1
|
Svrzikapa N, Longo KA, Prasad N, Boyanapalli R, Brown JM, Dorset D, Yourstone S, Powers J, Levy SE, Morris AJ, Vargeese C, Goyal J. Investigational Assay for Haplotype Phasing of the Huntingtin Gene. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:162-173. [PMID: 33209959 PMCID: PMC7648085 DOI: 10.1016/j.omtm.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/04/2020] [Indexed: 01/20/2023]
Abstract
Novel treatments for Huntington's disease (HD), a progressive neurodegenerative disorder, include selective targeting of the mutant allele of the huntingtin gene (mHTT) carrying the abnormally expanded disease-causing cytosine-adenine-guanine (CAG) repeat. WVE-120101 and WVE-120102 are investigational stereopure antisense oligonucleotides that enable selective suppression of mHTT by targeting single-nucleotide polymorphisms (SNPs) that are in haplotype phase with the CAG repeat expansion. Recently developed long-read sequencing technologies can capture CAG expansions and distant SNPs of interest and potentially facilitate haplotype-based identification of patients for clinical trials of oligonucleotide therapies. However, improved methods are needed to phase SNPs with CAG repeat expansions directly and reliably without need for familial genotype/haplotype data. Our haplotype phasing method uses single-molecule real-time sequencing and a custom algorithm to determine with confidence bases at SNPs on mutant alleles, even without familial data. Herein, we summarize this methodology and validate the approach using patient-derived samples with known phasing results. Comparison of experimentally measured CAG repeat lengths, heterozygosity, and phasing with previously determined results showed improved performance. Our methodology enables the haplotype phasing of SNPs of interest and the disease-causing, expanded CAG repeat of the huntingtin gene, enabling accurate identification of patients with HD eligible for allele-selective clinical studies.
Collapse
Affiliation(s)
- Nenad Svrzikapa
- Wave Life Sciences Ltd., Cambridge, MA 02138, USA.,Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, UK
| | | | - Nripesh Prasad
- HudsonAlpha Discovery, Discovery Life Sciences, Huntsville, AL 35806, USA.,Genomic Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | | | - Daniel Dorset
- HudsonAlpha Discovery, Discovery Life Sciences, Huntsville, AL 35806, USA.,Genomic Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Jason Powers
- Q Solutions
- EA Genomics, LLC, Morrisville, NC 27560, USA
| | - Shawn E Levy
- HudsonAlpha Discovery, Discovery Life Sciences, Huntsville, AL 35806, USA.,Genomic Services Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | | | - Jaya Goyal
- Wave Life Sciences Ltd., Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Suzuki Y, Nishijima S, Furuta Y, Yoshimura J, Suda W, Oshima K, Hattori M, Morishita S. Long-read metagenomic exploration of extrachromosomal mobile genetic elements in the human gut. MICROBIOME 2019; 7:119. [PMID: 31455406 PMCID: PMC6712665 DOI: 10.1186/s40168-019-0737-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/16/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Elucidating the ecological and biological identity of extrachromosomal mobile genetic elements (eMGEs), such as plasmids and bacteriophages, in the human gut remains challenging due to their high complexity and diversity. RESULTS Here, we show efficient identification of eMGEs as complete circular or linear contigs from PacBio long-read metagenomic data. De novo assembly of PacBio long reads from 12 faecal samples generated 82 eMGE contigs (2.5~666.7-kb), which were classified as 71 plasmids and 11 bacteriophages, including 58 novel plasmids and six bacteriophages, and complete genomes of five diverse crAssphages with terminal direct repeats. In a dataset of 413 gut metagenomes from five countries, many of the identified plasmids were highly abundant and prevalent. The ratio of gut plasmids by our plasmid data is more than twice that in the public database. Plasmids outnumbered bacterial chromosomes three to one on average in this metagenomic dataset. Host prediction suggested that Bacteroidetes-associated plasmids predominated, regardless of microbial abundance. The analysis found several plasmid-enriched functions, such as inorganic ion transport, while antibiotic resistance genes were harboured mostly in low-abundance Proteobacteria-associated plasmids. CONCLUSIONS Overall, long-read metagenomics provided an efficient approach for unravelling the complete structure of human gut eMGEs, particularly plasmids.
Collapse
Affiliation(s)
- Yoshihiko Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
| | - Suguru Nishijima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory, Tokyo, 169-8555 Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, Sapporo, 001-0020 Japan
| | - Jun Yoshimura
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
| | - Wataru Suda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Kenshiro Oshima
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
| | - Masahira Hattori
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
- Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555 Japan
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045 Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8568 Japan
| |
Collapse
|
3
|
Abstract
For high-throughput sequencing and quantification of immunoglobulin repertoires, most methodologies use RNA. However, output varies enormously between recombined genes due to different promoter strengths and differential activation of lymphocyte subsets, precluding quantitation of recombinants on a per-cell basis. To date, DNA-based approaches have used V gene primer cocktails, with substantial inherent biases. Here, we describe VDJ sequencing (VDJ-seq), which accurately quantitates immunoglobulin diversity at the DNA level in an unbiased manner. This is accomplished with a single primer-extension step using biotinylated J gene primers. By addition of unique molecular identifiers (UMIs) before primer extension, we reliably remove duplicate sequences and correct for sequencing and PCR errors. Furthermore, VDJ-seq captures productive and nonproductive VDJ and DJ recombination events on a per-cell basis. Library preparation takes 3 d, with 2 d of sequencing and 1 d of data processing and analysis.
Collapse
|
4
|
Peccoud J, Lequime S, Moltini-Conclois I, Giraud I, Lambrechts L, Gilbert C. A Survey of Virus Recombination Uncovers Canonical Features of Artificial Chimeras Generated During Deep Sequencing Library Preparation. G3 (BETHESDA, MD.) 2018; 8:1129-1138. [PMID: 29434031 PMCID: PMC5873904 DOI: 10.1534/g3.117.300468] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chimeric reads can be generated by in vitro recombination during the preparation of high-throughput sequencing libraries. Our attempt to detect biological recombination between the genomes of dengue virus (DENV; +ssRNA genome) and its mosquito host using the Illumina Nextera sequencing library preparation kit revealed that most, if not all, detected host-virus chimeras were artificial. Indeed, these chimeras were not more frequent than with control RNA from another species (a pillbug), which was never in contact with DENV RNA prior to the library preparation. The proportion of chimera types merely reflected those of the three species among sequencing reads. Chimeras were frequently characterized by the presence of 1-20 bp microhomology between recombining fragments. Within-species chimeras mostly involved fragments in opposite orientations and located less than 100 bp from each other in the parental genome. We found similar features in published datasets using two other viruses: Ebola virus (EBOV; -ssRNA genome) and a herpesvirus (dsDNA genome), both produced with the Illumina Nextera protocol. These canonical features suggest that artificial chimeras are generated by intra-molecular template switching of the DNA polymerase during the PCR step of the Nextera protocol. Finally, a published Illumina dataset using the Flock House virus (FHV; +ssRNA genome) generated with a protocol preventing artificial recombination revealed the presence of 1-10 bp microhomology motifs in FHV-FHV chimeras, but very few recombining fragments were in opposite orientations. Our analysis uncovered sequence features characterizing recombination breakpoints in short-read sequencing datasets, which can be helpful to evaluate the presence and extent of artificial recombination.
Collapse
Affiliation(s)
- Jean Peccoud
- Laboratoire Ecologie et Biologie des Interactions Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7267, Université de Poitiers, 86000 France
| | - Sébastian Lequime
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000, Paris, France
| | - Isabelle Moltini-Conclois
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000, Paris, France
| | - Isabelle Giraud
- Laboratoire Ecologie et Biologie des Interactions Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7267, Université de Poitiers, 86000 France
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France
- CNRS, UMR 2000, Paris, France
| | - Clément Gilbert
- Laboratoire Evolution, Génomes, Comportement, Écologie, UMR 9191 CNRS, UMR 247 IRD, Université Paris-Sud, 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Lindner DL, Banik MT. Effects of cloning and root-tip size on observations of fungal ITS sequences fromPicea glaucaroots. Mycologia 2017; 101:157-65. [DOI: 10.3852/08-034] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Mark T. Banik
- U.S.D.A. Forest Service, Northern Research Station, Center for Forest Mycology Research, One Gifford Pinchot Drive, Madison, Wisconsin 53726
| |
Collapse
|
6
|
Abstract
Whole genome amplification (WGA) is a widely used molecular technique that is becoming increasingly necessary in genetic research on a range of sample types including individual cells, fossilized remains and entire ecosystems. Multiple methods of WGA have been developed, each with specific strengths and weaknesses, but with a common defect in that each method distorts the initial template DNA during the course of amplification. The type, extent, and circumstance of the bias vary with the WGA method and particulars of the template DNA. In this review, we endeavor to discuss the types of bias introduced, the susceptibility of common WGA techniques to these bias types, and the interdependence between bias and characteristics of the template DNA. Finally, we attempt to illustrate some of the criteria specific to the analytical platform and research application that should be considered to enable combination of the appropriate WGA method, template DNA, sequencing platform, and intended use for optimal results.
Collapse
Affiliation(s)
| | - John H Leamon
- CyVek Inc., 2 Barnes Industrial Road South, Wallingford, CT, 06492, USA.
| |
Collapse
|
7
|
Ducani C, Bernardinelli G, Högberg B. Rolling circle replication requires single-stranded DNA binding protein to avoid termination and production of double-stranded DNA. Nucleic Acids Res 2014; 42:10596-604. [PMID: 25120268 PMCID: PMC4176320 DOI: 10.1093/nar/gku737] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In rolling circle replication, a circular template of DNA is replicated as a long single-stranded DNA concatamer that spools off when a strand displacing polymerase traverses the circular template. The current view is that this type of replication can only produce single-stranded DNA, because the only 3'-ends available are the ones being replicated along the circular templates. In contrast to this view, we find that rolling circle replication in vitro generates large amounts of double stranded DNA and that the production of single-stranded DNA terminates after some time. These properties can be suppressed by adding single-stranded DNA-binding proteins to the reaction. We conclude that a model in which the polymerase switches templates to the already produced single-stranded DNA, with an exponential distribution of template switching, can explain the observed data. From this, we also provide an estimate value of the switching rate constant.
Collapse
Affiliation(s)
- Cosimo Ducani
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Björn Högberg
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
8
|
Ocean viruses: rigorously evaluating the metagenomic sample-to-sequence pipeline. Virology 2012; 434:181-6. [PMID: 23084423 DOI: 10.1016/j.virol.2012.09.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 11/21/2022]
Abstract
As new environments are studied, viruses consistently emerge as important and prominent players in natural and man-made ecosystems. However, much of what we know is built both upon the foundation of the culturable minority and using methods that are often insufficiently ground-truthed. Here, we review the modern culture-independent viral metagenomic sample-to-sequence pipeline and how next-generation sequencing techniques are drastically altering our ability to systematically and rigorously evaluate them. Together, a series of studies quantitatively evaluate existing and new methods that allow-even for ultra-low DNA samples-the generation of replicable, near-quantitative datasets that maximize inter-comparability and biological inference.
Collapse
|
9
|
Ieremiadou F, Rodakis GC. Correlation of the 4977 bp mitochondrial DNA deletion with human sperm dysfunction. BMC Res Notes 2009; 2:18. [PMID: 19192313 PMCID: PMC2642850 DOI: 10.1186/1756-0500-2-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/04/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several studies have examined the association between mitochondrial DNA (mtDNA) deletions, in particular the "common" 4977-bp deletion, and human sperm dysfunction, but have produced contradictory results. FINDINGS Here we show that PCR slippage and primer miss-match to nuclear DNA may lead to overestimates in the frequency of deletions. Our investigation resolves this issue and gives strong negative correlation between the proportion of the "common" deletion and sperm motility. Furthermore, for the first time, we present data which reinforce the hypothesis for a negative correlation between the mtDNA "common" deletion and fertilization efficiency of spermatozoa. CONCLUSION The present analysis resolves several literature inconsistencies and opens the way for diagnostic use of the "common" deletion as a molecular indicator of sperm fertility potential.
Collapse
Affiliation(s)
- Fotini Ieremiadou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 157 01 Athens, Greece
| | - George C Rodakis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 157 01 Athens, Greece
| |
Collapse
|
10
|
Chakravarti D, Mailander PC. Formation of template-switching artifacts by linear amplification. J Biomol Tech 2008; 19:184-188. [PMID: 19137105 PMCID: PMC2563923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Linear amplification is a method of synthesizing single-stranded DNA from either a single-stranded DNA or one strand of a double-stranded DNA. In this protocol, molecules of a single primer DNA are extended by multiple rounds of DNA synthesis at high temperature using thermostable DNA polymerases. Although linear amplification generates the intended full-length single-stranded product, it is more efficient over single-stranded templates than double-stranded templates. We analyzed linear amplification over single- or double-stranded mouse H-ras DNA (exon 1-2 region). The single-stranded H-ras template yielded only the intended product. However, when the double-stranded template was used, additional artifact products were observed. Increasing the concentration of the double-stranded template produced relatively higher amounts of these artifact products. One of the artifact DNA bands could be mapped and analyzed by sequencing. It contained three template-switching products. These DNAs were formed by incomplete DNA strand extension over the template strand, followed by switching to the complementary strand at a specific Ade nucleotide within a putative hairpin sequence, from which DNA synthesis continued over the complementary strand.
Collapse
Affiliation(s)
- Dhrubajyoti Chakravarti
- Eppley Institute for Research in Cancer and Allied Diseases, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| | | |
Collapse
|
11
|
Renker C, Weißhuhn K, Kellner H, Buscot F. Rationalizing molecular analysis of field-collected roots for assessing diversity of arbuscular mycorrhizal fungi: to pool, or not to pool, that is the question. MYCORRHIZA 2006; 16:525-531. [PMID: 16983569 DOI: 10.1007/s00572-006-0067-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 06/29/2006] [Indexed: 05/11/2023]
Abstract
For rationalizing molecular analysis of field-collected roots in diversity studies on arbuscular mycorrhiza, we compared three different approaches. After DNA extraction from 50 root samples of Plantago lanceolata grown on monoculture plots at a former arable field site, (1) DNAs were amplified separately by nested PCR and each amplicon was cloned separately; (2) DNAs were amplified separately by nested PCR, 1 mul of each amplicon was pooled, and a single cloning was made from the resulting amplicons mix; and (3) DNAs were pooled and the single amplicon derived from the nested PCR was cloned. Based on these three different methods, 109 nuclear ribosomal internal transcribed spacer sequences were obtained. Methods 1 and 2 enabled the detection of almost similar levels of arbuscular mycorrhizal fungal diversity. However, method 1 was expensive and time-consuming as much more cloning had to be done. Method 3 was completely biased by preferential amplification of nontarget organisms, which were only detected in low frequencies by the other methods.
Collapse
Affiliation(s)
- C Renker
- Terrestrial Ecology, Institute of Biology I, University of Leipzig, Johannisallee 21, D-04103, Leipzig, Germany.
- Department of Soil Ecology, UFZ Centre for Environmental Research Leipzig-Halle Ltd., Theodor-Lieser-Str. 4, D-06120, Halle, Germany.
| | - K Weißhuhn
- Terrestrial Ecology, Institute of Biology I, University of Leipzig, Johannisallee 21, D-04103, Leipzig, Germany
- Department of Community Ecology, UFZ Centre for Environmental Research Leipzig-Halle Ltd., Theodor-Lieser-Str. 4, D-06120, Halle, Germany
| | - H Kellner
- Terrestrial Ecology, Institute of Biology I, University of Leipzig, Johannisallee 21, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ Centre for Environmental Research Leipzig-Halle Ltd., Theodor-Lieser-Str. 4, D-06120, Halle, Germany
| | - F Buscot
- Terrestrial Ecology, Institute of Biology I, University of Leipzig, Johannisallee 21, D-04103, Leipzig, Germany
- Department of Soil Ecology, UFZ Centre for Environmental Research Leipzig-Halle Ltd., Theodor-Lieser-Str. 4, D-06120, Halle, Germany
| |
Collapse
|
12
|
Kurata S, Kanagawa T, Magariyama Y, Takatsu K, Yamada K, Yokomaku T, Kamagata Y. Reevaluation and reduction of a PCR bias caused by reannealing of templates. Appl Environ Microbiol 2005; 70:7545-9. [PMID: 15574958 PMCID: PMC535213 DOI: 10.1128/aem.70.12.7545-7549.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We reevaluated the bias toward a 1:1 ratio of products in multitemplate PCR used in ecological studies and showed that the template reannealing at the annealing step would not cause the bias; however, the preferential homoduplex formation during temperature decrease from denaturation to annealing step would cause the bias.
Collapse
|
13
|
Wackerbarth H, Grubb M, Zhang J, Hansen AG, Ulstrup J. Long-range order of organized oligonucleotide monolayers on Au(111) electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:1647-1655. [PMID: 15801424 DOI: 10.1021/la035547g] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Oligonucleotides modified by a hexamethylene linker group adsorb on gold electrodes via Au-S bond formation. We have obtained novel data for adsorption of thiol-modified (HS) single-strand HS-10A and double-stranded HS-10AT oligonucleotides and for analogous thiol-free 10A (A = adenine) and 10T (T = thymine) nonspecifically adsorbed as reference molecules. Mercaptohexanol has served as a second reference molecule. The data are based on cyclic and differential pulse voltammetry, interfacial capacitance data, and in situ scanning tunneling microscopy (STM) directly in an aqueous buffer solution, with electrochemical potential control of both the sample electrode and the tip. All the data are based on single-crystal, atomically planar Au(111)-electrode surfaces. The high sensitivity of such surfaces provides accurate HS-10A and HS-10AT electrode coverages on the basis of the reductive desorption of the Au-S bond. The coverage is high and in keeping with dense monolayers of adsorbed HS-10A and HS-10AT in an upright or tilted orientation, with the oligonucleotide backbone repelled from the strongly negatively charged electrode surface. Adsorbed thiol-free 10A only gives a Au(111)-reconstruction peak, while 10T shows a subtle pattern involving pronounced voltammetric adsorption peaks indicative of both nonspecific adsorption via single thymine units and potential-dependent structural reorganization in the surface layer. In situ STM supports these findings at the molecular level. In situ STM of HS-10A discloses large, highly ordered domains at strongly negative sample potentials. Reversible domain formation and disordering could, moreover, be controlled by an electrochemical potential variation in the negative and positive directions, respectively. 10A and 10T did not form ordered adsorbate domains, substantiating that domain formation rests on adsorption of thiol-modified oligonucleotide adsorption in an upright or tilted orientation. The comprehensive, high-resolution information reported may hold prospects for single-molecule electronic conduction and molecular-scale mapping of oligonucleotide hybridization.
Collapse
Affiliation(s)
- Hainer Wackerbarth
- Department of Chemistry, Building 207, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | | | | | |
Collapse
|
14
|
KANAGAWA TAKAHIRO. Bias and Artifacts in Multitemplate Polymerase Chain Reactions(PCR). J Biosci Bioeng 2003. [DOI: 10.1263/jbb.96.317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA. A high-throughput Arabidopsis reverse genetics system. THE PLANT CELL 2002; 14:2985-94. [PMID: 12468722 PMCID: PMC151197 DOI: 10.1105/tpc.004630] [Citation(s) in RCA: 743] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2002] [Accepted: 09/10/2002] [Indexed: 05/17/2023]
Abstract
A collection of Arabidopsis lines with T-DNA insertions in known sites was generated to increase the efficiency of functional genomics. A high-throughput modified thermal asymmetric interlaced (TAIL)-PCR protocol was developed and used to amplify DNA fragments flanking the T-DNA left borders from approximately 100000 transformed lines. A total of 85108 TAIL-PCR products from 52964 T-DNA lines were sequenced and compared with the Arabidopsis genome to determine the positions of T-DNAs in each line. Predicted T-DNA insertion sites, when mapped, showed a bias against predicted coding sequences. Predicted insertion mutations in genes of interest can be identified using Arabidopsis Gene Index name searches or by BLAST (Basic Local Alignment Search Tool) search. Insertions can be confirmed by simple PCR assays on individual lines. Predicted insertions were confirmed in 257 of 340 lines tested (76%). This resource has been named SAIL (Syngenta Arabidopsis Insertion Library) and is available to the scientific community at www.tmri.org.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Arabidopsis/genetics
- Binding Sites/genetics
- Chromosomes, Plant/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Databases, Genetic
- Genome, Plant
- Internet
- Mutagenesis, Insertional
- Plants, Genetically Modified
- Polymerase Chain Reaction/methods
- Seeds/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Allen Sessions
- Torrey Mesa Research Institute, Syngenta, 3115 Merryfield Row, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shammas FV, Heikkilä R, Osland A. Fluorescence-based method for measuring and determining the mechanisms of recombination in quantitative PCR. Clin Chim Acta 2001; 304:19-28. [PMID: 11165195 DOI: 10.1016/s0009-8981(00)00374-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We quantitatively measured the amount of recombinant molecules formed during PCR when the break point cluster region (BCR) cDNA was coamplified with a homologous internal standard using Taq polymerase. The products were analysed under denaturing conditions using capillary electrophoresis followed by detection of the fluorescently labelled products and the recombinant molecules were differentiated by their size. Early termination of chain synthesis and reannealing of incomplete fragments, to each other as well as to BCR and internal standard, is one mechanism for generating recombinants during PCR since prolonging extension time reduced, but did not totally suppress recombinant molecule formation. Template switching by the extending chain is another mechanism since recombinant molecules could be detected even after only one round of primer extension. The latter mechanism is probably facilitated by increasing number of templates. Thus, the large increase of recombinant molecules formed in plateau phase is mediated by direct amplification of the recombinants and de novo synthesis by template switching. The effect of additives on recombination could be quantitatively measured and both betaine and DMSO were effective in suppressing recombination. Thus, prolonging extension time, reducing the number of amplification cycles and incorporating additives in the PCR reaction, reduced recombinant molecule formation.
Collapse
Affiliation(s)
- F V Shammas
- Department of Clinical Chemistry, Rogaland Central Hospital, 4011 Stavanger, Norway.
| | | | | |
Collapse
|
17
|
Zylstra P, Rothenfluh HS, Weiller GF, Blanden RV, Steele EJ. PCR amplification of murine immunoglobulin germline V genes: strategies for minimization of recombination artefacts. Immunol Cell Biol 1998; 76:395-405. [PMID: 9797458 DOI: 10.1046/j.1440-1711.1998.00772.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Murine immunoglobulin germline V genes exist as multiple sequences arranged in tandem in germline DNA. Because members of V gene families are very similar, they can be amplified simultaneously using the polymerase chain reaction (PCR) with a single set of primers designed over regions of sequence similarity. In the present paper, the variables relevant to production of artefacts by recombination between different germline sequences during amplification are investigated. Pfu or Taq DNA polymerases were used to amplify from various DNA template mixtures with varying numbers of amplification cycles. Pfu generated a higher percentage of recombination artefacts than Taq. The number of artefacts and their complexity increased with the number of amplification cycles, becoming a high proportion of the total number of PCR products once the 'plateau phase' of the reaction was reached. Recombination events were located throughout the approximately 1-kb product, with no preferred sites of cross-over. By using the minimally detectable PCR bands (produced by the minimum number of amplification cycles), recombination artefacts can be virtually eliminated from PCR amplifications involving mixtures of very similar sequences. This information is relevant to all studies involving PCR amplification of members of highly homologous multigene families of cellular or viral origin.
Collapse
Affiliation(s)
- P Zylstra
- Department of Biological Sciences, University of Wollongong, New South Wales, Australia
| | | | | | | | | |
Collapse
|