1
|
Rout AK, Gautam S, Kumar Mishra V, Bopardikar M, Dehury B, Singh H. NMR insights into β-Lactamase activity of UVI31+ Protein from Chlamydomonas reinhardtii. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107689. [PMID: 38677224 DOI: 10.1016/j.jmr.2024.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
β-Lactamases (EC 3.5.2.6) confer resistance against β-lactam group-containing antibiotics in bacteria and higher eukaryotes, including humans. Pathogenic bacterial resistance against β-lactam antibiotics is a primary concern for potential therapeutic developments and drug targets. Here, we report putative β-lactamase activity, sulbactam binding (a β-lactam analogue) in the low μM affinity range, and site-specific interaction studies of a 14 kDa UV- and dark-inducible protein (abbreviated as UVI31+, a BolA homologue) from Chlamydomonas reinhartii. Intriguingly, the solution NMR structure of UVI31 + bears no resemblance to other known β-lactamases; however, the sulbactam binding is found at two sites rich in positively charged residues, mainly at the L2 loop regions and the N-terminus. Using NMR spectroscopy, ITC and MD simulations, we map the ligand binding sites in UVI31 + providing atomic-level insights into its β-lactamase activity. Current study is the first report on β-lactamase activity of UVI31+, a BolA analogue, from C. reinhartii. Furthermore, our mutation studies reveal that the active site serine-55 is crucial for β-lactamase activity.
Collapse
Affiliation(s)
- Ashok K Rout
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India; Institute of Chemistry and Metabolomics, University of Luebeck, 23562 Luebeck, Germany
| | - Saurabh Gautam
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | - Mandar Bopardikar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur, 760010 Odisha, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Himanshu Singh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur, 760010 Odisha, India.
| |
Collapse
|
2
|
Jo J, Upadhyay T, Woods EC, Park KW, Pedowitz NJ, Jaworek-Korjakowska J, Wang S, Valdez TA, Fellner M, Bogyo M. Development of Oxadiazolone Activity-Based Probes Targeting FphE for Specific Detection of Staphylococcus aureus Infections. J Am Chem Soc 2024; 146:6880-6892. [PMID: 38411555 DOI: 10.1021/jacs.3c13974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Staphylococcus aureus (S. aureus) is a major human pathogen that is responsible for a wide range of systemic infections. Since its propensity to form biofilms in vivo poses formidable challenges for both detection and treatment, tools that can be used to specifically image S. aureus biofilms are highly valuable for clinical management. Here, we describe the development of oxadiazolone-based activity-based probes to target the S. aureus-specific serine hydrolase FphE. Because this enzyme lacks homologues in other bacteria, it is an ideal target for selective imaging of S. aureus infections. Using X-ray crystallography, direct cell labeling, and mouse models of infection, we demonstrate that oxadiazolone-based probes enable specific labeling of S. aureus bacteria through the direct covalent modification of the FphE active site serine. These results demonstrate the utility of the oxadizolone electrophile for activity-based probes and validate FphE as a target for the development of imaging contrast agents for the rapid detection of S. aureus infections.
Collapse
Affiliation(s)
- Jeyun Jo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulsi Upadhyay
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Emily C Woods
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Ki Wan Park
- Department of Otolaryngology-Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Nichole J Pedowitz
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Tulio A Valdez
- Department of Otolaryngology-Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
3
|
Arad E, Jelinek R. Catalytic physiological amyloids. Methods Enzymol 2024; 697:77-112. [PMID: 38816136 DOI: 10.1016/bs.mie.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Amyloid fibrils have been identified in many protein systems, mostly linked to progression and cytotoxicity in neurodegenerative diseases and other pathologies, but have also been observed in normal physiological systems. A growing body of work has shown that amyloid fibrils can catalyze chemical reactions. Most studies have focused on catalysis by de-novo synthetic amyloid-like peptides; however, recent studies reveal that physiological, native amyloids are catalytic as well. Here, we discuss methodologies and major experimental aspects pertaining to physiological catalytic amyloids. We highlight analyzes of kinetic parameters related to the catalytic activities of amyloid fibrils, structure-function considerations, characterization of the catalytic active sites, and deciphering of catalytic mechanisms.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology and the Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel; Department of Chemical Engineering, Columbia University in the City of New York, New York, NY, United States.
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology and the Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
4
|
Jo J, Upadhyay T, Woods EC, Park KW, Pedowitz NJ, Jaworek-Korjakowska J, Wang S, Valdez TA, Fellner M, Bogyo M. Development of Oxadiazolone Activity-Based Probes Targeting FphE for Specific Detection of S. aureus Infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571116. [PMID: 38168396 PMCID: PMC10760020 DOI: 10.1101/2023.12.11.571116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Staphylococcus aureus is a major human pathogen responsible for a wide range of systemic infections. Since its propensity to form biofilms in vivo poses formidable challenges for both detection and treatment, tools that can be used to specifically image S. aureus biofilms are highly valuable for clinical management. Here we describe the development of oxadiazolonebased activity-based probes to target the S. aureus-specific serine hydrolase FphE. Because this enzyme lacks homologs in other bacteria, it is an ideal target for selective imaging of S. aureus infections. Using X-ray crystallography, direct cell labeling and mouse models of infection we demonstrate that oxadiazolone-based probes enable specific labeling of S. aureus bacteria through the direct covalent modification of the FphE active site serine. These results demonstrate the utility of the oxadizolone electrophile for activity-based probes (ABPs) and validate FphE as a target for development of imaging contrast agents for the rapid detection of S. aureus infections.
Collapse
Affiliation(s)
- Jeyun Jo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tulsi Upadhyay
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Emily C. Woods
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ki Wan Park
- Department of Otolaryngology–Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nichole J. Pedowitz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Sijie Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tulio A. Valdez
- Department of Otolaryngology–Head & Neck Surgery Divisions, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthias Fellner
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Arad E, Pedersen KB, Malka O, Mambram Kunnath S, Golan N, Aibinder P, Schiøtt B, Rapaport H, Landau M, Jelinek R. Staphylococcus aureus functional amyloids catalyze degradation of β-lactam antibiotics. Nat Commun 2023; 14:8198. [PMID: 38081813 PMCID: PMC10713593 DOI: 10.1038/s41467-023-43624-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Antibiotic resistance of bacteria is considered one of the most alarming developments in modern medicine. While varied pathways for bacteria acquiring antibiotic resistance have been identified, there still are open questions concerning the mechanisms underlying resistance. Here, we show that alpha phenol-soluble modulins (PSMαs), functional bacterial amyloids secreted by Staphylococcus aureus, catalyze hydrolysis of β-lactams, a prominent class of antibiotic compounds. Specifically, we show that PSMα2 and, particularly, PSMα3 catalyze hydrolysis of the amide-like bond of the four membered β-lactam ring of nitrocefin, an antibiotic β-lactam surrogate. Examination of the catalytic activities of several PSMα3 variants allowed mapping of the active sites on the amyloid fibrils' surface, specifically underscoring the key roles of the cross-α fibril organization, and the combined electrostatic and nucleophilic functions of the lysine arrays. Molecular dynamics simulations further illuminate the structural features of β-lactam association upon the fibril surface. Complementary experimental data underscore the generality of the functional amyloid-mediated catalytic phenomenon, demonstrating hydrolysis of clinically employed β-lactams by PSMα3 fibrils, and illustrating antibiotic degradation in actual S. aureus biofilms and live bacteria environments. Overall, this study unveils functional amyloids as catalytic agents inducing degradation of β-lactam antibiotics, underlying possible antibiotic resistance mechanisms associated with bacterial biofilms.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Kasper B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Orit Malka
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Sisira Mambram Kunnath
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Polina Aibinder
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Hanna Rapaport
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Centre for Structural Systems Biology (CSSB), and European Molecular Biology Laboratory (EMBL), Hamburg, 22607, Germany
| | - Raz Jelinek
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel.
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|
6
|
Nafaee ZH, Egyed V, Jancsó A, Tóth A, Gerami AM, Dang TT, Heiniger‐Schell J, Hemmingsen L, Hunyadi‐Gulyás É, Peintler G, Gyurcsik B. Revisiting the hydrolysis of ampicillin catalyzed by Temoneira-1 β-lactamase, and the effect of Ni(II), Cd(II) and Hg(II). Protein Sci 2023; 32:e4809. [PMID: 37853808 PMCID: PMC10661098 DOI: 10.1002/pro.4809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
β-Lactamases grant resistance to bacteria against β-lactam antibiotics. The active center of TEM-1 β-lactamase accommodates a Ser-Xaa-Xaa-Lys motif. TEM-1 β-lactamase is not a metalloenzyme but it possesses several putative metal ion binding sites. The sites composed of His residue pairs chelate borderline transition metal ions such as Ni(II). In addition, there are many sulfur-containing donor groups that can coordinate soft metal ions such as Hg(II). Cd(II) may bind to both types of the above listed donor groups. No significant change was observed in the circular dichroism spectra of TEM-1 β-lactamase on increasing the metal ion content of the samples, with the exception of Hg(II) inducing a small change in the secondary structure of the protein. A weak nonspecific binding of Hg(II) was proven by mass spectrometry and 119m Hg perturbed angular correlation spectroscopy. The hydrolytic process of ampicillin catalyzed by TEM-1 β-lactamase was described by the kinetic analysis of the set of full catalytic progress curves, where the slow, yet observable conversion of the primary reaction product into a second one, identified as ampilloic acid by mass spectrometry, needed also to be considered in the applied model. Ni(II) and Cd(II) slightly promoted the catalytic activity of the enzyme while Hg(II) exerted a noticeable inhibitory effect. Hg(II) and Ni(II), applied at 10 μM concentration, inhibited the growth of E. coli BL21(DE3) in M9 minimal medium in the absence of ampicillin, but addition of the antibiotic could neutralize this toxic effect by complexing the metal ions.
Collapse
Affiliation(s)
- Zeyad H. Nafaee
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
- College of PharmacyUniversity of BabylonBabelIraq
| | - Viktória Egyed
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Attila Jancsó
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Annamária Tóth
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Adeleh Mokhles Gerami
- School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran
- European Organization for Nuclear Research (CERN)GenevaSwitzerland
| | - Thanh Thien Dang
- Institute for Materials Science and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Juliana Heiniger‐Schell
- European Organization for Nuclear Research (CERN)GenevaSwitzerland
- Institute for Materials Science and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Lars Hemmingsen
- Department of ChemistryUniversity of CopenhagenCopenhagenDenmark
| | - Éva Hunyadi‐Gulyás
- Laboratory of Proteomics Research, Biological Research CentreHungarian Research Network (HUN‐REN)SzegedHungary
| | - Gábor Peintler
- Department of Physical Chemistry and Material SciencesUniversity of SzegedSzegedHungary
| | - Béla Gyurcsik
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| |
Collapse
|
7
|
Sakhrani VV, Ghosh RK, Hilario E, Weiss KL, Coates L, Mueller LJ. Toho-1 β-lactamase: backbone chemical shift assignments and changes in dynamics upon binding with avibactam. JOURNAL OF BIOMOLECULAR NMR 2021; 75:303-318. [PMID: 34218390 PMCID: PMC9122098 DOI: 10.1007/s10858-021-00375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Backbone chemical shift assignments for the Toho-1 β-lactamase (263 amino acids, 28.9 kDa) are reported based on triple resonance solution-state NMR experiments performed on a uniformly 2H,13C,15N-labeled sample. These assignments allow for subsequent site-specific characterization at the chemical, structural, and dynamical levels. At the chemical level, titration with the non-β-lactam β-lactamase inhibitor avibactam is found to give chemical shift perturbations indicative of tight covalent binding that allow for mapping of the inhibitor binding site. At the structural level, protein secondary structure is predicted based on the backbone chemical shifts and protein residue sequence using TALOS-N and found to agree well with structural characterization from X-ray crystallography. At the dynamical level, model-free analysis of 15N relaxation data at a single field of 16.4 T reveals well-ordered structures for the ligand-free and avibactam-bound enzymes with generalized order parameters of ~ 0.85. Complementary relaxation dispersion experiments indicate that there is an escalation in motions on the millisecond timescale in the vicinity of the active site upon substrate binding. The combination of high rigidity on short timescales and active site flexibility on longer timescales is consistent with hypotheses for achieving both high catalytic efficiency and broad substrate specificity: the induced active site dynamics allows variously sized substrates to be accommodated and increases the probability that the optimal conformation for catalysis will be sampled.
Collapse
Affiliation(s)
- Varun V Sakhrani
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Rittik K Ghosh
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Eduardo Hilario
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
| | - Leonard J Mueller
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
8
|
Takeda M, Miyanoiri Y, Terauchi T, Kainosho M. Conformational features and ionization states of Lys side chains in a protein studied using the stereo-array isotope labeling (SAIL) method. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:223-237. [PMID: 37904773 PMCID: PMC10539808 DOI: 10.5194/mr-2-223-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/13/2021] [Indexed: 11/01/2023]
Abstract
Although both the hydrophobic aliphatic chain and hydrophilic ζ -amino group of the Lys side chain presumably contribute to the structures and functions of proteins, the dual nature of the Lys residue has not been fully investigated using NMR spectroscopy, due to the lack of appropriate methods to acquire comprehensive information on its long consecutive methylene chain. We describe herein a robust strategy to address the current situation, using various isotope-aided NMR technologies. The feasibility of our approach is demonstrated for the Δ + PHS/V66K variant of staphylococcal nuclease (SNase), which contains 21 Lys residues, including the engineered Lys-66 with an unusually low pK a of ∼ 5.6. All of the NMR signals for the 21 Lys residues were sequentially and stereospecifically assigned using the stereo-array isotope-labeled Lys (SAIL-Lys), [U-13 C,15 N; β 2 ,γ 2 ,δ 2 ,ε 3 -D4 ]-Lys. The complete set of assigned 1 H, 13 C, and 15 N NMR signals for the Lys side-chain moieties affords useful structural information. For example, the set includes the characteristic chemical shifts for the 13 Cδ , 13 Cε , and 15 Nζ signals for Lys-66, which has the deprotonated ζ -amino group, and the large upfield shifts for the 1 H and 13 C signals for the Lys-9, Lys-28, Lys-84, Lys-110, and Lys-133 side chains, which are indicative of nearby aromatic rings. The 13 Cε and 15 Nζ chemical shifts of the SNase variant selectively labeled with either [ε -13 C;ε ,ε -D2 ]-Lys or SAIL-Lys, dissolved in H2 O and D2 O, showed that the deuterium-induced shifts for Lys-66 were substantially different from those of the other 20 Lys residues. Namely, the deuterium-induced shifts of the 13 Cε and 15 Nζ signals depend on the ionization states of the ζ -amino group, i.e., - 0.32 ppm for Δ δ 13 Cε [Nζ D3 + -Nζ H3 + ] vs. - 0.21 ppm for Δ δ 13 Cε [Nζ D2 -Nζ H2 ] and - 1.1 ppm for Δ δ 15 Nζ [Nζ D3 + -Nζ H3 + ] vs. - 1.8 ppm for Δ δ 15 Nζ [Nζ D2 -Nζ H2 ]. Since the 1D 13 C NMR spectrum of a protein selectively labeled with [ε -13 C;ε ,ε -D2 ]-Lys shows narrow (> 2 Hz) and well-dispersed 13 C signals, the deuterium-induced shift difference of 0.11 ppm for the protonated and deprotonated ζ -amino groups, which corresponds to 16.5 Hz at a field strength of 14 T (150 MHz for 13 C), could be accurately measured. Although the isotope shift difference itself may not be absolutely decisive to distinguish the ionization state of the ζ -amino group, the 13 Cδ , 13 Cε , and 15 Nζ signals for a Lys residue with a deprotonated ζ -amino group are likely to exhibit distinctive chemical shifts as compared to the normal residues with protonated ζ -amino groups. Therefore, the isotope shifts would provide a useful auxiliary index for identifying Lys residues with deprotonated ζ -amino groups at physiological pH levels.
Collapse
Affiliation(s)
- Mitsuhiro Takeda
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yohei Miyanoiri
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Research Center for State-of-the-Art Functional Protein Analysis, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsutomu Terauchi
- SAIL Technologies Co., Inc., 2008-2 Wada, Tama-city, Tokyo, 206-0001, Japan
- Graduate School of Science, Tokyo Metropolitan University, 1-1
Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Masatsune Kainosho
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
- Graduate School of Science, Tokyo Metropolitan University, 1-1
Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
9
|
Abstract
The evolution of coenzymes, or their impact on the origin of life, is fundamental for understanding our own existence. Having established reasonable hypotheses about the emergence of prebiotic chemical building blocks, which were probably created under palaeogeochemical conditions, and surmising that these smaller compounds must have become integrated to afford complex macromolecules such as RNA, the question of coenzyme origin and its relation to the evolution of functional biochemistry should gain new impetus. Many coenzymes have a simple chemical structure and are often nucleotide-derived, which suggests that they may have coexisted with the emergence of RNA and may have played a pivotal role in early metabolism. Based on current theories of prebiotic evolution, which attempt to explain the emergence of privileged organic building blocks, this Review discusses plausible hypotheses on the prebiotic formation of key elements within selected extant coenzymes. In combination with prebiotic RNA, coenzymes may have dramatically broadened early protometabolic networks and the catalytic scope of RNA during the evolution of life.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ)Leibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| |
Collapse
|
10
|
Mehta SC, Furey IM, Pemberton OA, Boragine DM, Chen Y, Palzkill T. KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate. J Biol Chem 2021; 296:100155. [PMID: 33273017 PMCID: PMC7895804 DOI: 10.1074/jbc.ra120.015050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 01/23/2023] Open
Abstract
Serine active-site β-lactamases hydrolyze β-lactam antibiotics through the formation of a covalent acyl-enzyme intermediate followed by deacylation via an activated water molecule. Carbapenem antibiotics are poorly hydrolyzed by most β-lactamases owing to slow hydrolysis of the acyl-enzyme intermediate. However, the emergence of the KPC-2 carbapenemase has resulted in widespread resistance to these drugs, suggesting it operates more efficiently. Here, we investigated the unusual features of KPC-2 that enable this resistance. We show that KPC-2 has a 20,000-fold increased deacylation rate compared with the common TEM-1 β-lactamase. Furthermore, kinetic analysis of active site alanine mutants indicates that carbapenem hydrolysis is a concerted effort involving multiple residues. Substitution of Asn170 greatly decreases the deacylation rate, but this residue is conserved in both KPC-2 and non-carbapenemase β-lactamases, suggesting it promotes carbapenem hydrolysis only in the context of KPC-2. X-ray structure determination of the N170A enzyme in complex with hydrolyzed imipenem suggests Asn170 may prevent the inactivation of the deacylating water by the 6α-hydroxyethyl substituent of carbapenems. In addition, the Thr235 residue, which interacts with the C3 carboxylate of carbapenems, also contributes strongly to the deacylation reaction. In contrast, mutation of the Arg220 and Thr237 residues decreases the acylation rate and, paradoxically, improves binding affinity for carbapenems. Thus, the role of these residues may be ground state destabilization of the enzyme-substrate complex or, alternatively, to ensure proper alignment of the substrate with key catalytic residues to facilitate acylation. These findings suggest modifications of the carbapenem scaffold to avoid hydrolysis by KPC-2 β-lactamase.
Collapse
Affiliation(s)
- Shrenik C Mehta
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ian M Furey
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Orville A Pemberton
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - David M Boragine
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
11
|
Affiliation(s)
- Andreas Kirschning
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| |
Collapse
|
12
|
Molecular Basis for the Potent Inhibition of the Emerging Carbapenemase VCC-1 by Avibactam. Antimicrob Agents Chemother 2019; 63:AAC.02112-18. [PMID: 30782990 DOI: 10.1128/aac.02112-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/18/2019] [Indexed: 11/20/2022] Open
Abstract
In 2016, we identified a new class A carbapenemase, VCC-1, in a nontoxigenic Vibrio cholerae strain that had been isolated from retail shrimp imported into Canada for human consumption. Shortly thereafter, seven additional VCC-1-producing V. cholerae isolates were recovered along the German coastline. These isolates appear to have acquired the VCC-1 gene (bla VCC-1) independently from the Canadian isolate, suggesting that bla VCC-1 is mobile and widely distributed. VCC-1 hydrolyzes penicillins, cephalothin, aztreonam, and carbapenems and, like the broadly disseminated class A carbapenemase KPC-2, is only weakly inhibited by clavulanic acid or tazobactam. Although VCC-1 has yet to be observed in the clinic, its encroachment into aquaculture and other areas with human activity suggests that the enzyme may be emerging as a public health threat. To preemptively address this threat, we examined the structural and functional biology of VCC-1 against the FDA-approved non-β-lactam-based inhibitor avibactam. We found that avibactam restored the in vitro sensitivity of V. cholerae to meropenem, imipenem, and ertapenem. The acylation efficiency was lower for VCC-1 than for KPC-2 and akin to that of Pseudomonas aeruginosa PAO1 AmpC (k 2/Ki = 3.0 × 103 M-1 s-1). The tertiary structure of VCC-1 is similar to that of KPC-2, and they bind avibactam similarly; however, our analyses suggest that VCC-1 may be unable to degrade avibactam, as has been found for KPC-2. Based on our prior genomics-based surveillance, we were able to target VCC-1 for detailed molecular studies to gain early insights that could be used to combat this carbapenemase in the future.
Collapse
|
13
|
Palzkill T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci 2018; 5:16. [PMID: 29527530 PMCID: PMC5829062 DOI: 10.3389/fmolb.2018.00016] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 11/13/2022] Open
Abstract
The most common mechanism of resistance to β-lactam antibiotics in Gram-negative bacteria is the production of β-lactamases that hydrolyze the drugs. Class A β-lactamases are serine active-site hydrolases that include the common TEM, CTX-M, and KPC enzymes. The TEM enzymes readily hydrolyze penicillins and older cephalosporins. Oxyimino-cephalosporins, such as cefotaxime and ceftazidime, however, are poor substrates for TEM-1 and were introduced, in part, to circumvent β-lactamase-mediated resistance. Nevertheless, the use of these antibiotics has lead to evolution of numerous variants of TEM with mutations that significantly increase the hydrolysis of the newer cephalosporins. The CTX-M enzymes emerged in the late 1980s and hydrolyze penicillins and older cephalosporins and derive their name from the ability to also hydrolyze cefotaxime. The CTX-M enzymes, however, do not efficiently hydrolyze ceftazidime. Variants of CTX-M enzymes, however, have evolved that exhibit increased hydrolysis of ceftazidime. Finally, the KPC enzyme emerged in the 1990s and is characterized by its broad specificity that includes penicillins, most cephalosporins, and carbapenems. The KPC enzyme, however, does not efficiently hydrolyze ceftazidime. As with the TEM and CTX-M enzymes, variants have recently evolved that extend the spectrum of KPC β-lactamase to include ceftazidime. This review discusses the structural and mechanistic basis for the expanded substrate specificity of each of these enzymes that result from natural mutations that confer oxyimino-cephalosporin resistance. For the TEM enzyme, extended-spectrum mutations act by establishing new interactions with the cephalosporin. These mutations increase the conformational heterogeneity of the active site to create sub-states that better accommodate the larger drugs. The mutations expanding the spectrum of CTX-M enzymes also affect the flexibility and conformation of the active site to accommodate ceftazidime. Although structural data are limited, extended-spectrum mutations in KPC may act by mediating new, direct interactions with substrate and/or altering conformations of the active site. In many cases, mutations that expand the substrate profile of these enzymes simultaneously decrease the thermodynamic stability. This leads to the emergence of additional global suppressor mutations that help correct the stability defects leading to increased protein expression and increased antibiotic resistance.
Collapse
Affiliation(s)
- Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
14
|
Aw J, Widjaja F, Ding Y, Mu J, Liang Y, Xing B. Enzyme-responsive reporter molecules for selective localization and fluorescence imaging of pathogenic biofilms. Chem Commun (Camb) 2017; 53:3330-3333. [DOI: 10.1039/c6cc09296a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel enzyme-responsive reporter molecule (ERM-1) for selective localization of AmpC in pathogenic biofilms.
Collapse
Affiliation(s)
- Junxin Aw
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Frances Widjaja
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Yichen Ding
- Centre for Environmental Life Sciences Engineering (SCELSE)
- School of Biological Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Jing Mu
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Yang Liang
- Centre for Environmental Life Sciences Engineering (SCELSE)
- School of Biological Sciences
- Nanyang Technological University
- Singapore
- Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
- Singapore
| |
Collapse
|
15
|
Stanton CL, Houk KN. Benchmarking pKa Prediction Methods for Residues in Proteins. J Chem Theory Comput 2015; 4:951-66. [PMID: 26621236 DOI: 10.1021/ct8000014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methods for estimation of pKa values of residues in proteins were tested on a set of benchmark proteins with experimentally known pKa values. The benchmark set includes 80 different residues (20 each for Asp, Glu, Lys, and His), half of which consists of significantly variant cases (ΔpKa ≥ 1 pKa unit from the amino acid in solution). The method introduced by Case and co-workers [J. Am. Chem. Soc. 2004, 126, 4167-4180], referred to as the molecular dynamics/generalized-Born/thermodynamic integration (MD/GB/TI) technique, gives a root-mean-square deviation (rmsd) of 1.4 pKa units on the benchmark set. The use of explicit waters in the immediate region surrounding the residue was shown to generally reduce high errors for this method. Longer simulation time was also shown to increase the accuracy of this method. The empirical approach developed by Jensen and co-workers [Proteins 2005, 61, 704-721], PROPKA, also gives an overall rmsd of 1.4 pKa units and is more or less accurate based on residue type-the method does very well for Lys and Glu, but less so for Asp and His. Likewise, the absolute deviation is quite similar for the two methods-5.2 for PROPKA and 5.1 for MD/GB/TI. A comparison of these results with several prediction methods from the literature is presented. The error in pKa prediction is analyzed as a function of variation of the pKa from that in water and the solvent accessible surface area (SASA) of the residue. A case study of the catalytic lysine residue in 2-deoxyribose-5-phosphate aldolase (DERA) is also presented.
Collapse
Affiliation(s)
- Courtney L Stanton
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095
| |
Collapse
|
16
|
Avibactam and inhibitor-resistant SHV β-lactamases. Antimicrob Agents Chemother 2015; 59:3700-9. [PMID: 25691639 DOI: 10.1128/aac.04405-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/18/2015] [Indexed: 11/20/2022] Open
Abstract
β-Lactamase enzymes (EC 3.5.2.6) are a significant threat to the continued use of β-lactam antibiotics to treat infections. A novel non-β-lactam β-lactamase inhibitor with activity against many class A and C and some class D β-lactamase variants, avibactam, is now available in the clinic in partnership with ceftazidime. Here, we explored the activity of avibactam against a variety of characterized isogenic laboratory constructs of β-lactamase inhibitor-resistant variants of the class A enzyme SHV (M69I/L/V, S130G, K234R, R244S, and N276D). We discovered that the S130G variant of SHV-1 shows the most significant resistance to inhibition by avibactam, based on both microbiological and biochemical characterizations. Using a constant concentration of 4 mg/liter of avibactam as a β-lactamase inhibitor in combination with ampicillin, the MIC increased from 1 mg/liter for blaSHV-1 to 256 mg/liter for blaSHV S130G expressed in Escherichia coli DH10B. At steady state, the k2/K value of the S130G variant when inactivated by avibactam was 1.3 M(-1) s(-1), versus 60,300 M(-1) s(-1) for the SHV-1 β-lactamase. Under timed inactivation conditions, we found that an approximately 1,700-fold-higher avibactam concentration was required to inhibit SHV S130G than the concentration that inhibited SHV-1. Molecular modeling suggested that the positioning of amino acids in the active site of SHV may result in an alternative pathway of inactivation when complexed with avibactam, compared to the structure of CTX-M-15-avibactam, and that S130 plays a role in the acylation of avibactam as a general acid/base. In addition, S130 may play a role in recyclization. As a result, we advance that the lack of a hydroxyl group at position 130 in the S130G variant of SHV-1 substantially slows carbamylation of the β-lactamase by avibactam by (i) removing an important proton acceptor and donator in catalysis and (ii) decreasing the number of H bonds. In addition, recyclization is most likely also slow due to the lack of a general base to initiate the process. Considering other inhibitor-resistant mechanisms among class A β-lactamases, S130 may be the most important amino acid for the inhibition of class A β-lactamases, perhaps even for the novel diazabicyclooctane class of β-lactamase inhibitors.
Collapse
|
17
|
Zou T, Risso VA, Gavira JA, Sanchez-Ruiz JM, Ozkan SB. Evolution of conformational dynamics determines the conversion of a promiscuous generalist into a specialist enzyme. Mol Biol Evol 2014; 32:132-43. [PMID: 25312912 DOI: 10.1093/molbev/msu281] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
β-Lactamases are produced by many modern bacteria as a mechanism of resistance toward β-lactam antibiotics, the most common antibiotics in use. β-Lactamases, however, are ancient enzymes that originated billions of years ago. Recently, proteins corresponding to 2- to 3-Gy-old Precambrian nodes in the evolution of Class A β-lactamases have been prepared and shown to be moderately efficient promiscuous catalysts, able to degrade a variety of antibiotics with catalytic efficiency levels similar to those of an average modern enzyme. Remarkably, there are few structural differences (in particular at the active-site regions) between the resurrected enzymes and a penicillin-specialist modern β-lactamase. Here, we propose that the ancestral promiscuity originates from conformational dynamics. We investigate the differences in conformational dynamics of the ancient and extant β-lactamases through MD simulations and quantify the contribution of each position to functionally related dynamics through Dynamic Flexibility Index. The modern TEM-1 lactamase shows a comparatively rigid active-site region, likely reflecting adaptation for efficient degradation of a specific substrate (penicillin), whereas enhanced deformability at the active-site neighborhood in the ancestral resurrected proteins likely accounts for the binding and subsequent degradation of antibiotic molecules of different size and shape. Clustering of the conformational dynamics on the basis of Principal Component Analysis is in agreement with the functional divergence, as the ancient β-lactamases cluster together, separated from their modern descendant. Finally, our analysis leads to testable predictions, as sites of potential relevance for the evolution of dynamics are identified and mutations at those sites are expected to alter substrate-specificity.
Collapse
Affiliation(s)
- Taisong Zou
- Center for Biological Physics, Department of Physics, Arizona State University
| | - Valeria A Risso
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Jose A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (Consejo Superior de Investigaciones Científicas-Universidad de Granada), Granada, Spain
| | - Jose M Sanchez-Ruiz
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - S Banu Ozkan
- Center for Biological Physics, Department of Physics, Arizona State University
| |
Collapse
|
18
|
Hargis JC, White JK, Chen Y, Woodcock HL. Can molecular dynamics and QM/MM solve the penicillin binding protein protonation puzzle? J Chem Inf Model 2014; 54:1412-24. [PMID: 24697903 PMCID: PMC4036751 DOI: 10.1021/ci5000517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Benzylpenicillin, a member of the
β-lactam antibiotic class, has been widely used to combat bacterial
infections since 1947. The general mechanism is well-known: a serine
protease enzyme (i.e., DD-peptidase) forms a long lasting intermediate
with the lactam ring of the antibiotic known as acylation, effectively
preventing biosynthesis of the bacterial cell wall. Despite this overall
mechanistic understanding, many details of binding and catalysis are
unclear. Specifically, there is ongoing debate about active site protonation
states and the role of general acids/bases in the reaction. Herein,
a unique combination of MD simulations, QM/MM minimizations, and QM/MM
orbital analyses is combined with systematic variation of active site
residue protonation states. Critical interactions that maximize the
stability of the bound inhibitor are examined and used as metrics.
This approach was validated by examining cefoxitin interactions in
the CTX-M β-lactamase from E. coli and compared to an ultra high-resolution (0.88 Å) crystal structure.
Upon confirming the approach used, an investigation of the preacylated Streptomyces R61 active site with bound benzylpenicillin
was performed, varying the protonation states of His298 and Lys65.
We concluded that protonated His298 and deprotonated Lys65 are most
likely to exist in the R61 active site.
Collapse
Affiliation(s)
- Jacqueline C Hargis
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | |
Collapse
|
19
|
Verma D, Jacobs DJ, Livesay DR. Variations within class-A β-lactamase physiochemical properties reflect evolutionary and environmental patterns, but not antibiotic specificity. PLoS Comput Biol 2013; 9:e1003155. [PMID: 23874193 PMCID: PMC3715408 DOI: 10.1371/journal.pcbi.1003155] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
The bacterial enzyme β-lactamase hydrolyzes the β-lactam ring of penicillin and chemically related antibiotics, rendering them ineffective. Due to rampant antibiotic overuse, the enzyme is evolving new resistance activities at an alarming rate. Related, the enzyme's global physiochemical properties exhibit various amounts of conservation and variability across the family. To that end, we characterize the extent of property conservation within twelve different class-A β-lactamases, and conclusively establish that the systematic variations therein parallel their evolutionary history. Large and systematic differences within electrostatic potential maps and pairwise residue-to-residue couplings are observed across the protein, which robustly reflect phylogenetic outgroups. Other properties are more conserved (such as residue pKa values, electrostatic networks, and backbone flexibility), yet they also have systematic variations that parallel the phylogeny in a statistically significant way. Similarly, the above properties also parallel the environmental condition of the bacteria they are from in a statistically significant way. However, it is interesting and surprising that the only one of the global properties (protein charge) parallels the functional specificity patterns; meaning antibiotic resistance activities are not significantly constraining the global physiochemical properties. Rather, extended spectrum activities can emerge from the background of nearly any set of electrostatic and dynamic properties.
Collapse
Affiliation(s)
- Deeptak Verma
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Donald J. Jacobs
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Dennis R. Livesay
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| |
Collapse
|
20
|
Jacquier H, Marcadé G, Raffoux E, Dombret H, Woerther PL, Donay JL, Arlet G, Cambau E. In vivo selection of a complex mutant TEM (CMT) from an inhibitor-resistant TEM (IRT) during ceftazidime therapy. J Antimicrob Chemother 2013; 68:2792-6. [PMID: 23861309 DOI: 10.1093/jac/dkt278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES A relapse from Escherichia coli bloodstream infection was observed in a patient with acute leukaemia treated with ceftazidime for 7 days for febrile neutropenia. Whereas the original E. coli isolate was resistant to β-lactam/β-lactamase inhibitor combinations (EC1), the relapse E. coli isolate showed a similar phenotype but with resistance extended to ceftazidime (EC2). We investigated the molecular mechanisms of β-lactam resistance and sought if EC2 could have been selected in vivo from EC1. METHODS EC1 and EC2 isolates were compared for antibiotic MICs, plasmid content, genotyping, β-lactamase genes and their environment. Both isolates were conjugated with E. coli JW4111ΔampC and MICs determined for transconjugants. In addition, ceftazidime-resistant mutants were selected in vitro from EC1. RESULTS EC1 and EC2 showed identical patterns for genotyping and resistance plasmids. PCR sequencing of blaTEM in EC1 showed the mutations M69L and N276D corresponding to TEM-35, also called inhibitor-resistant TEM (IRT)-4. In EC2, the TEM allele showed an additional mutation, R164S, known to confer resistance to ceftazidime. The combination of these three mutations was previously reported in TEM-158, described as the complex mutant TEM (CMT)-9, associated with resistance to β-lactamase inhibitors and third-generation cephalosporins. In vitro selection of ceftazidime-resistant mutants from EC1 yielded six different CMT alleles, including TEM-158 containing the R164S mutation. CONCLUSIONS This first known report of in vivo selection of CMT from IRT, reproduced in vitro, shows how the evolution of β-lactamase enzymes is easily driven by antibiotic pressure, even during a short antibiotic therapy.
Collapse
Affiliation(s)
- H Jacquier
- APHP, Hôpital Lariboisière, Service de Bactériologie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Shao Q, Zheng Y, Dong X, Tang K, Yan X, Xing B. A Covalent Reporter of β-Lactamase Activity for Fluorescent Imaging and Rapid Screening of Antibiotic-Resistant Bacteria. Chemistry 2013; 19:10903-10. [DOI: 10.1002/chem.201301654] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 01/16/2023]
|
22
|
Meneksedag D, Dogan A, Kanlikilicer P, Ozkirimli E. Communication between the active site and the allosteric site in class A beta-lactamases. Comput Biol Chem 2013; 43:1-10. [DOI: 10.1016/j.compbiolchem.2012.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/22/2012] [Accepted: 12/03/2012] [Indexed: 11/16/2022]
|
23
|
Chakraborty S. A quantitative measure of electrostatic perturbation in holo and apo enzymes induced by structural changes. PLoS One 2013; 8:e59352. [PMID: 23516628 PMCID: PMC3597595 DOI: 10.1371/journal.pone.0059352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
Biological pathways are subject to subtle manipulations that achieve a wide range of functional variation in differing physiological niches. In many instances, changes in the structure of an enzyme on ligand binding germinate electrostatic perturbations that form the basis of its changed catalytic or transcriptional efficiency. Computational methods that seek to gain insights into the electrostatic changes in enzymes require expertise to setup and computing prowess. In the current work, we present a fast, easy and reliable methodology to compute electrostatic perturbations induced by ligand binding (MEPP). The theoretical foundation of MEPP is the conserved electrostatic potential difference (EPD) in cognate pairs of active site residues in proteins with the same functionality. Previously, this invariance has been used to unravel promiscuous serine protease and metallo-β-lactamase scaffolds in alkaline phosphatases. Given that a similarity in EPD is significant, we expect differences in the EPD to be significant too. MEPP identifies residues or domains that undergo significant electrostatic perturbations, and also enumerates residue pairs that undergo significant polarity change. The gain in a certain polarity of a residue with respect to neighboring residues, or the reversal of polarity between two residues might indicate a change in the preferred ligand. The methodology of MEPP has been demonstrated on several enzymes that employ varying mechanisms to perform their roles. For example, we have attributed the change in polarity in residue pairs to be responsible for the loss of metal ion binding in fructose 1,6-bisphosphatases, and corroborated the pre-organized state of the active site of the enzyme with respect to functionally relevant changes in electric fields in ketosteroid isomerases.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
24
|
Chakraborty S. An automated flow for directed evolution based on detection of promiscuous scaffolds using spatial and electrostatic properties of catalytic residues. PLoS One 2012; 7:e40408. [PMID: 22811760 PMCID: PMC3394801 DOI: 10.1371/journal.pone.0040408] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/06/2012] [Indexed: 12/25/2022] Open
Abstract
The aspiration to mimic and accelerate natural evolution has fueled interest in directed evolution experiments, which endow or enhance functionality in enzymes. Barring a few de novo approaches, most methods take a template protein having the desired activity, known active site residues and structure, and proceed to select a target protein which has a pre-existing scaffold congruent to the template motif. Previously, we have established a computational method (CLASP) based on spatial and electrostatic properties to detect active sites, and a method to quantify promiscuity in proteins. We exploit the prospect of promiscuous active sites to serve as the starting point for directed evolution and present a method to select a target protein which possesses a significant partial match with the template scaffold (DECAAF). A library of partial motifs, constructed from the active site residues of the template protein, is used to rank a set of target proteins based on maximal significant matches with the partial motifs, and cull out the best candidate from the reduced set as the target protein. Considering the scenario where this ‘incubator’ protein lacks activity, we identify mutations in the target protein that will mirror the template motif by superimposing the target and template protein based on the partial match. Using this superimposition technique, we analyzed the less than expected gain of activity achieved by an attempt to induce β-lactamase activity in a penicillin binding protein (PBP) (PBP-A from T. elongatus), and attributed this to steric hindrance from neighboring residues. We also propose mutations in PBP-5 from E. coli, which does not have similar steric constraints. The flow details have been worked out in an example which aims to select a substitute protein for human neutrophil elastase, preferably related to grapevines, in a chimeric anti-microbial enzyme which bolsters the innate immune defense system of grapevines.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
25
|
Chakraborty S. Enumerating pathways of proton abstraction based on a spatial and electrostatic analysis of residues in the catalytic site. PLoS One 2012; 7:e39577. [PMID: 22745790 PMCID: PMC3379984 DOI: 10.1371/journal.pone.0039577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/28/2012] [Indexed: 11/19/2022] Open
Abstract
The pathways of proton abstraction (PA), a key aspect of most catalytic reactions, is often controversial and highly debated. Ultrahigh-resolution diffraction studies, molecular dynamics, quantum mechanics and molecular mechanic simulations are often adopted to gain insights in the PA mechanisms in enzymes. These methods require expertise and effort to setup and can be computationally intensive. We present a push button methodology--Proton abstraction Simulation (PRISM)--to enumerate the possible pathways of PA in a protein with known 3D structure based on the spatial and electrostatic properties of residues in the proximity of a given nucleophilic residue. Proton movements are evaluated in the vicinity of this nucleophilic residue based on distances, potential differences, spatial channels and characteristics of the individual residues (polarity, acidic, basic, etc). Modulating these parameters eliminates their empirical nature and also might reveal pathways that originate from conformational changes. We have validated our method using serine proteases and concurred with the dichotomy in PA in Class A β-lactamases, both of which are hydrolases. The PA mechanism in a transferase has also been corroborated. The source code is made available at www.sanchak.com/prism.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
26
|
Bachovchin DA, Cravatt BF. The pharmacological landscape and therapeutic potential of serine hydrolases. Nat Rev Drug Discov 2012; 11:52-68. [PMID: 22212679 PMCID: PMC3665514 DOI: 10.1038/nrd3620] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Serine hydrolases perform crucial roles in many biological processes, and several of these enzymes are targets of approved drugs for indications such as type 2 diabetes, Alzheimer's disease and infectious diseases. Despite this, most of the human serine hydrolases (of which there are more than 200) remain poorly characterized with respect to their physiological substrates and functions, and the vast majority lack selective, in vivo-active inhibitors. Here, we review the current state of pharmacology for mammalian serine hydrolases, including marketed drugs, compounds that are under clinical investigation and selective inhibitors emerging from academic probe development efforts. We also highlight recent methodological advances that have accelerated the rate of inhibitor discovery and optimization for serine hydrolases, which we anticipate will aid in their biological characterization and, in some cases, therapeutic validation.
Collapse
Affiliation(s)
- Daniel A Bachovchin
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
27
|
Chakraborty S, Minda R, Salaye L, Bhattacharjee SK, Rao BJ. Active site detection by spatial conformity and electrostatic analysis--unravelling a proteolytic function in shrimp alkaline phosphatase. PLoS One 2011; 6:e28470. [PMID: 22174814 PMCID: PMC3234256 DOI: 10.1371/journal.pone.0028470] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/08/2011] [Indexed: 11/30/2022] Open
Abstract
Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - CataLytic Active Site Prediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - β-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | |
Collapse
|
28
|
Identification of the Catalytic Residues of Carboxylesterase from Arthrobacter globiformisby Diisopropyl Fluorophosphate-Labeling and Site-Directed Mutagenesis. Biosci Biotechnol Biochem 2011; 75:89-94. [DOI: 10.1271/bbb.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Abstract
The glmS ribozyme is the first known example of a natural ribozyme that has evolved to require binding of an exogenous small molecule for activity. In Gram-positive bacteria, this RNA domain is part of the messenger RNA (mRNA) encoding the essential enzyme that synthesizes glucosamine-6-phosphate (GlcN6P). When present at physiologic concentration, this small molecule binds to the glmS ribozyme and uncovers a latent self-cleavage activity that ultimately leads to degradation of the mRNA. Biochemical and structural studies reveal that the RNA adopts a rigid fold stabilized by three pseudoknots and the packing of a peripheral domain against the ribozyme core. GlcN6P binding to this pre-organized RNA does not induce conformational changes; rather, the small molecule functions as a coenzyme, providing a catalytically essential amine group to the active site. The ribozyme is not a passive player, however. Active site functional groups are essential for catalysis, even in the presence of GlcN6P. In addition to being a superb experimental system with which to analyze how RNA catalysts can exploit small molecule coenzymes to broaden their chemical versatility, the presence of the glmS ribozyme in numerous pathogenic bacteria make this RNA an attractive target for the development of new antibiotics and antibacterial strategies.
Collapse
Affiliation(s)
- Adrian R Ferré-D'Amaré
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA.
| |
Collapse
|
30
|
Yang K, Hsieh YH, Kim CK, Zhang H, Wolfe S. Hydration of acetone in the gas phase and in water solvent. CAN J CHEM 2010. [DOI: 10.1139/v09-135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In water solvent, the hydration of acetone proceeds by a cyclic (cooperative) process in which concurrent C–O bond formation and proton transfer to oxygen take place through a solvent and (or) catalyst bridge. Reactivity is determined primarily by the concentration of a reactant complex and not the barrier from this complex. This situation is reversed in the gas phase; although the concentrations of reactive complexes are much higher than in solution, the barriers are also higher and dominant in determining reactivity. Calculations of isotope effects suggest that multiple hydron transfers are synchronous in the gas phase to avoid zwitterionic transition states. In solution, such transition states are stabilized by solvation and hydron transfers can be asynchronous.
Collapse
Affiliation(s)
- Kiyull Yang
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- On leave from Department of Chemistry Education, Gyeongsang National University, Jinju 660-701, Korea
- On leave from Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Yih-Huang Hsieh
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- On leave from Department of Chemistry Education, Gyeongsang National University, Jinju 660-701, Korea
- On leave from Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Chan-Kyung Kim
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- On leave from Department of Chemistry Education, Gyeongsang National University, Jinju 660-701, Korea
- On leave from Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Hui Zhang
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- On leave from Department of Chemistry Education, Gyeongsang National University, Jinju 660-701, Korea
- On leave from Department of Chemistry, Inha University, Incheon 402-751, Korea
| | - Saul Wolfe
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- On leave from Department of Chemistry Education, Gyeongsang National University, Jinju 660-701, Korea
- On leave from Department of Chemistry, Inha University, Incheon 402-751, Korea
| |
Collapse
|
31
|
Wolfe S, Yang K. On the role of lysine in the active site Ser-X-X-Lys region of penicillin-recognizing enzymes. CAN J CHEM 2010. [DOI: 10.1139/v09-148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using Autodock, docking of penicillin G to the crystal structures of penicillin-recognizing enzymes leads to an alignment in the active site Ser-X-X-Lys region consisting of the serine hydroxyl group, the terminal amino group of lysine, a second hydroxyl group, and the N–C=O of the β-lactam. This alignment is consistent with the notion that acylation of the serine hydroxyl group proceeds by a one-step cooperative mechanism in which C–O bond formation and proton transfer to the β-lactam nitrogen take place through a heteroatom bridge. For the cooperative ring opening of penam by two molecules of methanol and one molecule of methylamine or one molecule of water, density functional theory with the B3LYP DFT gradient-corrected functional and the 6–31G(d) basis set reproduces the alignment seen in the docked structures. Methylamine lowers the barrier calculated at MP2/6–31G(d) from the DFT-optimized geometries by 3 kcal/mol; water increases the barrier by 4 kcal/mol. The function of the conserved lysine in the active sites of penicillin-recognizing enzymes is therefore to catalyze the formation of an acyl enzyme by a cooperative mechanism.
Collapse
Affiliation(s)
- Saul Wolfe
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- On leave from Department of Chemistry Education, Gyeongsang National University, Jinju 660-701, Korea
| | - Kiyull Yang
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- On leave from Department of Chemistry Education, Gyeongsang National University, Jinju 660-701, Korea
| |
Collapse
|
32
|
Phichith D, Bun S, Padiolleau-Lefèvre S, Banh S, Thomas D, Friboulet A, Avalle B. Mutational and inhibitory analysis of a catalytic antibody. Implication for drug discovery. Mol Immunol 2009; 47:348-56. [DOI: 10.1016/j.molimm.2009.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/03/2009] [Indexed: 11/29/2022]
|
33
|
Kalp M, Buynak JD, Carey PR. Role of E166 in the imine to enamine tautomerization of the clinical beta-lactamase inhibitor sulbactam. Biochemistry 2009; 48:10196-8. [PMID: 19791797 DOI: 10.1021/bi901416t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism-based inhibitors of class A beta-lactamases, such as sulbactam, undergo a complex series of chemical reactions in the enzyme active site. Formation of a trans-enamine acyl-enzyme via a hydrolysis-prone imine is responsible for transient inhibition of the enzyme. Although the imine to enamine tautomerization is crucial to inhibition of the enzyme, there are no experimental data to suggest how this chemical transformation is catalyzed in the active site. In this report, we show that E166 acts as a general base to promote the imine to enamine tautomerization.
Collapse
Affiliation(s)
- Matthew Kalp
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
34
|
Brown NG, Shanker S, Prasad BVV, Palzkill T. Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis. J Biol Chem 2009; 284:33703-12. [PMID: 19812041 DOI: 10.1074/jbc.m109.053819] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TEM-1 beta-lactamase is the most common plasmid-encoded beta-lactamase in Gram-negative bacteria and is a model class A enzyme. The active site of class A beta-lactamases share several conserved residues including Ser(70), Glu(166), and Asn(170) that coordinate a hydrolytic water involved in deacylation. Unlike Ser(70) and Glu(166), the functional significance of residue Asn(170) is not well understood even though it forms hydrogen bonds with both Glu(166) and the hydrolytic water. The goal of this study was to examine the importance of Asn(170) for catalysis and substrate specificity of beta-lactam antibiotic hydrolysis. The codon for position 170 was randomized to create a library containing all 20 possible amino acids. The random library was introduced into Escherichia coli, and functional clones were selected on agar plates containing ampicillin. DNA sequencing of the functional clones revealed that only asparagine (wild type) and glycine at this position are consistent with wild-type function. The determination of kinetic parameters for several substrates revealed that the N170G mutant is very efficient at hydrolyzing substrates that contain a primary amine in the antibiotic R-group that would be close to the Asn(170) side chain in the acyl-intermediate. In addition, the x-ray structure of the N170G enzyme indicated that the position of an active site water important for deacylation is altered compared with the wild-type enzyme. Taken together, the results suggest the N170G TEM-1 enzyme hydrolyzes ampicillin efficiently because of substrate-assisted catalysis where the primary amine of the ampicillin R-group positions the hydrolytic water and allows for efficient deacylation.
Collapse
Affiliation(s)
- Nicholas G Brown
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
35
|
Hermann JC, Pradon J, Harvey JN, Mulholland AJ. High Level QM/MM Modeling of the Formation of the Tetrahedral Intermediate in the Acylation of Wild Type and K73A Mutant TEM-1 Class A β-Lactamase. J Phys Chem A 2009; 113:11984-94. [DOI: 10.1021/jp9037254] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Johannes C. Hermann
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K., and Roche Palo Alto LLC, 3431 Hillview Ave, Palo Alto, California 94304
| | - Juliette Pradon
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K., and Roche Palo Alto LLC, 3431 Hillview Ave, Palo Alto, California 94304
| | - Jeremy N. Harvey
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K., and Roche Palo Alto LLC, 3431 Hillview Ave, Palo Alto, California 94304
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K., and Roche Palo Alto LLC, 3431 Hillview Ave, Palo Alto, California 94304
| |
Collapse
|
36
|
Urbach C, Evrard C, Pudzaitis V, Fastrez J, Soumillion P, Declercq JP. Structure of PBP-A from Thermosynechococcus elongatus, a Penicillin-Binding Protein Closely Related to Class A β-Lactamases. J Mol Biol 2009; 386:109-20. [PMID: 19100272 DOI: 10.1016/j.jmb.2008.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
|
37
|
Fenollar-Ferrer C, Frau J, Donoso J, Muñoz F. Evolution of class C β-lactamases: factors influencing their hydrolysis and recognition mechanisms. Theor Chem Acc 2008. [DOI: 10.1007/s00214-008-0463-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Tremblay LW, Hugonnet JE, Blanchard JS. Structure of the Covalent Adduct Formed between Mycobacterium tuberculosis β-Lactamase and Clavulanate. Biochemistry 2008; 47:5312-6. [DOI: 10.1021/bi8001055] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lee W. Tremblay
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Jean-Emmanuel Hugonnet
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - John S. Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| |
Collapse
|
39
|
Gao G, Prasad R, Lodwig SN, Unkefer CJ, Beard WA, Wilson SH, London RE. Determination of lysine pK values using [5-13C]lysine: application to the lyase domain of DNA Pol beta. J Am Chem Soc 2007; 128:8104-5. [PMID: 16787052 PMCID: PMC2846763 DOI: 10.1021/ja061473u] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Determination of the protonation state of titratable protein residues is of critical importance for the interpretation of active site chemistry, as well as for understanding the role of electrostatic interactions in protein folding and stability. However, protein titration studies are limited by the fact that, at extreme pH values, increasing fractions of unfolded or partially unfolded structures may be present. This problem is particularly acute for lysine residues which have high pK values. In the present study, we point out that the use of the 13C resonance of lysine C-5 as a reporter for titration of the epsilon-amino group is preferable to the use of C-6 due to the 5-fold greater titration shift, so that reasonable results can be obtained using a two parameter fit of data obtained over a more limited pH range. A new synthetic procedure for [5-13C]lysine is described, and the pK value for Lys72 in the lyase domain of DNA polymerase beta has been determined using the [5-13C]lysine-labeled enzyme. The results agree well with recent studies of the Pol lambda lyase domain, demonstrating that the pK value for this residue is not optimized for Schiff base chemistry (Gao et al., Biochemistry 2006, 45, 1785-1794). We also have re-evaluated data for the pK of Lys73 in the TEM-1 beta-lactamase.
Collapse
|
40
|
Abstract
The mitochondrial enzyme, dihydrolipoamide dehydrogenase (DLD), is essential for energy metabolism across eukaryotes. Here, conditions known to destabilize the DLD homodimer enabled the mouse, pig, or human enzyme to function as a protease. A catalytic dyad (S456-E431) buried at the homodimer interface was identified. Serine protease inhibitors and an S456A or an E431A point mutation abolished the proteolytic activity, whereas other point mutations at the homodimer interface domain enhanced the proteolytic activity, causing partial or complete loss of DLD activity. In humans, mutations in the DLD homodimer interface have been linked to an atypical form of DLD deficiency. These findings reveal a previously unrecognized mechanism by which certain DLD mutations can simultaneously induce the loss of a primary metabolic activity and the gain of a moonlighting proteolytic activity. The latter could contribute to the metabolic derangement associated with DLD deficiency and represent a target for therapies of this condition.
Collapse
|
41
|
Chen Y, Bonnet R, Shoichet BK. The acylation mechanism of CTX-M beta-lactamase at 0.88 a resolution. J Am Chem Soc 2007; 129:5378-80. [PMID: 17408273 PMCID: PMC2577156 DOI: 10.1021/ja0712064] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Babady NE, Pang YP, Elpeleg O, Isaya G. Cryptic proteolytic activity of dihydrolipoamide dehydrogenase. Proc Natl Acad Sci U S A 2007; 104:6158-63. [PMID: 17404228 PMCID: PMC1851069 DOI: 10.1073/pnas.0610618104] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mitochondrial enzyme, dihydrolipoamide dehydrogenase (DLD), is essential for energy metabolism across eukaryotes. Here, conditions known to destabilize the DLD homodimer enabled the mouse, pig, or human enzyme to function as a protease. A catalytic dyad (S456-E431) buried at the homodimer interface was identified. Serine protease inhibitors and an S456A or an E431A point mutation abolished the proteolytic activity, whereas other point mutations at the homodimer interface domain enhanced the proteolytic activity, causing partial or complete loss of DLD activity. In humans, mutations in the DLD homodimer interface have been linked to an atypical form of DLD deficiency. These findings reveal a previously unrecognized mechanism by which certain DLD mutations can simultaneously induce the loss of a primary metabolic activity and the gain of a moonlighting proteolytic activity. The latter could contribute to the metabolic derangement associated with DLD deficiency and represent a target for therapies of this condition.
Collapse
Affiliation(s)
- Ngolela Esther Babady
- Departments of *Pediatric and Adolescent Medicine and
- Biochemistry and Molecular Biology and
| | - Yuan-Ping Pang
- Computer-Aided Molecular Design Laboratory, Mayo Clinic College of Medicine, Rochester, MN 55905; and
| | - Orly Elpeleg
- Metabolic Disease Unit, Hadassah Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Grazia Isaya
- Departments of *Pediatric and Adolescent Medicine and
- Biochemistry and Molecular Biology and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Hata M, Fujii Y, Tanaka Y, Ishikawa H, Ishii M, Neya S, Tsuda M, Hoshino T. Substrate deacylation mechanisms of serine-beta-lactamases. Biol Pharm Bull 2007; 29:2151-9. [PMID: 17077507 DOI: 10.1248/bpb.29.2151] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The substrate deacylation mechanisms of serine-beta-lactamases (classes A, C and D) were investigated by theoretical calculations. The deacylation of class A proceeds via four elementary reactions. The rate-determining process is the tetrahedral intermediate (TI) formation and the activation energy is 24.6 kcal/mol at the DFT level. The deacylation does not proceed only by Glu166, which acts as a general base, but Lys73 also participates in the reaction. The C3-carboxyl group of the substrate reduces the barrier height at the TI formation (substrate-assisted catalysis). In the case of class C, the deacylation consists of two elementary processes. The activation energy of the TI formation has been estimated to be 30.5 kcal/mol. Tyr150Oeta is stabilized in the deprotonated state in the acyl-enzyme complex and works as a general base. This situation can exist due to the interaction with two positively charged side chains of lysine (Lys67 and Lys315). The deacylation of class D also consists of two elementary reaction processes. The activation energy of the TI formation is ca. 30 kcal/mol. It is thought that the side chain of Lys70 is deprotonated and acts as a general base. When Lys70 is carbamylated, the activation energy is reduced to less than 20 kcal/mol. This suggests that the high hydrolysis activity of class D with carbamylated Lys70 is due to the reduction of activation energy for deacylation. From these results, it is concluded that the contribution of the lysine residue adjacent to the serine residue is indispensable for the enzymatic reactions by serine-beta-lactamases.
Collapse
Affiliation(s)
- Masayuki Hata
- Department of Physical Chemistry, Graduate School of Pharmaceutical Sciences, Chiba University, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ryan BJ, Barrett R. ProteinParser--a community based tool for the generation of a detailed protein consensus and FASTA output. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2007; 85:69-76. [PMID: 17079048 DOI: 10.1016/j.cmpb.2006.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 09/28/2006] [Accepted: 09/29/2006] [Indexed: 05/12/2023]
Abstract
Comparison of bioinformatic data is a common application in the life sciences and beyond. In this communication, a novel Java based software tool, ProteinParser, is outlined. This software tool calculates a detailed consensus, or most common, amino acid at a given position in an aligned protein set, whilst also generating a full consensus protein FASTA output. A second application of this software tool, computing a consensus amino acid given a tolerance threshold, is also demonstrated. The phytase and the common bacterial beta-lactamase proteins are analysed as 'proof of concept' examples. Consensus proteins, as generated by ProteinParser, are regularly utilised in the selection of residues for protein stabilisation mutagenesis; however, this widely applicable software tool will find many alternative applications in areas such as protein homology modelling.
Collapse
Affiliation(s)
- Barry J Ryan
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| | | |
Collapse
|
45
|
Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev 2006; 30:673-91. [PMID: 16911039 DOI: 10.1111/j.1574-6976.2006.00024.x] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial cell division and daughter cell formation are complex mechanisms whose details are orchestrated by at least a dozen different proteins. Penicillin-binding proteins (PBPs), membrane-associated macromolecules which play key roles in the cell wall synthesis process, have been exploited for over 70 years as the targets of the highly successful beta-lactam antibiotics. The increasing incidence of beta-lactam resistant microorganisms, coupled to progress made in genomics, genetics and immunofluorescence microscopy techniques, have encouraged the intensive study of PBPs from a variety of bacterial species. In addition, the recent publication of high-resolution structures of PBPs from pathogenic organisms have shed light on the complex intertwining of drug resistance and cell division processes. In this review, we discuss structural, functional and biological features of such enzymes which, albeit having initially been identified several decades ago, are now being aggressively pursued as highly attractive targets for the development of novel antibiotherapies.
Collapse
Affiliation(s)
- Pauline Macheboeuf
- Institut de Biologie Structurale Jean-Pierre Ebel (CNRS/CEA/UJF), UMR 5075, Laboratoire des Protéines Membranaires, Grenoble, France
| | | | | | | | | |
Collapse
|
46
|
Venkatesan AM, Agarwal A, Abe T, Ushirogochi H, Yamamura I, Ado M, Tsuyoshi T, Dos Santos O, Gu Y, Sum FW, Li Z, Francisco G, Lin YI, Petersen PJ, Yang Y, Kumagai T, Weiss WJ, Shlaes DM, Knox JR, Mansour TS. Structure-Activity Relationship of 6-Methylidene Penems Bearing 6,5 Bicyclic Heterocycles as Broad-Spectrum β-Lactamase Inhibitors: Evidence for 1,4-Thiazepine Intermediates with C7 R Stereochemistry by Computational Methods. J Med Chem 2006; 49:4623-37. [PMID: 16854068 DOI: 10.1021/jm060021p] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design and synthesis of a series of 6-methylidene penems containing [6,5]-fused bicycles (thiophene, imidazole, or pyrazle-fused system) as novel class A, B, and C beta-lactamase inhibitors is described. These penems proved to be potent inhibitors of the TEM-1 (class A) and AmpC (class C) beta-lactamases and less so against the class B metallo-beta-lactamase CcrA. Their in vitro and in vivo activities in combination with piperacillin are discussed. On the basis of the crystallographic structures of a serine-bound reaction intermediate of 2 with SHV-1 (class A) and GC1 (class C) enzymes, compounds 14a-l were designed and synthesized. Penems are proposed to form a seven-membered 1,4 thiazepine ring in both class A and C beta-lactamases. The interaction energy calculation for the enzyme-bound intermediates favor the formation of the C7 R enantiomer over the S enantiomer of the 1,4-thiazepine in both beta-lactamases, which is consistent with those obtained from the crystal structure of 2 with SHV-1 and GC1.
Collapse
Affiliation(s)
- Aranapakam M Venkatesan
- Wyeth Research, Chemical and Screening Sciences, Department of Infectious Disease and Biological Technologies, 401 N. Middletown Road, Pearl River, New York 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hermann JC, Ridder L, Höltje HD, Mulholland AJ. Molecular mechanisms of antibiotic resistance: QM/MM modelling of deacylation in a class A beta-lactamase. Org Biomol Chem 2005; 4:206-10. [PMID: 16391762 DOI: 10.1039/b512969a] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modelling of the first step of the deacylation reaction of benzylpenicillin in the E. coli TEM1 beta-lactamase (with B3LYP/6-31G + (d)//AM1-CHARMM22 quantum mechanics/molecular mechanics methods) shows that a mechanism in which Glu166 acts as the base to deprotonate a conserved water molecule is both energetically and structurally consistent with experimental data; the results may assist the design of new antibiotics and beta-lactamase inhibitors.
Collapse
|
48
|
Negoro S, Ohki T, Shibata N, Mizuno N, Wakitani Y, Tsurukame J, Matsumoto K, Kawamoto I, Takeo M, Higuchi Y. X-ray Crystallographic Analysis of 6-Aminohexanoate-Dimer Hydrolase. J Biol Chem 2005; 280:39644-52. [PMID: 16162506 DOI: 10.1074/jbc.m505946200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
6-Aminohexanoate-dimer hydrolase (EII), responsible for the degradation of nylon-6 industry by-products, and its analogous enzyme (EII') that has only approximately 0.5% of the specific activity toward the 6-aminohexanoate-linear dimer, are encoded on plasmid pOAD2 of Arthrobacter sp. (formerly Flavobacterium sp.) KI72. Here, we report the three-dimensional structure of Hyb-24 (a hybrid between the EII and EII' proteins; EII'-level activity) by x-ray crystallography at 1.8 A resolution and refined to an R-factor and R-free of 18.5 and 20.3%, respectively. The fold adopted by the 392-amino acid polypeptide generated a two-domain structure that is similar to the folds of the penicillin-recognizing family of serine-reactive hydrolases, especially to those of d-alanyl-d-alanine-carboxypeptidase from Streptomyces and carboxylesterase from Burkholderia. Enzyme assay using purified enzymes revealed that EII and Hyb-24 possess hydrolytic activity for carboxyl esters with short acyl chains but no detectable activity for d-alanyl-d-alanine. In addition, on the basis of the spatial location and role of amino acid residues constituting the active sites of the nylon oligomer hydrolase, carboxylesterase, d-alanyl-d-alanine-peptidase, and beta-lactamases, we conclude that the nylon oligomer hydrolase utilizes nucleophilic Ser(112) as a common active site both for nylon oligomer-hydrolytic and esterolytic activities. However, it requires at least two additional amino acid residues (Asp(181) and Asn(266)) specific for nylon oligomer-hydrolytic activity. Here, we propose that amino acid replacements in the catalytic cleft of a preexisting esterase with the beta-lactamase fold resulted in the evolution of the nylon oligomer hydrolase.
Collapse
Affiliation(s)
- Seiji Negoro
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Meroueh SO, Fisher JF, Schlegel HB, Mobashery S. Ab Initio QM/MM Study of Class A β-Lactamase Acylation: Dual Participation of Glu166 and Lys73 in a Concerted Base Promotion of Ser70. J Am Chem Soc 2005; 127:15397-407. [PMID: 16262403 DOI: 10.1021/ja051592u] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Beta-lactamase acquisition is the most prevalent basis for Gram-negative bacteria resistance to the beta-lactam antibiotics. The mechanism used by the most common class A Gram-negative beta-lactamases is serine acylation followed by hydrolytic deacylation, destroying the beta-lactam. The ab initio quantum mechanical/molecular mechanical (QM/MM) calculations, augmented by extensive molecular dynamics simulations reported herein, describe the serine acylation mechanism for the class A TEM-1 beta-lactamase with penicillanic acid as substrate. Potential energy surfaces (based on approximately 350 MP2/6-31+G calculations) reveal the proton movements that govern Ser70 tetrahedral formation and then collapse to the acyl-enzyme. A remarkable duality of mechanism for tetrahedral formation is implicated. Following substrate binding, the pathway initiates by a low energy barrier (5 kcal mol(-1)) and an energetically favorable transfer of a proton from Lys73 to Glu166, through the catalytic water molecule and Ser70. This gives unprotonated Lys73 and protonated Glu166. Tetrahedral formation ensues in a concerted general base process, with Lys73 promoting Ser70 addition to the beta-lactam carbonyl. Moreover, the three-dimensional potential energy surface also shows that the previously proposed pathway, involving Glu166 as the general base promoting Ser70 through a conserved water molecule, exists in competition with the Lys73 process. The existence of two routes to the tetrahedral species is fully consistent with experimental data for mutant variants of the TEM beta-lactamase.
Collapse
Affiliation(s)
- Samy O Meroueh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | |
Collapse
|
50
|
Hsieh YH, Weinberg N, Yang K, Kim CK, Shi Z, Wolfe S. Hydration of the carbonyl group Acetic acid catalysis in the co-operative mechanism. CAN J CHEM 2005. [DOI: 10.1139/v05-027] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a co-operative reaction, solvent molecules, specifically water molecules, participate actively in the mechanism to circumvent the formation of charged intermediates. This paper extends our earlier theoretical treatment of the neutral co-operative hydration of acetone to include general acid catalysis by acetic acid. As before, the predominant neutral channel employs three catalytic water molecules. The principal acetic acid catalyzed channels employ one catalytic water molecule and, in approximately equal proportions, one or both oxygens of the carboxyl group. The theoretical rate constant for general acid catalysis is calculated to be 0.49 M1s1at 298 K. This compares to an estimated experimental value of 0.30 M1s1for acetic acid catalyzed hydration of acetone at 298 K in water solvent, determined by using the18O-isotope shift in the13C NMR spectrum of 2-13C-labelled acetone as a kinetic probe. It is concluded that the notion of co-operativity can be extended to include general acid catalysis of the hydration of a carbonyl group in water solvent. This creates an obvious problem for the generally accepted view that multistep ionic mechanisms are operative in the low dielectric media that exist at the active sites of hydrolytic enzymes. The relevance of this finding to the mechanisms of action of β-lactam antibiotics has been noted.Key words: hydration, reaction mechanism, co-operativity, general acid catalysis, ab initio, SCRF,18O-isotope shift.
Collapse
|