with limited success in part due to the regulatory mechanisms of T cell tolerance, which poses a considerable challenge to cancer immunotherapy. Our laboratory utilizes the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model, a murine model of prostate cancer, to study mechanisms of T cell tolerization to tumor antigens. We previously demonstrated that upon encounter with their cognate antigen in the tumor microenvironment, naive T cell become tolerized. Our ongoing studies are testing whether provision of CD4+ T cells can enhance tumor immunity by preventing CD8+ T cell tolerance. A greater understanding of the interaction between various tumor-specific T cell subsets will facilitate the design of novel approaches to stimulate a more potent antitumor immune response.
Collapse
Affiliation(s)
- Kimberly Shafer-Weaver
- Applied and Developmental Research Support Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Significant progress made in the field of tumor immunology by the characterization of a large number of tumor antigens, and the better understanding of the mechanisms preventing immune responses to malignancies has led to the extensive study of cancer immunization approaches such as DNA vaccines encoding tumor antigens. This article reviews major aspects of DNA immunization in cancer. It gives a brief history and then discusses the proposed mechanism of action, preclinical and clinical studies, and methods of enhancing the immune responses induced by DNA vaccines.
Collapse
Affiliation(s)
- Rodica Stan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
43
|
Doyle HA, Zhou J, Wolff MJ, Harvey BP, Roman RM, Gee RJ, Koski RA, Mamula MJ. Isoaspartyl post-translational modification triggers anti-tumor T and B lymphocyte immunity. J Biol Chem 2006; 281:32676-83. [PMID: 16950786 DOI: 10.1074/jbc.m604847200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A hallmark of the immune system is the ability to ignore self-antigens. In attempts to bypass normal immune tolerance, a post-translational protein modification was introduced into self-antigens to break T and B cell tolerance. We demonstrate that immune tolerance is bypassed by immunization with a post-translationally modified melanoma antigen. In particular, the conversion of an aspartic acid to an isoaspartic acid within the melanoma antigen tyrosinase-related protein (TRP)-2 peptide-(181-188) makes the otherwise immunologically ignored TRP-2 antigen immunogenic. Tetramer analysis of iso-Asp TRP-2 peptide-immunized mice demonstrated that CD8+ T cells not only recognized the isoaspartyl TRP-2 peptide but also the native TRP-2 peptide. These CD8+ T cells functioned as cytotoxic T lymphocytes, as they effectively lysed TRP-2 peptide-pulsed targets both in vitro and in vivo. Potentially, post-translational protein modification can be utilized to trigger strong immune responses to either tumor proteins or potentially weakly immunogenic pathogens.
Collapse
Affiliation(s)
- Hester A Doyle
- Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Fukui M, Ueno K, Suehiro Y, Hamanaka Y, Imai K, Hinoda Y. Anti-tumor activity of dendritic cells transfected with mRNA for receptor for hyaluronan-mediated motility is mediated by CD4+ T cells. Cancer Immunol Immunother 2006; 55:538-46. [PMID: 16025267 PMCID: PMC11030997 DOI: 10.1007/s00262-005-0027-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 05/05/2005] [Indexed: 11/29/2022]
Abstract
Receptor for hyaluronan-mediated motility (RHAMM) is overexpressed in various tumors with high frequency, and was recently identified as an immunogenic antigen by serologic screening of cDNA expression libraries. In this study, we explored whether RHAMM is a potential target for dendritic cell (DC) immunotherapy. We constructed a plasmid for transduction of in vitro-transcribed mRNAs into DCs to efficiently transport the intracellular protein RHAMM into MHC class II compartments by adding a late endosomal/lysosomal sorting signal to the RHAMM gene. Immunization of mice with modified RHAMM mRNA-transfected DCs (DC/RHAMM) induced killing activity against RHAMM-positive tumor cells in splenocytes. To examine whether CD4(+) and/or CD8(+) T cells were required for this antitumor immunity, an anti-CD4 or anti-CD8 antibody was administered to mice after immunization with DC/RHAMM. Depletion of CD4(+) T cells significantly diminished the induction of tumor cell-killing activity in splenocytes, whereas CD8(+) T cell depletion had no effect. We then investigated the therapeutic effect of DC/RHAMM in a 3-day tumor model of EL4. DC/RHAMM was administered to mice on days 3, 7 and 10 after EL4 tumor inoculation. The treatment markedly inhibited tumor growth compared to control DCs. Moreover, antibody-mediated depletion of CD4(+) T cells completely abrogated the therapeutic effect of DC/RHAMM, whereas depletion of CD8(+) T cells had no effect. The results of this preclinical study indicate that DCs transfected with a modified RHAMM mRNA targeted to MHC class II compartments can induce CD4(+) T cell-mediated antitumor activity in vivo.
Collapse
Affiliation(s)
- Mikiko Fukui
- Department of Clinical Laboratory Science, Yamaguchi University School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505 Japan
| | - Koji Ueno
- Department of Clinical Laboratory Science, Yamaguchi University School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505 Japan
| | - Yutaka Suehiro
- Department of Clinical Laboratory Science, Yamaguchi University School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505 Japan
| | - Yuichiro Hamanaka
- Department of Clinical Laboratory Science, Yamaguchi University School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505 Japan
| | - Kohzoh Imai
- Department of First Internal Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yuji Hinoda
- Department of Clinical Laboratory Science, Yamaguchi University School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505 Japan
| |
Collapse
|
45
|
Liao JCF, Gregor P, Wolchok JD, Orlandi F, Craft D, Leung C, Houghton AN, Bergman PJ. Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma. CANCER IMMUNITY 2006; 6:8. [PMID: 16626110 PMCID: PMC1976276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 03/09/2006] [Indexed: 05/08/2023]
Abstract
Antitumor immune responses can be elicited in preclinical mouse melanoma models using plasmid DNA vaccines encoding xenogeneic melanosomal differentiation antigens. We previously reported on a phase I clinical trial of human tyrosinase (huTyr) DNA vaccination of 9 dogs with advanced malignant melanoma (World Health Organization stages II-IV), in which we demonstrated the safety of the treatment and the prolongation of the expected survival time (ST) of subjects as compared to historical, stage-matched controls. As a secondary goal of the same study, we report here on the induction of tyrosinase-specific antibody responses in three of the nine dogs vaccinated with huTyr DNA. The antibodies in two of the three responders cross-react with syngeneic canine tyrosinase, demonstrating the ability of this vaccine to overcome host immune tolerance and/or ignorance to or of "self" antigens. Most interestingly, the onset of antibody induction in these three dogs coincides with observed clinical responses and may suggest a means to account for their long-term tumor control and survival.
Collapse
Affiliation(s)
- Jack C. F. Liao
- Flaherty Comparative Oncology Laboratory, Donaldson-Atwood Cancer Clinic, The Animal Medical Center, 510 East 62nd Street, New York, NY 10021, USA
| | - Polly Gregor
- Swim Across America Laboratory, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Jedd D. Wolchok
- Swim Across America Laboratory, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Francesca Orlandi
- Swim Across America Laboratory, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Diane Craft
- Flaherty Comparative Oncology Laboratory, Donaldson-Atwood Cancer Clinic, The Animal Medical Center, 510 East 62nd Street, New York, NY 10021, USA
| | - Carrie Leung
- Flaherty Comparative Oncology Laboratory, Donaldson-Atwood Cancer Clinic, The Animal Medical Center, 510 East 62nd Street, New York, NY 10021, USA
| | - Alan N. Houghton
- Swim Across America Laboratory, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | - Philip J. Bergman
- Flaherty Comparative Oncology Laboratory, Donaldson-Atwood Cancer Clinic, The Animal Medical Center, 510 East 62nd Street, New York, NY 10021, USA
| |
Collapse
|
46
|
Guevara-Patiño JA, Engelhorn ME, Turk MJ, Liu C, Duan F, Rizzuto G, Cohen AD, Merghoub T, Wolchok JD, Houghton AN. Optimization of a self antigen for presentation of multiple epitopes in cancer immunity. J Clin Invest 2006; 116:1382-90. [PMID: 16614758 PMCID: PMC1435720 DOI: 10.1172/jci25591] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 02/21/2006] [Indexed: 02/06/2023] Open
Abstract
T cells recognizing self antigens expressed by cancer cells are prevalent in the immune repertoire. However, activation of these autoreactive T cells is limited by weak signals that are incapable of fully priming naive T cells, creating a state of tolerance or ignorance. Even if T cell activation occurs, immunity can be further restricted by a dominant response directed at only a single epitope. Enhanced antigen presentation of multiple epitopes was investigated as a strategy to overcome these barriers. Specific point mutations that create altered peptide ligands were introduced into the gene encoding a nonimmunogenic tissue self antigen expressed by melanoma, tyrosinase-related protein-1 (Tyrp1). Deficient asparagine-linked glycosylation, which was caused by additional mutations, produced altered protein trafficking and fate that increased antigen processing. Immunization of mice with mutated Tyrp1 DNA elicited cross-reactive CD8(+) T cell responses against multiple nonmutated epitopes of syngeneic Tyrp1 and against melanoma cells. These multi-specific anti-Tyrp1 CD8(+) T cell responses led to rejection of poorly immunogenic melanoma and prolonged survival when immunization was started after tumor challenge. These studies demonstrate how rationally designed DNA vaccines directed against self antigens for enhanced antigen processing and presentation reveal novel self epitopes and elicit multi-specific T cell responses to nonimmunogenic, nonmutated self antigens, enhancing immunity against cancer self antigens.
Collapse
Affiliation(s)
- José A Guevara-Patiño
- Swim Across America Laboratory of Tumor Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hu B, Wei YQ, Tian L, Zhao X, Lu Y, Wu Y, Yao B, Zhang XW. Human T lymphocyte responses against lung cancer induced by recombinant truncated mouse EGFR. Cancer Immunol Immunother 2006; 55:386-93. [PMID: 16235052 PMCID: PMC11030975 DOI: 10.1007/s00262-005-0028-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 05/05/2005] [Indexed: 12/22/2022]
Abstract
The induction of active cellular responses against EGFR should be a promising approach for the treatment of those receptor-positive tumors. However, the immunity against EGFR is presumably difficult to elicit by vaccine based on self or syngeneic EGFR due to the immune tolerance acquired during the development in immune system. We proposed a model to break immune tolerance against self-EGFR through an altered immunogen source based on xenogeneic homologous EGFR. We have previously shown human EGFR as a xenoantigen could induce specific immune responses in mouse and cross-react with mouse EGFR, and resulted in therapeutic benefits for EGFR-positive mouse tumor. Here, we show a recombinant form of extracellular domain of mouse EGFR, in the presence of DCs, could activate human peripheral T cells to proliferate, secret IFN-gamma, the induced responses could cross-react with human EGFR and kill autologous EGFR-positive lung cancer cells which could be blocked by anti-CD8 and anti-MHC class I antibody. There is no detectable cytotoxical activity against lung tissue, liver tissue and kidney tissue derived from paracancerous normal tissue. These observations suggest that antitumor immunity induced by the truncated mouse EGFR may be provoked in a cross-reaction between mouse EGFR and self-EGFR, and may provide insight into treatment of EGFR-positive tumors through induction of the autoimmune responses against EGFR.
Collapse
Affiliation(s)
- Bing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Guo Xue Xiang, No. 37, Chengdu, Sichuan, 610041 The People’s Republic of China
- Chinese National Human Genome Center at Shanghai, Guo Shou-Jing Road, No. 351, Shanghai, 201203 China
| | - Yu-quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Guo Xue Xiang, No. 37, Chengdu, Sichuan, 610041 The People’s Republic of China
| | - Ling Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Guo Xue Xiang, No. 37, Chengdu, Sichuan, 610041 The People’s Republic of China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Guo Xue Xiang, No. 37, Chengdu, Sichuan, 610041 The People’s Republic of China
- Department of Gynecology and Obstetrics, Second West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, 610041 China
| | - You Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Guo Xue Xiang, No. 37, Chengdu, Sichuan, 610041 The People’s Republic of China
| | - Yang Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Guo Xue Xiang, No. 37, Chengdu, Sichuan, 610041 The People’s Republic of China
| | - Bing Yao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Guo Xue Xiang, No. 37, Chengdu, Sichuan, 610041 The People’s Republic of China
| | - Xiao-wei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Guo Xue Xiang, No. 37, Chengdu, Sichuan, 610041 The People’s Republic of China
| |
Collapse
|
48
|
Goldberg SM, Bartido SM, Gardner JP, Guevara-Patiño JA, Montgomery SC, Perales MA, Maughan MF, Dempsey J, Donovan GP, Olson WC, Houghton AN, Wolchok JD. Comparison of two cancer vaccines targeting tyrosinase: plasmid DNA and recombinant alphavirus replicon particles. Clin Cancer Res 2006; 11:8114-21. [PMID: 16299244 DOI: 10.1158/1078-0432.ccr-05-1410] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunization of mice with xenogeneic DNA encoding human tyrosinase-related proteins 1 and 2 breaks tolerance to these self-antigens and leads to tumor rejection. Viral vectors used alone or in heterologous DNA prime/viral boost combinations have shown improved responses to certain infectious diseases. The purpose of this study was to compare viral and plasmid DNA in combination vaccination strategies in the context of a tumor antigen. EXPERIMENTAL DESIGN Using tyrosinase as a prototypical differentiation antigen, we determined the optimal regimen for immunization with plasmid DNA. Then, using propagation-incompetent alphavirus vectors (virus-like replicon particles, VRP) encoding tyrosinase, we tested different combinations of priming with DNA or VRP followed by boosting with VRP. We subsequently followed antibody production, T-cell response, and tumor rejection. RESULTS T-cell responses to newly identified mouse tyrosinase epitopes were generated in mice immunized with plasmid DNA encoding human (xenogeneic) tyrosinase. In contrast, when VRP encoding either mouse or human tyrosinase were used as single agents, antibody and T-cell responses and a significant delay in tumor growth in vivo were observed. Similarly, a heterologous vaccine regimen using DNA prime and VRP boost showed a markedly stronger response than DNA vaccination alone. CONCLUSIONS Alphavirus replicon particle vectors encoding the melanoma antigen tyrosinase (self or xenogeneic) induce immune responses and tumor protection when administered either alone or in the heterologous DNA prime/VRP boost approaches that are superior to the use of plasmid DNA alone.
Collapse
Affiliation(s)
- Stacie M Goldberg
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Uchi H, Stan R, Turk MJ, Engelhorn ME, Rizzuto GA, Goldberg SM, Wolchok JD, Houghton AN. Unraveling the complex relationship between cancer immunity and autoimmunity: lessons from melanoma and vitiligo. Adv Immunol 2006; 90:215-41. [PMID: 16730265 DOI: 10.1016/s0065-2776(06)90006-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A relationship between melanoma and vitiligo, a skin disorder characterized by the loss of melanocytes, has been postulated for many decades. In some cases, vitiligo is almost certainly a manifestation of autoimmune-mediated destruction of melanocytes. Melanocytes and melanoma cells share melanocyte differentiation antigens. Based on a number of observations, de novo vitiligo developing in patients with melanoma has been regarded as a sign of good prognosis. The immune system tolerates or ignores differentiation antigens because these antigens are self-derived. Therefore, immune tolerance or ignorance must be overcome to prime naive T and B cells to induce cancer immunity and autoimmunity against melanocyte differentiation antigens. Mouse models of concurrent melanoma and autoimmune vitiligo have revealed strategies to overcome immune ignorance or tolerance to melanocyte differentiation antigens: immunization with self-antigens as altered self (e.g., orthologues or mutated versions), expression in viral vectors, passive immunization with antibodies or T cells, incorporating potent adjuvants into active immunization, and blockade or removal of a downregulatory mechanism. Extensive investigations into the mechanisms that lead to tumor immunity and autoimmunity elicited by certain differentiation antigens have further revealed a variety of distinct cellular and molecular requirements, which are redundant and alternative.
Collapse
Affiliation(s)
- Hiroshi Uchi
- Swim Across America Laboratory, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Tamaki S, Homma S, Enomoto Y, Komita H, Zeniya M, Ohno T, Toda G. Autoimmune hepatic inflammation by vaccination of mice with dendritic cells loaded with well-differentiated hepatocellular carcinoma cells and administration of interleukin-12. Clin Immunol 2005; 117:280-93. [PMID: 16246626 DOI: 10.1016/j.clim.2005.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 07/09/2005] [Accepted: 08/16/2005] [Indexed: 11/24/2022]
Abstract
Vaccination of mice with dendritic cells loaded with Hepa1-6, well-differentiated hepatocellular carcinoma cell line (DC/Hepa1-6), induced cytotoxic T lymphocytes against Hepa1-6. Liver-specific inflammation was generated by vaccination of mice with DC/Hepa1-6 and subsequent administration of interleukin (IL)-12. Vaccination with DCs loaded with MC38 or B16 and administration of IL-12 did not generate significant liver-specific inflammation. Splenic T cells from DC/Hepa1-6-vaccinated mice showed proliferative response by stimulation with S-100 protein of the liver and showed cytotoxic activity to hepatocytes. Hepatic mononuclear cells from DC/Hepa1-6 + IL-12-treated mice also showed cytotoxic activity to hepatocytes. Adoptive transfer of splenocytes from DC/Hepa1-6-vaccinated mice produced hepatic inflammation in recipient mice that had been pretreated with IL-12. IL-12 upregulated the expression of adhesion molecules and chemokines in the liver. In conclusion, CTLs responsive to hepatocytes induced by DC/Hepa1-6 and enhanced expression of adhesion molecules and chemokines in the liver by IL-12 would produce autoimmune hepatic inflammation.
Collapse
Affiliation(s)
- Shigeo Tamaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|