1
|
Li J, Peng T, Cheng G, Yang L, Zhou J, Zhang R, Zhang P. A novel MECOM gene variant causes severe thrombocytopenia in a neonate: a case report and review of the literature. J Med Case Rep 2025; 19:147. [PMID: 40170114 PMCID: PMC11960019 DOI: 10.1186/s13256-025-05194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/11/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Mutations in the MECOM gene have been recognized as a causative factor in MECOM-associated syndrome, which encompasses a spectrum of hematologic and extra-hematologic manifestations. Hematologic features range from isolated thrombocytopenia to severe bone marrow failure, while extra-hematologic manifestations may include skeletal, cardiac, renal, and other abnormalities. Here, we present a case of a Han Chinese newborn with a previously unreported variant in the MECOM gene. CASE PRESENTATION We report a 0-day-old female Han Chinese neonate who presented with severe thrombocytopenia and intracranial hemorrhage, ultimately succumbing to multiple organ failure and intracranial hemorrhage on the third day after birth. Genetic sequencing identified a heterozygous frameshift variant, c.157_158del, within the MECOM gene. This variant led to a substitution of the 53rd amino acid from methionine to glycine, terminating at the 54th amino acid. A comprehensive review of literature indicated that MECOM gene mutations included missense (68.3%), deletion (8.5%), splice site (8.5%), frameshift (7.3%), and nonsense (7.3%) mutations. Patients with missense mutations frequently exhibited radioulnar synostosis, while bone marrow failure was more commonly associated with the other four types of mutations. CONCLUSION This study adds a novel variant of the MECOM gene to the current body of knowledge. In addition, we provide a comprehensive summary of previously reported cases. This case expands the phenotypic spectrum of MECOM variants and underscores the potential for rapid progression to a life-threatening condition.
Collapse
Affiliation(s)
- Jiaxin Li
- Neonatal Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
- Department of Pediatric Intensive Care Unit, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Peng
- Neonatal Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Guoqiang Cheng
- Neonatal Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jianguo Zhou
- Neonatal Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Rong Zhang
- Neonatal Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Peng Zhang
- Neonatal Medical Center, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
2
|
Wu Q, Yu C, Yu F, Guo Y, Sheng Y, Li L, Li Y, Zhang Y, Hu C, Wang J, He TC, Huang Y, Ni H, Huo Z, Wu W, Wang GG, Lyu J, Qian Z. Evi1 governs Kdm6b-mediated histone demethylation to regulate the Laptm4b-driven mTOR pathway in hematopoietic progenitor cells. J Clin Invest 2024; 134:e173403. [PMID: 39680456 PMCID: PMC11645144 DOI: 10.1172/jci173403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Ecotropic viral integration site 1 (EVI1/MECOM) is frequently upregulated in myeloid malignancies. Here, we present an Evi1-transgenic mouse model with inducible expression in hematopoietic stem/progenitor cells (HSPCs). Upon induction of Evi1 expression, mice displayed anemia, thrombocytopenia, lymphopenia, and erythroid and megakaryocyte dysplasia with a significant expansion of committed myeloid progenitor cells, resembling human myelodysplastic syndrome/myeloproliferative neoplasm-like (MDS/MPN-like) disease. Evi1 overexpression prompted HSPCs to exit quiescence and accelerated their proliferation, leading to expansion of committed myeloid progenitors while inhibiting lymphopoiesis. Analysis of global gene expression and Evi1 binding site profiling in HSPCs revealed that Evi1 directly upregulated lysine demethylase 6b (Kdm6b). Subsequently, Kdm6b-mediated H3K27me3 demethylation resulted in activation of various genes, including Laptm4b. Interestingly, KDM6B and LAPTM4B are positively correlated with EVI1 expression in patients with MDS. The EVI1/KDM6B/H3K27me3/LAPTM4B signaling pathway was also identified in EVI1hi human leukemia cell lines. We found that hyperactivation of the LAPTM4B-driven mTOR pathway was crucial for the growth of EVI1hi leukemia cells. Knockdown of Laptm4b partially rescued Evi1-induced abnormal hematopoiesis in vivo. Thus, our study establishes a mouse model to investigate EVI1hi myeloid malignancies, demonstrating the significance of the EVI1-mediated KDM6B/H3K27me3/LAPTM4B signaling axis in their maintenance.
Collapse
Affiliation(s)
- Qiong Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Chunjie Yu
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Fang Yu
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Yiran Guo
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Yue Sheng
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Liping Li
- Department of Pathology at Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Yafang Li
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Yutao Zhang
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Chao Hu
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jue Wang
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Tong-chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, University of Chicago, Chicago, Illinois, USA
| | - Yong Huang
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Hongyu Ni
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Wenshu Wu
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Laboratory Medicine, Zhejiang Provincial People’s Hospital, Affiliate People’s Hospital of Hangzhou Medical College, and
- Laboratory Medicine of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhijian Qian
- Department of Medicine and Department of Biochemistry and Molecular Biology, UF Health Cancer Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Li A, Li M, Wang J, Zhou J, Yang T, Fan M, Zhang K, Gao H, Ren H, Chen M. MECOM: a bioinformatics and experimentally identified marker for the diagnosis and prognosis of lung adenocarcinoma. Biomark Med 2024; 18:79-91. [PMID: 38440890 DOI: 10.2217/bmm-2023-0600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Objective: We aimed to explore the clinical value of MDS1 and EVI1 complex locus (MECOM) in lung adenocarcinoma (LUAD). Methods: Bioinformatics and experimental validation confirmed MECOM expression levels in LUAD. The value of MECOM was analyzed by receiver operating characteristic (ROC) curve and Cox regression analysis. Results: Serum MECOM levels were lower in LUAD and correlated with gender, TNM stage, tumor size, lymph node metastasis and distant metastasis. The ROC curve showed that the area under the curve of MECOM was 0.804 for LUAD and, of note, could reach 0.889 for advanced LUAD; specificity was up to 90%. Conclusion: MECOM may contribute to independently identifying LUAD patients, particularly in advanced stages.
Collapse
Affiliation(s)
- Anqi Li
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Meng Li
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Wang
- Department of Pulmonary & Critical Care Medicine, Shaanxi Provincial Second People's Hospital, Xi'an, 710005, China
| | - Jiejun Zhou
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tian Yang
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Meng Fan
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kun Zhang
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hengxing Gao
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hui Ren
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mingwei Chen
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Pulmonary & Critical Care Medicine, Shaanxi Provincial Second People's Hospital, Xi'an, 710005, China
| |
Collapse
|
4
|
Ammeti D, Marzollo A, Gabelli M, Zanchetta ME, Tretti-Parenzan C, Bottega R, Capaci V, Biffi A, Savoia A, Bresolin S, Faleschini M. A novel mutation in MECOM affects MPL regulation in vitro and results in thrombocytopenia and bone marrow failure. Br J Haematol 2023; 203:852-859. [PMID: 37610030 DOI: 10.1111/bjh.19023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023]
Abstract
MECOM-associated syndrome (MECOM-AS) is a rare disease characterized by amegakaryocytic thrombocytopenia, progressive bone marrow failure, pancytopenia and radioulnar synostosis with high penetrance. The clinical phenotype may also include finger malformations, cardiac and renal alterations, hearing loss, B-cell deficiency and predisposition to infections. The syndrome, usually diagnosed in the neonatal period because of severe thrombocytopenia, is caused by mutations in the MECOM gene, encoding for the transcription factor EVI1. The mechanism linking the alteration of EVI1 function and thrombocytopenia is poorly understood. In a paediatric patient affected by severe thrombocytopenia, we identified a novel variant of the MECOM gene (p.P634L), whose effect was tested on pAP-1 enhancer element and promoters of targeted genes showing that the mutation impairs the repressive activity of the transcription factor. Moreover, we demonstrated that EVI1 controls the transcriptional regulation of MPL, a gene whose mutations are responsible for congenital amegakaryocytic thrombocytopenia (CAMT), potentially explaining the partial overlap between MECOM-AS and CAMT.
Collapse
Affiliation(s)
- Daniele Ammeti
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Maria Gabelli
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
| | | | - Caterina Tretti-Parenzan
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
| | - Roberta Bottega
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Valeria Capaci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
| | - Anna Savoia
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Silvia Bresolin
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
- Maternal and Child Health Department, Padua University, Padua, Italy
| | - Michela Faleschini
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
5
|
Nagai K, Niihori T, Muto A, Hayashi Y, Abe T, Igarashi K, Aoki Y. Mecom mutation related to radioulnar synostosis with amegakaryocytic thrombocytopenia reduces HSPCs in mice. Blood Adv 2023; 7:5409-5420. [PMID: 37099686 PMCID: PMC10509669 DOI: 10.1182/bloodadvances.2022008462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 04/28/2023] Open
Abstract
Radioulnar synostosis with amegakaryocytic thrombocytopenia (RUSAT) is an inherited bone marrow failure syndrome characterized by the congenital fusion of the forearm bones. RUSAT is largely caused by missense mutations that are clustered in a specific region of the MDS1 and EVI1 complex locus (MECOM). EVI1, a transcript variant encoded by MECOM, is a zinc finger transcription factor involved in hematopoietic stem cell maintenance that induce leukemic transformation when overexpressed. Mice with exonic deletions in Mecom show reduced hematopoietic stem and progenitor cells (HSPCs). However, the pathogenic roles of RUSAT-associated MECOM mutations in vivo have not yet been elucidated. To investigate the impact of the RUSAT-associated MECOM mutation on the phenotype, we generated knockin mice harboring a point mutation (translated into EVI1 p.H752R and MDS1-EVI1 p.H942R), which corresponds to an EVI1 p.H751R and MDS1-EVI1 p.H939R mutation identified in a patient with RUSAT. Homozygous mutant mice died at embryonic day 10.5 to 11.5. Heterozygous mutant mice (Evi1KI/+ mice) grew normally without radioulnar synostosis. Male Evi1KI/+ mice, aged between 5 and 15 weeks, exhibited lower body weight, and those aged ≥16 weeks showed low platelet counts. Flow cytometric analysis of bone marrow cells revealed a decrease in HSPCs in Evi1KI/+ mice between 8 and 12 weeks. Moreover, Evi1KI/+ mice showed delayed leukocyte and platelet recovery after 5-fluorouracil-induced myelosuppression. These findings suggest that Evi1KI/+ mice recapitulate the bone marrow dysfunction in RUSAT, similar to that caused by loss-of-function Mecom alleles.
Collapse
Affiliation(s)
- Koki Nagai
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshikazu Hayashi
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Taiki Abe
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Zerella JR, Homan CC, Arts P, Brown AL, Scott HS, Hahn CN. Transcription factor genetics and biology in predisposition to bone marrow failure and hematological malignancy. Front Oncol 2023; 13:1183318. [PMID: 37377909 PMCID: PMC10291195 DOI: 10.3389/fonc.2023.1183318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Transcription factors (TFs) play a critical role as key mediators of a multitude of developmental pathways, with highly regulated and tightly organized networks crucial for determining both the timing and pattern of tissue development. TFs can act as master regulators of both primitive and definitive hematopoiesis, tightly controlling the behavior of hematopoietic stem and progenitor cells (HSPCs). These networks control the functional regulation of HSPCs including self-renewal, proliferation, and differentiation dynamics, which are essential to normal hematopoiesis. Defining the key players and dynamics of these hematopoietic transcriptional networks is essential to understanding both normal hematopoiesis and how genetic aberrations in TFs and their networks can predispose to hematopoietic disease including bone marrow failure (BMF) and hematological malignancy (HM). Despite their multifaceted and complex involvement in hematological development, advances in genetic screening along with elegant multi-omics and model system studies are shedding light on how hematopoietic TFs interact and network to achieve normal cell fates and their role in disease etiology. This review focuses on TFs which predispose to BMF and HM, identifies potential novel candidate predisposing TF genes, and examines putative biological mechanisms leading to these phenotypes. A better understanding of the genetics and molecular biology of hematopoietic TFs, as well as identifying novel genes and genetic variants predisposing to BMF and HM, will accelerate the development of preventative strategies, improve clinical management and counseling, and help define targeted treatments for these diseases.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Anna L. Brown
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hamish S. Scott
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
7
|
EVI1 drives leukemogenesis through aberrant ERG activation. Blood 2023; 141:453-466. [PMID: 36095844 DOI: 10.1182/blood.2022016592] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/10/2022] [Accepted: 08/28/2022] [Indexed: 02/07/2023] Open
Abstract
Chromosomal rearrangements involving the MDS1 and EVI1 complex locus (MECOM) on chromosome 3q26 define an aggressive subtype of acute myeloid leukemia (AML) that is associated with chemotherapy resistance and dismal prognosis. Established treatment regimens commonly fail in these patients, therefore, there is an urgent need for new therapeutic concepts that will require a better understanding of the molecular and cellular functions of the ecotropic viral integration site 1 (EVI1) oncogene. To characterize gene regulatory functions of EVI1 and associated dependencies in AML, we developed experimentally tractable human and murine disease models, investigated the transcriptional consequences of EVI1 withdrawal in vitro and in vivo, and performed the first genome-wide CRISPR screens in EVI1-dependent AML. By integrating conserved transcriptional targets with genetic dependency data, we identified and characterized the ETS transcription factor ERG as a direct transcriptional target of EVI1 that is aberrantly expressed and selectively required in both human and murine EVI1-driven AML. EVI1 controls the expression of ERG and occupies a conserved intragenic enhancer region in AML cell lines and samples from patients with primary AML. Suppression of ERG induces terminal differentiation of EVI1-driven AML cells, whereas ectopic expression of ERG abrogates their dependence on EVI1, indicating that the major oncogenic functions of EVI1 are mediated through aberrant transcriptional activation of ERG. Interfering with this regulatory axis may provide entry points for the development of rational targeted therapies.
Collapse
|
8
|
Zhu EY, Dupuy AJ. Machine learning approach informs biology of cancer drug response. BMC Bioinformatics 2022; 23:184. [PMID: 35581546 PMCID: PMC9112473 DOI: 10.1186/s12859-022-04720-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/03/2022] [Indexed: 12/12/2022] Open
Abstract
Background The mechanism of action for most cancer drugs is not clear. Large-scale pharmacogenomic cancer cell line datasets offer a rich resource to obtain this knowledge. Here, we present an analysis strategy for revealing biological pathways that contribute to drug response using publicly available pharmacogenomic cancer cell line datasets. Methods We present a custom machine-learning based approach for identifying biological pathways involved in cancer drug response. We test the utility of our approach with a pan-cancer analysis of ML210, an inhibitor of GPX4, and a melanoma-focused analysis of inhibitors of BRAFV600. We apply our approach to reveal determinants of drug resistance to microtubule inhibitors. Results Our method implicated lipid metabolism and Rac1/cytoskeleton signaling in the context of ML210 and BRAF inhibitor response, respectively. These findings are consistent with current knowledge of how these drugs work. For microtubule inhibitors, our approach implicated Notch and Akt signaling as pathways that associated with response. Conclusions Our results demonstrate the utility of combining informed feature selection and machine learning algorithms in understanding cancer drug response. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04720-z.
Collapse
Affiliation(s)
- Eliot Y Zhu
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.,Cancer Biology Graduate Program, The University of Iowa, Iowa City, IA, USA.,The Medical Scientist Training Program, The University of Iowa, Iowa City, IA, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA. .,Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
Paredes R, Doleschall N, Connors K, Geary B, Meyer S. EVI1 protein interaction dynamics: targetable for therapeutic intervention? Exp Hematol 2021; 107:1-8. [PMID: 34958895 DOI: 10.1016/j.exphem.2021.12.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/04/2022]
Abstract
High expression of the transcriptional regulator EVI1 encoded at the MECOM locus at 3q26 is one of the most aggressive oncogenic drivers in acute myeloid leukaemia (AML) and carries a very poor prognosis. How EVI1 confers leukaemic transformation and chemotherapy resistance in AML is subject to important ongoing clinical and experimental studies. Recent discoveries have revealed critical details about genetic mechanisms of the activation of EVI1 overexpression and downstream events of aberrantly high EVI1 expression. Here we review and discuss aspects concerning the protein interactions of EVI1 and the related proteins MDS-EVI1 and ΔEVI1 from the perspective of their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Roberto Paredes
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Nora Doleschall
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Kathleen Connors
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Bethany Geary
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, National Institute for Health Research Biomedical Research Centre, Manchester; Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital; Young Oncology Unit, The Christie NHS Foundation Trust.
| |
Collapse
|
10
|
Wang Z, Li Y, Wang N, Li P, Kong B, Liu Z. EVI1 overexpression promotes ovarian cancer progression by regulating estrogen signaling. Mol Cell Endocrinol 2021; 534:111367. [PMID: 34146645 DOI: 10.1016/j.mce.2021.111367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) is characterized by TP53 mutation and somatic copy number alterations (SCNAs). Here we show that the oncogenic transcription factor EVI1 (ecotropic viral integration site-1) is amplified and overexpressed up to 30% of 1640 HGSOC cases in The Cancer Genome Atlas (TCGA). Functionally, EVI1 promotes proliferation/invasion in vitro and tumor growth of xenograft model in vivo. Importantly, we discover that EVI1 regulates estrogen signaling by directly activating ESR1 (estrogen receptor 1) transcription determined by the ChIP and luciferase assay. Interestingly, EVI1 and ESR1 share common regulatory targets as indicated by the analysis of ChIP-Seq data. EVI1 and ESR1 collaborate in the regulation of some estrogen receptor-regulated genes. Furthermore, EVI1 drives tumor aggressiveness partially by regulating estrogen signaling. Estrogen enhances the proliferation, invasion and xenograft growth of ovarian cancer cells. Importantly, estrogen can rescue the inhibition of proliferation, invasion and xenograft growth induced by silencing EVI1. These findings suggest that EVI1 functions as a novel regulator of the estrogen signaling network in ovarian cancer.
Collapse
Affiliation(s)
- Zixiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care and Fynn Biotechnologies Ltd, Jinan, Shandong, 250012, China
| | - Peng Li
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Beihua Kong
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Zhaojian Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
11
|
Zhang Y, McGrath KE, Ayoub E, Kingsley PD, Yu H, Fegan K, McGlynn KA, Rudzinskas S, Palis J, Perkins AS. Mds1 CreERT2, an inducible Cre allele specific to adult-repopulating hematopoietic stem cells. Cell Rep 2021; 36:109562. [PMID: 34407416 PMCID: PMC8428393 DOI: 10.1016/j.celrep.2021.109562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/24/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic ontogeny consists of two broad programs: an initial hematopoietic stem cell (HSC)-independent program followed by HSC-dependent hematopoiesis that sequentially seed the fetal liver and generate blood cells. However, the transition from HSC-independent to HSC-derived hematopoiesis remains poorly characterized. To help resolve this question, we developed Mds1CreERT2 mice, which inducibly express Cre-recombinase in emerging HSCs in the aorta and label long-term adult HSCs, but not HSC-independent yolk-sac-derived primitive or definitive erythromyeloid (EMP) hematopoiesis. Our lineage-tracing studies indicate that HSC-derived erythroid, myeloid, and lymphoid progeny significantly expand in the liver and blood stream between E14.5 and E16.5. Additionally, we find that HSCs contribute the majority of F4/80+ macrophages in adult spleen and marrow, in contrast to their limited contribution to macrophage populations in brain, liver, and lungs. The Mds1CreERT2 mouse model will be useful to deconvolute the complexity of hematopoiesis as it unfolds in the embryo and functions postnatally.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kathleen E McGrath
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Edward Ayoub
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paul D Kingsley
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hongbo Yu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kate Fegan
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Kelly A McGlynn
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sarah Rudzinskas
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - James Palis
- Center for Pediatric Biomedical Research and Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Archibald S Perkins
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
| |
Collapse
|
12
|
Bleu M, Mermet-Meillon F, Apfel V, Barys L, Holzer L, Bachmann Salvy M, Lopes R, Amorim Monteiro Barbosa I, Delmas C, Hinniger A, Chau S, Kaufmann M, Haenni S, Berneiser K, Wahle M, Moravec I, Vissières A, Poetsch T, Ahrné E, Carte N, Voshol J, Bechter E, Hamon J, Meyerhofer M, Erdmann D, Fischer M, Stachyra T, Freuler F, Gutmann S, Fernández C, Schmelzle T, Naumann U, Roma G, Lawrenson K, Nieto-Oberhuber C, Cobos-Correa A, Ferretti S, Schübeler D, Galli GG. PAX8 and MECOM are interaction partners driving ovarian cancer. Nat Commun 2021; 12:2442. [PMID: 33903593 PMCID: PMC8076227 DOI: 10.1038/s41467-021-22708-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/26/2021] [Indexed: 11/25/2022] Open
Abstract
The transcription factor PAX8 is critical for the development of the thyroid and urogenital system. Comprehensive genomic screens furthermore indicate an additional oncogenic role for PAX8 in renal and ovarian cancers. While a plethora of PAX8-regulated genes in different contexts have been proposed, we still lack a mechanistic understanding of how PAX8 engages molecular complexes to drive disease-relevant oncogenic transcriptional programs. Here we show that protein isoforms originating from the MECOM locus form a complex with PAX8. These include MDS1-EVI1 (also called PRDM3) for which we map its interaction with PAX8 in vitro and in vivo. We show that PAX8 binds a large number of genomic sites and forms transcriptional hubs. At a subset of these, PAX8 together with PRDM3 regulates a specific gene expression module involved in adhesion and extracellular matrix. This gene module correlates with PAX8 and MECOM expression in large scale profiling of cell lines, patient-derived xenografts (PDXs) and clinical cases and stratifies gynecological cancer cases with worse prognosis. PRDM3 is amplified in ovarian cancers and we show that the MECOM locus and PAX8 sustain in vivo tumor growth, further supporting that the identified function of the MECOM locus underlies PAX8-driven oncogenic functions in ovarian cancer.
Collapse
Affiliation(s)
- Melusine Bleu
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Fanny Mermet-Meillon
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Verena Apfel
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Louise Barys
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Laura Holzer
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Rui Lopes
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Cecile Delmas
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alexandra Hinniger
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Suzanne Chau
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Markus Kaufmann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Simon Haenni
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Karolin Berneiser
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Maria Wahle
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Ivana Moravec
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alexandra Vissières
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Tania Poetsch
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Erik Ahrné
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Nathalie Carte
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Johannes Voshol
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Elisabeth Bechter
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jacques Hamon
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Marco Meyerhofer
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Erdmann
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Matteo Fischer
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Therese Stachyra
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Felix Freuler
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sascha Gutmann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - César Fernández
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Tobias Schmelzle
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Ulrike Naumann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Guglielmo Roma
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Kate Lawrenson
- Cedars-Sinai Women's Cancer Program at the Samuel Oschin Cancer Center, Los Angeles, CA, USA
| | | | - Amanda Cobos-Correa
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Stephane Ferretti
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Giorgio Giacomo Galli
- Disease area Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
13
|
EVI1 dysregulation: impact on biology and therapy of myeloid malignancies. Blood Cancer J 2021; 11:64. [PMID: 33753715 PMCID: PMC7985498 DOI: 10.1038/s41408-021-00457-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023] Open
Abstract
Ecotropic viral integration site 1 (Evi1) was discovered in 1988 as a common site of ecotropic viral integration resulting in myeloid malignancies in mice. EVI1 is an oncogenic zinc-finger transcription factor whose overexpression contributes to disease progression and an aggressive phenotype, correlating with poor clinical outcome in myeloid malignancies. Despite progress in understanding the biology of EVI1 dysregulation, significant improvements in therapeutic outcome remain elusive. Here, we highlight advances in understanding EVI1 biology and discuss how this new knowledge informs development of novel therapeutic interventions. EVI1 is overexpression is correlated with poor outcome in some epithelial cancers. However, the focus of this review is the genetic lesions, biology, and current therapeutics of myeloid malignancies overexpressing EVI1.
Collapse
|
14
|
Emerging Roles of PRDM Factors in Stem Cells and Neuronal System: Cofactor Dependent Regulation of PRDM3/16 and FOG1/2 (Novel PRDM Factors). Cells 2020; 9:cells9122603. [PMID: 33291744 PMCID: PMC7761934 DOI: 10.3390/cells9122603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) (PR) homologous domain containing (PRDM) transcription factors are expressed in neuronal and stem cell systems, and they exert multiple functions in a spatiotemporal manner. Therefore, it is believed that PRDM factors cooperate with a number of protein partners to regulate a critical set of genes required for maintenance of stem cell self-renewal and differentiation through genetic and epigenetic mechanisms. In this review, we summarize recent findings about the expression of PRDM factors and function in stem cell and neuronal systems with a focus on cofactor-dependent regulation of PRDM3/16 and FOG1/2. We put special attention on summarizing the effects of the PRDM proteins interaction with chromatin modulators (NuRD complex and CtBPs) on the stem cell characteristic and neuronal differentiation. Although PRDM factors are known to possess intrinsic enzyme activity, our literature analysis suggests that cofactor-dependent regulation of PRDM3/16 and FOG1/2 is also one of the important mechanisms to orchestrate bidirectional target gene regulation. Therefore, determining stem cell and neuronal-specific cofactors will help better understanding of PRDM3/16 and FOG1/2-controlled stem cell maintenance and neuronal differentiation. Finally, we discuss the clinical aspect of these PRDM factors in different diseases including cancer. Overall, this review will help further sharpen our knowledge of the function of the PRDM3/16 and FOG1/2 with hopes to open new research fields related to these factors in stem cell biology and neuroscience.
Collapse
|
15
|
Nameki R, Chang H, Reddy J, Corona RI, Lawrenson K. Transcription factors in epithelial ovarian cancer: histotype-specific drivers and novel therapeutic targets. Pharmacol Ther 2020; 220:107722. [PMID: 33137377 DOI: 10.1016/j.pharmthera.2020.107722] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Transcription factors (TFs) are major contributors to cancer risk and somatic development. In preclinical and clinical studies, direct or indirect inhibition of TF-mediated oncogenic gene expression profiles have proven to be effective in many tumor types, highlighting this group of proteins as valuable therapeutic targets. In spite of this, our understanding of TFs in epithelial ovarian cancer (EOC) is relatively limited. EOC is a heterogeneous disease composed of five major histologic subtypes; high-grade serous, low-grade serous, endometrioid, clear cell and mucinous. Each histology is associated with unique clinical etiologies, sensitivity to therapies, and molecular signatures - including diverse transcriptional regulatory programs. While some TFs are shared across EOC subtypes, a set of TFs are expressed in a histotype-specific manner and likely explain part of the histologic diversity of EOC subtypes. Targeting TFs present with unique opportunities for development of novel precision medicine strategies for ovarian cancer. This article reviews the critical TFs in EOC subtypes and highlights the potential of exploiting TFs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Robbin Nameki
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Heidi Chang
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jessica Reddy
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Rosario I Corona
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Women's Cancer Research Program at the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Leszczyński P, Śmiech M, Salam Teeli A, Haque E, Viger R, Ogawa H, Pierzchała M, Taniguchi H. Deletion of the Prdm3 Gene Causes a Neuronal Differentiation Deficiency in P19 Cells. Int J Mol Sci 2020; 21:ijms21197192. [PMID: 33003409 PMCID: PMC7582457 DOI: 10.3390/ijms21197192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/29/2022] Open
Abstract
PRDM (PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1) homologous domain-containing) transcription factors are a group of proteins that have a significant impact on organ development. In our study, we assessed the role of Prdm3 in neurogenesis and the mechanisms regulating its expression. We found that Prdm3 mRNA expression was induced during neurogenesis and that Prdm3 gene knockout caused premature neuronal differentiation of the P19 cells and enhanced the growth of non-neuronal cells. Interestingly, we found that Gata6 expression was also significantly upregulated during neurogenesis. We further studied the regulatory mechanism of Prdm3 expression. To determine the role of GATA6 in the regulation of Prdm3 mRNA expression, we used a luciferase-based reporter assay and found that Gata6 overexpression significantly increased the activity of the Prdm3 promoter. Finally, the combination of retinoic acid receptors α and β, along with Gata6 overexpression, further increased the activity of the luciferase reporter. Taken together, our results suggest that in the P19 cells, PRDM3 contributed to neurogenesis and its expression was stimulated by the synergism between GATA6 and the retinoic acid signaling pathway.
Collapse
Affiliation(s)
- Paweł Leszczyński
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Magdalena Śmiech
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
| | - Robert Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval and Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC GIV4G2, Canada;
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC G1V0A6, Canada
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita 565-0871, Japan;
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Biotechnology, Department of Genomics and Biodiversity, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland;
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology, Laboratory for Genome Editing and Transcriptional Regulation, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (P.L.); (M.Ś.); (A.S.T.); (E.H.)
- Correspondence: ; Tel.: +48-22-736-70-95
| |
Collapse
|
17
|
EVI1 in Leukemia and Solid Tumors. Cancers (Basel) 2020; 12:cancers12092667. [PMID: 32962037 PMCID: PMC7564095 DOI: 10.3390/cancers12092667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/13/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Ecotropic viral integration site 1 (EVI1) is transcriptionally activated in a subset of myeloid leukemias. Since its discovery, other isoforms of EVI1 have been identified. It has been shown that EVI1 and its isoforms mainly function as transcription factors and to play important roles not only in leukemia but also in a variety of solid tumors. To provide a comprehensive understanding of this family of proteins, we summarize the currently available knowledge of expression and function of EVI1 and its isoforms in leukemia and solid tumors and provide insights of future studies. Abstract The EVI1 gene encodes for a transcription factor with two zinc finger domains and is transcriptionally activated in a subset of myeloid leukemias. In leukemia, the transcriptional activation of EVI1 usually results from chromosomal rearrangements. Besides leukemia, EVI1 has also been linked to solid tumors including breast cancer, lung cancer, ovarian cancer and colon cancer. The MDS1/EVI1 gene is encoded by the same locus as EVI1. While EVI1 functions as a transcription repressor, MDS1/EVI1 acts as a transcription activator. The fusion protein encoded by the AML1/MDS1/EVI1 chimeric gene, resulting from chromosomal translocations in a subset of chronic myeloid leukemia, exhibits a similar function to EVI1. EVI1 has been shown to regulate cell proliferation, differentiation and apoptosis, whereas the functions of MDS1/EVI1 and AML1/MDS1/EVI1 remain elusive. In this review, we summarize the genetic structures, biochemical properties and biological functions of these proteins in cancer.
Collapse
|
18
|
Casamassimi A, Rienzo M, Di Zazzo E, Sorrentino A, Fiore D, Proto MC, Moncharmont B, Gazzerro P, Bifulco M, Abbondanza C. Multifaceted Role of PRDM Proteins in Human Cancer. Int J Mol Sci 2020; 21:ijms21072648. [PMID: 32290321 PMCID: PMC7177584 DOI: 10.3390/ijms21072648] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
The PR/SET domain family (PRDM) comprise a family of genes whose protein products share a conserved N-terminal PR [PRDI-BF1 (positive regulatory domain I-binding factor 1) and RIZ1 (retinoblastoma protein-interacting zinc finger gene 1)] homologous domain structurally and functionally similar to the catalytic SET [Su(var)3-9, enhancer-of-zeste and trithorax] domain of histone methyltransferases (HMTs). These genes are involved in epigenetic regulation of gene expression through their intrinsic HMTase activity or via interactions with other chromatin modifying enzymes. In this way they control a broad spectrum of biological processes, including proliferation and differentiation control, cell cycle progression, and maintenance of immune cell homeostasis. In cancer, tumor-specific dysfunctions of PRDM genes alter their expression by genetic and/or epigenetic modifications. A common characteristic of most PRDM genes is to encode for two main molecular variants with or without the PR domain. They are generated by either alternative splicing or alternative use of different promoters and play opposite roles, particularly in cancer where their imbalance can be often observed. In this scenario, PRDM proteins are involved in cancer onset, invasion, and metastasis and their altered expression is related to poor prognosis and clinical outcome. These functions strongly suggest their potential use in cancer management as diagnostic or prognostic tools and as new targets of therapeutic intervention.
Collapse
Affiliation(s)
- Amelia Casamassimi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Erika Di Zazzo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Anna Sorrentino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maria Chiara Proto
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy; (D.F.); (M.C.P.); (P.G.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 80138 Naples, Italy; (E.D.Z.); (A.S.)
- Correspondence: (A.C.); (C.A.); Tel.: +39-081-566-7579 (A.C.); +39-081-566-7568 (C.A.)
| |
Collapse
|
19
|
Oliver GR, Jenkinson G, Klee EW. Computational Detection of Known Pathogenic Gene Fusions in a Normal Tissue Database and Implications for Genetic Disease Research. Front Genet 2020; 11:173. [PMID: 32180803 PMCID: PMC7059617 DOI: 10.3389/fgene.2020.00173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
Several recent studies have demonstrated the utility of RNA-Seq in the diagnosis of rare inherited disease. Diagnostic rates 35% higher than those previously achievable with DNA-Seq alone have been attained. These studies have primarily profiled gene expression and splicing defects, however, some have also shown that fusion transcripts are diagnostic or phenotypically relevant in patients with constitutional disorders. Fusion transcripts have traditionally been studied as oncogenic phenomena, with relevance only to cancer testing. Consequently, fusion detection algorithms were biased toward the detection of well-known oncogenic fusions, hindering their application to rare Mendelian genetic disease studies. A recent methodology published by the authors successfully tailored a traditional algorithm to the detection of pathogenic fusion events in inherited disease. A key mechanism of decreasing false positive or biologically benign events was comparison to a database of events detected in normal tissues. This approach is akin to population frequency-based filtering of genetic variants. It is predicated on the idea that pathogenic fusion transcripts are absent from normal tissue. We report on an analysis of RNA-Seq data from the genotype-tissue expression (GTEx) project in which known pathogenic fusions are computationally detected at low levels in normal tissues unassociated with the disease phenotype. Examples include archetypal cancer fusion transcripts, as well as fusions responsible for rare inherited disease. We consider potential explanations for the detectability of such transcripts and discuss the bearing such results have on the future profiling of genetic disease patients for pathogenic gene fusions.
Collapse
Affiliation(s)
- Gavin Robert Oliver
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Garrett Jenkinson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
20
|
Suzuki M, Katayama S, Yamamoto M. Two effects of GATA2 enhancer repositioning by 3q chromosomal rearrangements. IUBMB Life 2019; 72:159-169. [PMID: 31820561 DOI: 10.1002/iub.2191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023]
Abstract
Chromosomal inversion and translocation between 3q21 and 3q26 [inv (3)(q21.3q26.2) and t(3;3)(q21.3;q26.2), respectively] give rise to acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), which have poor prognoses. The chromosomal rearrangements reposition a GATA2 distal hematopoietic enhancer from the original 3q21 locus to the EVI1 (also known as MECOM) locus on 3q26. Therefore, the GATA2 enhancer from one of two GATA2 alleles drives EVI1 gene expression in hematopoietic stem and progenitor cells, which promotes the accumulation of abnormal progenitors and induces leukemogenesis. On the other hand, one allele of the GATA2 gene loses its enhancer, which results in reduced GATA2 expression. The GATA2 gene encodes a transcription factor critical for the generation and maintenance of hematopoietic stem and progenitor cells. GATA2 haploinsufficiency has been known to cause immunodeficiency and myeloid leukemia. Notably, reduced GATA2 expression suppresses the differentiation but promotes the proliferation of EVI1-expressing leukemic cells, which accelerates EVI1-driven leukemogenesis. A series of studies have shown that the GATA2 enhancer repositioning caused by the chromosomal rearrangements between 3q21 and 3q26 provokes misexpression of both the EVI1 and GATA2 genes and that these two effects coordinately elicit high-risk leukemia.
Collapse
Affiliation(s)
- Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Katayama
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
21
|
Expression Pattern and Prognostic Significance of EVI1 Gene in Adult Acute Myeloid Leukemia Patients with Normal Karyotype. Indian J Hematol Blood Transfus 2019; 36:292-299. [PMID: 32425380 DOI: 10.1007/s12288-019-01227-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022] Open
Abstract
According to current criteria, patients with acute myeloid leukemia with normal karyotype (AML-NK) are classified as intermediate risk patients. There is a constant need for additional molecular markers that will help in substratification into more precise prognostic groups. One of the potential new markers is Ecotropic viral integration 1 site (EVI1) transcriptional factor, whose expression is dissregulated in abnormal hematopoietic process. The purpose of this study was to examine EVI1 gene expression in 104 adult AML-NK patients and on 10 healthy bone marrow donors using real-time polymerase chain reaction method, and to evaluate association between EVI1 expression level and other molecular and clinical features, and to examine its potential influence on the prognosis of the disease. Overexpression of EVI1 gene (EVI1 + status) was present in 17% of patients. Increased EVI1 expression was predominantly found in patients with lower WBC count (P = 0.003) and lower bone marrow blast percentage (P = 0.005). EVI1 + patients had lower WT1 expression level (P = 0.041), and were negative for FLT3-ITD and NPM1 mutations (P = 0.036 and P = 0.003). Patients with EVI1 + status had higher complete remission rate (P = 0.047), but EVI1 expression didn't influence overall and disease free survival. EVI1 expression status alone, cannot be used as a new marker for more precise substratification of AML-NK patients. Further investigations conducted on larger number of patients may indicate how EVI1 expression could influence the prognosis and outcome of AML-NK patients, by itself, or in the context of other molecular and clinical parameters.
Collapse
|
22
|
Ivanochko D, Halabelian L, Henderson E, Savitsky P, Jain H, Marcon E, Duan S, Hutchinson A, Seitova A, Barsyte-Lovejoy D, Filippakopoulos P, Greenblatt J, Lima-Fernandes E, Arrowsmith CH. Direct interaction between the PRDM3 and PRDM16 tumor suppressors and the NuRD chromatin remodeling complex. Nucleic Acids Res 2019; 47:1225-1238. [PMID: 30462309 PMCID: PMC6379669 DOI: 10.1093/nar/gky1192] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/31/2018] [Accepted: 11/15/2018] [Indexed: 01/01/2023] Open
Abstract
Aberrant isoform expression of chromatin-associated proteins can induce epigenetic programs related to disease. The MDS1 and EVI1 complex locus (MECOM) encodes PRDM3, a protein with an N-terminal PR-SET domain, as well as a shorter isoform, EVI1, lacking the N-terminus containing the PR-SET domain (ΔPR). Imbalanced expression of MECOM isoforms is observed in multiple malignancies, implicating EVI1 as an oncogene, while PRDM3 has been suggested to function as a tumor suppressor through an unknown mechanism. To elucidate functional characteristics of these N-terminal residues, we compared the protein interactomes of the full-length and ΔPR isoforms of PRDM3 and its closely related paralog, PRDM16. Unlike the ΔPR isoforms, both full-length isoforms exhibited a significantly enriched association with components of the NuRD chromatin remodeling complex, especially RBBP4. Typically, RBBP4 facilitates chromatin association of the NuRD complex by binding to histone H3 tails. We show that RBBP4 binds to the N-terminal amino acid residues of PRDM3 and PRDM16, with a dissociation constant of 3.0 μM, as measured by isothermal titration calorimetry. Furthermore, high-resolution X-ray crystal structures of PRDM3 and PRDM16 N-terminal peptides in complex with RBBP4 revealed binding to RBBP4 within the conserved histone H3-binding groove. These data support a mechanism of isoform-specific interaction of PRDM3 and PRDM16 with the NuRD chromatin remodeling complex.
Collapse
Affiliation(s)
- Danton Ivanochko
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Elizabeth Henderson
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Pavel Savitsky
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Harshika Jain
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Edyta Marcon
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Shili Duan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Ashley Hutchinson
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Evelyne Lima-Fernandes
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| |
Collapse
|
23
|
Kjeldsen E, Veigaard C, Aggerholm A, Hasle H. Congenital hypoplastic bone marrow failure associated with a de novo partial deletion of the MECOM gene at 3q26.2. Gene 2018; 656:86-94. [DOI: 10.1016/j.gene.2018.02.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 01/23/2023]
|
24
|
Zhou NC, Li GH, Chen RA, Liu L. [Acute myeloid leukemia with t (5;12) (q33;p13) and inv (3) (q21q26) : a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:248-250. [PMID: 29562475 PMCID: PMC7343001 DOI: 10.3760/cma.j.issn.0253-2727.2018.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 11/14/2022]
Affiliation(s)
| | | | | | - L Liu
- Department of Hematology,Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
25
|
Fratta E, Montico B, Rizzo A, Colizzi F, Sigalotti L, Dolcetti R. Epimutational profile of hematologic malignancies as attractive target for new epigenetic therapies. Oncotarget 2018; 7:57327-57350. [PMID: 27329599 PMCID: PMC5302993 DOI: 10.18632/oncotarget.10033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/28/2016] [Indexed: 12/31/2022] Open
Abstract
In recent years, recurrent somatic mutations in epigenetic regulators have been identified in patients with hematological malignancies. Furthermore, chromosomal translocations in which the fusion protein partners are themselves epigenetic regulators or where epigenetic regulators are recruited/targeted by oncogenic fusion proteins have also been described. Evidence has accumulated showing that "epigenetic drugs" are likely to provide clinical benefits in several hematological malignancies, granting their approval for the treatment of myelodysplastic syndromes and cutaneous T-cell lymphomas. A large number of pre-clinical and clinical trials evaluating epigenetic drugs alone or in combination therapies are ongoing. The aim of this review is to provide a comprehensive summary of known epigenetic alterations and of the current use of epigenetic drugs for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Elisabetta Fratta
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Barbara Montico
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Aurora Rizzo
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Francesca Colizzi
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Luca Sigalotti
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, National Cancer Institute, Aviano, PN, Italy.,University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
26
|
Huang JF, Wang Y, Liu F, Liu Y, Zhao CX, Guo YJ, Sun SH. EVI1 promotes cell proliferation in HBx-induced hepatocarcinogenesis as a critical transcription factor regulating lncRNAs. Oncotarget 2017; 7:21887-99. [PMID: 26967394 PMCID: PMC5008331 DOI: 10.18632/oncotarget.7993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/18/2016] [Indexed: 12/15/2022] Open
Abstract
The involvement of the hepatitis B virus X (HBx) protein in epigenetic modifications during hepatocarcinogenesis has been previously characterized. Long noncoding RNAs (lncRNAs), a kind of epigenetic regulator molecules, have also been shown to play crucial roles in HBx-related hepatocellular carcinoma (HCC). In this study, we analyzed the key transcription factors of aberrantly expressed lncRNAs in the livers of HBx transgenic mice by bioinformatics prediction, and found that ecotropic viral integration site 1 (Evi1) was a potential main transcription regulator. Further investigation showed that EVI1 was positively correlated to HBx expression and was frequently up-regulated in HBV-related HCC tissues. The forced expression of HBx in liver cell lines resulted in a significant increase of the expression of EVI1. Furthermore, suppression of EVI1 expression decreased the proliferation of HCC cells overexpressing HBx in vitro and in vivo. Conclusion: Our findings suggest that EVI1 is frequently up-regulated and regulates a cluster of lncRNAs in HBV-related hepatocellular carcinoma (HCC). These findings highlight a novel mechanism for HBx-induced hepatocarcinogenesis through transcription factor EVI1 and its target lncRNAs, and provide a potential new approach to predict the functions of lncRNAs.
Collapse
Affiliation(s)
- Jin-Feng Huang
- The Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Yue Wang
- The Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Feng Liu
- The Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Yin Liu
- The Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Chen-Xi Zhao
- The Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Ying-Jun Guo
- The Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Shu-Han Sun
- The Department of Medical Genetics, Second Military Medical University, Shanghai, China
| |
Collapse
|
27
|
Wang H, Schaefer T, Konantz M, Braun M, Varga Z, Paczulla AM, Reich S, Jacob F, Perner S, Moch H, Fehm TN, Kanz L, Schulze-Osthoff K, Lengerke C. Prominent Oncogenic Roles of EVI1 in Breast Carcinoma. Cancer Res 2017; 77:2148-2160. [DOI: 10.1158/0008-5472.can-16-0593] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 11/29/2016] [Accepted: 01/08/2017] [Indexed: 11/16/2022]
|
28
|
PML-RARA-associated cooperating mutations belong to a transcriptional network that is deregulated in myeloid leukemias. Leukemia 2016; 31:1975-1986. [DOI: 10.1038/leu.2016.386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/13/2016] [Accepted: 12/05/2016] [Indexed: 12/12/2022]
|
29
|
Wang HY, Rashidi HH. The New Clinicopathologic and Molecular Findings in Myeloid Neoplasms With inv(3)(q21q26)/t(3;3)(q21;q26.2). Arch Pathol Lab Med 2016; 140:1404-1410. [DOI: 10.5858/arpa.2016-0059-ra] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context.—
Inv(3)(q21q26)/t(3;3)(q21;q26.2) is the most common form of genetic abnormality of the so-called 3q21q26 syndrome. Myeloid neoplasms with 3q21q26 aberrancies include acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and blast crisis of myeloproliferative neoplasms. Recent advances on myeloid neoplasms with inv(3)/t(3;3) with regard to clinicopathologic features and novel molecular or genomic findings warrant a comprehensive review on this topic.
Objective.—
To review the clinicopathologic features and molecular as well as genomic alterations in myeloid neoplasms with inv(3)/t(3;3).
Data Sources.—
The data came from published articles in English-language literature.
Conclusions.—
At the clinicopathologic front, recent studies on MDS with inv(3)/t(3;3) have highlighted their overlapping clinicopathologic features with and similar overall survival to that of inv(3)/t(3;3)-harboring AML regardless of the percentage of myeloid blasts. On the molecular front, AML and MDS with inv(3)/t(3;3) exhibit gene mutations, which affect the RAS/receptor tyrosine kinase pathway. Furthermore, functional genomic studies using genomic editing and genome engineering have shown that the reallocation of the GATA2 distal hematopoietic enhancer to the proximity of the promoter of ectopic virus integration site 1 (EVI1) without the formation of a new oncogenic fusion transcript is the molecular mechanism underlying these inv(3)/t(3;3) myeloid neoplasms. Although the AML and MDS with inv(3)/t(3;3) are listed as a separate category of myeloid malignancies in the 2008 World Health Organization classification, the overlapping clinicopathologic features, similar overall survival, and identical patterns at the molecular and genomic levels between AML and MDS patients with inv(3)/t(3;3) may collectively favor a unification of AML and MDS with inv(3)/t(3;3) as AML or myeloid neoplasms with inv(3)/t(3;3) regardless of the blast count.
Collapse
Affiliation(s)
- Huan-You Wang
- From the Department of Pathology, University of California San Diego Health System, La Jolla (Dr Wang); and the Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento (Dr Rashidi)
| | | |
Collapse
|
30
|
The role of PRDMs in cancer: one family, two sides. Curr Opin Genet Dev 2016; 36:83-91. [DOI: 10.1016/j.gde.2016.03.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/24/2016] [Indexed: 12/24/2022]
|
31
|
Abstract
Deregulated expression of the ecotropic virus integration site 1 (EVI1) gene is the molecular hallmark of therapy-resistant myeloid malignancies bearing chromosomal inv(3)(q21q26·2) or t(3;3)(q21;q26·2) [hereafter referred to as inv(3)/t(3;3)] abnormalities. EVI1 is a haematopoietic stemness and transcription factor with chromatin remodelling activity. Interestingly, the EVI1 gene also shows overexpression in 6-11% of adult acute myeloid leukaemia (AML) cases that do not carry any 3q aberrations. Deregulated expression of EVI1 is strongly associated with monosomy 7 and 11q23 abnormalities, which are known to be associated with poor response to treatment. However, EVI1 overexpression has been revealed as an important independent adverse prognostic marker in adult AML and defines distinct risk categories in 11q23-rearranged AML. Recently, important progress has been made in the delineation of the mechanism by which EVI1 becomes deregulated in inv(3)/t(3;3) as well as the cooperating mutations in this specific subset of AML with dismal prognosis.
Collapse
Affiliation(s)
- Adil A Hinai
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Peter J M Valk
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
32
|
Lu G, Wu J, Zhao G, Wang Z, Chen W, Mu S. Abundant and broad expression of transcription-induced chimeras and protein products in mammalian genomes. Biochem Biophys Res Commun 2015; 470:759-765. [PMID: 26718406 DOI: 10.1016/j.bbrc.2015.12.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
The expression of transcription-induced chimeras (TICs) was underestimated due to strategic and logical reasons. In order to thoroughly examine TICs, systematic survey of TIC events was conducted in mammalian genomes using ESTs, followed by experimental validation using RT-PCR and real-time quantitative PCR (qPCR). The expression of ∼98% TIC events in at least one tissue or cell line from both mouse and human was verified. Besides, ∼40% TICs were broadly expressed, and ∼33% of TICs showed expression levels comparable to or higher than their upstream parental genes. We further identified putative chimeric proteins in public databases and validated two using Western blotting. GO analysis revealed that proteins resided in one multi-protein complex or functioning in metabolic or signaling pathway tended to produce fused products. Taken together, we have shown substantial evidence for the underestimated TIC events; and TICs could be a novel regulated way to further increases the proteome complexity in mammalian genomes. Possible regulation mechanisms and evolution of TICs were also discussed.
Collapse
Affiliation(s)
- Guanting Lu
- Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, 710032, Xi'an, China
| | - Jin Wu
- Department of Clinical Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | | | - Zhiqiang Wang
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Weihua Chen
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
| | - Shijie Mu
- Department of Blood Transfusion, Tangdu Hospital, The Fourth Military Medical University, 710032, Xi'an, China.
| |
Collapse
|
33
|
Yuan X, Wang X, Bi K, Jiang G. The role of EVI-1 in normal hematopoiesis and myeloid malignancies (Review). Int J Oncol 2015; 47:2028-36. [PMID: 26496831 DOI: 10.3892/ijo.2015.3207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/30/2015] [Indexed: 11/06/2022] Open
Abstract
Ecotropic virus integration site-1 (EVI-1) gene, locus on chromosome 3 (3q26.2) in the human genome, was first found in the AKXD strain of mice, in a model of retrovirus-induced acute myeloid leukemia (AML) established twenty years ago. Since then, EVI-1 was regarded as one of the most invasive proto-oncogenes in human leukemia. EVI-1 can encode a unique zinc-finger protein of 145 kDa that can bind with DNA, and its overexpression was closely related to human hemopoietic diseases. Furthermore, accumulating research indicates that EVI-1 is involved in the differentiation, apoptosis and proliferation of leukemia cells. The present review focuses on the biochemical properties of EVI-1 which plays a role in myeloid malignancies.
Collapse
Affiliation(s)
- Xiaofen Yuan
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| | - Xidi Wang
- Laboratory Department, People's Hospital of Zhangqiu City, Zhangqiu, Shandong, P.R. China
| | - Kehong Bi
- Department of Hematology, Qianfoshan Hospital of Shandong, Jinan, Shandong, P.R. China
| | - Guosheng Jiang
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
| |
Collapse
|
34
|
Sayadi A, Jeyakani J, Seet SH, Wei CL, Bourque G, Bard FA, Jenkins NA, Copeland NG, Bard-Chapeau EA. Functional features of EVI1 and EVI1Δ324 isoforms of MECOM gene in genome-wide transcription regulation and oncogenicity. Oncogene 2015; 35:2311-21. [DOI: 10.1038/onc.2015.286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/09/2015] [Accepted: 06/13/2015] [Indexed: 11/09/2022]
|
35
|
Yasui K, Konishi C, Gen Y, Endo M, Dohi O, Tomie A, Kitaichi T, Yamada N, Iwai N, Nishikawa T, Yamaguchi K, Moriguchi M, Sumida Y, Mitsuyoshi H, Tanaka S, Arii S, Itoh Y. EVI1, a target gene for amplification at 3q26, antagonizes transforming growth factor-β-mediated growth inhibition in hepatocellular carcinoma. Cancer Sci 2015; 106:929-937. [PMID: 25959919 PMCID: PMC4520646 DOI: 10.1111/cas.12694] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/27/2015] [Accepted: 05/02/2015] [Indexed: 02/01/2023] Open
Abstract
EVI1 (ecotropic viral integration site 1) is one of the most aggressive oncogenes associated with myeloid leukemia. We investigated DNA copy number aberrations in human hepatocellular carcinoma (HCC) cell lines using a high-density oligonucleotide microarray. We found that a novel amplification at the chromosomal region 3q26 occurs in the HCC cell line JHH-1, and that MECOM (MDS1 and EVI1 complex locus), which lies within the 3q26 region, was amplified. Quantitative PCR analysis of the three transcripts transcribed from MECOM indicated that only EVI1, but not the fusion transcript MDS1-EVI1 or MDS1, was overexpressed in JHH-1 cells and was significantly upregulated in 22 (61%) of 36 primary HCC tumors when compared with their non-tumorous counterparts. A copy number gain of EVI1 was observed in 24 (36%) of 66 primary HCC tumors. High EVI1 expression was significantly associated with larger tumor size and higher level of des-γ-carboxy prothrombin, a tumor marker for HCC. Knockdown of EVI1 resulted in increased induction of the cyclin-dependent kinase inhibitor p15(INK) (4B) by transforming growth factor (TGF)-β and decreased expression of c-Myc, cyclin D1, and phosphorylated Rb in TGF-β-treated cells. Consequently, knockdown of EVI1 led to reduced DNA synthesis and cell viability. Collectively, our results suggest that EVI1 is a probable target gene that acts as a driving force for the amplification at 3q26 in HCC and that the oncoprotein EVI1 antagonizes TGF-β-mediated growth inhibition of HCC cells.
Collapse
Affiliation(s)
- Kohichiroh Yasui
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Chika Konishi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Yasuyuki Gen
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Mio Endo
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Akira Tomie
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Tomoko Kitaichi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Nobuhisa Yamada
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Naoto Iwai
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Kanji Yamaguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Michihisa Moriguchi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Yoshio Sumida
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Hironori Mitsuyoshi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| | - Shinji Tanaka
- Department of Hepato-Biliary Pancreatic Surgery, Tokyo Medical and Dental UniversityTokyo, Japan
- Department of Molecular Oncology, Tokyo Medical and Dental UniversityTokyo, Japan
| | - Shigeki Arii
- Department of Hepato-Biliary Pancreatic Surgery, Tokyo Medical and Dental UniversityTokyo, Japan
- Hamamatsu Rosai Hospital, Japan Labour Health and Welfare OrganizationHamamatsu, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of MedicineKyoto, Japan
| |
Collapse
|
36
|
Jancuskova T, Plachy R, Zemankova L, Hardekopf DW, Stika J, Zejskova L, Praulich I, Kreuzer KA, Rothe A, Othman MA, Kosyakova N, Pekova S. Molecular characterization of the rare translocation t(3;10)(q26;q21) in an acute myeloid leukemia patient. Mol Cytogenet 2014; 7:47. [PMID: 25071866 PMCID: PMC4113123 DOI: 10.1186/1755-8166-7-47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/02/2014] [Indexed: 01/17/2023] Open
Abstract
Background In acute myeloid leukemia (AML), the MDS1 and EVI1 complex locus - MECOM, also known as the ecotropic virus integration site 1 - EVI1, located in band 3q26, can be rearranged with a variety of partner chromosomes and partner genes. Here we report on a 57-year-old female with AML who presented with the rare translocation t(3;10)(q26;q21) involving the MECOM gene. Our aim was to identify the fusion partner on chromosome 10q21 and to characterize the precise nucleotide sequence of the chromosomal breakpoint. Methods Cytogenetic and molecular-cytogenetic techniques, chromosome microdissection, next generation sequencing, long-range PCR and direct Sanger sequencing were used to map the chromosomal translocation. Results Using a combination of cytogenetic and molecular approaches, we mapped the t(3;10)(q26;q21) to the single nucleotide level, revealing a fusion of the MECOM gene (3q26.2) and C10orf107 (10q21.2). Conclusions The approach described here opens up new possibilities in characterizing acquired as well as congenital chromosomal aberrations. In addition, DNA sequences of chromosomal breakpoints may be a useful tool for unique molecular minimal residual disease target identification in acute leukemia patients.
Collapse
Affiliation(s)
- Tereza Jancuskova
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Radek Plachy
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Lucie Zemankova
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - David Warren Hardekopf
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Jiri Stika
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Lenka Zejskova
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Inka Praulich
- Department I of Internal Medicine, University at Cologne, Kerpener Str., Cologne, Germany
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine, University at Cologne, Kerpener Str., Cologne, Germany
| | - Achim Rothe
- Oncological Therapy Center, Buchforststr., Cologne, Germany
| | - Moneeb Ak Othman
- Jena University Hospital, Institute of Human Genetics, Kollegiengasse 10, Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Institute of Human Genetics, Kollegiengasse 10, Jena, Germany
| | - Sona Pekova
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| |
Collapse
|
37
|
Zhou LY, Chen FY, Shen LJ, Wan HX, Zhong JH. Arsenic trioxide induces apoptosis in the THP1 cell line by downregulating EVI-1. Exp Ther Med 2014; 8:85-90. [PMID: 24944602 PMCID: PMC4061239 DOI: 10.3892/etm.2014.1716] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/29/2014] [Indexed: 01/12/2023] Open
Abstract
Acute leukemia is a malignant clonal hematopoietic stem cell disease. In the current study, the effects of arsenic trioxide (ATO) on the ecotropic viral integration site-1 (EVI-1) gene were investigated in the THP1 cell line. THP-1 cells were treated with different concentrations of ATO (0, 1, 3 and 5 μM) for 24, 48 or 72 h, then tested for cell viability by CCK-8 kit, cell morphology by cytospin smear, cell apoptosis by flow cytometry, EVI-1 mRNA expression by reverse transcription polymerase chain reaction (RT-PCR) and protein quantity by western blot. ATO treatment was shown to inhibit proliferation and induce apoptosis in THP1 cells in a dose- and time-dependent manner. ATO downregulated the mRNA and protein expression of EVI-1 in the THP1 cell line. In addition, ATO significantly decreased the expression of antiapoptotic proteins, B-cell lymphoma 2 (Bcl-2) and B cell lymphoma-extra large (Bcl-xL), but markedly increased the expression of proapoptotic proteins, including c-Jun N-terminal kinase (JNK), phosphorylated-JNK, Bax, full length caspase-3 and cleaved caspase-3. These results indicated that ATO inhibited the proliferation and induced apoptosis in THP1 cells partially via blocking the inhibitory effects of EVI-1 on the JNK signaling pathway with the involvement of apoptosis-associated proteins, including Bax, Bcl-2, Bcl-xL and caspase-3. These novel observations may be used to elucidate the mechanism by which ATO induces apoptosis in acute leukemia cells, and provide rationales to develop a personalized medicine strategy for ATO via targeting EVI-1 positive neoplasm.
Collapse
Affiliation(s)
- Ling-Yun Zhou
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Fang-Yuan Chen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Li-Jing Shen
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Hai-Xia Wan
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Ji-Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
38
|
Achkar WA, Aljapawe A, Liehr T, Wafa A. De novo acute myeloid leukemia subtype-M4 with initial trisomy 8 and later acquired t(3;12)(q26;p12) leading to ETV6/MDS1/EVI1 fusion transcript expression: A case report. Oncol Lett 2014; 7:787-790. [PMID: 24527086 PMCID: PMC3919885 DOI: 10.3892/ol.2014.1784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 10/25/2013] [Indexed: 11/08/2022] Open
Abstract
The t(3;12)(q26;p13) translocation is a recurrent chromosomal aberration observed in myeloid malignancies. The translocation results in the generation of the ETV6/myelodysplastic syndrome 1 (MDS1)/ectopic viral integration site 1 (EVI1) fusion gene. However, the present case report is the first to present this rearrangement in acute myelogeneous leukemia (AML)-M4. Notably, this case is the first report of AML-M4 with an initial trisomy 8 and secondary acquired t(3;12)(q26;p13). Cells harboring the t(3;12) translocation were found to exhibit a higher proliferative capacity than cells with pure trisomy 8, which is consistent with the role of the ETV6/MDS1/EVI1 fusion transcript in the development and progression of malignancy.
Collapse
Affiliation(s)
- Walid Al Achkar
- Department of Molecular Biology and Biotechnology, Division of Human Genetics, Atomic Energy Commission of Syria, Damascus 6091, Syria
| | - Abdulmunim Aljapawe
- Laboratory of Flow-Cytometry, Department of Molecular Biology and Biotechnology, Division of Mammalians Biology, Atomic Energy Commission of Syria, Damascus 6091, Syria
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Jena 07740, Germany
| | - Abdulsamad Wafa
- Department of Molecular Biology and Biotechnology, Division of Human Genetics, Atomic Energy Commission of Syria, Damascus 6091, Syria
| |
Collapse
|
39
|
Celá P, Balková SM, Bryjová A, Horáková D, Míšek I, Richman J, Buchtová M. Expression, function and regulation of Evi-1 during embryonic avian development. Gene Expr Patterns 2013; 13:343-53. [DOI: 10.1016/j.gep.2013.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 06/15/2013] [Accepted: 06/19/2013] [Indexed: 12/14/2022]
|
40
|
Thoren LA, Fog CK, Jensen KT, Buza-Vidas N, Côme C, Lund AH, Porse BT. PRDM11 is dispensable for the maintenance and function of hematopoietic stem and progenitor cells. Stem Cell Res 2013; 11:1129-36. [DOI: 10.1016/j.scr.2013.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 06/17/2013] [Accepted: 07/30/2013] [Indexed: 12/13/2022] Open
|
41
|
Glass C, Wuertzer C, Cui X, Bi Y, Davuluri R, Xiao YY, Wilson M, Owens K, Zhang Y, Perkins A. Global Identification of EVI1 Target Genes in Acute Myeloid Leukemia. PLoS One 2013; 8:e67134. [PMID: 23826213 PMCID: PMC3694976 DOI: 10.1371/journal.pone.0067134] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 05/19/2013] [Indexed: 12/20/2022] Open
Abstract
The ecotropic virus integration site 1 (EVI1) transcription factor is associated with human myeloid malignancy of poor prognosis and is overexpressed in 8-10% of adult AML and strikingly up to 27% of pediatric MLL-rearranged leukemias. For the first time, we report comprehensive genomewide EVI1 binding and whole transcriptome gene deregulation in leukemic cells using a combination of ChIP-Seq and RNA-Seq expression profiling. We found disruption of terminal myeloid differentiation and cell cycle regulation to be prominent in EVI-induced leukemogenesis. Specifically, we identified EVI1 directly binds to and downregulates the master myeloid differentiation gene Cebpe and several of its downstream gene targets critical for terminal myeloid differentiation. We also found EVI1 binds to and downregulates Serpinb2 as well as numerous genes involved in the Jak-Stat signaling pathway. Finally, we identified decreased expression of several ATP-dependent P2X purinoreceptors genes involved in apoptosis mechanisms. These findings provide a foundation for future study of potential therapeutic gene targets for EVI1-induced leukemia.
Collapse
Affiliation(s)
- Carolyn Glass
- Department of Pathology and Lab Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Charles Wuertzer
- Department of Pathology and Lab Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Xiaohui Cui
- Department of Pathology and Lab Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Yingtao Bi
- Molecular and Cellular Oncogenesis Program, Center for Systems and Computational Biology The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Ramana Davuluri
- Molecular and Cellular Oncogenesis Program, Center for Systems and Computational Biology The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Ying-Yi Xiao
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Michael Wilson
- Department of Pathology and Lab Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kristina Owens
- Department of Pathology and Lab Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Yi Zhang
- Department of Pathology and Lab Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Archibald Perkins
- Department of Pathology and Lab Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
42
|
Recurrent reciprocal RNA chimera involving YPEL5 and PPP1CB in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2013; 110:3035-40. [PMID: 23382248 DOI: 10.1073/pnas.1214326110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common form of leukemia in adults in the Western hemisphere. Tumor-specific chromosomal translocations, characteristic findings in several human malignancies that directly lead to malignant transformation, have not been identified in CLL. Using paired-end transcriptome sequencing, we identified recurrent and reciprocal RNA chimeras involving yippee like 5 (YPEL5) and serine/threonine-protein phosphatase PP1-beta-catalytic subunit (PPP1CB) in CLL. Two of seven index cases (28%) harbored the reciprocal RNA chimeras in our initial screening. Using quantitative real-time PCR (q real-time PCR), YPEL5/PPP1CB and PPP1CB/YPEL5 fusion transcripts were detected in 97 of 103 CLL samples (95%) but not in paired normal samples, benign lymphocytes, or various unrelated cancers. Whole-genome sequencing and Southern blotting demonstrated no evidence for a genomic fusion between YPEL5 and PPP1CB. YPEL5/PPP1CB chimera, when introduced into mammalian cells, expressed a truncated PPP1CB protein that demonstrated diminished phosphatase activity. PPP1CB silencing resulted in enhanced proliferation and colony formation of MEC1 and JVM3 cells, implying a role in the pathogenesis of mature B-cell leukemia. These studies uncover a potential role for recurrent RNA chimeras involving phosphatases in the pathogenesis of a common form of leukemia.
Collapse
|
43
|
Di Zazzo E, De Rosa C, Abbondanza C, Moncharmont B. PRDM Proteins: Molecular Mechanisms in Signal Transduction and Transcriptional Regulation. BIOLOGY 2013; 2:107-41. [PMID: 24832654 PMCID: PMC4009873 DOI: 10.3390/biology2010107] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/27/2012] [Accepted: 01/05/2013] [Indexed: 01/03/2023]
Abstract
PRDM (PRDI-BF1 and RIZ homology domain containing) protein family members are characterized by the presence of a PR domain and a variable number of Zn-finger repeats. Experimental evidence has shown that the PRDM proteins play an important role in gene expression regulation, modifying the chromatin structure either directly, through the intrinsic methyltransferase activity, or indirectly through the recruitment of chromatin remodeling complexes. PRDM proteins have a dual action: they mediate the effect induced by different cell signals like steroid hormones and control the expression of growth factors. PRDM proteins therefore have a pivotal role in the transduction of signals that control cell proliferation and differentiation and consequently neoplastic transformation. In this review, we describe pathways in which PRDM proteins are involved and the molecular mechanism of their transcriptional regulation.
Collapse
Affiliation(s)
- Erika Di Zazzo
- Department of Medicine and health sciences, University of Molise, via De Sanctis snc, Campobasso 86100, Italy.
| | - Caterina De Rosa
- Department of Biochemistry, Biophysics and general Pathology, Second University of Naples, via L. De Crecchio 7, Napoli 80138, Italy.
| | - Ciro Abbondanza
- Department of Biochemistry, Biophysics and general Pathology, Second University of Naples, via L. De Crecchio 7, Napoli 80138, Italy.
| | - Bruno Moncharmont
- Department of Medicine and health sciences, University of Molise, via De Sanctis snc, Campobasso 86100, Italy.
| |
Collapse
|
44
|
Lou H, Li H, Yeager M, Im K, Gold B, Schneider TD, Fraumeni JF, Chanock SJ, Anderson SK, Dean M. Promoter variants in the MSMB gene associated with prostate cancer regulate MSMB/NCOA4 fusion transcripts. Hum Genet 2012; 131:1453-1466. [PMID: 22661295 PMCID: PMC3956317 DOI: 10.1007/s00439-012-1182-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/11/2012] [Indexed: 12/22/2022]
Abstract
Beta-microseminoprotein (MSP)/MSMB is an immunoglobulin superfamily protein synthesized by prostate epithelial cells and secreted into seminal plasma. Variants in the promoter of the MSMB gene have been associated with the risk of prostate cancer (PCa) in several independent genome-wide association studies. Both MSMB and an adjacent gene, NCOA4, are subjected to transcriptional control via androgen response elements. The gene product of NCOA4 interacts directly with the androgen receptor as a co-activator to enhance AR transcriptional activity. Here, we provide evidence for the expression of full-length MSMB-NCOA4 fusion transcripts regulated by the MSMB promoter. The predominant MSMB-NCOA4 transcript arises by fusion of the 5'UTR and exons 1-2 of the MSMB pre-mRNA, with exons 2-10 of the NCOA4 pre-mRNA, producing a stable fusion protein, comprising the essential domains of NCOA4. Analysis of the splice sites of this transcript shows an unusually strong splice acceptor at NCOA4 exon 2 and the presence of Alu repeats flanking the exons potentially involved in the splicing event. Transfection experiments using deletion clones of the promoter coupled with luciferase reporter assays define a core MSMB promoter element located between -27 and -236 of the gene, and a negative regulatory element immediately upstream of the start codon. Computational network analysis reveals that the MSMB gene is functionally connected to NCOA4 and the androgen receptor signaling pathway. The data provide an example of how GWAS-associated variants may have multiple genetic and epigenetic effects.
Collapse
Affiliation(s)
- Hong Lou
- Human Genetics Section, Basic Research Program, SAIC-Frederick Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Hongchuan Li
- Molecular Immunology Section, Basic Research Program, SAIC-Frederick Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Meredith Yeager
- Core Genotyping Facility, Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Kate Im
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Bert Gold
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Thomas D Schneider
- Gene Regulation and Chromosome Biology Laboratory, Molecular Information Theory Group, Frederick, MD 21702, USA
| | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stephen K Anderson
- Molecular Immunology Section, Basic Research Program, SAIC-Frederick Inc., National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Michael Dean
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| |
Collapse
|
45
|
Hohenauer T, Moore AW. The Prdm family: expanding roles in stem cells and development. Development 2012; 139:2267-82. [PMID: 22669819 DOI: 10.1242/dev.070110] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Members of the Prdm family are characterized by an N-terminal PR domain that is related to the SET methyltransferase domain, and multiple zinc fingers that mediate sequence-specific DNA binding and protein-protein interactions. Prdm factors either act as direct histone methyltransferases or recruit a suite of histone-modifying enzymes to target promoters. In this way, they function in many developmental contexts to drive and maintain cell state transitions and to modify the activity of developmental signalling pathways. Here, we provide an overview of the structure and function of Prdm family members and discuss the roles played by these proteins in stem cells and throughout development.
Collapse
Affiliation(s)
- Tobias Hohenauer
- Disease Mechanism Research Core, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
46
|
Yang JJ, Cho SY, Suh JT, Lee HJ, Lee WI, Yoon HJ, Baek SK, Park TS. Detection of RUNX1-MECOM fusion gene and t(3;21) in a very elderly patient having acute myeloid leukemia with myelodysplasia-related changes. Ann Lab Med 2012; 32:362-5. [PMID: 22950073 PMCID: PMC3427825 DOI: 10.3343/alm.2012.32.5.362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/17/2012] [Accepted: 07/19/2012] [Indexed: 11/19/2022] Open
Abstract
An 87-yr-old woman was diagnosed with AML with myelodysplasia-related changes (AML-MRC). The initial complete blood count showed Hb level of 5.9 g/dL, platelet counts of 27×109/L, and white blood cell counts of 85.33×109/L with 55% blasts. Peripheral blood samples were used in all the tests, as bone marrow examination could not be performed because of the patient's extremely advanced age and poor general health condition. Flow cytometric analysis, chromosome analysis, FISH, and reverse transcriptase-PCR (RT-PCR) results indicated AML-MRC resulting from t(3;21) with the RUNX1-MECOM fusion gene. To our knowledge, this is the second most elderly de novo AML patient associated with t(3;21) to be reported.
Collapse
|
47
|
Grygalewicz B, Woroniecka R, Pastwińska A, Rygier J, Krawczyk P, Borg K, Makuch-Łasica H, Patkowska E, Pieńkowska-Grela B. Acute panmyelosis with myelofibrosis with EVI1 amplification. Cancer Genet 2012; 205:255-60. [DOI: 10.1016/j.cancergen.2012.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/01/2012] [Accepted: 02/09/2012] [Indexed: 11/26/2022]
|
48
|
An Evi1-C/EBPβ complex controls peroxisome proliferator-activated receptor γ2 gene expression to initiate white fat cell differentiation. Mol Cell Biol 2012; 32:2289-99. [PMID: 22473998 DOI: 10.1128/mcb.06529-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibroblastic preadipocyte cells are recruited to differentiate into new adipocytes during the formation and hyperplastic growth of white adipose tissue. Peroxisome proliferator-activated receptor γ (PPARγ), the master regulator of adipogenesis, is expressed at low levels in preadipocytes, and its levels increase dramatically and rapidly during the differentiation process. However, the mechanisms controlling the dynamic and selective expression of PPARγ in the adipocyte lineage remain largely unknown. We show here that the zinc finger protein Evi1 increases in preadipocytes at the onset of differentiation prior to increases in PPARγ levels. Evi1 expression converts nonadipogenic cells into adipocytes via an increase in the predifferentiation levels of PPARγ2, the adipose-selective isoform of PPARγ. Conversely, loss of Evi1 in preadipocytes blocks the induction of PPARγ2 and suppresses adipocyte differentiation. Evi1 binds with C/EBPβ to regulatory sites in the Pparγ locus at early stages of adipocyte differentiation, coincident with the induction of Pparγ2 expression. These results indicate that Evi1 is a key regulator of adipogenic competency.
Collapse
|
49
|
Roy S, Jørgensen HG, Roy P, Abed El Baky M, Melo JV, Strathdee G, Holyoake TL, Bartholomew C. BCR-ABL1 tyrosine kinase sustained MECOM expression in chronic myeloid leukaemia. Br J Haematol 2012; 157:446-56. [PMID: 22372463 DOI: 10.1111/j.1365-2141.2012.09078.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/01/2012] [Indexed: 01/21/2023]
Abstract
MECOM oncogene expression correlates with chronic myeloid leukaemia (CML) progression. Here we show that the knockdown of MECOM (E) and MECOM (ME) isoforms reduces cell division at low cell density, inhibits colony-forming cells by 34% and moderately reduces BCR-ABL1 mRNA and protein expression but not tyrosine kinase catalytic activity in K562 cells. We also show that both E and ME are expressed in CD34(+) selected cells of both CML chronic phase (CML-CP), and non-CML (normal) origin. Furthermore, MECOM mRNA and protein expression were repressed by imatinib mesylate treatment of CML-CP CD34(+) cells, K562 and KY01 cell lines whereas imatinib had no effect in non-CML BCR-ABL1 -ve CD34(+) cells. Together these results suggest that BCR-ABL1 tyrosine kinase catalytic activity regulates MECOM gene expression in CML-CP progenitor cells and that the BCR-ABL1 oncoprotein partially mediates its biological activity through MECOM. MECOM gene expression in CML-CP progenitor cells would provide an in vivo selective advantage, contributing to CML pathogenesis.
Collapse
Affiliation(s)
- Swagata Roy
- Department of Life Sciences, City Campus, Glasgow Caledonian University, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Deng X, Cao Y, Liu Y, Li F, Sambandam K, Rajaraman S, Perkins AS, Fields AP, Hellmich MR, Townsend CM, Thompson EA, Ko TC. Overexpression of Evi-1 oncoprotein represses TGF-β signaling in colorectal cancer. Mol Carcinog 2011; 52:255-264. [PMID: 22161860 DOI: 10.1002/mc.21852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 10/20/2011] [Accepted: 11/11/2011] [Indexed: 01/07/2023]
Abstract
Human colorectal cancer (CRC) cells are resistant to the anti-proliferative effect of transforming growth factor-β (TGF-β), suggesting that disruption of TGF-β signaling plays an important role in colorectal carcinogenesis. Ecotropic virus integration site-1 (Evi-1) oncoprotein represses TGF-β signaling by interacting with Smads, but its role in CRC has not been established. The purpose of this study is to determine whether Evi-1 plays role(s) in CRCs and to characterize Evi-1 transcript(s) in CRCs. Evi-1 was overexpressed in 53% of human CRC samples, 100% of colon adenoma samples, and 100% of human colon cancer cell lines tested. Using 5' RACE, we cloned a novel Evi-1 transcript (Evi-1e) from a human CRC tissue and found that this novel transcript was expressed at a higher level in CRC tissues than in normal tissues and was the major Evi-1 transcript in CRCs. Transient Evi-1 transfection inhibited TGF-β-induced transcriptional activity and reversed the growth inhibitory effect of TGF-β in MC-26 mouse colon cancer cells. In conclusion, we have identified overexpression of Evi-1 oncoprotein as a novel mechanism by which a subset of human CRCs may escape TGF-β regulation. We have also identified a novel Evi-1 transcript, Evi-1e, as the major Evi-1 transcript expressed in human CRCs.
Collapse
Affiliation(s)
- Xiyun Deng
- Department of Surgery, The University of Texas Health Science Center, Houston, Texas
| | - Yanna Cao
- Department of Surgery, The University of Texas Health Science Center, Houston, Texas
| | - Yan Liu
- Mayo Clinic, Jacksonville, Florida
| | - Fazhi Li
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | | | | | - Archibald S Perkins
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | | | - Mark R Hellmich
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | - Courtney M Townsend
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| | | | - Tien C Ko
- Department of Surgery, The University of Texas Health Science Center, Houston, Texas.,Department of Surgery, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|