1
|
Lee C, Kim MJ, Kumar A, Lee HW, Yang Y, Kim Y. Vascular endothelial growth factor signaling in health and disease: from molecular mechanisms to therapeutic perspectives. Signal Transduct Target Ther 2025; 10:170. [PMID: 40383803 PMCID: PMC12086256 DOI: 10.1038/s41392-025-02249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/09/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025] Open
Abstract
Vascular endothelial growth factor (VEGF) signaling is a critical regulator of vasculogenesis, angiogenesis, and lymphangiogenesis, processes that are vital for the development of vascular and lymphatic systems, tissue repair, and the maintenance of homeostasis. VEGF ligands and their receptors orchestrate endothelial cell proliferation, migration, and survival, playing a pivotal role in dynamic vascular remodeling. Dysregulated VEGF signaling drives diverse pathological conditions, including tumor angiogenesis, cardiovascular diseases, and ocular disorders. Excessive VEGF activity promotes tumor growth, invasion, and metastasis, while insufficient signaling contributes to impaired wound healing and ischemic diseases. VEGF-targeted therapies, such as monoclonal antibodies and tyrosine kinase inhibitors, have revolutionized the treatment of diseases involving pathological angiogenesis, offering significant clinical benefits in oncology and ophthalmology. These therapies inhibit angiogenesis and slow disease progression, but they often face challenges such as therapeutic resistance, suboptimal efficacy, and adverse effects. To further explore these issues, this review provides a comprehensive overview of VEGF ligands and receptors, elucidating their molecular mechanisms and regulatory networks. It evaluates the latest progress in VEGF-targeted therapies and examines strategies to address current challenges, such as resistance mechanisms. Moreover, the discussion includes emerging therapeutic strategies such as innovative drug delivery systems and combination therapies, highlighting the continuous efforts to improve the effectiveness and safety of VEGF-targeted treatments. This review highlights the translational potential of recent discoveries in VEGF biology for improving patient outcomes.
Collapse
Affiliation(s)
- Chunsik Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea.
| | - Myung-Jin Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea
| | - Anil Kumar
- Center for Research and Innovations, Adichunchanagiri University, Mandya, Karnataka, India
| | - Han-Woong Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonghwan Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Guo Z, Jing X, Sun X, Sun S, Yang Y, Cao Y. Tumor angiogenesis and anti-angiogenic therapy. Chin Med J (Engl) 2024; 137:2043-2051. [PMID: 39051171 PMCID: PMC11374217 DOI: 10.1097/cm9.0000000000003231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Indexed: 07/27/2024] Open
Abstract
ABSTRACT Anti-angiogenic drugs (AADs), which mainly target the vascular endothelial growth factor-A signaling pathway, have become a therapeutic option for cancer patients for two decades. During this period, tremendous clinical experience of anti-angiogenic therapy has been acquired, new AADs have been developed, and the clinical indications for AAD treatment of various cancers have been expanded using monotherapy and combination therapy. However, improvements in the therapeutic outcomes of clinically available AADs and the development of more effective next-generation AADs are still urgently required. This review aims to provide historical and perspective views on tumor angiogenesis to allow readers to gain mechanistic insights and learn new therapeutic development. We revisit the history of concept initiation and AAD discovery, and summarize the up-to-date clinical translation of anti-angiogenic cancer therapy in this field.
Collapse
Affiliation(s)
- Ziheng Guo
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| | - Xiaoting Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vison and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shishuo Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
- Cancer Institute, the First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
3
|
Petrik J, Lauks S, Garlisi B, Lawler J. Thrombospondins in the tumor microenvironment. Semin Cell Dev Biol 2024; 155:3-11. [PMID: 37286406 DOI: 10.1016/j.semcdb.2023.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Many cancers begin with the formation of a small nest of transformed cells that can remain dormant for years. Thrombospondin-1 (TSP-1) initially promotes dormancy by suppressing angiogenesis, a key early step in tumor progression. Over time, increases in drivers of angiogenesis predominate, and vascular cells, immune cells, and fibroblasts are recruited to the tumor mass forming a complex tissue, designated the tumor microenvironment. Numerous factors, including growth factors, chemokine/cytokine, and extracellular matrix, participate in the desmoplastic response that in many ways mimics wound healing. Vascular and lymphatic endothelial cells, and cancer-associated pericytes, fibroblasts, macrophages and immune cells are recruited to the tumor microenvironment, where multiple members of the TSP gene family promote their proliferation, migration and invasion. The TSPs also affect the immune signature of tumor tissue and the phenotype of tumor-associated macrophages. Consistent with these observations, expression of some TSPs has been established to correlate with poor outcomes in specific types of cancer.
Collapse
Affiliation(s)
- James Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| | - Sylvia Lauks
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Bianca Garlisi
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jack Lawler
- Harvard Medical School, Boston, MA, USA; Beth Israel, Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Seto M, Dumitrescu L, Mahoney ER, Sclafani AM, De Jager PL, Menon V, Koran MEI, Robinson RA, Ruderfer DM, Cox NJ, Seyfried NT, Jefferson AL, Schneider JA, Bennett DA, Petyuk VA, Hohman TJ. Multi-omic characterization of brain changes in the vascular endothelial growth factor family during aging and Alzheimer's disease. Neurobiol Aging 2023; 126:25-33. [PMID: 36905877 PMCID: PMC10106439 DOI: 10.1016/j.neurobiolaging.2023.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
The vascular endothelial growth factor (VEGF) signaling family has been implicated in neuroprotection and clinical progression in Alzheimer's disease (AD). Previous work in postmortem human dorsolateral prefrontal cortex demonstrated that higher transcript levels of VEGFB, PGF, FLT1, and FLT4 are associated with AD dementia, worse cognitive outcomes, and higher AD neuropathology. To expand prior work, we leveraged bulk RNA sequencing data, single nucleus RNA (snRNA) sequencing, and both tandem mass tag and selected reaction monitoring mass spectrometry proteomic measures from the post-mortem brain. Outcomes included AD diagnosis, cognition, and AD neuropathology. We replicated previously reported VEGFB and FLT1 results, whereby higher expression was associated with worse outcomes, and snRNA results suggest microglia, oligodendrocytes, and endothelia may play a central role in these associations. Additionally, FLT4 and NRP2 expression were associated with better cognitive outcomes. This study provides a comprehensive molecular picture of the VEGF signaling family in cognitive aging and AD and critical insight towards the biomarker and therapeutic potential of VEGF family members in AD.
Collapse
Affiliation(s)
- Mabel Seto
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily R Mahoney
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annah M Sclafani
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Vilas Menon
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mary E I Koran
- Department of Radiology, Stanford Hospital, Stanford, CA, USA
| | - Renã A Robinson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Douglas M Ruderfer
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Snake venom vascular endothelial growth factors (svVEGFs): Unravelling their molecular structure, functions, and research potential. Cytokine Growth Factor Rev 2021; 60:133-143. [PMID: 34090786 DOI: 10.1016/j.cytogfr.2021.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis, a physiological process characterized by the formation of new vessels from a preexisting endothelium. VEGF has also been implicated in pathologic states, such as neoplasias, intraocular neovascular disorders, among other conditions. VEGFs are distributed in seven different families: VEGF-A, B, C, D, and PIGF (placental growth factor), which are identified in mammals; VEGF-E, which are encountered in viruses; and VEGF-F or svVEGF (snake venom VEGF) described in snake venoms. This is the pioneer review of svVEGF family, exploring its distribution among the snake venoms, molecular structure, main functions, and potential applications.
Collapse
|
6
|
Künnapuu J, Bokharaie H, Jeltsch M. Proteolytic Cleavages in the VEGF Family: Generating Diversity among Angiogenic VEGFs, Essential for the Activation of Lymphangiogenic VEGFs. BIOLOGY 2021; 10:167. [PMID: 33672235 PMCID: PMC7926383 DOI: 10.3390/biology10020167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022]
Abstract
Specific proteolytic cleavages turn on, modify, or turn off the activity of vascular endothelial growth factors (VEGFs). Proteolysis is most prominent among the lymph-angiogenic VEGF-C and VEGF-D, which are synthesized as precursors that need to undergo enzymatic removal of their C- and N-terminal propeptides before they can activate their receptors. At least five different proteases mediate the activating cleavage of VEGF-C: plasmin, ADAMTS3, prostate-specific antigen, cathepsin D, and thrombin. All of these proteases except for ADAMTS3 can also activate VEGF-D. Processing by different proteases results in distinct forms of the "mature" growth factors, which differ in affinity and receptor activation potential. The "default" VEGF-C-activating enzyme ADAMTS3 does not activate VEGF-D, and therefore, VEGF-C and VEGF-D do function in different contexts. VEGF-C itself is also regulated in different contexts by distinct proteases. During embryonic development, ADAMTS3 activates VEGF-C. The other activating proteases are likely important for non-developmental lymphangiogenesis during, e.g., tissue regeneration, inflammation, immune response, and pathological tumor-associated lymphangiogenesis. The better we understand these events at the molecular level, the greater our chances of developing successful therapies targeting VEGF-C and VEGF-D for diseases involving the lymphatics such as lymphedema or cancer.
Collapse
Affiliation(s)
- Jaana Künnapuu
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Honey Bokharaie
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
| | - Michael Jeltsch
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (J.K.); (H.B.)
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Wihuri Research Institute, 00290 Helsinki, Finland
| |
Collapse
|
7
|
Blume C, Geiger MF, Müller M, Clusmann H, Mainz V, Kalder J, Brandenburg LO, Mueller CA. Decreased angiogenesis as a possible pathomechanism in cervical degenerative myelopathy. Sci Rep 2021; 11:2497. [PMID: 33510227 PMCID: PMC7843718 DOI: 10.1038/s41598-021-81766-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 01/07/2021] [Indexed: 01/03/2023] Open
Abstract
Endogenous immune mediated reactions of inflammation and angiogenesis are components of the spinal cord injury in patients with degenerative cervical myelopathy (DCM). The aim of this study was to identify alteration of certain mediators participating in angiogenetic and inflammatory reactions in patients with DCM. A consecutive series of 42 patients with DCM and indication for surgical decompression were enrolled for the study. 28 DCM patients were included, as CSF samples were taken preoperatively. We enrolled 42 patients requiring surgery for a thoracic abdominal aortic aneurysm (TAAA) as neurologically healthy controls. In 38 TAAA patients, CSF samples were taken prior to surgery and thus included. We evaluated the neurological status of patients and controls prior to surgery including NDI and mJOA. Protein-concentrations of factors with a crucial role in inflammation and angiogenesis were measured in CSF via ELISA testing (pg/ml): Angiopoietin 2, VEGF-A and C, RANTES, IL 1 beta and IL 8. Additionally, evaluated the status of the blood-spinal cord barrier (BSCB) by Reibers´diagnostic in all participants. Groups evidently differed in their neurological status (mJOA: DCM 10.1 ± 3.3, TAAA 17.3 ± 1.2, p < .001; NDI: DCM 47.4 ± 19.7, TAAA 5.3 ± 8.6, p < .001). There were no particular differences in age and gender distribution. However, we detected statistically significant differences in concentrations of mediators between the groups: Angiopoietin 2 (DCM 267.1.4 ± 81.9, TAAA 408.6 ± 177.1, p < .001) and VEGF C (DCM 152.2 ± 96.1, TAAA 222.4 ± 140.3, p = .04). DCM patients presented a mild to moderate BSCB disruption, controls had no signs of impairment. In patients with DCM, we measured decreased concentrations of angiogenic mediators. These results correspond to findings of immune mediated secondary harm in acute spinal cord injury. Reduced angiogenic activity could be a relevant part of the pathogenesis of DCM and secondary harm to the spinal cord.
Collapse
Affiliation(s)
- Christian Blume
- Department of Neurosurgery, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany.
| | - M F Geiger
- Department of Neurosurgery, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
| | - M Müller
- Department of Neuroradiology, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
| | - H Clusmann
- Department of Neurosurgery, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
| | - V Mainz
- Department of Medical Psychology and Medical Sociology, RWTH Aachen University, Pauwelsstrasse 19, 52074, Aachen, Germany
| | - J Kalder
- Department of Vascular Surgery, Gießen University, Rudolf-Buchheim-str. 7, 35392, Gießen, Germany
| | - L O Brandenburg
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany
| | - C A Mueller
- Department of Neurosurgery, RWTH Aachen University, Pauwelstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
8
|
Neuroprotective Effect of Vascular Endothelial Growth Factor on Motoneurons of the Oculomotor System. Int J Mol Sci 2021; 22:ijms22020814. [PMID: 33467517 PMCID: PMC7830098 DOI: 10.3390/ijms22020814] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/04/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) was initially characterized as a potent angiogenic factor based on its activity on the vascular system. However, it is now well established that VEGF also plays a crucial role as a neuroprotective factor in the nervous system. A deficit of VEGF has been related to motoneuronal degeneration, such as that occurring in amyotrophic lateral sclerosis (ALS). Strikingly, motoneurons of the oculomotor system show lesser vulnerability to neurodegeneration in ALS compared to other motoneurons. These motoneurons presented higher amounts of VEGF and its receptor Flk-1 than other brainstem pools. That higher VEGF level could be due to an enhanced retrograde input from their target muscles, but it can also be produced by the motoneurons themselves and act in an autocrine way. By contrast, VEGF’s paracrine supply from the vicinity cells, such as glial cells, seems to represent a minor source of VEGF for brainstem motoneurons. In addition, ocular motoneurons experiment an increase in VEGF and Flk-1 level in response to axotomy, not observed in facial or hypoglossal motoneurons. Therefore, in this review, we summarize the differences in VEGF availability that could contribute to the higher resistance of extraocular motoneurons to injury and neurodegenerative diseases.
Collapse
|
9
|
Invernizzi M, Lopez G, Michelotti A, Venetis K, Sajjadi E, De Mattos-Arruda L, Ghidini M, Runza L, de Sire A, Boldorini R, Fusco N. Integrating Biological Advances Into the Clinical Management of Breast Cancer Related Lymphedema. Front Oncol 2020; 10:422. [PMID: 32300557 PMCID: PMC7142240 DOI: 10.3389/fonc.2020.00422] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Breast cancer-related lymphedema (BCRL) occurs in a significant number of breast cancer survivors as a consequence of the axillary lymphatics' impairment after therapy (mainly axillary surgery and irradiation). Despite the recent achievements in the clinical management of these patients, BCRL is often diagnosed at its occurrence. In most cases, it remains a progressive and irreversible condition, with dramatic consequences in terms of quality of life and on sanitary costs. There are still no validated pre-surgical strategies to identify individuals that harbor an increased risk of BCRL. However, clinical, therapeutic, and tumor-specific traits are recurrent in these patients. Over the past few years, many studies have unraveled the complexity of the molecular and transcriptional events leading to the lymphatic system ontogenesis. Additionally, molecular insights are coming from the study of the germline alterations involved at variable levels in BCRL models. Regrettably, there is a substantial lack of predictive biomarkers for BCRL, given that our knowledge of its molecular milieu remains extremely puzzled. The purposes of this review were (i) to outline the biology underpinning the ontogenesis of the lymphatic system; (ii) to assess the current state of knowledge of the molecular alterations that can be involved in BCRL pathogenesis and progression; (iii) to discuss the present and short-term future perspectives in biomarker-based patients' risk stratification; and (iv) to provide practical information that can be employed to improve the quality of life of these patients.
Collapse
Affiliation(s)
- Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy
| | - Gianluca Lopez
- School of Pathology, University of Milan, Milan, Italy.,Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Michelotti
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Konstantinos Venetis
- Ph.D. Program in Translational Medicine, University of Milan, Milan, Italy.,Divison of Pathology, IRCCS European Institute of Oncology (IEO), Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Michele Ghidini
- Division of Medical Oncology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Letterio Runza
- Division of Pathology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro de Sire
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy.,Rehabilitation Unit, "Mons. L. Novarese" Hospital, Moncrivello, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Nicola Fusco
- Divison of Pathology, IRCCS European Institute of Oncology (IEO), Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
10
|
Moore AM, Mahoney E, Dumitrescu L, De Jager PL, Koran MEI, Petyuk VA, Robinson RA, Ruderfer DM, Cox NJ, Schneider JA, Bennett DA, Jefferson AL, Hohman TJ. APOE ε4-specific associations of VEGF gene family expression with cognitive aging and Alzheimer's disease. Neurobiol Aging 2020; 87:18-25. [PMID: 31791659 PMCID: PMC7064375 DOI: 10.1016/j.neurobiolaging.2019.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/11/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022]
Abstract
Literature suggests vascular endothelial growth factor A (VEGFA) is protective among those at highest risk for Alzheimer's disease (AD). Apolipoprotein E (APOE) ε4 allele carriers represent a highly susceptible population for cognitive decline, and VEGF may confer distinct protection among APOE-ε4 carriers. We evaluated interactions between cortical expression of 10 VEGF gene family members and APOE-ε4 genotype to clarify which VEGF genes modify the association between APOE-ε4 and cognitive decline. Data were obtained from the Religious Orders Study and Rush Memory and Aging Project (N = 531). Linear regression assessed interactions on global cognition. VEGF genes NRP1 and VEGFA interacted with APOE-ε4 on cognitive performance (p.fdr < 0.05). Higher NRP1 expression correlated with worse outcomes among ε4 carriers but better outcomes among ε4 noncarriers, suggesting NRP1 modifies the risk for poor cognitive scores based on APOE-ε4 status. NRP1 regulates angiogenesis, and literature suggests vessels in APOE-ε4 brains are more prone to leaking, perhaps placing young vessels at risk for ischemia. Results suggest that future therapeutics targeting brain angiogenesis should also consider ε4 allele status.
Collapse
Affiliation(s)
- Annah M Moore
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily Mahoney
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA; Cell Circuits Program, Broad Institute, Cambridge MA, USA
| | | | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Renã As Robinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Douglas M Ruderfer
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Angela L Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Haibe Y, Kreidieh M, El Hajj H, Khalifeh I, Mukherji D, Temraz S, Shamseddine A. Resistance Mechanisms to Anti-angiogenic Therapies in Cancer. Front Oncol 2020; 10:221. [PMID: 32175278 PMCID: PMC7056882 DOI: 10.3389/fonc.2020.00221] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor growth and metastasis rely on tumor vascular network for the adequate supply of oxygen and nutrients. Tumor angiogenesis relies on a highly complex program of growth factor signaling, endothelial cell (EC) proliferation, extracellular matrix (ECM) remodeling, and stromal cell interactions. Numerous pro-angiogenic drivers have been identified, the most important of which is the vascular endothelial growth factor (VEGF). The importance of pro-angiogenic inducers in tumor growth, invasion and extravasation make them an excellent therapeutic target in several types of cancers. Hence, the number of anti-angiogenic agents developed for cancer treatment has risen over the past decade, with at least eighty drugs being investigated in preclinical studies and phase I-III clinical trials. To date, the most common approaches to the inhibition of the VEGF axis include the blockade of VEGF receptors (VEGFRs) or ligands by neutralizing antibodies, as well as the inhibition of receptor tyrosine kinase (RTK) enzymes. Despite promising preclinical results, anti-angiogenic monotherapies led only to mild clinical benefits. The minimal benefits could be secondary to primary or acquired resistance, through the activation of alternative mechanisms that sustain tumor vascularization and growth. Mechanisms of resistance are categorized into VEGF-dependent alterations, non-VEGF pathways and stromal cell interactions. Thus, complementary approaches such as the combination of these inhibitors with agents targeting alternative mechanisms of blood vessel formation are urgently needed. This review provides an updated overview on the pathophysiology of angiogenesis during tumor growth. It also sheds light on the different pro-angiogenic and anti-angiogenic agents that have been developed to date. Finally, it highlights the preclinical evidence for mechanisms of angiogenic resistance and suggests novel therapeutic approaches that might be exploited with the ultimate aim of overcoming resistance and improving clinical outcomes for patients with cancer.
Collapse
Affiliation(s)
- Yolla Haibe
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Malek Kreidieh
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Hiba El Hajj
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
- Department of Experimental Pathology, Immunology and Microbiology, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ibrahim Khalifeh
- Department of Pathology and Laboratory Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Deborah Mukherji
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Sally Temraz
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Division of Hematology/Oncology, Department of Internal Medicine, American University of Beirut-Medical Center, Beirut, Lebanon
| |
Collapse
|
12
|
Dupont G, Schmidt C, Yilmaz E, Oskouian RJ, Macchi V, de Caro R, Tubbs RS. Our current understanding of the lymphatics of the brain and spinal cord. Clin Anat 2019; 32:117-121. [PMID: 30362622 DOI: 10.1002/ca.23308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 11/08/2022]
Abstract
The lymphatic system, segregated from the blood vascular system, is an essential anatomical route along which interstitial fluid, solutes, lipids, immune cells, and cellular debris, are conveyed. However, the way these mechanisms operate within the cranial compartment is mostly unknown. Herein, we review current understanding of the meningeal lymphatics, described anatomically over a century ago yet still poorly understood from a functional standpoint. We will delineate the cellular mechanisms by which the meningeal lymphatics are formed and discuss their unique anatomy. Furthermore, this review will discuss the recently-coined "glymphatic system" and the manner by which cerebrospinal fluid (CSF) and interstitial fluid (ISF) are exchanged and thus drained by the meningeal lymphatic vasculature as a key route for conveying cellular waste, solutes, and immune traffic to the deep cervical lymph nodes. The clinical relevance of the meningeal lymphatics will also be described, as they are relevant to various common defects of the lymphatic system. Clin. Anat. 32:117-121, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | - Emre Yilmaz
- Seattle Science Foundation, Seattle, Washington.,Swedish Neuroscience Institute, Seattle, Washington
| | | | - Veronica Macchi
- Department of Neuroscience, Anatomy Institute, University of Padova, Padova, Italy
| | - Raffaele de Caro
- Department of Neuroscience, Anatomy Institute, University of Padova, Padova, Italy
| | - R Shane Tubbs
- Seattle Science Foundation, Seattle, Washington.,Department of Anatomical Sciences, St. George's University School of Medicine, St. George's, Grenada
| |
Collapse
|
13
|
Li G, Dong T, Yang D, Gao A, Luo J, Yang H, Wang L. Progranulin promotes lymphangiogenesis through VEGF-C and is an independent risk factor in human esophageal cancers. Hum Pathol 2018; 75:116-124. [PMID: 29452214 DOI: 10.1016/j.humpath.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 01/06/2023]
Abstract
Lymph node metastasis is one of the most important predictors of the prognosis for esophageal cancer (EC) patients. However, the mechanism underlying the lymph node metastasis is largely unknown. Progranulin (PGRN) is shown to be highly expressed in various types of cancers and could promote the angiogenesis and epithelial-mesenchymal transition of cancer cells in previous studies. However, the expression status of PGRN and its effects on the lymphangiogenesis in EC are largely unclear. In this study, we show for the first time that PGRN is expressed in EC tissue samples and cell lines and could promote the expression of VEGF-C in vitro, a well-known lymphangiogenesis inducer, through the putative signaling transducers p-ERK and p-AKT. Besides, increased levels of PGRN are correlated with lymph node metastasis, high levels of lymph microvessel density, and lymph vessel space invasion in tissue samples of EC patients. In addition, Cox proportional risk model shows that patients with high levels of PGRN would have 2-fold increases in 5-year mortality compared with patients with low levels of PGRN. Finally, we establish a clinically useful nomogram to predict the possibility of mortality for individual EC patients. In conclusion, PGRN may play an important role in the lymphangiogenesis through activation of VEGF-C in the EC patients.
Collapse
Affiliation(s)
- Guanhua Li
- Department of Respiratory, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong 250013, PR China
| | - Taotao Dong
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, PR China
| | - Dong Yang
- Department of Oncology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272129, PR China
| | - Aiqin Gao
- Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong 250013, PR China
| | - Judong Luo
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Hongyan Yang
- Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong 250013, PR China
| | - Linlin Wang
- Department of Oncology, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong 250013, PR China; Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
14
|
Rauniyar K, Jha SK, Jeltsch M. Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels. Front Bioeng Biotechnol 2018; 6:7. [PMID: 29484295 PMCID: PMC5816233 DOI: 10.3389/fbioe.2018.00007] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/19/2018] [Indexed: 12/27/2022] Open
Abstract
Because virtually all tissues contain blood vessels, the importance of hemevascularization has been long recognized in regenerative medicine and tissue engineering. However, the lymphatic vasculature has only recently become a subject of interest. Central to the task of growing a lymphatic network are lymphatic endothelial cells (LECs), which constitute the innermost layer of all lymphatic vessels. The central molecule that directs proliferation and migration of LECs during embryogenesis is vascular endothelial growth factor C (VEGF-C). VEGF-C is therefore an important ingredient for LEC culture and attempts to (re)generate lymphatic vessels and networks. During its biosynthesis VEGF-C undergoes a stepwise proteolytic processing, during which its properties and affinities for its interaction partners change. Many of these fundamental aspects of VEGF-C biosynthesis have only recently been uncovered. So far, most—if not all—applications of VEGF-C do not discriminate between different forms of VEGF-C. However, for lymphatic regeneration and engineering purposes, it appears mandatory to understand these differences, since they relate, e.g., to important aspects such as biodistribution and receptor activation potential. In this review, we discuss the molecular biology of VEGF-C as it relates to the growth of LECs and lymphatic vessels. However, the properties of VEGF-C are similarly relevant for the cardiovascular system, since both old and recent data show that VEGF-C can have a profound effect on the blood vasculature.
Collapse
Affiliation(s)
- Khushbu Rauniyar
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Sawan Kumar Jha
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Michael Jeltsch
- Translational Cancer Biology Research Program, University of Helsinki, Helsinki, Finland.,Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Richter A, Skerra A. Anticalins directed against vascular endothelial growth factor receptor 3 (VEGFR-3) with picomolar affinities show potential for medical therapy and in vivo imaging. Biol Chem 2017; 398:39-55. [DOI: 10.1515/hsz-2016-0195] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022]
Abstract
Abstract
Members of the vascular endothelial growth factor receptor (VEGFR) family play a central role in angiogenesis as well as lymphangiogenesis and are crucial for tumor growth and metastasis. In particular, VEGFR-3 expression is induced in endothelial cells during tumor angiogenesis. We report the design of anticalins that specifically recognize the ligand-binding domains 1 and 2 of VEGFR-3. To this end, a library of the lipocalin 2 scaffold with 20 randomized positions distributed across its binding site was subjected to phage display selection and enzyme linked immunosorbent assay (ELISA) screening using the VEGF-C binding fragment (D1-2) or the entire extracellular region (D1-7) of VEGFR-3 as target proteins. Promising anticalin candidates were produced in Escherichia coli and biochemically characterized. Three variants with different receptor binding modes were identified, and two of them were optimized with regard to target affinity as well as folding efficiency. The resulting anticalins show dissociation constants down to the single-digit picomolar range. Specific recognition of VEGFR-3 on cells was demonstrated by immunofluorescence microscopy. Competitive binding versus VEGF-C was demonstrated for two of the anticalins with Ki values in the low nanomolar range. Based on these data, VEGFR-3 specific anticalins provide promising reagents for the diagnosis and/or therapeutic intervention of tumor-associated vessel growth.
Collapse
|
16
|
Hassan BB, Elshafae SM, Supsavhad W, Simmons JK, Dirksen WP, Sokkar SM, Rosol TJ. Feline Mammary Cancer. Vet Pathol 2016; 54:32-43. [PMID: 27281014 DOI: 10.1177/0300985816650243] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Feline mammary carcinoma (FMC) is similar to human breast cancer in the late age of onset, incidence, histopathologic features, biological behavior, and pattern of metastasis. Therefore, FMC has been proposed as a relevant model for aggressive human breast cancer. The goals of this study were to develop a nude mouse model of FMC tumor growth and metastasis and to measure the expression of genes responsible for lymphangiogenesis, angiogenesis, tumor progression, and lymph node metastasis in FMC tissues and cell lines. Two primary FMC tissues were injected subcutaneously, and 6 FMC cell lines were injected into 3 sites (subcutaneous, intratibial, and intracardiac) in nude mice. Tumors and metastases were monitored using bioluminescent imaging and characterized by gross necropsy, radiology, and histopathology. Molecular characterization of invasion and metastasis genes in FMC was conducted using quantitative real-time reverse transcription polymerase chain reaction in 6 primary FMC tissues, 2 subcutaneous FMC xenografts, and 6 FMC cell lines. The histologic appearance of the subcutaneous xenografts resembled the primary tumors. No metastasis was evident following subcutaneous injection of tumor tissues and cell lines, whereas lung, brain, liver, kidney, eye, and bone metastases were confirmed following intratibial and intracardiac injection of FMC cell lines. Finally, 15 genes were differentially expressed in the FMC tissues and cell lines. The highly expressed genes in all samples were PDGFA, PDGFB, PDGFC, FGF2, EGFR, ERBB2, ERBB3, VEGFD, VEGFR3, and MYOF. Three genes ( PDGFD, ANGPT2, and VEGFC) were confirmed to be of stromal origin. This investigation demonstrated the usefulness of nude mouse models of experimental FMC and identified molecular targets of FMC progression and metastasis.
Collapse
Affiliation(s)
- B B Hassan
- 1 Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,2 Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - S M Elshafae
- 1 Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.,3 Department of Pathology, Faculty of Veterinary Medicine, Benha University, Kalyubia, Egypt
| | - W Supsavhad
- 1 Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - J K Simmons
- 1 Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - W P Dirksen
- 1 Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - S M Sokkar
- 2 Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - T J Rosol
- 1 Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Zhan P, Ji YN, Yu LK. VEGF is associated with the poor survival of patients with prostate cancer: a meta-analysis. Transl Androl Urol 2016; 2:99-105. [PMID: 26816732 PMCID: PMC4708223 DOI: 10.3978/j.issn.2223-4683.2013.06.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Vascular endothelial growth factor (VEGF) is considered as a prime mediator of angiogenesis, and has been implicated in carcinogenesis and metastasis. Various studies examined the relationship between VEGF overexpression with the clinical outcome in patients with prostate cancer, but yielded conflicting results. Methods Electronic databases updated to July 2013 were searched to find relevant studies. A meta-analysis was conducted with eligible studies which quantitatively evaluated the relationship between VEGF status and survival of patients with prostate cancer. Survival data were aggregated and quantitatively analyzed. Results We performed a meta-analysis of 9 studies that evaluated the correlation between VEGF overexpression and survival in patients with prostate cancer. Combined hazard ratios suggested VEGF overexpression had an unfavorable impact on overall survival (OS) [hazard ratio (HR) =1.54, 95% CI (confidence interval): 1.25-1.83], but not disease free survival (DFS) (HR=1.23, 95% CI: 0.99-1.47) in patients with prostate cancer. No significant heterogeneity was observed among all studies. Conclusions VEGF overexpression indicates a poor prognosis for patients with prostate cancer.
Collapse
Affiliation(s)
- Ping Zhan
- 1 First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing 210029, China ; 2 The Collaborative Research (CORE) Group, Sydney, Australia ; 3 Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Ya-Nan Ji
- 1 First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing 210029, China ; 2 The Collaborative Research (CORE) Group, Sydney, Australia ; 3 Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| | - Li-Ke Yu
- 1 First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing 210029, China ; 2 The Collaborative Research (CORE) Group, Sydney, Australia ; 3 Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
18
|
Yucel Y, Gupta N. Lymphatic drainage from the eye: A new target for therapy. PROGRESS IN BRAIN RESEARCH 2015; 220:185-98. [PMID: 26497791 DOI: 10.1016/bs.pbr.2015.07.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lowering intraocular pressure (IOP) has been central to glaucoma care for over a century. In order to prevent sight loss from disease, there has been considerable focus on medical and surgical methods to improve fluid drainage from the eye. In spite of this, our understanding of exactly how aqueous humor leaves the eye is not complete. Recently, lymphatic vessels have been discovered in the human uvea, with studies showing lymphatic fluid outflow in several models, in addition to evidence for their pharmacological enhancement. The presence of a lymphatic outflow system points to an exciting, expanded understanding of how fluid and particulate materials such as proteins move out of the eye, and how IOP may be regulated. We coin the term "uveolymphatic pathway"-to reflect a comprehensive and compelling new target for glaucoma and an exciting opportunity for future investigations to better understand the eye in health and disease.
Collapse
Affiliation(s)
- Yeni Yucel
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Ophthalmic Pathology Laboratory, University of Toronto, St. Michael's Hospital, Toronto, ON, Canada; Faculty of Engineering & Architectural Science, Ryerson University, Toronto, ON, Canada.
| | - Neeru Gupta
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada; Glaucoma and Nerve Protection Unit, St. Michael's Hospital, Toronto, ON, Canada
| |
Collapse
|
19
|
Increased cardiac remodeling in cardiac-specific Flt-1 receptor knockout mice with pressure overload. Cell Tissue Res 2015; 362:389-98. [PMID: 26017635 DOI: 10.1007/s00441-015-2209-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/05/2015] [Indexed: 12/14/2022]
Abstract
Vascular endothelial growth factor (VEGF) inhibition has previously been shown to have damaging effects on the heart. Because the role of Flt-1 (a phosphotyrosine kinase receptor for VEGF) in cardiac function and hypertrophy is unclear, we generated mice lacking Flt-1 only in their cardiomyocytes (Flt-1 KO). The hearts from 8- to 10-week-old mice were measured by using echocardiography and histology. No significant differences were seen in fraction shortening, cross-sectional area of cardiomyocytes, and interstitial collagen fraction between littermate controls and KO mice at baseline. To test the hypothesis that Flt-1 is involved in cardiac remodeling, we performed transverse aorta constriction (TAC) by ligating the transverse ascending aorta. Four weeks after TAC, echocardiography of the mice was performed, and the hearts were excised for pathological analysis and Western blotting. No difference in mortality was found between Flt-1 KO mice and controls; however, KO mice showed a greater cardiomyocyte cross-sectional area and interstitial collagen fraction than controls. Western blotting indicated that AKT was activated less in Flt-1 KO hearts after TAC compared with that in control hearts. Thus, Flt-1 deletion in cardiomyocytes increased hypertrophy, fibrosis, and regression of AKT phosphorylation. Our study suggests that Flt-1 plays a critical role in cardiac hypertrophy induced by pressure overload via the activation of AKT, which seems to be cardioprotective.
Collapse
|
20
|
Iranparast S, Assarehzadegan MA, Heike Y, Hossienzadeh M, Khodadadi A. Wilms' Tumor Gene (WT1) Expression Correlates with Vascular Epithelial Growth Factor (VEGF) in Newly Acute Leukemia Patients Undergoing Chemotherapy. Asian Pac J Cancer Prev 2014; 15:9217-23. [DOI: 10.7314/apjcp.2014.15.21.9217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Li J, Yi H, Liu Z, Zhang H, Zhang D, Yue W, Jia H, Xu S, Li B. Association between VEGFR-3 expression and lymph node metastasis in non-small-cell lung cancer. Exp Ther Med 2014; 9:389-394. [PMID: 25574203 PMCID: PMC4280945 DOI: 10.3892/etm.2014.2091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 06/30/2014] [Indexed: 11/09/2022] Open
Abstract
Vascular endothelial growth factor receptor (VEGFR)-3 is considered to be associated with lymphangiogenesis. The aim of the present study was to identify the clinical significance of VEGFR-3 expression and lymph node metastasis in patients with non-small-cell lung cancer (NSCLC). Lung tumor tissue samples and 196 lymph nodes from 52 patients with NSCLC were analyzed. In addition, lung tissue samples and 8 lymph nodes from 10 patients with lung diseases other than cancer were included as controls. Semiquantitative multiplex reverse transcription technology was applied to measure the mRNA expression levels of VEGFR-3, while VEGFR-3 protein expression levels were assessed immunohistochemically. The total number of lymphatic vessels was counted and the microlymphatic vessel density (MLVD) was calculated. The results indicated that the VEGFR-3 mRNA expression level in lymph node tissue from the group with lymph node metastasis was significantly lower compared with the group without lymph node metastasis (0.281±0.166 vs. 0.158±0.158; t=4.849; P<0.001). The VEGFR-3 mRNA expression levels in the lung tumor tissue of the NSCLC patients exhibited no statistically significant difference between the lymph node metastasis and lymph node non-metastasis groups (0.139±0.137 vs. 0.142±0.123; t=0.08; P>0.05). In addition, in the lymph node metastasis group, there was no statistically significant difference between the metastasis-positive and -negative lymph nodes (0.158±0.158 vs. 0.123±0.115; t=0.993; P>0.05) with regard to VEGFR-3 mRNA expression. Morphologically, VEGFR-3 immunoreactivity was primarily localized in the cytoplasm of the lymphatic endothelial cells, as well as a number of the cancer cells. MLVD was much higher in the lung tissue surrounding the tumor than in the tumor tissue, and was significantly higher in the lymph node metastasis group than in the lymph node non-metastasis group. VEGFR-3 expression levels were shown to correlate with lymph node metastasis in NSCLC patients, thus, may be a useful biomarker for lymph node metastasis prediction in NSCLC. MLVD is a key indictor of lymphatic vessel metastasis in NSCLC. An enhanced MLVD indicates lymphangiogenesis and lymphatic node metastasis, and may be an important predictor for tumor monitoring and prognosis.
Collapse
Affiliation(s)
- Jie Li
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Tongzhou, Beijing 101149, P.R. China
| | - Han Yi
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Tongzhou, Beijing 101149, P.R. China
| | - Zhidong Liu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Tongzhou, Beijing 101149, P.R. China
| | - Haiqing Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Tongzhou, Beijing 101149, P.R. China
| | - Dezong Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Tongzhou, Beijing 101149, P.R. China
| | - Wentao Yue
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Tongzhou, Beijing 101149, P.R. China
| | - Hongyan Jia
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Tongzhou, Beijing 101149, P.R. China
| | - Shaofa Xu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Tongzhou, Beijing 101149, P.R. China
| | - Baolan Li
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Tongzhou, Beijing 101149, P.R. China
| |
Collapse
|
22
|
Song WW, Lu H, Hou WJ, Xu GX, Zhang JH, Sheng YH, Cheng MJ, Zhang R. Expression of vascular endothelial growth factor C and anti-angiogenesis therapy in endometriosis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:7752-7759. [PMID: 25550812 PMCID: PMC4270624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
Angiogenesis is an important pathogenesis of Endometriosis. Vascular endothelial growth factor C (VEGF-C) is one of the most important factor in the regulation of both normal and abnormal angiogenesis. Anti-angiogenic treatment of endometriosis is still in the exploratory stage. In this study, we investigate the relationship between VEGF-C and endometriosis, the therapeutic effects of Endostar in the rat endometriosis model. We then demonstrated that Immunohistochemical expression of VEGF-C was higher in endometriotic tissues than in control normal ovary tissues (P < 0.01) and higher in the endomertriosis grade III-IV than in endomertriosis grade I-II (P=0.013). In rat endometriosis model, we observed a significant reduction in the mean volume and weight of the endometriotic implants per rat in the treatment group as compared with the control group. By immunohistochemical evaluation, there was a significant reduction in VEGF-C expression after treatment in all areas examined. VEGF-C may be involved in the pathogenesis of endomertriosis by regulating the angiogenesis. Endostar has therapeutic effects of endometriosis lesions in the rat endometriosis model.
Collapse
Affiliation(s)
- Wei-Wei Song
- Medical College of Soochow UniversityShanghai 215123, P. R. China
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated Sixth People Hospital South CampusShanghai 201499, P. R. China
| | - Huan Lu
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated Sixth People Hospital South CampusShanghai 201499, P. R. China
| | - Wen-Jing Hou
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated Sixth People Hospital South CampusShanghai 201499, P. R. China
| | - Guang-Xu Xu
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated Sixth People Hospital South CampusShanghai 201499, P. R. China
| | - Ji-Hong Zhang
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated Sixth People Hospital South CampusShanghai 201499, P. R. China
| | - You-Hua Sheng
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated Sixth People Hospital South CampusShanghai 201499, P. R. China
| | - Ming-Jun Cheng
- Obstetrics and Gynecology Hospital, Fudan UniversityShanghai 200011, P. R. China
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Shanghai Jiaotong University Affiliated Sixth People Hospital South CampusShanghai 201499, P. R. China
| |
Collapse
|
23
|
Taghizadeh S, Sankian M, Ajami A, Tehrani M, Hafezi N, Mohammadian R, Farazmandfar T, Hosseini V, Abbasi A, Ajami M. Expression levels of vascular endothelial growth factors a and C in patients with peptic ulcers and gastric cancer. J Gastric Cancer 2014; 14:196-203. [PMID: 25328765 PMCID: PMC4199887 DOI: 10.5230/jgc.2014.14.3.196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/09/2014] [Accepted: 09/21/2014] [Indexed: 01/08/2023] Open
Abstract
Purpose Vascular endothelial growth factor (VEGF) is one of the most important growth factors for metastatic tumors. To clarify the role of VEGF-A and C in patients with peptic ulcer disease (PUD) or gastric cancer (GC), we evaluated the expression levels of these two molecules. We also analyzed the effect of Helicobacter pylori infection on VEGF-A and C expression levels. Materials and Methods Patients with dyspepsia who needed diagnostic endoscopy were selected and divided into three groups: non-ulcer dyspepsia (NUD), PUD, and GC, according to their endoscopic and histopathological results. Fifty-two patients with NUD, 50 with PUD, and 38 with GC were enrolled in this study. H. pylori infection was diagnosed by the rapid urease test. After RNA extraction and synthesis of cDNA, the expression levels of VEGF-A and C were determined by quantitative reverse transcriptase polymerase chain reaction. Results The VEGF-C expression level in the PUD and GC groups was significantly higher than that in the NUD group. Moreover, the VEGF-A expression level in the PUD and GC groups was higher than in the NUD group, although the differences were not statistically significant. Significant positive correlations were also observed between the expression levels of these two molecules in the PUD and GC groups. In addition, the expression levels of these two molecules were higher in H. pylori positive patients with PUD or GC than in H. pylori negative patients of the same groups; however, these differences did not reach statistical significance. Conclusions Up-regulation of VEGF-C expression during gastric mucosal inflammation may play a role in the development of peptic ulcers or GC.
Collapse
Affiliation(s)
- Shirin Taghizadeh
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolghasem Ajami
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran. ; Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Tehrani
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasim Hafezi
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rajeeh Mohammadian
- Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Touraj Farazmandfar
- Faculty of Advanced Medical Science Technology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Hosseini
- Inflammatory Diseases of Upper GI Tract Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Abbasi
- Department of Pathology, Islamic Azad University, Sari Branch, Sari, Iran
| | - Maryam Ajami
- 7 Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Nakamura H, Murakami T, Imamura T, Toriba M, Chijiwa T, Ohno M, Oda-Ueda N. Discovery of a novel vascular endothelial growth factor (VEGF) with no affinity to heparin in Gloydius tsushimaensis venom. Toxicon 2014; 86:107-15. [DOI: 10.1016/j.toxicon.2014.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
|
25
|
Ji YN, Wang Q, Li Y, Wang Z. Prognostic value of vascular endothelial growth factor A expression in gastric cancer: a meta-analysis. Tumour Biol 2014; 35:2787-93. [PMID: 24234334 DOI: 10.1007/s13277-013-1371-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/28/2013] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF-A) is considered as a prime mediator of angiogenesis and has been implicated in carcinogenesis and metastasis. Various studies examined the relationship between VEGF-A overexpression with the clinical outcome in patients with gastric cancer, but yielded conflicting results. Electronic databases updated to September 2013 were searched to find relevant studies. A meta-analysis was conducted with eligible studies which quantitatively evaluated the relationship between VEGF-A overexpression and survival of patients with gastric cancer. Survival data were aggregated and quantitatively analyzed. We performed a meta-analysis of 20 studies that evaluated the correlation between VEGF-A overexpression and survival in patients with gastric cancer. Combined hazard ratios suggested that VEGF-A overexpression had an unfavorable impact on overall survival (OS) (hazard ratio [HR] = 1.57; 95% confidence interval [CI], 1.30–1.84) and disease-free survival (DFS) (HR = 1.85; 95% CI, 1.39–2.32) in patients with gastric cancer. No significant heterogeneity (P = 0.487) was observed among 16 studies for OS and among 7 studies for DFS (P = 0.435). VEGF-A overexpression indicates a poor prognosis for overall survival and disease-free survival in patients with gastric cancer.
Collapse
|
26
|
Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppänen VM, Holopainen T, Kivelä R, Ortega S, Kärpanen T, Alitalo K. CCBE1Enhances Lymphangiogenesis via A Disintegrin and Metalloprotease With Thrombospondin Motifs-3–Mediated Vascular Endothelial Growth Factor-C Activation. Circulation 2014; 129:1962-71. [DOI: 10.1161/circulationaha.113.002779] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Michael Jeltsch
- From the Wihuri Research Institute (M.J., A.A., V.-M.L., R.K., K.A.), Translational Cancer Biology Program (M.J., S.K.J., D.T., A.A., T.H., K.A.), and Department of Biomedicine (M.J.), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Biotechnology Programme, Spanish National Cancer Research Centre, Madrid, Spain (S.O.); Hubrecht Institute, Utrecht, The Netherlands (T.K.); and Helsinki University Central Hospital, Helsinki, Finland (K.A.)
| | - Sawan Kumar Jha
- From the Wihuri Research Institute (M.J., A.A., V.-M.L., R.K., K.A.), Translational Cancer Biology Program (M.J., S.K.J., D.T., A.A., T.H., K.A.), and Department of Biomedicine (M.J.), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Biotechnology Programme, Spanish National Cancer Research Centre, Madrid, Spain (S.O.); Hubrecht Institute, Utrecht, The Netherlands (T.K.); and Helsinki University Central Hospital, Helsinki, Finland (K.A.)
| | - Denis Tvorogov
- From the Wihuri Research Institute (M.J., A.A., V.-M.L., R.K., K.A.), Translational Cancer Biology Program (M.J., S.K.J., D.T., A.A., T.H., K.A.), and Department of Biomedicine (M.J.), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Biotechnology Programme, Spanish National Cancer Research Centre, Madrid, Spain (S.O.); Hubrecht Institute, Utrecht, The Netherlands (T.K.); and Helsinki University Central Hospital, Helsinki, Finland (K.A.)
| | - Andrey Anisimov
- From the Wihuri Research Institute (M.J., A.A., V.-M.L., R.K., K.A.), Translational Cancer Biology Program (M.J., S.K.J., D.T., A.A., T.H., K.A.), and Department of Biomedicine (M.J.), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Biotechnology Programme, Spanish National Cancer Research Centre, Madrid, Spain (S.O.); Hubrecht Institute, Utrecht, The Netherlands (T.K.); and Helsinki University Central Hospital, Helsinki, Finland (K.A.)
| | - Veli-Matti Leppänen
- From the Wihuri Research Institute (M.J., A.A., V.-M.L., R.K., K.A.), Translational Cancer Biology Program (M.J., S.K.J., D.T., A.A., T.H., K.A.), and Department of Biomedicine (M.J.), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Biotechnology Programme, Spanish National Cancer Research Centre, Madrid, Spain (S.O.); Hubrecht Institute, Utrecht, The Netherlands (T.K.); and Helsinki University Central Hospital, Helsinki, Finland (K.A.)
| | - Tanja Holopainen
- From the Wihuri Research Institute (M.J., A.A., V.-M.L., R.K., K.A.), Translational Cancer Biology Program (M.J., S.K.J., D.T., A.A., T.H., K.A.), and Department of Biomedicine (M.J.), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Biotechnology Programme, Spanish National Cancer Research Centre, Madrid, Spain (S.O.); Hubrecht Institute, Utrecht, The Netherlands (T.K.); and Helsinki University Central Hospital, Helsinki, Finland (K.A.)
| | - Riikka Kivelä
- From the Wihuri Research Institute (M.J., A.A., V.-M.L., R.K., K.A.), Translational Cancer Biology Program (M.J., S.K.J., D.T., A.A., T.H., K.A.), and Department of Biomedicine (M.J.), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Biotechnology Programme, Spanish National Cancer Research Centre, Madrid, Spain (S.O.); Hubrecht Institute, Utrecht, The Netherlands (T.K.); and Helsinki University Central Hospital, Helsinki, Finland (K.A.)
| | - Sagrario Ortega
- From the Wihuri Research Institute (M.J., A.A., V.-M.L., R.K., K.A.), Translational Cancer Biology Program (M.J., S.K.J., D.T., A.A., T.H., K.A.), and Department of Biomedicine (M.J.), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Biotechnology Programme, Spanish National Cancer Research Centre, Madrid, Spain (S.O.); Hubrecht Institute, Utrecht, The Netherlands (T.K.); and Helsinki University Central Hospital, Helsinki, Finland (K.A.)
| | - Terhi Kärpanen
- From the Wihuri Research Institute (M.J., A.A., V.-M.L., R.K., K.A.), Translational Cancer Biology Program (M.J., S.K.J., D.T., A.A., T.H., K.A.), and Department of Biomedicine (M.J.), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Biotechnology Programme, Spanish National Cancer Research Centre, Madrid, Spain (S.O.); Hubrecht Institute, Utrecht, The Netherlands (T.K.); and Helsinki University Central Hospital, Helsinki, Finland (K.A.)
| | - Kari Alitalo
- From the Wihuri Research Institute (M.J., A.A., V.-M.L., R.K., K.A.), Translational Cancer Biology Program (M.J., S.K.J., D.T., A.A., T.H., K.A.), and Department of Biomedicine (M.J.), Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Biotechnology Programme, Spanish National Cancer Research Centre, Madrid, Spain (S.O.); Hubrecht Institute, Utrecht, The Netherlands (T.K.); and Helsinki University Central Hospital, Helsinki, Finland (K.A.)
| |
Collapse
|
27
|
Pronto-Laborinho AC, Pinto S, de Carvalho M. Roles of vascular endothelial growth factor in amyotrophic lateral sclerosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:947513. [PMID: 24987705 PMCID: PMC4022172 DOI: 10.1155/2014/947513] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly in ALS.
Collapse
Affiliation(s)
- Ana Catarina Pronto-Laborinho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Susana Pinto
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Mamede de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Neurosciences, Hospital Santa Maria, Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
28
|
Badal SS, Danesh FR. New insights into molecular mechanisms of diabetic kidney disease. Am J Kidney Dis 2014; 63:S63-83. [PMID: 24461730 DOI: 10.1053/j.ajkd.2013.10.047] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/08/2013] [Indexed: 01/12/2023]
Abstract
Diabetic kidney disease remains a major microvascular complication of diabetes and the most common cause of chronic kidney failure requiring dialysis in the United States. Medical advances over the past century have substantially improved the management of diabetes mellitus and thereby have increased patient survival. However, current standards of care reduce but do not eliminate the risk of diabetic kidney disease, and further studies are warranted to define new strategies for reducing the risk of diabetic kidney disease. In this review, we highlight some of the novel and established molecular mechanisms that contribute to the development of the disease and its outcomes. In particular, we discuss recent advances in our understanding of the molecular mechanisms implicated in the pathogenesis and progression of diabetic kidney disease, with special emphasis on the mitochondrial oxidative stress and microRNA targets. Additionally, candidate genes associated with susceptibility to diabetic kidney disease and alterations in various cytokines, chemokines, and growth factors are addressed briefly.
Collapse
Affiliation(s)
- Shawn S Badal
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Farhad R Danesh
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX; Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
29
|
Zhan P, Qian Q, Yu LK. Prognostic significance of vascular endothelial growth factor expression in hepatocellular carcinoma tissue: a meta-analysis. Hepatobiliary Surg Nutr 2014; 2:148-55. [PMID: 24570933 DOI: 10.3978/j.issn.2304-3881.2013.06.06] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 06/21/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is considered as a prime mediator of angiogenesis, and has been implicated in carcinogenesis and metastasis. Various studies examined the relationship between VEGF overexpression with the clinical outcome in patients with hepatocellular carcinoma (HCC), but yielded conflicting results. METHODS Electronic databases updated to June 2013 were searched to find relevant studies. A meta-analysis was conducted with eligible studies which quantitatively evaluated the relationship between VEGF overexpression and survival of patients with HCC. Survival data were aggregated and quantitatively analyzed. RESULTS We performed a meta-analysis of 14 studies that evaluated the correlation between VEGF overexpression and survival in patients with HCC. Combined hazard ratios suggested that VEGF overexpression had an unfavorable impact on overall survival (OS) [hazard ratio (HR) =1.42, 95% confidence interval (CI): 1.42-1.7], but not disease free survival (DFS) (HR=1.13, 95% CI: 0.89-1.38) in patients with HCC. No significant heterogeneity (P=0.949) was observed among 9 studies for OS, however significant heterogeneity (P=0.008) was observed among 11 studies for DFS. CONCLUSIONS VEGF overexpression indicates a poor prognosis for patients with HCC.
Collapse
Affiliation(s)
- Ping Zhan
- First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing 210029, China; ; The Collaborative Research (CORE) Group, Sydney, Australia
| | - Qian Qian
- First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing 210029, China
| | - Li-Ke Yu
- First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing 210029, China
| |
Collapse
|
30
|
Zhan P, Qian Q, Yu LK. Serum VEGF level is associated with the outcome of patients with hepatocellular carcinoma: a meta-analysis. Hepatobiliary Surg Nutr 2014; 2:209-15. [PMID: 24570945 DOI: 10.3978/j.issn.2304-3881.2013.06.07] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 06/28/2013] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly vascular tumor that expresses vascular endothelial growth factor (VEGF). Various studies have evaluated the prognostic value of VEGF levels in HCC, but yielded conflicting results. METHODS Electronic databases updated to June 2013 were searched to find relevant studies. A meta-analysis was conducted with eligible studies which quantitatively evaluated the relationship between serum VEGF level and survival of patients with HCC. Survival data were aggregated and quantitatively analyzed. RESULTS We performed a meta-analysis of 11 studies that evaluated the correlation between serum VEGF level and survival in patients with HCC. Combined hazard ratios suggested that serum VEGF level had an unfavorable impact on overall survival (OS) [hazard ratio (HR) =1.88, 95% confidence interval (CI): 1.46-2.30], and disease free survival (DFS) (HR=2.27, 95% CI: 1.55-2.98) in patients with HCC. No significant heterogeneity was observed among all studies. CONCLUSIONS Serum high VEGF level indicates a poor prognosis for patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ping Zhan
- First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing 210029, China; ; The Collaborative Research (CORE) Group, Sydney, Australia
| | - Qian Qian
- First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing 210029, China
| | - Li-Ke Yu
- First Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing 210029, China
| |
Collapse
|
31
|
Tumor models for prostate cancer exemplified by fibroblast growth factor 8-induced tumorigenesis and tumor progression. Reprod Biol 2014; 14:16-24. [PMID: 24607251 DOI: 10.1016/j.repbio.2014.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
Prostate cancer is a very common malignancy among Western males. Although most tumors are indolent and grow slowly, some grow and metastasize aggressively. Because prostate cancer growth is usually androgen-dependent, androgen ablation offers a therapeutic option to treat post-resection tumor recurrence or primarily metastasized prostate cancer. However, patients often relapse after the primary response to androgen ablation therapy, and there is no effective cure for cases of castration-resistant prostate cancer (CRPC). The mechanisms of tumor growth in CRPC are poorly understood. Although the androgen receptors (ARs) remain functional in CRPC, other mechanisms are clearly activated (e.g., disturbed growth factor signaling). Results from our laboratory and others have shown that dysregulation of fibroblast growth factor (FGF) signaling, including FGF receptor 1 (FGFR1) activation and FGF8b overexpression, has an important role in prostate cancer growth and progression. Several experimental models have been developed for prostate tumorigenesis and various stages of tumor progression. These models include genetically engineered mice and rats, as well as induced tumors and xenografts in immunodeficient mice. The latter was created using parental and genetically modified cell lines. All of these models greatly helped to elucidate the roles of different genes in prostate carcinogenesis and tumor progression. Recently, patient-derived xenografts have been studied for possible use in testing individual, specific responses of tumor tissue to different treatment options. Feasible and functional CRPC models for drug responsiveness analysis and the development of effective therapies targeting the FGF signaling pathway and other pathways in prostate cancer are being actively investigated.
Collapse
|
32
|
Ping W, Sun W, Zu Y, Chen W, Fu X. Clinicopathological and prognostic significance of hypoxia-inducible factor-1α in esophageal squamous cell carcinoma: a meta-analysis. Tumour Biol 2014; 35:4401-9. [DOI: 10.1007/s13277-013-1579-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 12/17/2013] [Indexed: 01/30/2023] Open
|
33
|
Overexpression of AKIP1 promotes angiogenesis and lymphangiogenesis in human esophageal squamous cell carcinoma. Oncogene 2014; 34:384-93. [PMID: 24413079 DOI: 10.1038/onc.2013.559] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/05/2013] [Accepted: 11/22/2013] [Indexed: 01/06/2023]
Abstract
A-kinase-interacting protein 1 (AKIP1) is found to be overexpressed in breast and prostate cancers, suggesting that AKIP1 might act as a potent oncogenic protein. However, the clinical significance and biological role of AKIP1 in cancer progression remain largely unknown. Herein, we report that AKIP1 is markedly overexpressed in esophageal squamous cell carcinoma (ESCC) cell lines and clinical ESCC samples. AKIP1 expression significantly correlates with ESCC progression and patients' shorter survival time. Furthermore, we find that overexpressing AKIP1 induces, whereas silencing AKIP1 reduces, ESCC angiogenesis and lymphangiogenesis both in vitro and in vivo. Moreover, we demonstrate that AKIP1 transcriptionally upregulates vascular endothelial growth factor-C (VEGF-C) via interaction with its promoter through cooperation with multiple transcriptional factors, including SP1, AP2 and nuclear factor-κB (NF-κB). Importantly, significant correlation between levels of AKIP1 and VEGF-C is observed in a cohort of human ESCC, as well as in non-small cell lung cancer, hepatocellular carcinoma and ovarian cancer. Hence, these findings indicate an important role for AKIP1 in ESCC angiogenesis and lymphangiogenesis, and uncover a novel mechanism for the upregulation of VEGF-C in cancers.
Collapse
|
34
|
McLoughlin P, Keane MP. Physiological and pathological angiogenesis in the adult pulmonary circulation. Compr Physiol 2013; 1:1473-508. [PMID: 23733650 DOI: 10.1002/cphy.c100034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Angiogenesis occurs during growth and physiological adaptation in many systemic organs, for example, exercise-induced skeletal and cardiac muscle hypertrophy, ovulation, and tissue repair. Disordered angiogenesis contributes to chronic inflammatory disease processes and to tumor growth and metastasis. Although it was previously thought that the adult pulmonary circulation was incapable of supporting new vessel growth, over that past 10 years new data have shown that angiogenesis within this circulation occurs both during physiological adaptive processes and as part of the pathogenic mechanisms of lung diseases. Here we review the expression of vascular growth factors in the adult lung, their essential role in pulmonary vascular homeostasis and the changes in their expression that occur in response to physiological challenges and in disease. We consider the evidence for adaptive neovascularization in the pulmonary circulation in response to alveolar hypoxia and during lung growth following pneumonectomy in the adult lung. In addition, we review the role of disordered angiogenesis in specific lung diseases including idiopathic pulmonary fibrosis, acute adult distress syndrome and both primary and metastatic tumors of the lung. Finally, we examine recent experimental data showing that therapeutic enhancement of pulmonary angiogenesis has the potential to treat lung diseases characterized by vessel loss.
Collapse
Affiliation(s)
- Paul McLoughlin
- University College Dublin, School of Medicine and Medical Sciences, Conway Institute, and St. Vincent's University Hospital, Dublin, Ireland.
| | | |
Collapse
|
35
|
Oltean S, Bates DO. Hallmarks of alternative splicing in cancer. Oncogene 2013; 33:5311-8. [PMID: 24336324 DOI: 10.1038/onc.2013.533] [Citation(s) in RCA: 489] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 12/17/2022]
Abstract
The immense majority of genes are alternatively spliced and there are many isoforms specifically associated with cancer progression and metastasis. The splicing pattern of specific isoforms of numerous genes is altered as cells move through the oncogenic process of gaining proliferative capacity, acquiring angiogenic, invasive, antiapoptotic and survival properties, becoming free from growth factor dependence and growth suppression, altering their metabolism to cope with hypoxia, enabling them to acquire mechanisms of immune escape, and as they move through the epithelial-mesenchymal and mesenchymal-epithelial transitions and metastasis. Each of the 'hallmarks of cancer' is associated with a switch in splicing, towards a more aggressive invasive cancer phenotype. The choice of isoforms is regulated by several factors (signaling molecules, kinases, splicing factors) currently being identified systematically by a number of high-throughput, independent and unbiased methodologies. Splicing factors are de-regulated in cancer, and in some cases are themselves oncogenes or pseudo-oncogenes and can contribute to positive feedback loops driving cancer progression. Tumour progression may therefore be associated with a coordinated splicing control, meaning that there is the potential for a relatively small number of splice factors or their regulators to drive multiple oncogenic processes. The understanding of how splicing contributes to the various phenotypic traits acquired by tumours as they progress and metastasise, and in particular how alternative splicing is coordinated, can and is leading to the development of a new class of anticancer therapeutics-the alternative-splicing inhibitors.
Collapse
Affiliation(s)
- S Oltean
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - D O Bates
- Division of Pre-clinical Oncology, School of Clinical Sciences, University of Nottingham, Queen's Medical Center, Nottingham, UK
| |
Collapse
|
36
|
Cao W, Fan R, Yang W, Wu Y. VEGF-C expression is associated with the poor survival in gastric cancer tissue. Tumour Biol 2013; 35:3377-83. [DOI: 10.1007/s13277-013-1445-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/19/2013] [Indexed: 01/18/2023] Open
|
37
|
Hua KT, Lee WJ, Yang SF, Chen CK, Hsiao M, Ku CC, Wei LH, Kuo ML, Chien MH. Vascular endothelial growth factor-C modulates proliferation and chemoresistance in acute myeloid leukemic cells through an endothelin-1-dependent induction of cyclooxygenase-2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:387-97. [PMID: 24184161 DOI: 10.1016/j.bbamcr.2013.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/30/2013] [Accepted: 10/21/2013] [Indexed: 01/06/2023]
Abstract
High-level expression of vascular endothelial growth factor (VEGF)-C is associated with chemoresistance and adverse prognosis in acute myeloid leukemia (AML). Our previous study has found that VEGF-C induces cyclooxygenase-2 (COX-2) expression in AML cell lines and significant correlation of VEGF-C and COX-2 in bone marrow specimens. COX-2 has been reported to mediate the proliferation and drug resistance in several solid tumors. Herein, we demonstrated that the VEGF-C-induced proliferation of AML cells is effectively abolished by the depletion or inhibition of COX-2. The expression of endothelin-1 (ET-1) rapidly increased following treatment with VEGF-C. We found that ET-1 was also involved in the VEGF-C-mediated proliferation of AML cells, and that recombinant ET-1 induced COX-2 mRNA and protein expressions in AML cells. Treatment with the endothelin receptor A (ETRA) antagonist, BQ 123, or ET-1 shRNAs inhibited VEGF-C-induced COX-2 expression. Flow cytometry and immunoblotting revealed that VEGF-C induces S phase accumulation through the inhibition of p27 and the upregulation of cyclin E and cyclin-dependent kinase-2 expressions. The cell-cycle-related effects of VEGF-C were reversed by the depletion of COX-2 or ET-1. The depletion of COX-2 or ET-1 also suppressed VEGF-C-induced increases in the bcl-2/bax ratio and chemoresistance against etoposide and cytosine arabinoside in AML cells. We also demonstrated VEGF-C/ET-1/COX-2 axis-mediated chemoresistance in an AML xenograft mouse model. Our findings suggest that VEGF-C induces COX-2-mediated resistance to chemotherapy through the induction of ET-1 expression. Acting as a key regulator in the VEGF-C/COX-2 axis, ET-1 represents a potential target for ameliorating resistance to chemotherapy in AML patients.
Collapse
Affiliation(s)
- Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chi-Kuan Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Chi Ku
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Lin-Hung Wei
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Liang Kuo
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
38
|
Keifer OP, O'Connor DM, Boulis NM. Gene and protein therapies utilizing VEGF for ALS. Pharmacol Ther 2013; 141:261-71. [PMID: 24177067 DOI: 10.1016/j.pharmthera.2013.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that is usually fatal within 2-5years. Unfortunately, the only treatment currently available is riluzole, which has a limited efficacy. As a redress, there is an expanding literature focusing on other potential treatments. One such potential treatment option utilizes the vascular endothelial growth factor (VEGF) family, which includes factors that are primarily associated with angiogenesis but are now increasingly recognized to have neurotrophic effects. Reduced expression of a member of this family, VEGF-A, in mice results in neurodegeneration similar to that of ALS, while treatment of animal models of ALS with either VEGF-A gene therapy or VEGF-A protein has yielded positive therapeutic outcomes. These basic research findings raise the potential for a VEGF therapy to be translated to the clinic for the treatment of ALS. This review covers the VEGF family, its receptors and neurotrophic effects as well as VEGF therapy in animal models of ALS and advances towards clinical trials.
Collapse
Affiliation(s)
- Orion P Keifer
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, United States
| | - Deirdre M O'Connor
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, United States
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, United States.
| |
Collapse
|
39
|
Prognostic significance of VEGF-C immunohistochemical expression in breast cancer: a meta-analysis. Tumour Biol 2013; 35:1523-9. [DOI: 10.1007/s13277-013-1211-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/16/2013] [Indexed: 01/24/2023] Open
|
40
|
Vascular endothelial growth factor-dependent spatiotemporal dual roles of placental growth factor in modulation of angiogenesis and tumor growth. Proc Natl Acad Sci U S A 2013; 110:13932-7. [PMID: 23918367 DOI: 10.1073/pnas.1309629110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Placental growth factor (PlGF) remodels tumor vasculatures toward a normalized phenotype, which affects tumor growth, invasion and drug responses. However, the coordinative and spatiotemporal relation between PlGF and VEGF in modulation of tumor angiogenesis and vascular remodeling is less understood. Here we report that PlGF positively and negatively modulate tumor growth, angiogenesis, and vascular remodeling through a VEGF-dependent mechanism. In two independent tumor models, we show that PlGF inhibited tumor growth and angiogenesis and displayed a marked vascular remodeling effect, leading to normalized microvessels with infrequent vascular branches and increased perivascular cell coverage. Surprisingly, elimination of VEGF gene (i.e., VEGF-null) in PlGF-expressing tumors resulted in (i) accelerated tumor growth rates and angiogenesis and (ii) complete attenuation of PlGF-induced vascular normalization. Thus, PlGF positively and negatively modulates tumor growth, angiogenesis, and vascular remodeling through VEGF-dependent spatiotemporal mechanisms. Our data uncover molecular mechanisms underlying the complex interplay between PlGF and VEGF in modulation of tumor growth and angiogenesis, and have conceptual implication for antiangiogenic cancer therapy.
Collapse
|
41
|
Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation. Proc Natl Acad Sci U S A 2013; 110:12960-5. [PMID: 23878260 DOI: 10.1073/pnas.1301415110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key drivers of blood and lymph vessel formation in development, but also in several pathological processes. VEGF-C signaling through VEGFR-3 promotes lymphangiogenesis, which is a clinically relevant target for treating lymphatic insufficiency and for blocking tumor angiogenesis and metastasis. The extracellular domain of VEGFRs consists of seven Ig homology domains; domains 1-3 (D1-3) are responsible for ligand binding, and the membrane-proximal domains 4-7 (D4-7) are involved in structural rearrangements essential for receptor dimerization and activation. Here we analyzed the crystal structures of VEGF-C in complex with VEGFR-3 domains D1-2 and of the VEGFR-3 D4-5 homodimer. The structures revealed a conserved ligand-binding interface in D2 and a unique mechanism for VEGFR dimerization and activation, with homotypic interactions in D5. Mutation of the conserved residues mediating the D5 interaction (Thr446 and Lys516) and the D7 interaction (Arg737) compromised VEGF-C induced VEGFR-3 activation. A thermodynamic analysis of VEGFR-3 deletion mutants showed that D3, D4-5, and D6-7 all contribute to ligand binding. A structural model of the VEGF-C/VEGFR-3 D1-7 complex derived from small-angle X-ray scattering data is consistent with the homotypic interactions in D5 and D7. Taken together, our data show that ligand-dependent homotypic interactions in D5 and D7 are essential for VEGFR activation, opening promising possibilities for the design of VEGFR-specific drugs.
Collapse
|
42
|
Helker CSM, Schuermann A, Karpanen T, Zeuschner D, Belting HG, Affolter M, Schulte-Merker S, Herzog W. The zebrafish common cardinal veins develop by a novel mechanism: lumen ensheathment. Development 2013; 140:2776-86. [PMID: 23698350 DOI: 10.1242/dev.091876] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The formation and lumenization of blood vessels has been studied in some detail, but there is little understanding of the morphogenetic mechanisms by which endothelial cells (ECs) forming large caliber vessels aggregate, align themselves and finally form a lumen that can support blood flow. Here, we focus on the development of the zebrafish common cardinal veins (CCVs), which collect all the blood from the embryo and transport it back to the heart. We show that the angioblasts that eventually form the definitive CCVs become specified as a separate population distinct from the angioblasts that form the lateral dorsal aortae. The subsequent development of the CCVs represents a novel mechanism of vessel formation, during which the ECs delaminate and align along the inner surface of an existing luminal space. Thereby, the CCVs are initially established as open-ended endothelial tubes, which extend as single EC sheets along the flow routes of the circulating blood and eventually enclose the entire lumen in a process that we term ‘lumen ensheathment’. Furthermore, we found that the initial delamination of the ECs as well as the directional migration within the EC sheet depend on Cadherin 5 function. By contrast, EC proliferation within the growing CCV is controlled by Vascular endothelial growth factor C, which is provided by circulating erythrocytes. Our findings not only identify a novel mechanism of vascular lumen formation, but also suggest a new form of developmental crosstalk between hematopoietic and endothelial cell lineages.
Collapse
Affiliation(s)
| | | | - Terhi Karpanen
- Hubrecht Institute-KNAW and UMC, 3584 CT Utrecht, The Netherlands
| | - Dagmar Zeuschner
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
| | | | - Markus Affolter
- Biozentrum der Universität Basel, CH-4056 Basel, Switzerland
| | - Stefan Schulte-Merker
- Hubrecht Institute-KNAW and UMC, 3584 CT Utrecht, The Netherlands
- EZO, Wageningen University, NL-6700 AH Wageningen, The Netherlands
| | - Wiebke Herzog
- University of Muenster, 48149 Muenster, Germany
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
| |
Collapse
|
43
|
Zhao SF, Yang XD, Lu MX, Sun GW, Wang YX, Zhang YK, Pu YM, Tang EY. Prognostic significance of VEGF immunohistochemical expression in oral cancer: a meta-analysis of the literature. Tumour Biol 2013; 34:3165-71. [DOI: 10.1007/s13277-013-0886-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022] Open
|
44
|
Miaskowski C, Dodd M, Paul SM, West C, Hamolsky D, Abrams G, Cooper BA, Elboim C, Neuhaus J, Schmidt BL, Smoot B, Aouizerat BE. Lymphatic and angiogenic candidate genes predict the development of secondary lymphedema following breast cancer surgery. PLoS One 2013; 8:e60164. [PMID: 23613720 PMCID: PMC3629060 DOI: 10.1371/journal.pone.0060164] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/21/2013] [Indexed: 12/31/2022] Open
Abstract
The purposes of this study were to evaluate for differences in phenotypic and genotypic characteristics in women who did and did not develop lymphedema (LE) following breast cancer treatment. Breast cancer patients completed a number of self-report questionnaires. LE was evaluated using bioimpedance spectroscopy. Genotyping was done using a custom genotyping array. No differences were found between patients with (n = 155) and without LE (n = 387) for the majority of the demographic and clinical characteristics. Patients with LE had a significantly higher body mass index, more advanced disease and a higher number of lymph nodes removed. Genetic associations were identified for four genes (i.e., lymphocyte cytosolic protein 2 (rs315721), neuropilin-2 (rs849530), protein tyrosine kinase (rs158689), vascular cell adhesion molecule 1 (rs3176861)) and three haplotypes (i.e., Forkhead box protein C2 (haplotype A03), neuropilin-2 (haplotype F03), vascular endothelial growth factor-C (haplotype B03)) involved in lymphangiogensis and angiogenesis. These genetic associations suggest a role for a number of lymphatic and angiogenic genes in the development of LE following breast cancer treatment.
Collapse
Affiliation(s)
- Christine Miaskowski
- Department of Physiological Nursing, University of California San Francisco, San Francisco, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wittko-Schneider IM, Schneider FT, Plate KH. Brain homeostasis: VEGF receptor 1 and 2-two unequal brothers in mind. Cell Mol Life Sci 2013; 70:1705-25. [PMID: 23475067 PMCID: PMC3632714 DOI: 10.1007/s00018-013-1279-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 12/15/2022]
Abstract
Vascular endothelial growth factors (VEGFs), initially thought to act specifically on the vascular system, exert trophic effects on neural cells during development and adulthood. Therefore, the VEGF system serves as a promising therapeutic target for brain pathologies, but its simultaneous action on vascular cells paves the way for harmful side effects. To circumvent these deleterious effects, many studies have aimed to clarify whether VEGFs directly affect neural cells or if the effects are mediated secondarily via other cell types, like vascular cells. A great number of reports have shown the expression and function of VEGF receptors (VEGFRs), mainly VEGFR-1 and -2, in neural cells, where VEGFR-2 has been described as the major mediator of VEGF-A signals. This review aims to summarize and compare the divergent roles of VEGFR-1 and -2 during CNS development and homeostasis.
Collapse
Affiliation(s)
- Ina M Wittko-Schneider
- Neuroscience Center, Institute of Neurology (Edinger Institute), Goethe University Medical School, Heinrich-Hoffmann Strasse 7, 60528, Frankfurt, Germany.
| | | | | |
Collapse
|
46
|
Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity. Blood 2013; 121:4242-9. [PMID: 23476047 DOI: 10.1182/blood-2012-08-453043] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Corneal transparency is a prerequisite for optimal vision and in turn relies on an absence of blood and lymphatic vessels, which is remarkable given the cornea's proximity to vascularized tissues. Membrane-bound vascular endothelial growth factor receptor 3 (VEGFR-3), with its cognate ligand vascular endothelial growth factor C (VEGF-C), is a major mediator of lymphangiogenesis. Here, we demonstrate that the cornea expresses a novel truncated isoform of this molecule, soluble VEGFR-3 (sVEGFR-3), which is critical for corneal alymphaticity, by sequestering VEGF-C. sVEGFR-3 binds and sequesters VEGF-C, thereby blocking signaling through VEGFR-3 and suppressing lymphangiogenesis induced by VEGF-C. sVEGFR-3 knockdown leads to lymphangiogenesis and hemangiogenesis in the mouse cornea, while overexpression of sVEGFR-3 inhibits lymphangiogenesis and hemangiogenesis in a murine suture injury model. Pax6(+/-) mice spontaneously develop corneal and lymphatic vessels and are deficient in sVEGFR-3. sVEGFR-3 suppresses hemangiogenesis by blocking VEGF-C-induced phosphorylation of VEGFR-2. Overexpression of sVEGFR-3 leads to a 5-fold increase in corneal transplant survival in mouse models. sVEGFR-3 holds promise as a molecule to control and regress lymphatic-vessel-based dysfunction. Therefore, sVEGFR-3 has the potential to protect the injured cornea from opacification secondary to infection, inflammation, or transplant rejection.
Collapse
|
47
|
Induction of vascular endothelial growth factor receptor-3 expression in perivascular cells of the ischemic core following focal cerebral ischemia in rats. Acta Histochem 2013; 115:170-7. [PMID: 22771250 DOI: 10.1016/j.acthis.2012.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/16/2012] [Accepted: 06/18/2012] [Indexed: 01/02/2023]
Abstract
Vascular endothelial growth factor receptor (VEGFR)-3, a receptor for VEGF-C and VEGF-D, has recently been reported to be induced within vessel-like structures in the ischemic brain. The purpose of the present study was to characterize and define further the cellular phenotypes of vascular-associated cells that manifest induced VEGFR-3 expression in a rat model of ischemic stroke. Vessel-associated cells expressing VEGFR-3 were found to be perivascular astrocytes in the peri-infarct region, whereas in the ischemic core, where astrocytes had virtually disappeared, induction of VEGFR-3 mRNA and protein was still prominent in vascular structures 3-7 days after reperfusion. VEGFR-3 and nestin expression were colocated in almost all cells associated with the vasculature in the ischemic core, and most (~82%) of the VEGFR-3/nestin double-labeled cells were proliferative. A subpopulation of these VEGFR-3-expressing cells appeared to be included in two immunophenotypically distinct perivascular cells: NG2-positive pericytes and ED2- or OX6-perivascular macrophages. However, most of these cells did not show markers for vasculature-associated cell types such as endothelial cells, microglia/macrophages, and smooth muscle cells. Thus, our data indicated that vasculature-associated VEGFR-3-expressing cells in the ischemic core may represent a heterogeneous population of cells with functional diversity, rather than a uniform cell type.
Collapse
|
48
|
Vascular endothelial growth factor C is increased in endometrium and promotes endothelial functions, vascular permeability and angiogenesis and growth of endometriosis. Angiogenesis 2013; 16:541-51. [PMID: 23334337 DOI: 10.1007/s10456-013-9333-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/09/2013] [Indexed: 12/24/2022]
Abstract
Endometriosis is an angiogenesis-dependent disease. Many studies demonstrated inhibition of angiogenesis leads to inhibition of endometriotic growth, however underlying mechanism is still not fully understood. Our previous study suggested vascular endothelial growth factor C (VEGF-C) as a target of anti-angiogenesis therapy for endometriosis. In this study, VEGF-C in endometrium and its role in angiogenesis of endometriosis were studied. Human endometrium were obtained from women with and without endometriosis for molecular studies. VEGF-A, VEGF-B, VEGF-C and VEGF-D mRNA and proteins in eutopic and ectopic endometrium were measured. Human endothelial cells were transfected with VEGF-C siRNA in vitro, effects of VEGF-C on endothelial cell migration, invasion and tube formation were investigated in vitro. Angiogenesis was inhibited in wild type mice, vascular permeability in dermal skin was determined in vivo. Transplanted endometrium were inhibited by VEGF-C siRNA in immunocompromised mice, development, growth and angiogenesis of the experimental endometriosis were compared in vivo. The results showed that VEGF-C mRNA and protein were increased in eutopic and ectopic endometrium of endometriosis patients. VEGF-C siRNA significantly inhibited endothelial cell migration and tube formation. VEGF-C siRNA significantly inhibited development and angiogenesis of the experimental endometriotic lesions in mice. Supplementation and over-expression of VEGF-C significantly reversed the inhibitory effects on the endothelial functions, vascular permeability and endometriotic growth. In conclusion, VEGF-C is increased in endometrium and it promotes endothelial functions, vascular permeability and development of experimental endometriosis. VEGF-C is important for angiogenesis in endometriosis.
Collapse
|
49
|
Primary Congenital Lymphedema Complicated by Hydrops Fetalis: A Case Report and Review of the Literature. Case Rep Obstet Gynecol 2013; 2013:186173. [PMID: 23533860 PMCID: PMC3600248 DOI: 10.1155/2013/186173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/07/2013] [Indexed: 11/23/2022] Open
Abstract
Introduction. Primary congenital lymphedema is a rare disorder associated with insufficient development of lymphatic vessels. Usually most patients present with lower extremity edema seen sonographically. Rarely primary congenital lymphedema may be associated with severe lymphatic dysfunction resulting in hydrops fetalis. Case. A 27-year-old primigravida with a family history of leg swelling throughout multiple generations was diagnosed early in the third trimester with hydrops fetalis. Delivery was undertaken at 32 weeks for nonreassuring fetal status and the infant expired at approximately 45 minutes of life. Primary congenital lymphedema was confirmed via molecular testing of the vascular endothelial growth factor receptor-3 gene. Discussion. The diagnosis of PCL is suspected prenatally when ultrasound findings coincide with a positive family history of chronic lower limb lymphedema. Isolated PCL is rarely associated with significant complications. Rarely, however, widespread lymphatic dysplasia may occur, possibly resulting in nonimmune hydrops fetalis.
Collapse
|
50
|
Park JM, Shin YJ, Cho JM, Choi JY, Jeun SS, Cha JH, Lee MY. Upregulation of vascular endothelial growth factor receptor-3 in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. J Histochem Cytochem 2012; 61:31-44. [PMID: 22983493 DOI: 10.1369/0022155412462975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the spatiotemporal expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. VEGFR-3 mRNA and protein were constitutively expressed in gray matter neurons and in a few white matter astrocytes. Induction of VEGFR-3 occurred predominantly in perivascular infiltrated macrophages in the spinal cord white matter during the inductive phase of EAE. VEGFR-3 expression was also induced in activated microglial cells in the gray and white matter, mainly in the peak phase. In addition, reactive astrocytes in the white matter, but not in the gray matter, expressed VEGFR-3 as disease severity increased. These data suggest that VEGFR-3 is involved in the recruitment of monocytic macrophages and in glial reactions during EAE.
Collapse
Affiliation(s)
- Jang-Mi Park
- Department of Anatomy, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|