1
|
Oser MG, MacPherson D, Oliver TG, Sage J, Park KS. Genetically-engineered mouse models of small cell lung cancer: the next generation. Oncogene 2024; 43:457-469. [PMID: 38191672 PMCID: PMC11180418 DOI: 10.1038/s41388-023-02929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/10/2024]
Abstract
Small cell lung cancer (SCLC) remains the most fatal form of lung cancer, with patients in dire need of new and effective therapeutic approaches. Modeling SCLC in an immunocompetent host is essential for understanding SCLC pathogenesis and ultimately discovering and testing new experimental therapeutic strategies. Human SCLC is characterized by near universal genetic loss of the RB1 and TP53 tumor suppressor genes. Twenty years ago, the first genetically-engineered mouse model (GEMM) of SCLC was generated using conditional deletion of both Rb1 and Trp53 in the lungs of adult mice. Since then, several other GEMMs of SCLC have been developed coupling genomic alterations found in human SCLC with Rb1 and Trp53 deletion. Here we summarize how GEMMs of SCLC have contributed significantly to our understanding of the disease in the past two decades. We also review recent advances in modeling SCLC in mice that allow investigators to bypass limitations of the previous generation of GEMMs while studying new genes of interest in SCLC. In particular, CRISPR/Cas9-mediated somatic gene editing can accelerate how new genes of interest are functionally interrogated in SCLC tumorigenesis. Notably, the development of allograft models and precancerous precursor models from SCLC GEMMs provides complementary approaches to GEMMs to study tumor cell-immune microenvironment interactions and test new therapeutic strategies to enhance response to immunotherapy. Ultimately, the new generation of SCLC models can accelerate research and help develop new therapeutic strategies for SCLC.
Collapse
Affiliation(s)
- Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - David MacPherson
- Division of Human Biology, Fred Hutch Cancer Center, Seattle, WA, 98109, USA
| | - Trudy G Oliver
- Department of Pharmacology & Cancer Biology, Duke University, Durham, NC, 27708, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
2
|
Otegui N, Houry M, Arozarena I, Serrano D, Redin E, Exposito F, Leon S, Valencia K, Montuenga L, Calvo A. Cancer Cell-Intrinsic Alterations Associated with an Immunosuppressive Tumor Microenvironment and Resistance to Immunotherapy in Lung Cancer. Cancers (Basel) 2023; 15:3076. [PMID: 37370686 PMCID: PMC10295869 DOI: 10.3390/cancers15123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the great clinical success of immunotherapy in lung cancer patients, only a small percentage of them (<40%) will benefit from this therapy alone or combined with other strategies. Cancer cell-intrinsic and cell-extrinsic mechanisms have been associated with a lack of response to immunotherapy. The present study is focused on cancer cell-intrinsic genetic, epigenetic, transcriptomic and metabolic alterations that reshape the tumor microenvironment (TME) and determine response or refractoriness to immune checkpoint inhibitors (ICIs). Mutations in KRAS, SKT11(LKB1), KEAP1 and TP53 and co-mutations of these genes are the main determinants of ICI response in non-small-cell lung cancer (NSCLC) patients. Recent insights into metabolic changes in cancer cells that impose restrictions on cytotoxic T cells and the efficacy of ICIs indicate that targeting such metabolic restrictions may favor therapeutic responses. Other emerging pathways for therapeutic interventions include epigenetic modulators and DNA damage repair (DDR) pathways, especially in small-cell lung cancer (SCLC). Therefore, the many potential pathways for enhancing the effect of ICIs suggest that, in a few years, we will have much more personalized medicine for lung cancer patients treated with immunotherapy. Such strategies could include vaccines and chimeric antigen receptor (CAR) cells.
Collapse
Affiliation(s)
- Nerea Otegui
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Maeva Houry
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Imanol Arozarena
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), 31008 Pamplona, Spain
| | - Diego Serrano
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Francisco Exposito
- Yale Cancer Center, New Haven, CT 06519, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sergio Leon
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Luis Montuenga
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Alfonso Calvo
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
3
|
Khaddour K, Felipe Fernandez M, Khabibov M, Garifullin A, Dressler D, Topchu I, Patel JD, Weinberg F, Boumber Y. The Prognostic and Therapeutic Potential of DNA Damage Repair Pathway Alterations and Homologous Recombination Deficiency in Lung Cancer. Cancers (Basel) 2022; 14:5305. [PMID: 36358724 PMCID: PMC9654807 DOI: 10.3390/cancers14215305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 03/28/2025] Open
Abstract
Lung cancer remains the second most commonly diagnosed cancer worldwide and the leading cause of cancer-related mortality. The mapping of genomic alterations and their role in lung-cancer progression has been followed by the development of new therapeutic options. Several novel drugs, such as targeted therapy and immunotherapy, have significantly improved outcomes. However, many patients with lung cancer do not benefit from existing therapies or develop progressive disease, leading to increased morbidity and mortality despite initial responses to treatment. Alterations in DNA-damage repair (DDR) genes represent a cancer hallmark that impairs a cell's ability to prevent deleterious mutation accumulation and repair. These alterations have recently emerged as a therapeutic target in breast, ovarian, prostate, and pancreatic cancers. The role of DDR alterations remains largely unknown in lung cancer. Nevertheless, recent research efforts have highlighted a potential role of some DDR alterations as predictive biomarkers of response to treatment. Despite the failure of PARP inhibitors (main class of DDR targeting agents) to improve outcomes in lung cancer patients, there is some evidence suggesting a role of PARP inhibitors and other DDR targeting agents in benefiting a distinct subset of lung cancer patients. In this review, we will discuss the existing literature on DDR alterations and homologous recombination deficiency (HRD) state as predictive biomarkers and therapeutic targets in both non-small cell lung and small cell lung cancer.
Collapse
Affiliation(s)
- Karam Khaddour
- Division of Hematology and Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Manuel Felipe Fernandez
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Marsel Khabibov
- I. M. Sechenov First Moscow State Medical University, 119992 Moscow, Russia
| | - Airat Garifullin
- P. Hertsen Moscow Oncology Research Institute, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 125284 Moscow, Russia
| | - Danielle Dressler
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Iuliia Topchu
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jyoti D. Patel
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Frank Weinberg
- Division of Hematology and Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Yanis Boumber
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420012 Kazan, Russia
| |
Collapse
|
4
|
Xiong J, Barayan R, Louie AV, Lok BH. Novel therapeutic combinations with PARP inhibitors for small cell lung cancer: A bench-to-bedside review. Semin Cancer Biol 2022; 86:521-542. [PMID: 35917883 DOI: 10.1016/j.semcancer.2022.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/02/2022] [Accepted: 07/29/2022] [Indexed: 10/31/2022]
Abstract
Small cell lung cancer (SCLC) is treated as a monolithic disease despite the evident intra- and intertumoral heterogeneity. Non-specific DNA-damaging agents have remained the first-line treatment for decades. Recently, emerging transcriptomic and genomic profiling of SCLC tumors identified distinct SCLC subtypes and vulnerabilities towards targeted therapeutics, including inhibitors of the nuclear enzyme poly (ADP-ribose) polymerase (PARPi). SCLC cell lines and tumors exhibited an elevated level of PARP1 protein and mRNA compared to healthy lung tissues and other subtypes of lung tumors. Notable responses to PARPi were also observed in preclinical SCLC models. Clinically, PARPi monotherapy exerted variable benefits for SCLC patients. To date, research is being vigorously conducted to examine predictive biomarkers of PARPi response and various PARPi combination strategies to maximize the clinical utility of PARPi. This narrative review summarizes existing preclinical evidence supporting PARPi monotherapy, combination therapy, and respective translation to the clinic. Specifically, we covered the combination of PARPi with DNA-damaging chemotherapy (cisplatin, etoposide, temozolomide), thoracic radiotherapy, immunotherapy (immune checkpoint inhibitors), and many other novel therapeutic agents that target DNA damage response, tumor microenvironment, epigenetic modulation, angiogenesis, the ubiquitin-proteasome system, or autophagy. Putative biomarkers, such as SLFN11 expression, MGMT methylation, E2F1 expression, and platinum sensitivity, which may be predictive of response to distinct therapeutic combinations, were also discussed. The future of SCLC treatment is undergoing rapid change with a focus on tailored and personalized treatment strategies. Further development of cancer therapy with PARPi will immensely benefit at least a subset of biomarker-defined SCLC patients.
Collapse
Affiliation(s)
- Jiaqi Xiong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ranya Barayan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada; Odette Cancer Centre - Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | - Benjamin H Lok
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Liguori NR, Lee Y, Borges W, Zhou L, Azzoli C, El-Deiry WS. Absence of Biomarker-Driven Treatment Options in Small Cell Lung Cancer, and Selected Preclinical Candidates for Next Generation Combination Therapies. Front Pharmacol 2021; 12:747180. [PMID: 34531756 PMCID: PMC8438120 DOI: 10.3389/fphar.2021.747180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
Lung cancer is the second most common cancer in the United States, and small cell lung cancer (SCLC) accounts for about 15% of all lung cancers. In SCLC, more than other malignancies, the standard of care is based on clinical demonstration of efficacy, and less on a mechanistic understanding of why certain treatments work better than others. This is in large part due to the virulence of the disease, and lack of clinically or biologically relevant biomarkers beyond routine histopathology. While first line therapies work in the majority of patients with extensive stage disease, development of resistance is nearly universal. Although neuroendocrine features, Rb and p53 mutations are common, the current lack of actionable biomarkers has made it difficult to develop more effective treatments. Some progress has been made with the application of immune checkpoint inhibitors. There are new agents, such as lurbinectedin, that have completed late-phase clinical testing while other agents are still in the pre-clinical phase. ONC201/TIC10 is an imipridone with strong in vivo and in vitro antitumor properties and activity against neuroendocrine tumors in phase 1 clinical testing. ONC201 activates the cellular integrated stress response and induces the TRAIL pro-apoptotic pathway. Combination treatment of lurbinectedin with ONC201 are currently being investigated in preclinical studies that may facilitate translation into clinical trials for SCLC patients.
Collapse
Affiliation(s)
- Nicholas R. Liguori
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Young Lee
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - William Borges
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Lanlan Zhou
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Thoracic Oncology, Providence, RI, United States
| | - Christopher Azzoli
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Thoracic Oncology, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI, United States
- Cancer Center at Brown University, Thoracic Oncology, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
| |
Collapse
|
6
|
Al Masalmeh N, Kukreja G, Zaiem F, Raza SN, Kim H, Nagasaka M, Sukari A. p16 positive oropharyngeal small cell cancer: A case report. Oral Oncol 2021; 121:105391. [PMID: 34187735 DOI: 10.1016/j.oraloncology.2021.105391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Extra-pulmonary small cell carcinomas (EPSCC) are rare malignancies. Like small cell lung cancer (SCLC), they are aggressive malignancies with dismal prognosis. We here report a case of a middle-aged man who presented with odynophagia and cervical lymphadenopathy. Diagnostic workup confirmed the diagnosis of locally-advanced p16-positive oropharyngeal cancer (OPC) with a surprising histology of small cell cancer, suggesting a human papilloma virus (HPV)-related oropharyngeal cancer with small cell differentiation. HPV oropharynx infection is a well-known risk factor for squamous cell carcinoma of the oropharynx, but it is unknown if it may increase the risk of other OPC histology.
Collapse
Affiliation(s)
- Nada Al Masalmeh
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, Detroit, MI, United States
| | - Geetika Kukreja
- Department of Oncology, Henry Ford Health System, Macomb, MI, United States
| | - Feras Zaiem
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States
| | - S Naweed Raza
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Harold Kim
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, Detroit, MI, United States
| | - Misako Nagasaka
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, Detroit, MI, United States; St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ammar Sukari
- Department of Oncology, Karmanos Cancer Institute/Wayne State University, Detroit, MI, United States.
| |
Collapse
|
7
|
Raso MG, Bota-Rabassedas N, Wistuba II. Pathology and Classification of SCLC. Cancers (Basel) 2021; 13:cancers13040820. [PMID: 33669241 PMCID: PMC7919820 DOI: 10.3390/cancers13040820] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Small cell lung carcinoma (SCLC), is a high-grade neuroendocrine carcinoma defined by its aggressiveness, poor differentiation, and somber prognosis. This review highlights current pathological concepts including classification, immunohistochemistry features, and differential diagnosis. Additionally, we summarize the current knowledge of the immune tumor microenvironment, tumor heterogeneity, and genetic variations of SCLC. Recent comprehensive genomic research has improved our understanding of the diverse biological processes that occur in this tumor type, suggesting that a new era of molecular-driven treatment decisions is finally foreseeable for SCLC patients. Abstract Lung cancer is consistently the leading cause of cancer-related death worldwide, and it ranks as the second most frequent type of new cancer cases diagnosed in the United States, both in males and females. One subtype of lung cancer, small cell lung carcinoma (SCLC), is an aggressive, poorly differentiated, and high-grade neuroendocrine carcinoma that accounts for 13% of all lung carcinomas. SCLC is the most frequent neuroendocrine lung tumor, and it is commonly presented as an advanced stage disease in heavy smokers. Due to its clinical presentation, it is typically diagnosed in small biopsies or cytology specimens, with routine immunostaining only. However, immunohistochemistry markers are extremely valuable in demonstrating neuroendocrine features of SCLC and supporting its differential diagnosis. The 2015 WHO classification grouped all pulmonary neuroendocrine carcinomas in one category and maintained the SCLC combined variant that was previously recognized. In this review, we explore multiple aspects of the pathologic features of this entity, as well as clinically relevant immunohistochemistry markers expression and its molecular characteristics. In addition, we will focus on characteristics of the tumor microenvironment, and the latest pathogenesis findings to better understand the new therapeutic options in the current era of personalized therapy.
Collapse
Affiliation(s)
- Maria Gabriela Raso
- Correspondence: (M.G.R.); (I.I.W.); Tel.: +1-713-834-6026 (M.G.R.); +1-713-563-9184 (I.I.W.)
| | | | - Ignacio I. Wistuba
- Correspondence: (M.G.R.); (I.I.W.); Tel.: +1-713-834-6026 (M.G.R.); +1-713-563-9184 (I.I.W.)
| |
Collapse
|
8
|
Barayan R, Ran X, Lok BH. PARP inhibitors for small cell lung cancer and their potential for integration into current treatment approaches. J Thorac Dis 2020; 12:6240-6252. [PMID: 33209463 PMCID: PMC7656434 DOI: 10.21037/jtd.2020.03.89] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
Abstract
Small cell lung cancer (SCLC) is a very aggressive, highly lethal, neuroendocrine tumor that constitutes 15% of all lung cancer cases. It is characterized by its rapid disease progression and high relapse rate leading to poor survival for diagnosed patients. Recently, poly (ADP-ribose) polymerase inhibitors (PARPi) have emerged as a novel therapeutic strategy for SCLC. Preclinical studies have demonstrated that PARPi possesses cytotoxic activity as a single-agent and in combination with other anti-cancer agents. Predictive biomarkers of response to PARPi, such as SLFN11, have also been described in SCLC. This review aims to summarize the recent preclinical investigations and the relevant clinical trials that evaluate PARPi in SCLC. Here, we highlight the potential role of PARPi in a biomarker-selected manner and in combination with chemotherapy, targeted agents, radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Ranya Barayan
- Institute of Medical Science, Faculty of Medicine, University of Toronto, ON, Canada
| | - Xiaozhuo Ran
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Benjamin H. Lok
- Institute of Medical Science, Faculty of Medicine, University of Toronto, ON, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Subbiah S, Nam A, Garg N, Behal A, Kulkarni P, Salgia R. Small Cell Lung Cancer from Traditional to Innovative Therapeutics: Building a Comprehensive Network to Optimize Clinical and Translational Research. J Clin Med 2020; 9:jcm9082433. [PMID: 32751469 PMCID: PMC7464169 DOI: 10.3390/jcm9082433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive, complex disease with a distinct biology that contributes to its poor prognosis. Management of SCLC is still widely limited to chemotherapy and radiation therapy, and research recruitment still poses a considerable challenge. Here, we review the current standard of care for SCLC and advances made in utilizing immunotherapy. We also highlight research in the development of targeted therapies and emphasize the importance of a team-based approach to make clinical advances. Building an integrative network between an academic site and community practice sites optimizes biomarker and drug target discovery for managing and treating a difficult disease like SCLC.
Collapse
|
10
|
Krishnamurthy K, Cusnir M, Schwartz M, Sriganeshan V, Poppiti RJ. Retinoblastoma co-repressor 1 (RB) and cyclin-dependent kinase inhibitor (CDKN) as a multi-gene panel for differentiating pulmonary from non-pulmonary origin in metastatic neuroendocrine carcinomas. Pathol Res Pract 2020; 216:153051. [PMID: 32825935 DOI: 10.1016/j.prp.2020.153051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/26/2020] [Accepted: 06/07/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Neuroendocrine carcinomas (NECs) arise from neuroendocrine cells present throughout the body, and often present with metastases even with small and undetectable primary tumors. Additionally, neuroendocrine differentiation can be seen in carcinomas of non-neuroendocrine origin further complicating the landscape of metastatic NECs. Organ specific immunohistochemical markers such as TTF1, CDX2 and PAX8 are often lost in high grade tumors and may be non-contributory in localizing the primary site. Though NECs share a common cellular origin, they exhibit great variability in biologic behavior, prognosis and treatment based on the primary organ of origin. DESIGN Twenty one cases of metastatic NECs were retrieved from our archives and were classified based on location of the primary tumor derived from clinical and radiological findings. Next generation sequencing data was retrieved and analyzed for recurrent genetic abnormalities in these cases. Statistical analysis was performed using IBM SPSS25 software. RESULTS RB1 mutations were exclusive to NECs metastasizing from lung primary and were detected in 5 of 12 (41.6 %) cases (p = 0.04). CDKN gene family (CDKN1B and 2 A) mutations were limited to metatstatic NECs of non-pulmonary origin and were detected in 4 of 9 (44.4 %) cases (p = 0.02). CONCLUSION The location of the primary tumor in metastatic NECs appears to have significant prognostic and therapeutic implications. But due to the morphological homogeneity, higher grade of tumor, variable sensitivity of immunohistochemical markers, and small, often undetectable primary tumors, the localization of the primary tumor in cases of metastatic NECs is a challenge. In this study, RB1 and CDKN gene family mutations are identified as possible markers for differentiating pulmonary and non-pulmonary origin in metatstatic NECs.
Collapse
Affiliation(s)
- Kritika Krishnamurthy
- A.M. Rywlin, MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA.
| | - Mike Cusnir
- Medical Oncology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Michael Schwartz
- Medical Oncology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Vathany Sriganeshan
- A.M. Rywlin, MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| | - Robert J Poppiti
- A.M. Rywlin, MD Department of Pathology, Mount Sinai Medical Center, Miami Beach, FL 33140, USA; Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA
| |
Collapse
|
11
|
Iness AN, Litovchick L. MuvB: A Key to Cell Cycle Control in Ovarian Cancer. Front Oncol 2018; 8:223. [PMID: 29942794 PMCID: PMC6004728 DOI: 10.3389/fonc.2018.00223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/30/2018] [Indexed: 02/05/2023] Open
Abstract
Cancer cells are characterized by uncontrolled proliferation, whereas the ability to enter quiescence or dormancy is important for cancer cell survival and disease recurrence. Therefore, understanding the mechanisms regulating cell cycle progression and exit is essential for improving patient outcomes. The MuvB complex of five proteins (LIN9, LIN37, LIN52, RBBP4, and LIN54), also known as LINC (LIN complex), is important for coordinated cell cycle gene expression. By participating in the formation of three distinct transcriptional regulatory complexes, including DREAM (DP, RB-like, E2F, and MuvB), MMB (Myb-MuvB), and FoxM1–MuvB, MuvB represents a unique regulator mediating either transcriptional activation (during S–G2 phases) or repression (during quiescence). With no known enzymatic activities in any of the MuvB-associated complexes, studies have focused on the therapeutic potential of protein kinases responsible for initiating DREAM assembly or downstream enzymatic targets of MMB. Furthermore, the mechanisms governing the formation and activity of each complex (DREAM, MMB, or FoxM1–MuvB) may have important consequences for therapeutic response. The MMB complex is associated with prognostic markers of aggressiveness in several cancers, whereas the DREAM complex is tied to disease recurrence through its role in maintaining quiescence. Here, we review recent developments in our understanding of MuvB function in the context of cancer. We specifically highlight the rationale for additional investigation of MuvB in high-grade serous ovarian cancer and the need for further translational research.
Collapse
Affiliation(s)
- Audra N Iness
- Division of Hematology, Oncology and Palliative Care, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Larisa Litovchick
- Division of Hematology, Oncology and Palliative Care, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
12
|
Kim DW, Kim KC, Kim KB, Dunn CT, Park KS. Transcriptional deregulation underlying the pathogenesis of small cell lung cancer. Transl Lung Cancer Res 2018. [PMID: 29535909 DOI: 10.21037/tlcr.2017.10.07] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The discovery of recurrent alterations in genes encoding transcription regulators and chromatin modifiers is one of the most important recent developments in the study of the small cell lung cancer (SCLC) genome. With advances in models and analytical methods, the field of SCLC biology has seen remarkable progress in understanding the deregulated transcription networks linked to the tumor development and malignant progression. This review will discuss recent discoveries on the roles of RB and P53 family of tumor suppressors and MYC family of oncogenes in tumor initiation and development. It will also describe the roles of lineage-specific factors in neuroendocrine (NE) cell differentiation and homeostasis and the roles of epigenetic alterations driven by changes in NFIB and chromatin modifiers in malignant progression and chemoresistance. These recent findings have led to a model of transcriptional network in which multiple pathways converge on regulatory regions of crucial genes linked to tumor development. Validation of this model and characterization of target genes will provide critical insights into the biology of SCLC and novel strategies for tumor intervention.
Collapse
Affiliation(s)
- Dong-Wook Kim
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Keun-Cheol Kim
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA.,Department of Biological Sciences, Kangwon National University, Chuncheon, Korea
| | - Kee-Beom Kim
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Colin T Dunn
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
13
|
Xu XL, Li Z, Liu A, Fan X, Hu DN, Qi DL, Chitty DW, Jia R, Qui J, Wang JQ, Sharaf J, Zou J, Weiss R, Huang H, Joseph WJ, Ng L, Rosen R, Shen B, Reid MW, Forrest D, Abramson DH, Singer S, Cobrinik D, Jhanwar SC. SKP2 Activation by Thyroid Hormone Receptor β2 Bypasses Rb-Dependent Proliferation in Rb-Deficient Cells. Cancer Res 2017; 77:6838-6850. [PMID: 28972075 DOI: 10.1158/0008-5472.can-16-3299] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/29/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022]
Abstract
Germline RB1 mutations strongly predispose humans to cone precursor-derived retinoblastomas and strongly predispose mice to pituitary tumors, yet shared cell type-specific circuitry that sensitizes these different cell types to the loss of RB1 has not been defined. Here we show that the cell type-restricted thyroid hormone receptor isoform TRβ2 sensitizes to RB1 loss in both settings by antagonizing the widely expressed and tumor-suppressive TRβ1. TRβ2 promoted expression of the E3 ubiquitin ligase SKP2, a critical factor for RB1-mutant tumors, by enabling EMI1/FBXO5-dependent inhibition of SKP2 degradation. In RB1 wild-type neuroblastoma cells, endogenous Rb or ectopic TRβ2 was required to sustain SKP2 expression as well as cell viability and proliferation. These results suggest that in certain contexts, Rb loss enables TRβ1-dependent suppression of SKP2 as a safeguard against RB1-deficient tumorigenesis. TRβ2 counteracts TRβ1, thus disrupting this safeguard and promoting development of RB1-deficient malignancies. Cancer Res; 77(24); 6838-50. ©2017 AACR.
Collapse
Affiliation(s)
- Xiaoliang L Xu
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York.,Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York.,Zhongshan Ophthalmic Center, Zhongshan University, Guangzhou, P.R. China.,New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Zhengke Li
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.,Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California
| | - Aihong Liu
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Dan-Ning Hu
- New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Dong-Lai Qi
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - David W Chitty
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Renbing Jia
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Jianping Qui
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Justin Q Wang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York.,Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jake Sharaf
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jun Zou
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Rebecca Weiss
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Hongyan Huang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Walter J Joseph
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Lily Ng
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - Richard Rosen
- New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California
| | - Mark W Reid
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Douglas Forrest
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland
| | - David H Abramson
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Samuel Singer
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - David Cobrinik
- The Vision Center, Department of Surgery and The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.
| | - Suresh C Jhanwar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York. .,Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
14
|
Mages CF, Wintsche A, Bernhart SH, Müller GA. The DREAM complex through its subunit Lin37 cooperates with Rb to initiate quiescence. eLife 2017; 6. [PMID: 28920576 PMCID: PMC5602299 DOI: 10.7554/elife.26876] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022] Open
Abstract
The retinoblastoma Rb protein is an important factor controlling the cell cycle. Yet, mammalian cells carrying Rb deletions are still able to arrest under growth-limiting conditions. The Rb-related proteins p107 and p130, which are components of the DREAM complex, had been suggested to be responsible for a continued ability to arrest by inhibiting E2f activity and by recruiting chromatin-modifying enzymes. Here, we show that p130 and p107 are not sufficient for DREAM-dependent repression. We identify the MuvB protein Lin37 as an essential factor for DREAM function. Cells not expressing Lin37 proliferate normally, but DREAM completely loses its ability to repress genes in G0/G1 while all remaining subunits, including p130/p107, still bind to target gene promoters. Furthermore, cells lacking both Rb and Lin37 are incapable of exiting the cell cycle. Thus, Lin37 is an essential component of DREAM that cooperates with Rb to induce quiescence.
Collapse
Affiliation(s)
- Christina Fs Mages
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| | - Axel Wintsche
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany.,Computational EvoDevo Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Stephan H Bernhart
- Transcriptome Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Gerd A Müller
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
| |
Collapse
|
15
|
Kono M, Allen PK, Lin SH, Wei X, Jeter MD, Welsh JW, Cox JD, Komaki R. Incidence of Second Malignancy after Successful Treatment of Limited-Stage Small-Cell Lung Cancer and Its Effects on Survival. J Thorac Oncol 2017; 12:1696-1703. [PMID: 28804012 DOI: 10.1016/j.jtho.2017.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/13/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Extended survival outcomes from improved treatments for patients with cancer come with an increased risk for development of a metachronous second malignancy (MSM). We evaluated the incidence of MSM after successful treatment of SCLC and compared survival between patients with SCLC in whom MSM developed and those in whom it did not. METHODS Selection criteria were a diagnosis of limited-stage SCLC and receipt of at least 45 Gy of radiotherapy and chemotherapy at a single institution in 1985-2012. MSM was defined as a tumor of a different histologic type than the primary that appeared more than 2 years after the diagnosis of SCLC. RESULTS Of 704 patients identified, 32 were excluded for lack of follow-up, 48 for having SCLC as MSM after treatment of another type of cancer, 37 for nonmelanoma skin cancer as MSM, and 46 for MSM within 2 years after SCLC diagnosis. Of the remaining 541 patients, 346 had recurrent SCLC, 180 had no second malignancy and no recurrence, and 15 (2.8%) had MSM (13 in a lung [eight adenocarcinomas and five squamous cell carcinomas], one sarcoma, and one acute myeloid leukemia). All 15 patients with MSM achieved complete response to the SCLC treatment. Overall survival was longer for patients with MSM than for patients with no other malignancies and no recurrence, with 10-year rates of 61.9% (95% confidence interval: 30.0%-82.6%) and 29.9% (95% confidence interval: 21.5%-38.6%), respectively (p = 0.03). CONCLUSIONS Long-term survivors after treatment for SCLC should be made aware of the risk for MSM and the necessity of follow-up.
Collapse
Affiliation(s)
- Miho Kono
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas; Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi Minamiku, Hiroshima, Japan
| | - Pamela K Allen
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Xiong Wei
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Melenda D Jeter
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - James D Cox
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ritsuko Komaki
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
16
|
Iwahori S, Umaña AC, VanDeusen HR, Kalejta RF. Human cytomegalovirus-encoded viral cyclin-dependent kinase (v-CDK) UL97 phosphorylates and inactivates the retinoblastoma protein-related p107 and p130 proteins. J Biol Chem 2017; 292:6583-6599. [PMID: 28289097 DOI: 10.1074/jbc.m116.773150] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/09/2017] [Indexed: 01/19/2023] Open
Abstract
The human cytomegalovirus (HCMV)-encoded viral cyclin-dependent kinase (v-CDK) UL97 phosphorylates the retinoblastoma (Rb) tumor suppressor. Here, we identify the other Rb family members p107 and p130 as novel targets of UL97. UL97 phosphorylates p107 and p130 thereby inhibiting their ability to repress the E2F-responsive E2F1 promoter. As with Rb, this phosphorylation, and the rescue of E2F-responsive transcription, is dependent on the L1 LXCXE motif in UL97 and its interacting clefts on p107 and p130. Interestingly, UL97 does not induce the disruption of all p107-E2F or p130-E2F complexes, as it does to Rb-E2F complexes. UL97 strongly interacts with p107 but not Rb or p130. Thus the inhibitory mechanisms of UL97 for Rb family protein-mediated repression of E2F-responsive transcription appear to differ for each of the Rb family proteins. The immediate early 1 (IE1) protein of HCMV also rescues p107- and p130-mediated repression of E2F-responsive gene expression, but it does not induce their phosphorylation and does not disrupt p107-E2F or p130-E2F complexes. The unique regulation of Rb family proteins by HCMV UL97 and IE1 attests to the importance of modulating Rb family protein function in HCMV-infected cells.
Collapse
Affiliation(s)
- Satoko Iwahori
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Angie C Umaña
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Halena R VanDeusen
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Robert F Kalejta
- From the Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
17
|
Araki T, Liu NA, Tone Y, Cuevas-Ramos D, Heltsley R, Tone M, Melmed S. E2F1-mediated human POMC expression in ectopic Cushing's syndrome. Endocr Relat Cancer 2016; 23:857-870. [PMID: 27935805 PMCID: PMC5152695 DOI: 10.1530/erc-16-0206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 09/05/2016] [Indexed: 12/26/2022]
Abstract
Cushing's syndrome is caused by excessive adrenocorticotropic hormone (ACTH) secretion derived from pituitary corticotroph tumors (Cushing disease) or from non-pituitary tumors (ectopic Cushing's syndrome). Hypercortisolemic features of ectopic Cushing's syndrome are severe, and no definitive treatment for paraneoplastic ACTH excess is available. We aimed to identify subcellular therapeutic targets by elucidating transcriptional regulation of the human ACTH precursor POMC (proopiomelanocortin) and ACTH production in non-pituitary tumor cells and in cell lines derived from patients with ectopic Cushing's syndrome. We show that ectopic hPOMC transcription proceeds independently of pituitary-specific Tpit/Pitx1 and demonstrate a novel E2F1-mediated transcriptional mechanism regulating hPOMC We identify an E2F1 cluster binding to the proximal hPOMC promoter region (-42 to +68), with DNA-binding activity determined by the phosphorylation at Ser-337. hPOMC mRNA expression in cancer cells was upregulated (up to 40-fold) by the co-expression of E2F1 and its heterodimer partner DP1. Direct and indirect inhibitors of E2F1 activity suppressed hPOMC gene expression and ACTH by modifying E2F1 DNA-binding activity in ectopic Cushing's cell lines and primary tumor cells, and also suppressed paraneoplastic ACTH and cortisol levels in xenografted mice. E2F1-mediated hPOMC transcription is a potential target for suppressing ACTH production in ectopic Cushing's syndrome.
Collapse
Affiliation(s)
| | | | - Yukiko Tone
- Pituitary CenterCedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Roy Heltsley
- Pituitary CenterCedars-Sinai Medical Center, Los Angeles, California, USA
| | - Masahide Tone
- Pituitary CenterCedars-Sinai Medical Center, Los Angeles, California, USA
| | - Shlomo Melmed
- Pituitary CenterCedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
18
|
Abstract
Small cell lung cancer (SCLC) remains a major public health problem and accounts for 10% to 15% of all lung cancers. It has unique clinical features such as rapid growth, early metastatic spread, and widespread dissemination. A platinum-etoposide combination is the backbone treatment of SCLC; addition of thoracic and prophylactic cranial irradiation has been shown to improve outcome in limited-stage SCLC and in subgroups of extensive-stage SCLC. Over the last decade, significant progress has been made in characterizing the SCLC tumor biology and its developmental pathways. Most recently, efforts have focused not only on molecular targets, but also on the development of novel drugs targeting tumor evolution and immune escape mechanisms; these approaches are promising and offer opportunities that may finally improve the outcomes of SCLC.
Collapse
|
19
|
Kahnert K, Kauffmann-Guerrero D, Huber RM. SCLC-State of the Art and What Does the Future Have in Store? Clin Lung Cancer 2016; 17:325-333. [PMID: 27397481 DOI: 10.1016/j.cllc.2016.05.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/24/2016] [Accepted: 05/31/2016] [Indexed: 01/29/2023]
Abstract
Worldwide, the total number of diagnosed lung cancer cases amounts to 1.8 million every year. Small-cell lung cancer (SCLC) accounts for about 15% to 17% of all diagnosed lung cancers. Despite all progress made in the field of non-small-cell lung cancer, the prognosis and therapeutic options in SCLC are still limited. The resistance of SCLC to conventional therapy as well as its high recurrence rate can be attributed to the heterogeneous genetic structure of SCLC; however, a targeted therapy approach to SCLC may build on this very heterogeneous genetic structure. SCLC is by now a well-characterized cancer with various genetic alterations; for example, mutations in tumor suppressor genes TP53 and RB1, alterations in chromosome 3p, JAK2, FGFR1, and MYC genes were discovered. Based on these findings, various treatment options (eg, aurora kinase inhibitors, PARP inhibition, immune checkpoint inhibition and vaccine therapy) are currently evaluated with the goal of determining their clinical effectiveness. In this article, we review the existing knowledge of SCLC genetics and the current treatment standards and highlight new approaches of immunotherapy and other targeted therapies, which may yield new treatment options and improve the outcome of patients with SCLC.
Collapse
Affiliation(s)
- Kathrin Kahnert
- Department of Internal Medicine V, University of Munich, Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany.
| | - Diego Kauffmann-Guerrero
- Department of Internal Medicine V, University of Munich, Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| | - Rudolf Maria Huber
- Department of Internal Medicine V, University of Munich, Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| |
Collapse
|
20
|
Santarpia M, Daffinà MG, Karachaliou N, González-Cao M, Lazzari C, Altavilla G, Rosell R. Targeted drugs in small-cell lung cancer. Transl Lung Cancer Res 2016; 5:51-70. [PMID: 26958493 DOI: 10.3978/j.issn.2218-6751.2016.01.12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In contrast to non-small-cell lung cancer (NSCLC), few advances have been made in systemic treatment of small-cell lung cancer (SCLC) in recent years. Most patients are diagnosed with extensive stage disease and are commonly treated with platinum-based chemotherapy which, although attaining high initial objective responses, has a limited impact on survival. Due to the dismal prognosis of SCLC, novel and more effective treatment strategies are urgently needed. A deeper characterization of the genomic landscape of SCLC has led to the development of rational and promising targeted agents. However, despite a large number of clinical trials, results have been disappointing and there are still no approved targeted drugs for SCLC. Recent comprehensive genomic studies suggest SCLC is a heterogeneous disease, characterized by genomic alterations targeting a broad variety of genes, including those involved in transcription regulation and chromatin modification which seem to be a hallmark of this specific lung cancer subtype. Current research efforts are focusing on further understanding of the cellular and molecular abnormalities underlying SCLC development, progression and resistance to chemotherapy. Unraveling the genomic complexity of SCLC could be the key to optimize existing treatments, including chemotherapy and radiotherapy, and for identifying those patients most likely to benefit from selected targeted therapeutic approaches.
Collapse
Affiliation(s)
- Mariacarmela Santarpia
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| | - Maria Grazia Daffinà
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| | - Niki Karachaliou
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| | - Maria González-Cao
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| | - Chiara Lazzari
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| | - Giuseppe Altavilla
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| | - Rafael Rosell
- 1 Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy ; 2 Dr Rosell Oncology Institute, Quirón Dexeus University Hospital, Barcelona, Spain ; 3 Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy ; 4 Pangaea Biotech, Barcelona, Spain ; 5 Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain ; 6 Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain ; 7 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain
| |
Collapse
|
21
|
Fujita S, Masago K, Katakami N, Yatabe Y. Transformation to SCLC after Treatment with the ALK Inhibitor Alectinib. J Thorac Oncol 2016; 11:e67-72. [PMID: 26751586 DOI: 10.1016/j.jtho.2015.12.105] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 01/25/2023]
Abstract
We report an anaplastic lymphoma receptor tyrosine kinase gene (ALK)-positive patient who showed a paradoxical response to the ALK inhibitor alectinib; the primary lesion increased in size, whereas other metastatic lesions decreased markedly. A biopsy of the primary lesion confirmed an ALK rearrangement; however, the tumor had transformed histologically into small cell lung cancer. The lack of reports of small cell lung cancer transformation in ALK-positive patients implies that this outcome was unusual; this patient was treated with alectinib, which is more selective and has a greater inhibitory effect than crizotinib. This case may reveal resistance mechanisms that differ according to the agent used for treatment.
Collapse
Affiliation(s)
- Shiro Fujita
- Division of Integrated Oncology, Institute of Biomedical Research and Innovation, Kobe, Japan.
| | - Katsuhiro Masago
- Division of Integrated Oncology, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Nobuyuki Katakami
- Division of Integrated Oncology, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| |
Collapse
|
22
|
Mileo AM, Mattarocci S, Matarrese P, Anticoli S, Abbruzzese C, Catone S, Sacco R, Paggi MG, Ruggieri A. Hepatitis C virus core protein modulates pRb2/p130 expression in human hepatocellular carcinoma cell lines through promoter methylation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:140. [PMID: 26576645 PMCID: PMC4650920 DOI: 10.1186/s13046-015-0255-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Background Hepatitis C Virus (HCV) infection is associated with chronically evolving disease and development of hepatocellular carcinoma (HCC), albeit the mechanism of HCC induction by HCV is still controversial. The nucleocapsid (core) protein of HCV has been shown to be directly implicated in cellular transformation and immortalization, enhancing the effect of oncogenes and decreasing the one of tumor suppressor genes, as RB1 and its protein product pRB. With the aim of identifying novel molecular mechanisms of hepatocyte transformation by HCV, we examined the effect of HCV core protein on the expression of the whole Retinoblastoma (RB) family of tumor and growth suppressor factors, i.e. pRb, p107 and pRb2/p130. Methods We used a model system consisting of the HuH-7, HCV-free, human hepatocellular carcinoma cell line and of the HuH-7-CORE cells derived from the former and constitutively expressing the HCV core protein. We determined pRb, p107 and pRb2/p130 protein and mRNA amount of the respective genes RB1, RBL1 and RBL2, RBL2 promoter activity and methylation as well as DNA methyltransferase 1 (DNMT1) and 3b (DNMT3b) expression level. The effect of pRb2/p130 over-expression on the HCV core-expressing HuH-7-CORE cells was also evaluated. Results We found that the HCV core protein expression down-regulated pRb2/p130 protein and mRNA levels in HuH-7-CORE cells by inducing promoter hyper-methylation with the concomitant up-regulation of DNMT1 and DNMT3b expression. When pRb2/p130 expression was artificially re-established in HuH-7-CORE cells, cell cycle analysis outlined an accumulation in the G0/G1 phase, as expected. Conclusions HCV core appears indeed able to significantly down-regulate the expression and the function of two out of three RB family tumor and growth suppressor factors, i.e. pRb and pRb2/p130. The functional consequences at the level of cell cycle regulation, and possibly of more complex cell homeostatic processes, may represent a plausible molecular mechanism involved in liver transformation by HCV.
Collapse
Affiliation(s)
- Anna Maria Mileo
- Experimental Oncology, "Regina Elena" National Cancer Institute, IRCCS, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Stefano Mattarocci
- Department of Molecular Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Paola Matarrese
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Simona Anticoli
- National AIDS Center, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Claudia Abbruzzese
- Experimental Oncology, "Regina Elena" National Cancer Institute, IRCCS, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Stefania Catone
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Rodolfo Sacco
- Gastroenterology and Metabolic Diseases, Department of Gastroenterology, 56124 Pisa University Hospital, Pisa, Italy
| | - Marco G Paggi
- Experimental Oncology, "Regina Elena" National Cancer Institute, IRCCS, Via Elio Chianesi, 53, 00144, Rome, Italy.
| | - Anna Ruggieri
- Department of Veterinary Public Health & Food Safety, Istituto Superiore di Sanità, 00161, Rome, Italy
| |
Collapse
|
23
|
Abstract
Lung cancer is the leading cause of cancer deaths, with small cell lung cancer (SCLC) representing the most aggressive subtype. Standard treatments have not changed in decades, and the 5-year survival rate has remained <7%. Genomic analyses have identified key driver mutations of SCLC that were subsequently validated in animal models of SCLC. To provide better treatment options, a deeper understanding of the cellular and molecular mechanisms underlying SCLC initiation, progression, metastasis, and acquisition of resistance is required. In this review, we describe the genetic landscape of SCLC, features of the cell of origin, and targeted therapeutic approaches.
Collapse
Affiliation(s)
- Ekaterina A Semenova
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Remco Nagel
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
24
|
Wood SL, Pernemalm M, Crosbie PA, Whetton AD. Molecular histology of lung cancer: from targets to treatments. Cancer Treat Rev 2015; 41:361-75. [PMID: 25825324 DOI: 10.1016/j.ctrv.2015.02.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 02/02/2015] [Accepted: 02/13/2015] [Indexed: 01/06/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide with a 5-year survival rate of less than 15%, despite significant advances in both diagnostic and therapeutic approaches. Combined genomic and transcriptomic sequencing studies have identified numerous genetic driver mutations that are responsible for the development of lung cancer. In addition, molecular profiling studies identify gene products and their mutations which predict tumour responses to targeted therapies such as protein tyrosine kinase inhibitors and also can offer explanation for drug resistance mechanisms. The profiling of circulating micro-RNAs has also provided an ability to discriminate patients in terms of prognosis/diagnosis and high-throughput DNA sequencing strategies are beginning to elucidate cell signalling pathway mutations associated with oncogenesis, including potential stem cell associated pathways, offering the promise that future therapies may target this sub-population, preventing disease relapse post treatment and improving patient survival. This review provides an assessment of molecular profiling within lung cancer concerning molecular mechanisms, treatment options and disease-progression. Current areas of development within lung cancer profiling are discussed (i.e. profiling of circulating tumour cells) and future challenges for lung cancer treatment addressed such as detection of micro-metastases and cancer stem cells.
Collapse
Affiliation(s)
- Steven L Wood
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, Manchester M20 3LJ, UK.
| | - Maria Pernemalm
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, Manchester M20 3LJ, UK; Karolinska Institutet, Department of Oncology and Pathology, SciLifeLab, Tomtebodavägen 23A, 17165 Solna, Sweden
| | - Philip A Crosbie
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, Manchester M20 3LJ, UK
| | - Anthony D Whetton
- Faculty Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Wolfson Molecular Imaging Centre, Manchester M20 3LJ, UK
| |
Collapse
|
25
|
Byers LA, Rudin CM. Small cell lung cancer: where do we go from here? Cancer 2015; 121:664-72. [PMID: 25336398 PMCID: PMC5497465 DOI: 10.1002/cncr.29098] [Citation(s) in RCA: 451] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 08/29/2014] [Accepted: 09/10/2014] [Indexed: 12/23/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive disease that accounts for approximately 14% of all lung cancers. In the United States, approximately 31,000 patients are diagnosed annually with SCLC. Despite numerous clinical trials, including at least 40 phase 3 trials since the 1970s, systemic treatment for patients with SCLC has not changed significantly in the past several decades. Consequently, the 5-year survival rate remains low at <7% overall, and most patients survive for only 1 year or less after diagnosis. Unlike nonsmall cell lung cancer (NSCLC), in which major advances have been made using targeted therapies, there are still no approved targeted drugs for SCLC. Significant barriers to progress in SCLC include 1) a lack of early detection modalities, 2) limited tumor tissue for translational research (eg, molecular profiling of DNA, RNA, and/or protein alterations) because of small diagnostic biopsies and the rare use of surgical resection in standard treatment, and 3) rapid disease progression with poor understanding of the mechanisms contributing to therapeutic resistance. In this report, the authors review the current state of SCLC treatment, recent advances in current understanding of the underlying disease biology, and opportunities to advance translational research and therapeutic approaches for patients with SCLC.
Collapse
Affiliation(s)
- Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charles M. Rudin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
26
|
Costa C, Paramio JM, Santos M. Skin Tumors Rb(eing) Uncovered. Front Oncol 2013; 3:307. [PMID: 24381932 PMCID: PMC3865458 DOI: 10.3389/fonc.2013.00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/04/2013] [Indexed: 11/23/2022] Open
Abstract
The Rb1 gene was the first bona fide tumor suppressor identified and cloned more than 25 years ago. Since then, a plethora of studies have revealed the functions of pRb and the existence of a sophisticated and strictly regulated pathway that modulates such functional roles. An emerging paradox affecting Rb1 in cancer connects the relatively low number of mutations affecting Rb1 gene in specific human tumors, compared with the widely functional inactivation of pRb in most, if not in all, human cancers. The existence of a retinoblastoma family of proteins pRb, p107, and p130 and their potential unique and overlapping functions as master regulators of cell cycle progression and transcriptional modulation by similar processes, may provide potential clues to explain such conundrum. Here, we will review the development of different genetically engineered mouse models, in particular those affecting stratified epithelia, and how they have offered new avenues to understand the roles of the Rb family members and their targets in the context of tumor development and progression.
Collapse
Affiliation(s)
- Clotilde Costa
- Molecular Oncology Unit, Department of Basic Research, Centro de Investigaciones Energéticas Medioambientales y Teconológicas (ed70A) , Madrid , Spain
| | - Jesús M Paramio
- Molecular Oncology Unit, Department of Basic Research, Centro de Investigaciones Energéticas Medioambientales y Teconológicas (ed70A) , Madrid , Spain
| | - Mirentxu Santos
- Molecular Oncology Unit, Department of Basic Research, Centro de Investigaciones Energéticas Medioambientales y Teconológicas (ed70A) , Madrid , Spain
| |
Collapse
|
27
|
Byers LA, Wang J, Nilsson MB, Fujimoto J, Saintigny P, Yordy J, Giri U, Peyton M, Fan YH, Diao L, Masrorpour F, Shen L, Liu W, Duchemann B, Tumula P, Bhardwaj V, Welsh J, Weber S, Glisson BS, Kalhor N, Wistuba II, Girard L, Lippman SM, Mills GB, Coombes KR, Weinstein JN, Minna JD, Heymach JV. Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1. Cancer Discov 2012; 2:798-811. [PMID: 22961666 DOI: 10.1158/2159-8290.cd-12-0112] [Citation(s) in RCA: 437] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Small cell lung cancer (SCLC) is an aggressive malignancy distinct from non-small cell lung cancer (NSCLC) in its metastatic potential and treatment response. Using an integrative proteomic and transcriptomic analysis, we investigated molecular differences contributing to the distinct clinical behavior of SCLCs and NSCLCs. SCLCs showed lower levels of several receptor tyrosine kinases and decreased activation of phosphoinositide 3-kinase (PI3K) and Ras/mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase (MEK) pathways but significantly increased levels of E2F1-regulated factors including enhancer of zeste homolog 2 (EZH2), thymidylate synthase, apoptosis mediators, and DNA repair proteins. In addition, PARP1, a DNA repair protein and E2F1 co-activator, was highly expressed at the mRNA and protein levels in SCLCs. SCLC growth was inhibited by PARP1 and EZH2 knockdown. Furthermore, SCLC was significantly more sensitive to PARP inhibitors than were NSCLCs, and PARP inhibition downregulated key components of the DNA repair machinery and enhanced the efficacy of chemotherapy. SIGNIFICANCE SCLC is a highly lethal cancer with a 5-year survival rate of less than 10%. To date, no molecularly targeted agents have prolonged survival in patients with SCLCs. As a step toward identifying new targets, we systematically profiled SCLCs with a focus on therapeutically relevant signaling pathways. Our data reveal fundamental differences in the patterns of pathway activation in SCLCs and NSCLCs and identify several potential therapeutic targets for SCLCs, including PARP1 and EZH2. On the basis of these results, clinical studies evaluating PARP and EZH2 inhibition, together with chemotherapy or other agents, warrant further investigation.
Collapse
Affiliation(s)
- Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Baldi A, De Luca A, Esposito V, Campioni M, Spugnini EP, Citro G. Tumor suppressors and cell-cycle proteins in lung cancer. PATHOLOGY RESEARCH INTERNATIONAL 2011; 2011:605042. [PMID: 22007345 PMCID: PMC3189597 DOI: 10.4061/2011/605042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 08/08/2011] [Indexed: 11/20/2022]
Abstract
The cell cycle is the cascade of events that allows a growing cell to duplicate all its components and split into two daughter cells. Cell cycle progression is mediated by the activation of a highly conserved family of protein kinases, the cyclin-dependent kinases (CDKs). CDKs are also regulated by related proteins called cdk inhibitors grouped into two families: the INK4 inhibitors (p16, p15, p19, and p18) and the Cip/Kip inhibitors (p21, p27, and p53). Several studies report the importance of cell-cycle proteins in the pathogenesis and the prognosis of lung cancer. This paper will review the most recent data from the literature about the regulation of cell cycle. Finally, based essentially on the data generated in our laboratory, the expression, the diagnostic, and prognostic significance of cell-cycle molecules in lung cancer will be examined.
Collapse
Affiliation(s)
- Alfonso Baldi
- Section of Pathology, Department of Biochemistry, Second University of Naples, 80138 Naples, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Fiorentino FP, Macaluso M, Miranda F, Montanari M, Russo A, Bagella L, Giordano A. CTCF and BORIS regulate Rb2/p130 gene transcription: a novel mechanism and a new paradigm for understanding the biology of lung cancer. Mol Cancer Res 2011; 9:225-33. [PMID: 21325284 DOI: 10.1158/1541-7786.mcr-10-0493] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although innumerable investigations regarding the biology of lung cancer have been carried out, many aspects thereof remain to be addressed, including the role played by the retinoblastoma-related protein Rb2/p130 during the evolution of this disease. Here we report novel findings on the mechanisms that control Rb2/p130 gene expression in lung fibroblasts and characterize the effects of Rb2/p130 deregulation on the proliferative features of lung cancer cells. We revealed for the first time that in lung fibroblasts the expression of Rb2/p130 gene is directly controlled by the chromatin insulator CCCTC-binding factor, CTCF, which by binding to the Rb2/p130 gene promoter induces, and/or maintains, a specific local chromatin organization that in turn governs the transcriptional activity of Rb2/p130 gene. However, in lung cancer cells the activity of CTCF in controlling Rb2/p130 gene expression is impaired by BORIS, a CTCF-paralogue, which by binding to the Rb2/p130 gene could trigger changes in the chromatin asset established by CTCF, thereby affecting CTCF regulatory activity on Rb2/p130 transcription. These studies not only provide essential basic insights into the molecular mechanisms that control Rb2/p130 gene expression in lung cancer, but also offer a potential paradigm for the actions of other activators and/or corepressors, such as CTCF and BORIS, that could be crucial in explaining how alterations in the mechanism regulating Rb2/p130 gene expression may accelerate the progression of lung tumors, or favor the onset of recurrence after cancer treatment.
Collapse
Affiliation(s)
- Francesco Paolo Fiorentino
- Sbarro Health Research Organization, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kazarian M, Laird-Offringa IA. Small-cell lung cancer-associated autoantibodies: potential applications to cancer diagnosis, early detection, and therapy. Mol Cancer 2011; 10:33. [PMID: 21450098 PMCID: PMC3080347 DOI: 10.1186/1476-4598-10-33] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 03/30/2011] [Indexed: 12/26/2022] Open
Abstract
Small-cell lung cancer (SCLC) is the most aggressive lung cancer subtype and lacks effective early detection methods and therapies. A number of rare paraneoplastic neurologic autoimmune diseases are strongly associated with SCLC. Most patients with such paraneoplastic syndromes harbor high titers of antibodies against neuronal proteins that are abnormally expressed in SCLC tumors. These autoantibodies may cross-react with the nervous system, possibly contributing to autoimmune disease development. Importantly, similar antibodies are present in many SCLC patients without autoimmune disease, albeit at lower titers. The timing of autoantibody development relative to cancer and the nature of the immune trigger remain to be elucidated. Here we review what is currently known about SCLC-associated autoantibodies, and describe a recently developed mouse model system of SCLC that appears to lend itself well to the study of the SCLC-associated immune response. We also discuss potential clinical applications for these autoantibodies, such as SCLC diagnosis, early detection, and therapy.
Collapse
Affiliation(s)
- Meleeneh Kazarian
- Department of Surgery, Norris Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, NOR 6420, Los Angeles, CA 90089-9176, USA
| | | |
Collapse
|
31
|
Haddadin S, Perry MC. History of Small-Cell Lung Cancer. Clin Lung Cancer 2011; 12:87-93. [DOI: 10.1016/j.cllc.2011.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/12/2010] [Accepted: 07/16/2010] [Indexed: 01/22/2023]
|
32
|
Nuclear imaging in three dimensions: A unique tool in cancer research. Ann Anat 2010; 192:292-301. [DOI: 10.1016/j.aanat.2010.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 07/18/2010] [Indexed: 11/19/2022]
|
33
|
Dual loss of rb1 and Trp53 in the adrenal medulla leads to spontaneous pheochromocytoma. Neoplasia 2010; 12:235-43. [PMID: 20234817 DOI: 10.1593/neo.91646] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/23/2009] [Accepted: 12/29/2009] [Indexed: 12/12/2022] Open
Abstract
Using a Cre/loxP system, we have determined the phenotypic consequences attributable to in vivo deletion of both Rb1 and Trp53 in the mouse adrenal medulla. The coablation of these two tumor suppressor genes during embryogenesis did not disrupt adrenal gland development but resulted in the neoplastic transformation of the neural crest-derived adrenal medulla, yielding pheochromocytomas (PCCs) that developed with complete penetrance and were inevitably bilateral. Despite their typically benign status, these PCCs had profound ramifications on mouse vitality, with effected mice having a median survival of only 121 days. Evaluation of these PCCs by both immunohistochemistry and electron microscopy revealed that most Rb1(-/-):Trp53(-/-) chromaffin cells possessed atypical chromagenic vesicles that did not seem capable of appropriately storing synthesized catecholamines. The structural remodeling of the heart in mice harboring Rb1(-/-):Trp53(-/-) PCCs suggests that the mortality of these mice may be attributable to the inappropriate release of catecholamines from the mutated adrenal chromaffin cells. On the basis of the collective data from Rb1 and Trp53 knockout mouse models, it seems that the conversion of Rb1 loss-driven adrenal medulla hyperplasia to PCC can be greatly enhanced by the compound loss of Trp53, whereas the loss of Trp53 alone is generally ineffectual on adrenal chromaffin cell homeostasis. Consequently, the Trp53 tumor suppressor gene is an efficient genetic modifier of Rb1 loss in the development of PCC, and their compound loss in the adrenal medulla has a profound impact on both cellular homeostasis and animal vitality.
Collapse
|
34
|
Schaffer BE, Park KS, Yiu G, Conklin JF, Lin C, Burkhart DL, Karnezis AN, Sweet-Cordero EA, Sage J. Loss of p130 accelerates tumor development in a mouse model for human small-cell lung carcinoma. Cancer Res 2010; 70:3877-83. [PMID: 20406986 DOI: 10.1158/0008-5472.can-09-4228] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Small-cell lung carcinoma (SCLC) is a neuroendocrine subtype of lung cancer. Although SCLC patients often initially respond to therapy, tumors nearly always recur, resulting in a 5-year survival rate of less than 10%. A mouse model has been developed based on the fact that the RB and p53 tumor suppressor genes are mutated in more than 90% of human SCLCs. Emerging evidence in patients and mouse models suggests that p130, a gene related to RB, may act as a tumor suppressor in SCLC cells. To test this idea, we used conditional mutant mice to delete p130 in combination with Rb and p53 in adult lung epithelial cells. We found that loss of p130 resulted in increased proliferation and significant acceleration of SCLC development in this triple-knockout mouse model. The histopathologic features of the triple-mutant mouse tumors closely resembled that of human SCLC. Genome-wide expression profiling experiments further showed that Rb/p53/p130-mutant mouse tumors were similar to human SCLC. These findings indicate that p130 plays a key tumor suppressor role in SCLC. Rb/p53/p130-mutant mice provide a novel preclinical mouse model to identify novel therapeutic targets against SCLC.
Collapse
Affiliation(s)
- Bethany E Schaffer
- Department of Pediatrics, Stanford Medical School, Stanford, California 94305-5149, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cellular division is an ordered, tightly regulated process involving multiple checkpoints that assess extracellular growth signals, cell size and DNA integrity. Progression throughout the cell cycle is based on the activation of different CDK-cyclin complexes that prevent cells from entering into a new phase until thay have successfully complete the previous one. In addition, a series of cell cycle checkpoints are designed to preserve genome integrity and chromosomal stability. Neoplastic lung cells develop the ability to bypass several of these checkpoints, and tumor cell proliferation is frequently associated with genetic or epigenetic alterations in key regulators of the cell cycle. The goal of this review is to summarize the knowledge about the dysregulation of major cell cycle regulators in lung cancer pathogenesis and to discuss the use of these proteins as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Beatrice Eymin
- Equipe Bases Moléculaires de la Progression des Cancers du Poumon, Centre de Recherche INSERM U823, Institut Albert Bonniot, Grenoble, France; Université Joseph Fourier, Grenoble, France
| | | |
Collapse
|
36
|
Simpson DS, Mason-Richie NA, Gettler CA, Wikenheiser-Brokamp KA. Retinoblastoma family proteins have distinct functions in pulmonary epithelial cells in vivo critical for suppressing cell growth and tumorigenesis. Cancer Res 2009; 69:8733-41. [PMID: 19887614 DOI: 10.1158/0008-5472.can-09-1359] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer deaths, accounting for more deaths than breast, colon, and prostate cancer combined. The retinoblastoma (Rb)/p16 tumor suppressive pathway is deregulated in most cancers. Loss of p16 occurs more frequently than Rb loss, suggesting that p16 suppresses cancer by regulating Rb as well as the related proteins p107 and p130. However, direct evidence demonstrating that p130 or p107 cooperate with Rb to suppress epithelial cancers associated with p16 loss is currently lacking. Moreover, the roles of p130 and p107 in lung cancer are not clear. In the present studies, Rb ablation was targeted to the lung epithelium in wild-type, p107, or p130 null mice to determine unique and overlapping Rb family functions critical in tumor suppression. Rb ablation during development resulted in marked epithelial abnormalities despite p107 upregulation. In contrast, p130 and p107 were not required during development but had distinct functions in the Rb-deficient epithelium: p107 was required to suppress proliferation, whereas a novel proapoptotic function was identified for p130. Adult Rb-ablated lungs lacked the epithelial phenotype seen at birth and showed compensatory p107 upregulation and p16 induction in epithelial cell lineages that share phenotypic characteristics with human non-small cell lung cancers (NSCLC) that frequently show p16 loss. Importantly, Rb/p107-deficient, but not Rb/p130-deficient, lungs developed tumors resembling NSCLC. Taken together, these studies identify distinct Rb family functions critical in controlling epithelial cell growth, and provide direct evidence that p107 cooperates with Rb to protect against a common adult cancer.
Collapse
Affiliation(s)
- David S Simpson
- Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, USA
| | | | | | | |
Collapse
|
37
|
Kalungi S, Steine SJ, Wabinga H, Bostad L, Molven A. pRb2/p130 protein expression and RBL2 mutation analysis in Burkitt lymphoma from Uganda. BMC Clin Pathol 2009; 9:6. [PMID: 19691827 PMCID: PMC2735744 DOI: 10.1186/1472-6890-9-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 08/19/2009] [Indexed: 08/26/2023] Open
Abstract
Background The members of the retinoblastoma protein family, pRb, p107 and pRb2 (p130), are central players in controlling the cell cycle. Whereas disturbed function of pRb is commonly seen in human cancers, it is still an open question whether pRb2 is involved in tumorigenic processes. However, altered subcellular localization of pRb2 and mutations in the pRb2-encoding gene RBL2 have been described for some tumours, including Burkitt lymphomas (BL). Methods We retrieved 51 biopsy specimens of endemic BL cases from Uganda. The expression of pRb2 was determined by immunohistochemistry. Exons 19-22 of the RBL2 gene, the region known to contain a nuclear localization signal, were screened for mutations by PCR amplification and direct DNA sequencing. Results Nearly all of our cases (84.0%) were positive for pRb2 protein expression although this protein is a marker for growth arrest and Burkitt lymphoma is characterized by a high proliferation rate. Of the positive cases, 73.8% were scored as expressing the protein at a high level. Subcellular pRb2 localization was predominantly nuclear and no cases with expression restricted to the cytoplasm were observed. We did not detect any RBL2 mutations in the part of the gene that encodes the C-terminal end of the protein. Conclusion The majority of endemic BL cases from Uganda express pRb2, but somatic RBL2 mutations affecting the protein's nuclear localization signal appear to be rare.
Collapse
Affiliation(s)
- Sam Kalungi
- Section for Pathology, the Gade Institute, University of Bergen, Bergen, Norway.
| | | | | | | | | |
Collapse
|
38
|
Atanasov AG, Leiser D, Roesselet C, Noti M, Corazza N, Schoonjans K, Brunner T. Cell cycle-dependent regulation of extra-adrenal glucocorticoid synthesis in murine intestinal epithelial cells. FASEB J 2008; 22:4117-25. [PMID: 18711026 DOI: 10.1096/fj.08-114157] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Glucocorticoids are anti-inflammatory steroids with important applications in the treatment of inflammatory diseases. Endogenous glucocorticoids are mainly produced by the adrenal glands, although there is increasing evidence for extra-adrenal sources. Recent findings show that intestinal crypt cells produce glucocorticoids, which contribute to the maintenance of intestinal immune homeostasis. Intestinal glucocorticoid synthesis is critically regulated by the transcription factor liver receptor homologue-1 (LRH-1). As expression of steroidogenic enzymes and LRH-1 is restricted to the proliferating cells of the crypts, we aimed to investigate the role of the cell cycle in the regulation of LRH-1 activity and intestinal glucocorticoid synthesis. We here show that either pharmacological or molecular modulation of cell cycle progression significantly inhibited expression of steroidogenic enzymes and synthesis of glucocorticoids in intestinal epithelial cells. Synchronization of intestinal epithelial cells in the cell cycle revealed that expression of steroidogenic enzymes is preferentially induced at the G(1)/S stage. Differentiation of immature intestinal epithelial cells to mature nonproliferating cells also resulted in reduced expression of steroidogenic enzymes. This cell cycle-related effect on intestinal steroidogenesis was found to be mediated through the regulation of LRH-1 transcriptional activity. This mechanism may restrict intestinal glucocorticoid synthesis to the proliferating cells of the crypts.
Collapse
Affiliation(s)
- Atanas G Atanasov
- Division of Immunopathology, Institute of Pathology, University of Bern, Murtenstrasse 31, 3010 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 2008; 8:438-49. [PMID: 18500245 PMCID: PMC2711846 DOI: 10.1038/nrc2396] [Citation(s) in RCA: 750] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The maintenance and preservation of distinct phases during the cell cycle is a highly complex and coordinated process. It is regulated by phosphorylation--through the activity of cyclin-dependent kinases (CDKs)--and protein degradation, which occurs through ubiquitin ligases such as SCF (SKP1-CUL1-F-box protein) complexes and APC/C (anaphase-promoting complex/cyclosome). Here, we explore the functionality and biology of the F-box proteins, SKP2 (S-phase kinase-associated protein 2) and beta-TrCP (beta-transducin repeat-containing protein), which are emerging as important players in cancer biogenesis owing to the deregulated proteolysis of their substrates.
Collapse
Affiliation(s)
- David Frescas
- Department of Pathology, NYU Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | | |
Collapse
|
40
|
Lu Y, Thomson JM, Wang HYF, Hammond SM, Hogan BL. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 2007; 310:442-53. [PMID: 17765889 PMCID: PMC2052923 DOI: 10.1016/j.ydbio.2007.08.007] [Citation(s) in RCA: 356] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/30/2007] [Accepted: 08/01/2007] [Indexed: 12/27/2022]
Abstract
The miR-17-92 locus encodes a cluster of 7 microRNAs transcribed as a single primary transcript. It can accelerate c-Myc induced B cell lymphoma development and is highly expressed in many tumors, including lung tumors. However, the role of miR-17-92 in development has not been well studied. From analysis of microRNAs during lung development, expression of the miR-17-92 cluster is high at early stages, but declines as development proceeds. We used the mouse surfactant protein C (Sftpc) promoter to over-express the cluster in embryonic lung epithelium. Transgenic lungs have a very abnormal lethal phenotype. They contain numerous proliferative epithelial cells that retain high levels of Sox9, a marker of distal progenitors. The differentiation of proximal epithelial cells was also inhibited. Furthermore, a significant increase in the number of neuroendocrine cell clusters was observed in the lungs of dead transgenic pups. We identify a tumor suppressor, Rbl2 which belongs to the Rb family, as a new target for miR-17-5p. Together, these studies suggest that mir-17-92 normally promotes the high proliferation and undifferentiated phenotype of lung epithelial progenitor cells.
Collapse
Affiliation(s)
- Yun Lu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710
| | | | - Ho Yuen Frank Wang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710
| | - Scott M. Hammond
- Department of Cell and Developmental Biology
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599
| | - Brigid L.M. Hogan
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710
- *Corresponding author. Fax: +1 919 684 8592, E-mail address:
| |
Collapse
|
41
|
Yagui-Beltrán A, He B, Raz D, Kim J, Jablons DM. Novel therapies targeting signaling pathways in lung cancer. Thorac Surg Clin 2007; 16:379-96, vi. [PMID: 17240825 DOI: 10.1016/j.thorsurg.2006.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite advances in chemotherapy, the prognosis for advanced non-small-cell lung cancer (NSCLC) remains dismal. Increasing understanding of the biological processes responsible for lung carcinogenesis has led to development of new therapeutic strategies targeting this disease at a molecular level. This article examines the molecular events believed to lead to cellular changes in lung cancer, and how knowledge of these is used to develop new agents used individually or in combination with available cytotoxic drugs to improve survival. Finally, it explores how a deeper understanding of the embryonic signaling pathways responsible for airway epithelial repair and tumorogenesis, such as Hedgehog (Hh), Notch, and Wingless (Wnt), can lead to the development of newer and more specific therapies for lung cancer.
Collapse
Affiliation(s)
- Adam Yagui-Beltrán
- Department of Surgery, University of California San Francisco Comprehensive Cancer Center, 2340 Sutter Street, San Francisco, CA 94143-0128, USA
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Scambia G, Lovergine S, Masciullo V. RB family members as predictive and prognostic factors in human cancer. Oncogene 2006; 25:5302-8. [PMID: 16936751 DOI: 10.1038/sj.onc.1209620] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The retinoblastoma family members--pRb, pRb2/p130 and p107--are tumor suppressor genes involved in controlling four major cellular processes: growth arrest, apoptosis, differentiation and angiogenesis. Molecular genetic studies have identified abnormalities of these tumor suppressor genes in a large proportion of human cancers. These genetic alterations have emerged as significant factors in the pathogenesis and progression of many types of tumors and are therefore likely to provide relevant information to assess risk in cancer patients. There is a pressing clinical need to identify prognostic and predictive factors for patients with cancer, because there is an undeniable importance in being able to determine which patients will have a favorable outcome without further therapy (prognostic factor) and which will need some additional treatment (predictive factor). This review examines the predictive and/or prognostic role of each retinoblastoma family member in human cancer.
Collapse
Affiliation(s)
- G Scambia
- Division of Gynecologic Oncology, Catholic University, Rome, Italy
| | | | | |
Collapse
|
44
|
Wikman H, Kettunen E. Regulation of the G1/S phase of the cell cycle and alterations in the RB pathway in human lung cancer. Expert Rev Anticancer Ther 2006; 6:515-30. [PMID: 16613540 DOI: 10.1586/14737140.6.4.515] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The retinoblastoma (RB)-Cyclin (CCN)D1-p16 cell cycle pathway has a crucial role in lung tumorigenesis. Impairment of the RB pathway has been shown to occur in almost all lung tumors. A deregulation at any level of this core RB pathway seems to make cells insensitive to the mitogenic signaling that is required for cell cycle progression. To date, almost all participants in this pathway have been shown to be altered to a various degree in lung tumors. Some of the alterations are mutually exclusive, including RB and p16INK4A . In small cell lung cancer, the RB tumor suppressor gene is inactivated in almost 90% of the tumors, whereas in non-small cell lung cancer, the cyclin-dependent kinase (CDK)4 inhibitor p16INK4A is inactivated in 40-60% of the tumors. Many mechanisms may be responsible for activating the RB-Cyclin D1 pathway, including activating (CDK4) and inactivating mutations (p16INK4A ), deletions (RB and p16INK4A ), amplifications (CCND1 and CDK4), silencing methylation (p16INK4A and RB), and hyper-phosphorylation (RB). As some of these alterations, such as p16INK4A methylation, can also be detected in bronchial lavage and serum, they could potentially serve as useful markers for the early detection of lung cancer. This review summarizes recent experiments describing the variable roles of key-player molecules of the RB pathway and different mechanisms by which the RB pathway can be altered in lung cancer.
Collapse
Affiliation(s)
- Harriet Wikman
- Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf Martinistrasse 52, D-20246 Hamburg, Germany.
| | | |
Collapse
|
45
|
Abstract
Melanoma is the most lethal of human skin cancers and its incidence is increasing worldwide [L.K. Dennis (1999). Arch. Dermatol. 135, 275; C. Garbe et al. (2000). Cancer 89, 1269]. Melanomas often metastasize early during the course of the disease and are then highly intractable to current therapeutic regimens [M.F. Demierre and G. Merlino (2004). Curr. Oncol. Rep. 6, 406]. Consequently, understanding the factors that maintain melanocyte homeostasis and prevent their neoplastic transformation into melanoma is of utmost interest from the perspective of therapeutic interdiction. This review will focus on the role of the pocket proteins (PPs), Rb1 (retinoblastoma protein), retinoblastoma-like 1 (Rbl1 also known as p107) and retinoblastoma-like 2 (Rbl2 also known as p130), in melanocyte homeostasis, with particular emphasis on their functions in the cell cycle and the DNA damage repair response. The potential mechanisms of PP deregulation in melanoma and the possibility of PP-independent pathways to melanoma development will also be considered. Finally, the role of the PP family in ultraviolet radiation (UVR)-induced melanoma and the precise contribution that each PP family member makes to melanocyte homeostasis will be discussed in the context of a number of genetically engineered mouse models.
Collapse
Affiliation(s)
- Ian D Tonks
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
46
|
Caputi M, Russo G, Esposito V, Mancini A, Giordano A. Role of cell-cycle regulators in lung cancer. J Cell Physiol 2006; 205:319-27. [PMID: 15965963 DOI: 10.1002/jcp.20424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide. Histologically, 80% of lung cancers are classified as non-small-cell lung cancer (NSCLC), and the remaining 20% as small-cell lung cancer (SCLC). Lung carcinoma is the result of molecular changes in the cell, resulting in the deregulation of pathways controlling normal cellular growth, differentiation, and apoptosis. This review summarizes some of the most recent findings about the role of cell-cycle proteins in lung cancer pathogenesis and progression.
Collapse
Affiliation(s)
- Mario Caputi
- Department of Cardio-Thoracic Sciences, II University of Naples, Naples, Italy
| | | | | | | | | |
Collapse
|
47
|
Dannenberg JH, te Riele HPJ. The retinoblastoma gene family in cell cycle regulation and suppression of tumorigenesis. Results Probl Cell Differ 2006; 42:183-225. [PMID: 16903212 DOI: 10.1007/400_002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Since its discovery in 1986, as the first tumor suppressor gene, the retinoblastoma gene (Rb) has been extensively studied. Numerous biochemical and genetic studies have elucidated in great detail the function of the Rb gene and placed it at the heart of the molecular machinery controlling the cell cycle. As more insight was gained into the genetic events required for oncogenic transformation, it became clear that the retinoblastoma gene is connected to biochemical pathways that are dysfunctional in virtually all tumor types. Besides regulating the E2F transcription factors, pRb is involved in numerous biological processes such as apoptosis, DNA repair, chromatin modification, and differentiation. Further complexity was added to the system with the discovery of p107 and p130, two close homologs of Rb. Although the three family members share similar functions, it is becoming clear that these proteins also have unique functions in differentiation and regulation of transcription. In contrast to Rb, p107 and p130 are rarely found inactivated in human tumors. Yet, evidence is accumulating that these proteins are part of a "tumor-surveillance" mechanism and can suppress tumorigenesis. Here we provide an overview of the knowledge obtained from studies involving the retinoblastoma gene family with particular focus on its role in suppressing tumorigenesis.
Collapse
Affiliation(s)
- Jan-Hermen Dannenberg
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
48
|
Carraresi L, Martinelli R, Vannoni A, Riccio M, Dembic M, Tripodi S, Cintorino M, Santi S, Bigliardi E, Carmellini M, Rossini M. Establishment and characterization of murine small cell lung carcinoma cell lines derived from HPV-16 E6/E7 transgenic mice. Cancer Lett 2006; 231:65-73. [PMID: 16356832 DOI: 10.1016/j.canlet.2005.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/12/2005] [Accepted: 01/15/2005] [Indexed: 11/19/2022]
Abstract
We have established two murine cell lines derived from Small Cell Lung Carcinomas (SCLCs) developed by HPV-E6/E7 transgenic mice. These cells named PPAP-9 and PPAP-10 were isolated from mice bearing tumors, 9 and 10 months old, respectively. The cells, 5 microm in diameter, express HPV oncoproteins and sustain tumor formation after subcutaneous injection in syngenic mice. A detailed analysis indicated the epithelial origin and the neuroendocrine differentiation of these cells. We showed by confocal immunofluorescence the expression of the epithelial marker cytokeratin 5, whose gene promoter was used to direct the expression of HPV E6/E. Cells express several neuroendocrine markers such as CGRP, MAP-2, Ash1, CgrA, Scg2. The neuroendocrine differentiation of these cells was further confirmed by electron microscopy demonstrating neuropeptides secreting granules in their cytoplasm. Furthermore, in agreement with the altered expression observed in the majority of human SCLC we showed in these cells the absence of both p53 and pRB and a dramatic reduction in the expression of Caveolin-1.
Collapse
Affiliation(s)
- Laura Carraresi
- Department of Physiopathology and Experimental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cinti C, Macaluso M, Giordano A. Tumor-specific exon 1 mutations could be the ‘hit event’ predisposing Rb2/p130 gene to epigenetic silencing in lung cancer. Oncogene 2005; 24:5821-6. [PMID: 16044156 DOI: 10.1038/sj.onc.1208880] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genetic alterations in Rb2/p130 gene have been reported in several tumors, but till now there are insufficient and conflicting data linking the loss of pRb2/p130 expression with the mutational status of this gene in lung cancer. We recently reported that loss or lowering of pRb2/p130 expression is mainly due to aberrant Rb2/p130 promoter methylation, in retinoblastoma tumors, and indicated that epigenetic silencing of Rb2/p130 can impair its function to negatively regulate cell cycle progression as well as apoptotic response. In order to clarify Rb2/p130 gene inactivation in lung cancer, we investigated whether epigenetic events could impair the expression of this gene in NSLC. Here, we show that specific Rb2-exon 1 homozygous mutations, occurring in an Rb2/p130, region, rich in CpG dinucleotides, could be the 'hit event' that predispose this gene to epigenetic changes, leading to Rb2/p130 gene silencing in lung cancer. Moreover, these homozygous mutations, found in different tumor histotypes, could represent tumor-specific markers.
Collapse
Affiliation(s)
- Caterina Cinti
- Institute of Clinical Physiology, CNR, Siena Unity, Italy
| | | | | |
Collapse
|
50
|
Russo G, Zamparelli A, Howard CM, Minimo C, Bellan C, Carillo G, Califano L, Leoncini L, Giordano A, Claudio PP. Expression of cell cycle-regulated proteins pRB2/p130, p107, E2F4, p27, and pCNA in salivary gland tumors: prognostic and diagnostic implications. Clin Cancer Res 2005; 11:3265-73. [PMID: 15867222 DOI: 10.1158/1078-0432.ccr-04-2508] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The retinoblastoma family consists of the tumor suppressor nuclear phosphoprotein pRb/p105 and related proteins p107 and pRb2/p130. Recent immunohistochemical studies of the retinoblastoma family of proteins in lung and endometrial cancer and choroidal melanomas show a tight inverse correlation between the histologic grading in the most aggressive tumor types and pRb2/p130 expression. This led us to investigate the role of pRb2/p130 in salivary tumors. We studied the expression of pRb2/p130, p107, E2F4, p27, and PcNA by immunohistochemistry in a panel of 44 salivary gland tumors. We found a direct correlation between the cytoplasmic expression of pRb2/p130 and tumor grading and the presence of metastasis that was highly statistically significant (P < 0.001). Additionally, increased cytoplasmic pRb2/p130 expression was significantly correlated with a decreased probability of survival (P < 0.001). Interestingly, p107 nuclear expression showed a strong direct correlation when compared with the same variables. pRb2/p130 showed the highest percentage of undetectable nuclear levels in the specimens examined and the tightest inverse correlation (P < 0.0001) with both the histologic grading and pCNA expression in malignant salivary tumors. Additionally, E2F4 showed an identical localization pattern as to that of pRb2/p130. These data suggests an important role for pRb2/p130 in the pathogenesis and progression of certain salivary gland cancers.
Collapse
Affiliation(s)
- Giuseppe Russo
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122-6099, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|