1
|
Papadakis G, Gizeli E. In silico search of DNA drugs targeting oncogenes. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2012; 9:1826-1830. [PMID: 23221090 DOI: 10.1109/tcbb.2012.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Triplex forming oligonucleotides (TFOs) represent a class of drug candidates for antigene therapy. Based on strict criteria, we investigated the potential of 25 known oncogenes to be regulated by TFOs in the mRNA synthesis level and we report specific target sequences found in seven of these genes.
Collapse
Affiliation(s)
- George Papadakis
- Department of Biology, University of Crete and Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), 100 Nikolaou Plastira str, Heraklion 70013, Greece.
| | | |
Collapse
|
2
|
Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB. The triple helix: 50 years later, the outcome. Nucleic Acids Res 2008; 36:5123-38. [PMID: 18676453 PMCID: PMC2532714 DOI: 10.1093/nar/gkn493] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Triplex-forming oligonucleotides constitute an interesting DNA sequence-specific tool that can be used to target cleaving or cross-linking agents, transcription factors or nucleases to a chosen site on the DNA. They are not only used as biotechnological tools but also to induce modifications on DNA with the aim to control gene expression, such as by site-directed mutagenesis or DNA recombination. Here, we report the state of art of the triplex-based anti-gene strategy 50 years after the discovery of such a structure, and we show the importance of the actual applications and the main challenges that we still have ahead of us.
Collapse
Affiliation(s)
- Maria Duca
- LCMBA CNRS UMR6001, University of Nice-Sophia Antipolis, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | | | |
Collapse
|
3
|
Nojima T, Hirose T, Kimura H, Hagiwara M. The interaction between cap-binding complex and RNA export factor is required for intronless mRNA export. J Biol Chem 2007; 282:15645-51. [PMID: 17363367 DOI: 10.1074/jbc.m700629200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA export factor (REF) is a component of the exon junction complex (EJC) that is deposited on mRNA in a splicing-dependent manner, and targets spliced mRNA for export. In this study, analysis of the RNA-binding protein complexes revealed that REF associates with beta-globin mRNA at the region other than the EJC deposition site. Comparison between RNA polymerase II and T7 transcription and further analysis showed that the deposition of REF apart from the EJC is dependent on the 5' cap structure, but not splicing. Excess amounts of m(7)GpppG cap analog reduced REF binding to intronless mRNA, and a co-immunoprecipitation experiment revealed that REF interacts with the cap-binding protein CBP20. The export of Cy3-labeled intronless beta-globin mRNA from nuclei of HeLa cells was enhanced by co-injection of CBP20 and REF. Thus, REF recruited by CBP20 may play a stimulatory role to export the capped intronless mRNAs.
Collapse
Affiliation(s)
- Takayuki Nojima
- Laboratory of Gene Expression, School of Biomedical Science, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Japan
| | | | | | | |
Collapse
|
4
|
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Houssam S. Hajj Houssein
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
5
|
Richter SN, Bélanger F, Zheng P, Rana TM. Dynamics of nascent mRNA folding and RNA-protein interactions: an alternative TAR RNA structure is involved in the control of HIV-1 mRNA transcription. Nucleic Acids Res 2006; 34:4278-92. [PMID: 16920743 PMCID: PMC1616951 DOI: 10.1093/nar/gkl499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
HIV-1 Tat protein regulates transcription elongation by binding to the 59 nt TAR RNA stem–loop structure transcribed from the HIV-1 5′ long terminal repeat (5′-LTR). This established Tat–TAR interaction was used to investigate mRNA folding and RNA–protein interactions during early transcription elongation from the HIV-1 5′-LTR. Employing a new site-specific photo-cross-linking strategy to isolate transcription elongation complexes at early steps of elongation, we found that Tat interacts with HIV-1 transcripts before the formation of full-length TAR (TAR59). Analysis of RNA secondary structure by free energy profiling and ribonuclease digestion indicated that nascent transcripts folded into an alternative TAR RNA structure (TAR31), which requires only 31 nt to form and includes an analogous Tat-binding bulge structure. Functionally, TAR31, similar to TAR59, acts as a transcriptional terminator in vitro, and mRNA expression from TAR31-deficient HIV-1 5′-LTR mutant promoters is significantly decreased. Our results support a role for TAR31 in the control of HIV-1 mRNA transcription and we propose that this structure is important to stabilize the short early transcripts before the transcription complex commits for processive elongation. Overall, this study demonstrates that RNA folding during HIV-1 transcription is dynamic and that as the nascent RNA chain grows during transcription, it folds into a number of conformations that function to regulate gene expression. Finally, our results provide a new experimental strategy for studying mRNA conformation changes during transcription that can be applied to investigate the folding and function of nascent RNA structures transcribed from other promoters.
Collapse
Affiliation(s)
| | | | | | - Tariq M. Rana
- To whom correspondence should be addressed. Tel: +1 508 856 6216; Fax: +1 508 856 6696;
| |
Collapse
|
6
|
Tornaletti S. Transcription arrest at DNA damage sites. Mutat Res 2005; 577:131-45. [PMID: 15904937 DOI: 10.1016/j.mrfmmm.2005.03.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 11/16/2022]
Abstract
Transcription arrest by RNA polymerase II at a DNA damage site on the transcribed strand is considered an essential step in initiation of transcription-coupled repair (TCR), a specialized repair pathway, which specifically removes lesions from transcribed strands of expressed genes. To understand how initiation of TCR occurs, it is necessary to characterize the properties of the transcription complex when it encounters a lesion in its path. The analysis of different types of arrested complexes should help us understand how an arrested RNA polymerase may signal the repair proteins to initiate a repair event. This article will review the recent literature describing how the presence of DNA damage along the DNA affects transcription elongation by RNA polymerase II and its implications for the initial steps of TCR.
Collapse
Affiliation(s)
- Silvia Tornaletti
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
7
|
Bello-Roufaï M, Roulon T, Escudé C. Ligand-mediated transcription elongation control using triplex-based padlock oligonucleotides. ACTA ACUST UNITED AC 2004; 11:509-16. [PMID: 15123245 DOI: 10.1016/j.chembiol.2004.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 01/08/2004] [Accepted: 01/14/2004] [Indexed: 11/16/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) provide useful tools for the artificial regulation of gene expression at the transcriptional level. They can become topologically linked to their DNA target upon circularization, thereby forming very stable triple helical structures. These "padlock oligonucleotides" are able to interfere with transcription elongation when their target site is located in the transcribed region of a gene. In vitro transcription experiments showed that a bacterial RNA polymerase was stopped at the site of triple-helix formation, whereas expression of a reporter gene was inhibited in live cells. In both cases, the padlock oligonucleotide was more efficient at inhibiting transcription elongation than a linear TFO, and the inhibition was observed only in the presence of a triplex stabilizing agent. These results provide new insights into the ligand-modulated locking of padlock oligonucleotides around their DNA target.
Collapse
Affiliation(s)
- Mahajoub Bello-Roufaï
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, INSERM U565, CNRS UMR5153, 43 rue Cuvier, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
8
|
Richter S, Parolin C, Gatto B, Del Vecchio C, Brocca-Cofano E, Fravolini A, Palù G, Palumbo M. Inhibition of human immunodeficiency virus type 1 tat-trans-activation-responsive region interaction by an antiviral quinolone derivative. Antimicrob Agents Chemother 2004; 48:1895-9. [PMID: 15105155 PMCID: PMC400552 DOI: 10.1128/aac.48.5.1895-1899.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
WM5, a 6-aminoquinolone derivative, binds with high affinity to the bulge of the trans-activation-responsive region (TAR), whereas it displays low binding affinity for the loop and stem regions of TAR and for random RNA and DNA sequences. Furthermore, WM5 disrupts the natural protein-nucleic acid complex with a 50% inhibitory concentration in the low micromolar range in both in vitro and in vivo assays.
Collapse
Affiliation(s)
- Sara Richter
- Department of Pharmaceutical Sciences, University of Padua, 35131 Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Psoralen-conjugated triplex-forming oligonucleotides (pso-TFOs) can target photochemical adducts to specific DNA sequences. Here, we have used pso-TFOs to activate gene expression on a plasmid. We designed a pso-TFO adapter, consisting of a single-stranded TFO for targeting DNA, linked to a double-stranded hairpin segment that contains a hybrid ecdysone response element (E/GRE) enhancer for binding activated ecdysone receptors. When targeted to the 5' flanking region of a minimal promoter, this pso-TFO adapter increased the expression of a downstream reporter gene three- to four-fold. Gene activation, however, was independent of both the E/GRE hairpin of the adapter and ecdysone receptors, suggesting it was due to an intrinsic effect of triplex. Gene activation was dependent on psoralen photo-crosslinking. Gene activation by pso-TFOs in which the psoralen was linked to the TFO via a disulfide bond was similar before and after detachment of the TFO and its release from the triplex. These results indicate that psoralen photo-crosslinks play a prominent role in activation. Gene activation was undiminished in XPA, XPD and XPG human cell lines, indicating that activation was not dependent on the complete nucleotide excision repair (NER) pathway. Collectively, these results demonstrate that TFOs can be used to direct psoralen crosslinks adjacent to a gene as a way of activating gene expression.
Collapse
Affiliation(s)
- Jie Song
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
10
|
Tornaletti S, Patrick SM, Turchi JJ, Hanawalt PC. Behavior of T7 RNA polymerase and mammalian RNA polymerase II at site-specific cisplatin adducts in the template DNA. J Biol Chem 2003; 278:35791-7. [PMID: 12829693 DOI: 10.1074/jbc.m305394200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription-coupled DNA repair is dedicated to the removal of DNA lesions from transcribed strands of expressed genes. RNA polymerase arrest at a lesion has been proposed as a sensitive signal for recruitment of repair enzymes to the lesion site. To understand how initiation of transcription-coupled repair may occur, we have characterized the properties of the transcription complex when it encounters a lesion in its path. Here we have compared the effect of cisplatin-induced intrastrand cross-links on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. We found that a single cisplatin 1,2-d(GG) intrastrand cross-link or a single cisplatin 1,3-d(GTG) intrastrand cross-link is a strong block to both polymerases. Furthermore, the efficiency of the block at a cisplatin 1,2-d(GG) intrastrand cross-link was similar in several different nucleotide sequence contexts. Interestingly, some blockage was also observed when the single cisplatin 1,3-d(GTG) intrastrand cross-link was located in the non-transcribed strand. Transcription complexes arrested at the cisplatin adducts were substrates for the transcript cleavage reaction mediated by the elongation factor TFIIS, indicating that the RNA polymerase II complexes arrested at these lesions are not released from template DNA. Addition of TFIIS yielded a population of transcripts up to 30 nucleotides shorter than those arrested at the lesion. In the presence of nucleoside triphosphates, these shortened transcripts could be re-elongated up to the site of the lesion, indicating that the arrested complexes are stable and competent to resume elongation. These results show that cisplatin-induced lesions in the transcribed DNA strand constitute a strong physical barrier to RNA polymerase progression, and they support current models of transcription arrest and initiation of transcription-coupled repair.
Collapse
Affiliation(s)
- Silvia Tornaletti
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | | | |
Collapse
|
11
|
Kalogeraki VS, Tornaletti S, Hanawalt PC. Transcription arrest at a lesion in the transcribed DNA strand in vitro is not affected by a nearby lesion in the opposite strand. J Biol Chem 2003; 278:19558-64. [PMID: 12646562 DOI: 10.1074/jbc.m301060200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cis-syn cyclobutane pyrimidine dimers (CPDs) are the most frequently formed lesions in UV-irradiated DNA. CPDs are repaired by the nucleotide excision repair pathway. Additionally, they are subject to transcription-coupled DNA repair. In the general model for transcription-coupled DNA repair, an RNA polymerase arrested at a lesion on the transcribed DNA strand facilitates repair by recruiting the repair machinery to the site of the lesion. Consistent with this model, transcription experiments in vitro have shown that CPDs in the transcribed DNA strand interfere with the translocation of prokaryotic and eukaryotic RNA polymerases. Here, we study the behavior of RNA polymerase when transcribing a template that contains two closely spaced lesions, one on each DNA strand. Similar DNA templates containing no CPD, or a single CPD on either the transcribed or the nontranscribed strand were used as controls. Using an in vitro transcription system with purified T7 RNA polymerase (T7 RNAP) or rat liver RNAP II, we characterized transcript length and efficiency of transcription in vitro. We also tested the sensitivity of the arrested RNAP II-DNA-RNA ternary complex, at a CPD in the transcribed strand, to transcription factor TFIIS. The presence of a nearby CPD in the nontranscribed strand did not affect the behavior of either RNA polymerase nor did it affect the reverse translocation ability of the RNAP II-arrested complex. Our results additionally indicate that the sequence context of a CPD affects the efficiency of T7 RNAP arrest more significantly than that of RNAP II.
Collapse
Affiliation(s)
- Virginia S Kalogeraki
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | |
Collapse
|
12
|
Perlow RA, Schinecker TM, Kim SJ, Geacintov NE, Scicchitano DA. Construction and purification of site-specifically modified DNA templates for transcription assays. Nucleic Acids Res 2003; 31:e40. [PMID: 12655028 PMCID: PMC152825 DOI: 10.1093/nar/gng040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chemical and physical agents can alter the structure of DNA by modifying the bases and the phosphate-sugar backbone, consequently compromising both replication and transcription. During transcription elongation, RNA polymerase complexes can stall at a damaged site in DNA and mark the lesion for repair by a subset of proteins that are utilized to execute nucleotide excision repair, a pathway commonly associated with the removal of bulky DNA damage from the genome. This RNA polymerase-induced repair pathway is called transcription-coupled nucleotide excision repair. Although our understanding of DNA lesion effects on transcription elongation and the associated effects of stalled transcription complexes on DNA repair is broadening, the attainment of critical data is somewhat impeded by labor-intensive, time- consuming processes that are required to prepare damaged DNA templates. Here, we describe an approach for building linear DNA templates that contain a single, site-specific DNA lesion and support transcription by human RNA polymerase II. The method is rapid, making use of biotin-avidin interactions and paramagnetic particles to purify the final product. Data are supplied demonstrating that these templates support transcription, and we emphasize the potential versatility of the protocol and compare it with other published methods.
Collapse
Affiliation(s)
- Rebecca A Perlow
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
13
|
Sasaki S. [Creation of functional recognition molecules for chemical modification of gene expression]. YAKUGAKU ZASSHI 2002; 122:1081-93. [PMID: 12510386 DOI: 10.1248/yakushi.122.1081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artificial molecules that exhibit specific recognition of duplex DNA have attracted great interest because of their potential application in the manipulation of gene expression. Specific chemical reactions to the target base within the predetermined site would secure selective inhibition at either translation or transcription reactions. A more interesting application would be to alter the reacted base structure to induce a point mutation. In our study, we have focused our efforts on: 1) development of new cross-linking molecules with high efficiency as well as high selectivity; 2) establishment of a new molecular basis for the formation of nonnatural triplexes; and 3) synthetic approaches to the new minor groove binders. This paper summarizes our recent results using two new functional molecules: 2-amino-6-vinylpurine derivatives as new cross-linking agents; and W-shaped nucleic acid analogues as new recognition molecules for the formation of nonnatural-type triplexes.
Collapse
Affiliation(s)
- Shigeki Sasaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
14
|
Zhou C, Rana TM. A bimolecular mechanism of HIV-1 Tat protein interaction with RNA polymerase II transcription elongation complexes. J Mol Biol 2002; 320:925-42. [PMID: 12126615 DOI: 10.1016/s0022-2836(02)00556-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcriptional activation of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) promoter element is regulated by the essential viral Tat protein that binds to the viral TAR RNA target and recruits a positive transcription elongation complex (P-TEFb). We have used a stepwise transcription approach and a highly sensitive assay to determine the dynamics of interactions between HIV-1 Tat and the transcription complexes actively engaged in elongation. Our results demonstrate that Tat protein associates with RNA polymerase II complexes during early transcription elongation after the promoter clearance and before the synthesis of full-length TAR RNA transcript. This interaction of Tat with RNA polymerase II elongation complexes is P-TEFb-independent. Our results also show that there are two Tat binding sites on each transcription elongation complex; one is located on TAR RNA and the other one on RNA polymerase II near the exit site for nascent mRNA transcripts. These findings suggest that two Tat molecules are involved in performing various functions during a single round of HIV-1 mRNA synthesis.
Collapse
Affiliation(s)
- Chao Zhou
- Chemical Biology Program, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605-2324, USA
| | | |
Collapse
|
15
|
Nagatsugi F, Matsuyama Y, Maeda M, Sasaki S. Selective cross-linking to the adenine of the TA interrupting site within the triple helix. Bioorg Med Chem Lett 2002; 12:487-9. [PMID: 11814825 DOI: 10.1016/s0960-894x(01)00783-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The triplex-forming oligonucleotide incorporating the new nucleoside derivative (2) that connects the 2-amino-6-vinylpurine moiety to the 2-deoxyribose unit with an ethyl spacer has exhibited highly selective cross-linking reaction to the adenine of the TA interrupting site within the triple helix.
Collapse
Affiliation(s)
- Fumi Nagatsugi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
16
|
Abstract
The ability to specifically manipulate gene expression has wide-ranging applications in experimental biology and in gene-based therapeutics. The design of molecules that recognise specific sequences on the DNA double helix provides us with interesting tools to interfere with DNA information processing at an early stage of gene expression. Triplex-forming molecules specifically recognise oligopyrimidine-oligopurine sequences by hydrogen bonding interactions. Applications of such triplex-forming molecules (TFMs) are the subject of the present review. In cell cultures, TFMs have been successfully used to down- or up-regulate transcription in a gene-specific manner and to induce genomic DNA modifications at a selected site. The first evidence of a triplex-based activity in animals has been provided recently. In addition, TFMs are also powerful tools for gene-specific chemistry, in particular for gene transfer applications.
Collapse
Affiliation(s)
- M Faria
- Department of Microbiologia, Immunologia e Parasitologia, UNIFESP, Sao Paulo, SP, Brazil
| | | |
Collapse
|
17
|
Ping YH, Rana TM. DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J Biol Chem 2001; 276:12951-8. [PMID: 11112772 DOI: 10.1074/jbc.m006130200] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of transcription elongation requires a complex interplay between the recently discovered positive transcription elongation factor b (P-TEFb) and negative transcription elongation factors, 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB) sensitivity inducing factors (DSIF) and the negative elongation factor (NELF). Activation of HIV-1 gene expression is regulated by a nascent RNA structure, termed TAR RNA, in concert with HIV-1 Tat protein and these positive and negative elongation factors. We have used a stepwise RNA pol II walking approach and Western blotting to determine the dynamics of interactions between HIV-1 Tat, DSIF/NELF, and the transcription complexes actively engaged in elongation. In addition, we developed an in vitro kinase assay to determine the phosphorylation status of proteins during elongation stages. Our results demonstrate that DSIF/NELF associates with RNA pol II complexes during early transcription elongation and travels with elongation complexes as the nascent RNA is synthesized. Our results also show that HIV-1 Tat protein stimulated DSIF and RNA pol II phosphorylation by P-TEFb during elongation. These findings reveal a molecular mechanism for the negative and positive regulation of transcriptional elongation at the HIV-1 promoter.
Collapse
Affiliation(s)
- Y H Ping
- Department of Pharmacology, Robert Wood Johnson Medical School, and Molecular Biosciences Graduate Program at Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
18
|
Intody Z, Perkins BD, Wilson JH, Wensel TG. Blocking transcription of the human rhodopsin gene by triplex-mediated DNA photocrosslinking. Nucleic Acids Res 2000; 28:4283-90. [PMID: 11058128 PMCID: PMC113126 DOI: 10.1093/nar/28.21.4283] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To explore the ability of triplex-forming oligodeoxyribonucleotides (TFOs) to inhibit genes responsible for dominant genetic disorders, we used two TFOs to block expression of the human rhodopsin gene, which encodes a G protein-coupled receptor involved in the blinding disorder autosomal dominant retinitis pigmentosa. Psoralen-modified TFOs and UVA irradiation were used to form photoadducts at two target sites in a plasmid expressing a rhodopsin-EGFP fusion, which was then transfected into HT1080 cells. Each TFO reduced rhodopsin-GFP expression by 70-80%, whereas treatment with both reduced expression by 90%. Expression levels of control genes on either the same plasmid or one co-transfected were not affected by the treatment. Mutations at one TFO target eliminated its effect on transcription, without diminishing inhibition by the other TFO. Northern blots indicated that TFO-directed psoralen photoadducts blocked progression of RNA polymerase, resulting in truncated transcripts. Inhibition of gene expression was not relieved over a 72 h period, suggesting that TFO-induced psoralen lesions are not repaired on this time scale. Irradiation of cells after transfection with plasmid and psoralen-TFOs produced photoadducts inside the cells and also inhibited expression of rhodopsin-EGFP. We conclude that directing DNA damage with psoralen-TFOs is an efficient and specific means for blocking transcription from the human rhodopsin gene.
Collapse
Affiliation(s)
- Z Intody
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
19
|
Faria M, Wood CD, Perrouault L, Nelson JS, Winter A, White MR, Helene C, Giovannangeli C. Targeted inhibition of transcription elongation in cells mediated by triplex-forming oligonucleotides. Proc Natl Acad Sci U S A 2000; 97:3862-7. [PMID: 10760257 PMCID: PMC18107 DOI: 10.1073/pnas.97.8.3862] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/1999] [Accepted: 11/01/1999] [Indexed: 11/18/2022] Open
Abstract
Triple-helix-forming oligonucleotides (TFOs) bind in the major groove of double-stranded DNA at oligopyrimidine small middle dotoligopurine sequences and therefore are candidate molecules for artificial gene regulation, in vitro and in vivo. We recently have described oligonucleotide analogues containing N3'-P5' phosphoramidate (np) linkages that exhibited efficient inhibition of transcription elongation in vitro. In the present work we provide conclusive evidence that np-modified TFOs targeted to the HIV-1 polypurine tract (PPT) sequence can inhibit transcriptional elongation in cells, either in transient or stable expression systems. The same constructs were used in transient expression assays (target sequence on transfected plasmid) and in the generation of stable cell lines (target sequence integrated into cellular chromosomes). In both cases the only distinguishable feature between the cellular systems is the presence of an insert containing the wild-type PPT/HIV-1 sequence, a mutated version with two mismatches, or the absence of the insert altogether. The inhibitory action induced by np-TFOs was restricted to the cellular systems containing the complementary wild-type PPT/HIV-1 target, and consequently can be attributed only to a triple-helix-mediated mechanism. As a part of this study we also have applied an imaging technique to quantitatively investigate the dynamics of TFO-mediated specific gene silencing in single cells.
Collapse
Affiliation(s)
- M Faria
- Laboratoire de Biophysique, Muséum National d'Histoire Naturelle, Institut National de la Santé et de la Recherche Médicale U. 201-Centre National de la Recherche Scientifique UMR 8646, 43 rue Cuvier, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bailey C, Weeks DL. Understanding oligonucleotide-mediated inhibition of gene expression in Xenopus laevis oocytes. Nucleic Acids Res 2000; 28:1154-61. [PMID: 10666457 PMCID: PMC102614 DOI: 10.1093/nar/28.5.1154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Triplex-forming oligonucleotides (TFOs) modified with N,N-diethylethylenediamine can inhibit the expression of a reporter plasmid in Xenopus oocytes if the triplex is preformed prior to injection while unmodified oligonucleotides cannot. Here we show that merely forming a triplex in a reporter plasmid does not disrupt transcription, but when TFOs are targeted to sites within the transcribed region of a reporter gene then gene activity is inhibited. TFO-based inhibition did not lead to large scale degradation or mutation of the reporter plasmid, but dramatically lowered mRNA levels. Finally, we investigated the accessibility of a triplex target site on a reporter plasmid after injection into nuclei. We found that the site used for our previous studies was inaccessible to restriction endonuclease after injection into nuclei. This observation may explain why inhibition was dependent on forming the triplex before injection into oocytes. Based on the assumption that oligonucleotide association, like restriction enzyme access, was excluded by nucleosome formation, additional target sites were inserted so that all sites could not simultaneously be associated with the octamer core of a nucleosome. With multiple target sites prior association of the plasmid with nuclear proteins does not prevent oligonucleotide-mediated inhibition of gene activity.
Collapse
Affiliation(s)
- C Bailey
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
21
|
Andreadis JD, Chrisey LA. Use of immobilized PCR primers to generate covalently immobilized DNAs for in vitro transcription/translation reactions. Nucleic Acids Res 2000; 28:e5. [PMID: 10606673 PMCID: PMC102537 DOI: 10.1093/nar/28.2.e5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/1999] [Revised: 10/02/1999] [Accepted: 10/18/1999] [Indexed: 11/13/2022] Open
Abstract
We have developed a novel biochemical method to simultaneously amplify and immobilize a target gene onto insoluble particles using PCR. This method employs the covalent attachment of one of two PCR primers to a particle surface either directly during DNA synthesis of the primer or post-DNA synthesis, through the use of chemical crosslinkers. Immobilization of the target gene can be achieved directly during PCR amplification, with one bead-bound primer and one soluble primer. Alternatively, this can be achieved post-PCR, through covalent attachment of a chemically modified primer incorporated into the amplicon to an activated particle. All of the immobilized DNA templates containing appropriate regulatory regions were fully competent for transcription and translation reactions and several could be re-used in serial reactions. The most successful strategy utilized amino-silanized controlled pore glass beads, which were coupled to phosphorylated primers using carbodiimide chemistry. These bead-bound primers were used during PCR to generate attached DNA templates that could be collected and re-used for at least seven sequential transcription reactions without significant loss in efficiency. This method has also been successfully applied to the amplification, transcription and translation of multiple DNA templates using a single, immobilized primer. The combined PCR-based amplification/immobilization method was shown to be more durable than post-PCR chemical immobilization and affords the convenience of performing sequential PCR amplification, transcription and translation reactions in a single tube.
Collapse
Affiliation(s)
- J D Andreadis
- Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC 20375-5348, USA
| | | |
Collapse
|
22
|
Praseuth D, Guieysse AL, Hélène C. Triple helix formation and the antigene strategy for sequence-specific control of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1489:181-206. [PMID: 10807007 DOI: 10.1016/s0167-4781(99)00149-9] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Specific gene expression involves the binding of natural ligands to the DNA base pairs. Among the compounds rationally designed for artificial regulation of gene expression, oligonucleotides can bind with a high specificity of recognition to the major groove of double helical DNA by forming Hoogsteen type bonds with purine bases of the Watson-Crick base pairs, resulting in triple helix formation. Although the potential target sequences were originally restricted to polypurine-polypyrimidine sequences, considerable efforts were devoted to the extension of the repertoire by rational conception of appropriate derivatives. Efficient tools based on triple helices were developed for various biochemical applications such as the development of highly specific artificial nucleases. The antigene strategy remains one of the most fascinating fields of triplex application to selectively control gene expression. Targeting of genomic sequences is now proved to be a valuable concept on a still limited number of studies; local mutagenesis is in this respect an interesting application of triplex-forming oligonucleotides on cell cultures. Oligonucleotide penetration and compartmentalization in cells, stability to intracellular nucleases, accessibility of the target sequences in the chromatin context, the residence time on the specific target are all limiting steps that require further optimization. The existence and the role of three-stranded DNA in vivo, its interaction with intracellular proteins is worth investigating, especially relative to the regulation of gene transcription, recombination and repair processes.
Collapse
Affiliation(s)
- D Praseuth
- Laboratoire de Biophysique, INSERM U201, CNRS UMR 8646, Muséum National d'Histoire Naturelle, Paris, France
| | | | | |
Collapse
|
23
|
Ping YH, Rana TM. Tat-associated kinase (P-TEFb): a component of transcription preinitiation and elongation complexes. J Biol Chem 1999; 274:7399-404. [PMID: 10066804 DOI: 10.1074/jbc.274.11.7399] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human immunodeficiency virus, type 1 (HIV-1) Tat protein activates transcription from the HIV-1 long terminal repeat. Tat interacts with TFIIH and Tat-associated kinase (a transcription elongation factor P-TEFb) and requires the carboxyl-terminal domain of the largest subunit of RNA polymerase II (pol II) for transactivation. We developed a stepwise RNA pol II walking approach and used Western blotting to determine the role of TFIIH and P-TEFb in HIV-1 transcription elongation. Our results demonstrate the new findings that P-TEFb is a component of the preinitiation complex and travels with the elongating RNA pol II, whereas TFIIH is released from the elongation complexes before the trans-activation responsive region RNA is synthesized. Our results suggest that TFIIH and P-TEFb are involved in the clearance of promoter-proximal pausing of RNA pol II on the HIV-1 long terminal repeat at different stages.
Collapse
Affiliation(s)
- Y H Ping
- Department of Pharmacology, Robert Wood Johnson Medical School, and Molecular Biosciences Graduate Program at Rutgers University, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
24
|
Abstract
Some types of damage to cellular DNA have been shown to interfere with the essential transactions of replication and transcription. Not only may the translocation of the polymerase be arrested at the site of the lesion but the bound protein may encumber recognition of the lesion by repair enzymes. In the case of transcription a subpathway of excision repair, termed transcription-coupled repair (TCR) has been shown to operate on lesions in the transcribed strands of expressed genes in bacteria, yeast, mammalian cells and a number of other organisms. Certain genes in mammalian cells (e.g., CSA and CSB) have been uniquely implicated in TCR while others (e.g., XPC-HR23 and XPE) have been shown to operate in the global genomic pathway of nucleotide excision repair, but not in TCR. In order to understand the mechanism of TCR it is important to learn how an RNA polymerase elongation complex interacts with a damaged DNA template. That relationship is explored for different lesions and different RNA polymerase systems in this article.
Collapse
Affiliation(s)
- S Tornaletti
- Department of Biological Sciences, Stanford University, CA 94305-5020, USA
| | | |
Collapse
|
25
|
Szentirmay MN, Musso M, Van Dyke MW, Sawadogo M. Multiple rounds of transcription by RNA polymerase II at covalently cross-linked templates. Nucleic Acids Res 1998; 26:2754-60. [PMID: 9592165 PMCID: PMC147607 DOI: 10.1093/nar/26.11.2754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An important control point for gene regulation is the frequency of initiations leading to different numbers of RNA polymerases simultaneously transcribing the same gene. To date, the only direct assay for multiple-round transcription by RNA polymerase II in vitro required G-free cassette-containing templates and GTP-free conditions and was thus restricted in application. Here we used instead templates containing a triplex-directed interstrand psoralen-DNA cross-link to block RNA polymerase II elongation at a specific location. Covalently cross-linked templates allowed simultaneous detection of both specific initiation and reinitiation with any combination of promoter and transcribed sequence. In reconstituted systems, identical stacking of RNA polymerases was observed when the first polymerase was halted by GTP deprivation at the end of a G-free cassette or by a covalent cross-link downstream of different transcribed sequences. In contrast to transcription of G-free cassettes, reinitiation was unaffected by the transcription factor SII on sequences containing all four nucleotides. In crude nuclear extracts, transcription of covalently cross-linked templates yielded a reinitiation pattern with a wider spacing than in more purified fractions, indicating that the elongation complexes from nuclear extract contained a different form of RNA polymerase II or a different complement of associated factors.
Collapse
Affiliation(s)
- M N Szentirmay
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|