1
|
Misra R, Das I, Dér A, Steinbach G, Shim JG, Busse W, Jung KH, Zimányi L, Sheves M. Impact of protein-chromophore interaction on the retinal excited state and photocycle of Gloeobacter rhodopsin: role of conserved tryptophan residues. Chem Sci 2023; 14:9951-9958. [PMID: 37736621 PMCID: PMC10510653 DOI: 10.1039/d3sc02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
The function of microbial as well as mammalian retinal proteins (aka rhodopsins) is associated with a photocycle initiated by light excitation of the retinal chromophore of the protein, covalently bound through a protonated Schiff base linkage. Although electrostatics controls chemical reactions of many organic molecules, attempt to understand its role in controlling excited state reactivity of rhodopsins and, thereby, their photocycle is scarce. Here, we investigate the effect of highly conserved tryptophan residues, between which the all-trans retinal chromophore of the protein is sandwiched in microbial rhodopsins, on the charge distribution along the retinal excited state, quantum yield and nature of the light-induced photocycle and absorption properties of Gloeobacter rhodopsin (GR). Replacement of these tryptophan residues by non-aromatic leucine (W222L and W122L) or phenylalanine (W222F) does not significantly affect the absorption maximum of the protein, while all the mutants showed higher sensitivity to photobleaching, compared to wild-type GR. Flash photolysis studies revealed lower quantum yield of trans-cis photoisomerization in W222L as well as W222F mutants relative to wild-type. The photocycle kinetics are also controlled by these tryptophan residues, resulting in altered accumulation and lifetime of the intermediates in the W222L and W222F mutants. We propose that protein-retinal interactions facilitated by conserved tryptophan residues are crucial for achieving high quantum yield of the light-induced retinal isomerization, and affect the thermal retinal re-isomerization to the resting state.
Collapse
Affiliation(s)
- Ramprasad Misra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - Ishita Das
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| | - András Dér
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network Szeged H-6726 Hungary
| | - Gábor Steinbach
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network Szeged H-6726 Hungary
- Cellular Imaging Laboratory, Biological Research Centre, Eötvös Loránd Research Network Szeged H-6726 Hungary
| | - Jin-Gon Shim
- Department of Life Science and Institute of Biological Interfaces, Sogang University Seoul 04107 South Korea
| | - Wayne Busse
- Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin Berlin 10115 Germany
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University Seoul 04107 South Korea
| | - László Zimányi
- Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network Szeged H-6726 Hungary
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
2
|
Das I, Pushkarev A, Sheves M. Light-Induced Conformational Alterations in Heliorhodopsin Triggered by the Retinal Excited State. J Phys Chem B 2021; 125:8797-8804. [PMID: 34342994 PMCID: PMC8389987 DOI: 10.1021/acs.jpcb.1c04551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Heliorhodopsins are a recently discovered
diverse retinal protein
family with an inverted topology of the opsin where the retinal protonated
Schiff base proton is facing the cell cytoplasmic side in contrast
to type 1 rhodopsins. To explore whether light-induced retinal double-bond
isomerization is a prerequisite for triggering protein conformational
alterations, we utilized the retinal oxime formation reaction and
thermal denaturation of a native heliorhodopsin of Thermoplasmatales archaeon SG8-52-1 (TaHeR) as well
as a trans-locked retinal analogue (TaHeRL) in which the critical C13=C14 double-bond
isomerization is prevented. We found that both reactions are light-accelerated
not only in the native but also in the “locked” pigment
despite lacking any isomerization. It is suggested that light-induced
charge redistribution in the retinal excited state polarizes the protein
and triggers protein conformational perturbations that thermally decay
in microseconds. The extracted activation energy and the frequency
factor for both the reactions reveal that the light enhancement of
TaHeR differs distinctly from the earlier studied type 1 microbial
rhodopsins.
Collapse
Affiliation(s)
- Ishita Das
- Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alina Pushkarev
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | | |
Collapse
|
3
|
Tahara S, Kuramochi H, Takeuchi S, Tahara T. Protein Dynamics Preceding Photoisomerization of the Retinal Chromophore in Bacteriorhodopsin Revealed by Deep-UV Femtosecond Stimulated Raman Spectroscopy. J Phys Chem Lett 2019; 10:5422-5427. [PMID: 31469573 DOI: 10.1021/acs.jpclett.9b02283] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacteriorhodopsin is a prototypical photoreceptor protein that functions as a light-driven proton pump. The retinal chromophore of bacteriorhodopsin undergoes C13═C14 trans-to-cis isomerization upon photoexcitation, and it has been believed to be the first event that triggers the cascaded structural changes in bacteriorhodopsin. We investigated the protein dynamics of bacteriorhodopsin using deep-ultraviolet resonance femtosecond stimulated Raman spectroscopy. It was found that the stimulated Raman signals of tryptophan and tyrosine residues exhibit significant changes within 0.2 ps after photoexcitation while they do not noticeably change during the isomerization process. This result implies that the protein environment changes first, and its change is small during isomerization. The obtained femtosecond stimulated Raman data indicate that ultrafast change is induced in the protein part by the sudden creation of the large dipole of the excited-state chromophore, providing an environment that realizes efficient and selective isomerization.
Collapse
Affiliation(s)
- Shinya Tahara
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako 351-0198 , Japan
| | - Hikaru Kuramochi
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako 351-0198 , Japan
- Ultrafast Spectroscopy Research Team , RIKEN Center for Advanced Photonics (RAP) , 2-1 Hirosawa , Wako 351-0198 , Japan
- PRESTO , Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi 332-0012 , Japan
| | - Satoshi Takeuchi
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako 351-0198 , Japan
- Ultrafast Spectroscopy Research Team , RIKEN Center for Advanced Photonics (RAP) , 2-1 Hirosawa , Wako 351-0198 , Japan
| | - Tahei Tahara
- Molecular Spectroscopy Laboratory , RIKEN , 2-1 Hirosawa , Wako 351-0198 , Japan
- Ultrafast Spectroscopy Research Team , RIKEN Center for Advanced Photonics (RAP) , 2-1 Hirosawa , Wako 351-0198 , Japan
| |
Collapse
|
4
|
Misra R, Hirshfeld A, Sheves M. Molecular mechanism for thermal denaturation of thermophilic rhodopsin. Chem Sci 2019; 10:7365-7374. [PMID: 31489158 PMCID: PMC6713869 DOI: 10.1039/c9sc00855a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/18/2019] [Indexed: 12/29/2022] Open
Abstract
Understanding the factors affecting the stability and function of proteins at the molecular level is of fundamental importance. In spite of their use in bioelectronics and optogenetics, factors influencing thermal stability of microbial rhodopsins, a class of photoreceptor protein ubiquitous in nature are not yet well-understood. Here we report on the molecular mechanism for thermal denaturation of microbial retinal proteins, including, a highly thermostable protein, thermophilic rhodopsin (TR). External stimuli-dependent thermal denaturation of TR, the proton pumping rhodopsin of Thermus thermophilus bacterium, and other microbial rhodopsins are spectroscopically studied to decipher the common factors guiding their thermal stability. The thermal denaturation process of the studied proteins is light-catalyzed and the apo-protein is thermally less stable than the corresponding retinal-covalently bound opsin. In addition, changes in structure of the retinal chromophore affect the thermal stability of TR. Our results indicate that the hydrolysis of the retinal protonated Schiff base (PSB) is the rate-determining step for denaturation of the TR as well as other retinal proteins. Unusually high thermal stability of TR multilayers, in which PSB hydrolysis is restricted due to lack of bulk water, strongly supports this proposal. Our results also show that the protonation state of the PSB counter-ion does not affect the thermal stability of the studied proteins. Thermal photo-bleaching of an artificial TR pigment derived from non-isomerizable trans-locked retinal suggests, rather counterintuitively, that the photoinduced retinal trans-cis isomerization is not a pre-requisite for light catalyzed thermal denaturation of TR. Protein conformation alteration triggered by light-induced retinal excited state formation is likely to facilitate the PSB hydrolysis.
Collapse
Affiliation(s)
- Ramprasad Misra
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel .
| | - Amiram Hirshfeld
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel .
| | - Mordechai Sheves
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel .
| |
Collapse
|
5
|
Ghosh M, Jung KH, Sheves M. Protein conformational alterations induced by the retinal excited state in proton and sodium pumping rhodopsins. Phys Chem Chem Phys 2019; 21:9450-9455. [PMID: 31012470 DOI: 10.1039/c9cp00681h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Retinal proteins' biological activity is triggered by the retinal chromophore's light absorption, which initiates a photocycle. However, the mechanism by which retinal light excitation induces the protein's response is not completely understood. Recently, two new retinal proteins were discovered, namely, King Sejong 1-2 (KS1-2) and Nonlabens (Donghaeana) dokdonensis (DDR2), which exhibit H+ and Na+ pumping activities, respectively. To pinpoint whether protein conformation alterations can be achieved without light-induced retinal C13[double bond, length as m-dash]C14 double-bond isomerization, we utilized the hydroxylamine reaction, which cleaves the protonated Schiff base bond through which the retinal chromophore is covalently bound to the protein. The reaction is accelerated by light even though the cleavage is not a photochemical reaction. Therefore, the cleavage reaction may serve as a tool to detect protein conformation alterations. We discovered that in both KS1-2 and DDR2, the hydroxylamine reaction is light accelerated, even in artificial pigments derived from synthetic retinal in which the crucial C13[double bond, length as m-dash]C14 double-bond isomerization is prevented. Therefore, we propose that in both proteins the light-induced retinal charge redistribution taking place in the retinal excited state polarizes the protein, which, in turn, triggers protein conformation alterations. A further general possible application of the present finding is associated with other photoreceptor proteins having retinal or other non-retinal chromophores whose light excitation may affect the protein conformation.
Collapse
Affiliation(s)
- Mihir Ghosh
- Department of Organic Chemistry, Weizmann Institute of Science Rehovot, Israel.
| | | | | |
Collapse
|
6
|
The role of retinal light induced dipole in halorhodopsin structural alteration. FEBS Lett 2015; 589:3576-80. [PMID: 26467279 DOI: 10.1016/j.febslet.2015.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/05/2015] [Accepted: 10/02/2015] [Indexed: 11/20/2022]
Abstract
The present work studies the mechanism of light induced protein conformational changes in the over-expressed mutant of halorhodopsin (phR) from Natronomonas pharaonis. The catalytic effect of light is reflected in accelerating hydroxyl amine reaction rate of light adapted phR. Light catalysis was detected in native phR but also in artificial pigments derived from tailored retinal analogs locked at the crucial C13=C14 double bond. It is proposed that the photoexcited retinal chromophore induces protein concerted motion that decreases the energy gap between reactants ground and transition states. This energy gap is overcome by coupling to specific protein vibrations. Surprisingly, the rate constants show unusual decreasing trend following temperature increase both for native and artificial pigments.
Collapse
|
7
|
Giridharagopal R, Rayermann GE, Shao G, Moore DT, Reid OG, Tillack AF, Masiello DJ, Ginger DS. Submicrosecond time resolution atomic force microscopy for probing nanoscale dynamics. NANO LETTERS 2012; 12:893-898. [PMID: 22248070 DOI: 10.1021/nl203956q] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We propose, simulate, and experimentally validate a new mechanical detection method to analyze atomic force microscopy (AFM) cantilever motion that enables noncontact discrimination of transient events with ~100 ns temporal resolution without the need for custom AFM probes, specialized instrumentation, or expensive add-on hardware. As an example application, we use the method to screen thermally annealed poly(3-hexylthiophene):phenyl-C(61)-butyric acid methyl ester photovoltaic devices under realistic testing conditions over a technologically relevant performance window. We show that variations in device efficiency and nanoscale transient charging behavior are correlated, thereby linking local dynamics with device behavior. We anticipate that this method will find application in scanning probe experiments of dynamic local mechanical, electronic, magnetic, and biophysical phenomena.
Collapse
Affiliation(s)
- Rajiv Giridharagopal
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Dong M, Husale S, Sahin O. Determination of protein structural flexibility by microsecond force spectroscopy. NATURE NANOTECHNOLOGY 2009; 4:514-7. [PMID: 19662014 DOI: 10.1038/nnano.2009.156] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 05/27/2009] [Indexed: 05/23/2023]
Abstract
Proteins are dynamic molecular machines having structural flexibility that allows conformational changes. Current methods for the determination of protein flexibility rely mainly on the measurement of thermal fluctuations and disorder in protein conformations and tend to be experimentally challenging. Moreover, they reflect atomic fluctuations on picosecond timescales, whereas the large conformational changes in proteins typically happen on micro- to millisecond timescales. Here, we directly determine the flexibility of bacteriorhodopsin -- a protein that uses the energy in light to move protons across cell membranes -- at the microsecond timescale by monitoring force-induced deformations across the protein structure with a technique based on atomic force microscopy. In contrast to existing methods, the deformations we measure involve a collective response of protein residues and operate under physiologically relevant conditions with native proteins.
Collapse
Affiliation(s)
- Mingdong Dong
- Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
9
|
Gross R, Schumann C, Wolf MMN, Herbst J, Diller R, Friedman N, Sheves M. Ultrafast Protein Conformational Alterations in Bacteriorhodopsin and Its Locked Analogue BR5.12. J Phys Chem B 2009; 113:7851-60. [PMID: 19422251 DOI: 10.1021/jp810042f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ruth Gross
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Christian Schumann
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Matthias M. N. Wolf
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Johannes Herbst
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Rolf Diller
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Noga Friedman
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Mordechai Sheves
- Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern, Germany, and Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
10
|
Functional electric field changes in photoactivated proteins revealed by ultrafast Stark spectroscopy of the Trp residues. Proc Natl Acad Sci U S A 2009; 106:7718-23. [PMID: 19416877 DOI: 10.1073/pnas.0812877106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ultrafast transient absorption spectroscopy of wild-type bacteriorhodopsin (WT bR) and 2 tryptophan mutants (W86F and W182F) is performed with visible light excitation (pump) and UV probe. The aim is to investigate the photoinduced change in the charge distribution with 50-fs time resolution by probing the effects on the tryptophan absorption bands. A systematic, quantitative comparison of the transient absorption of the 3 samples is carried out. The main result is the absence in the W86F mutant of a transient induced absorption band observed at approximately 300-310 nm in WT bR and W182F. A simple model describing the dipolar interaction of the retinal moiety with the 2 tryptophan residues of interest allows us to reproduce the dominant features of the transient signals observed in the 3 samples at ultrashort pump-probe delays. In particular, we show that Trp(86) undergoes a significant Stark shift induced by the transient retinal dipole moment. The corresponding transient signal can be isolated by direct subtraction of experimental data obtained for WT bR and W86F. It shows an instantaneous rise, followed by a decay over approximately 500 fs corresponding to the isomerization time. Interestingly, it does not decay back to zero, thus revealing a change in the local electrostatic environment that remains long after isomerization, in the K intermediate state of the protein cycle. The comparison of WT bR and W86F also leads to a revised interpretation of the overall transient UV absorption of bR.
Collapse
|
11
|
Wu Y, Zhong S, Ai X, Hu K, Zhang J. Ultrafast isomerization dynamics of retinal in bacteriorhodopsin as revealed by femtosecond absorption spectroscopy. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0283-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Biesso A, Qian W, El-Sayed MA. Gold nanoparticle plasmonic field effect on the primary step of the other photosynthetic system in nature, bacteriorhodopsin. J Am Chem Soc 2008; 130:3258-9. [PMID: 18290646 DOI: 10.1021/ja7099858] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arianna Biesso
- Georgia Institute of Technology, Department of Chemistry and Biochemistry 770 State Street, Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
13
|
Bálint Z, Végh GA, Popescu A, Dima M, Ganea C, Varó G. Direct observation of protein motion during the photochemical reaction cycle of bacteriorhodopsin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:7225-8. [PMID: 17503866 DOI: 10.1021/la700666p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Platinum-coated, conductive atomic force microscope cantilevers were used to deposit electrophoretically purple membranes from Halobacterium salinarum on the bottom part of the cantilevers. By illuminating the bacteriorhodopsin-containing purple membranes, the protein goes through its photochemical reaction cycle, during which a conformational change happens in the protein, changing its shape and size. The size change of the protein acts upon the cantilever by causing its deflection, which can be monitored by the detection system of the atomic force microscope. The shape of the signal, the action spectrum of the deflection amplitude, and the blue light inhibition of the deflection all prove that the origin of the signal is the conformational change arising in the bacteriorhodopsin during the photocycle. From the size of the signal, the magnitude of the protein motion could be estimated. Using polarized light, the orientation of the motion was determined, relative to the transition moment of the retinal.
Collapse
Affiliation(s)
- Zoltán Bálint
- Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary H-6726
| | | | | | | | | | | |
Collapse
|
14
|
Aharoni A, Ottolenghi M, Sheves M. Photoreduction of Bacteriorhodopsin Schiff Base at Low Humidity. A Study with C13=C14 Nonisomerizable Artificial Pigments¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0750668pobsba2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Losi A, Michler I, Gärtner W, Braslavsky SE. Time-resolved Thermodynamic Changes Photoinduced in 5,12-trans-locked Bacteriorhodopsin. Evidence that Retinal Isomerization is Required for Protein Activation¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720590trtcpi2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
|
17
|
Saranak J, Foster KW. Photoreceptor for curling behavior in Peranema trichophorum and evolution of eukaryotic rhodopsins. EUKARYOTIC CELL 2005; 4:1605-12. [PMID: 16215167 PMCID: PMC1265905 DOI: 10.1128/ec.4.10.1605-1612.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When it is gliding, the unicellular euglenoid Peranema trichophorum uses activation of the photoreceptor rhodopsin to control the probability of its curling behavior. From the curled state, the cell takes off in a new direction. In a similar manner, archaea such as Halobacterium use light activation of bacterio- and sensory rhodopsins to control the probability of reversal of the rotation direction of flagella. Each reversal causes the cell to change its direction. In neither case does the cell track light, as known for the rhodopsin-dependent eukaryotic phototaxis of fungi, green algae, cryptomonads, dinoflagellates, and animal larvae. Rhodopsin was identified in Peranema by its native action spectrum (peak at 2.43 eV or 510 nm) and by the shifted spectrum (peak at 3.73 eV or 332 nm) upon replacement of the native chromophore with the retinal analog n-hexenal. The in vivo physiological activity of n-hexenal incorporated to become a chromophore also demonstrates that charge redistribution of a short asymmetric chromophore is sufficient for receptor activation and that the following isomerization step is probably not required when the rest of the native chromophore is missing. This property seems universal among the Euglenozoa, Plant, and Fungus kingdom rhodopsins. The rhodopsins of animals have yet to be studied in this respect. The photoresponse appears to be mediated by Ca2+ influx.
Collapse
Affiliation(s)
- Jureepan Saranak
- Physics Department, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | | |
Collapse
|
18
|
Zadok U, Klare JP, Engelhard M, Sheves M. The hydroxylamine reaction of sensory rhodopsin II: light-induced conformational alterations with C13=C14 nonisomerizable pigment. Biophys J 2005; 89:2610-7. [PMID: 16085771 PMCID: PMC1366761 DOI: 10.1529/biophysj.105.065631] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory rhodopsin II, a repellent phototaxis receptor from Natronomonas (Natronobacterium) pharaonis (NpSRII), forms a complex with its cognate transducer (NpHtrII). In micelles the two proteins form a 1:1 heterodimer, whereas in membranes they assemble to a 2:2 complex. Similarly to other retinal proteins, sensory rhodopsin II undergoes a bleaching reaction with hydroxylamine in the dark which is markedly catalyzed by light. The reaction involves cleavage of the protonated Schiff base bond which covalently connects the retinal chromophore to the protein. The light acceleration reflects protein conformation alterations, at least in the retinal binding site, and thus allows for detection of these changes in various conditions. In this work we have followed the hydroxylamine reaction at different temperatures with and without the cognate transducer. We have found that light irradiation reduces the activation energy of the hydroxylamine reaction as well as the frequency factor. A similar effect was found previously for bacteriorhodopsin. The interaction with the transducer altered the light effect both in detergent and membranes. The transducer interaction decreased the apparent light effect on the energy of activation and the frequency factor in detergent but increased it in membranes. In addition, we have employed an artificial pigment derived from a retinal analog in which the critical C13=C14 double bond is locked by a rigid ring structure preventing its isomerization. We have observed light enhancement of the reaction rate and reduction of the energy of activation as well as the frequency factor, despite the fact that this pigment does not experience C13=C14 double bond isomerization. It is suggested that retinal excited state polarization caused by light absorption of the "locked" pigment polarizes the protein and triggers relatively long-lived protein conformational alterations.
Collapse
Affiliation(s)
- U Zadok
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
19
|
Groma GI, Colonna A, Lambry JC, Petrich JW, Váró G, Joffre M, Vos MH, Martin JL. Resonant optical rectification in bacteriorhodopsin. Proc Natl Acad Sci U S A 2004; 101:7971-5. [PMID: 15148391 PMCID: PMC419541 DOI: 10.1073/pnas.0306789101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The relative role of retinal isomerization and microscopic polarization in the phototransduction process of bacteriorhodopsin is still an open question. It is known that both processes occur on an ultrafast time scale. The retinal trans-->cis photoisomerization takes place on the time scale of a few hundred femtoseconds. On the other hand, it has been proposed that the primary light-induced event is a sudden polarization of the retinal environment, although there is no direct experimental evidence for femtosecond charge displacements, because photovoltaic techniques cannot be used to detect charge movements faster than picoseconds. Making use of the known high second-order susceptibility chi(2) of retinal in proteins, we have used a nonlinear technique, interferometric detection of coherent infrared emission, to study macroscopically oriented bacteriorhodopsin-containing purple membranes. We report and characterize impulsive macroscopic polarization of these films by optical rectification of an 11-fs visible light pulse in resonance with the optical transition. This finding provides direct evidence for charge separation as a precursor event for subsequent functional processes. A simple two-level model incorporating the resonant second-order optical properties of retinal, which are known to be a requirement for functioning of bacteriorhodopsin, is used to describe the observations. In addition to the electronic response, long-lived infrared emission at specific frequencies was observed, reflecting charge movements associated with vibrational motions. The simultaneous and phase-sensitive observation of both the electronic and vibrational signals opens the way to study the transduction of the initial polarization into structural dynamics.
Collapse
Affiliation(s)
- Géza I Groma
- Institute of Biophysics, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, H-6726, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kienberger F, Mueller H, Pastushenko V, Hinterdorfer P. Following single antibody binding to purple membranes in real time. EMBO Rep 2004; 5:579-83. [PMID: 15143343 PMCID: PMC1299069 DOI: 10.1038/sj.embor.7400149] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 03/17/2004] [Accepted: 03/17/2004] [Indexed: 11/08/2022] Open
Abstract
Antibody binding to surface antigens in membranes is the primary event in the specific immune defence of vertebrates. Here we used force microscopy to study the dynamics of antibody recognition of mutant purple membranes from Halobacterium salinarum containing a genetically appended anti-Sendai recognition epitope. Ligation of individual anti-Sendai antibodies to their antigenic epitopes was observed over time. Their increase in number within a small selected area revealed an apparent kinetic on-rate. The membrane-bound antibodies showed many different conformations that ranged from globular to V- and Y-like shapes. The maximum distance of two Fab fragments of the same antibody was observed to be approximately 18 nm, indicating an overall strong intrinsic flexibility of the antibody hinge region. Fab fragments of bound anti-Sendai antibodies were allocated to antigenic sites of the purple membrane, allowing the identification and localization of individual recognition epitopes on the surface of purple membranes.
Collapse
Affiliation(s)
- Ferry Kienberger
- Institute for Biophysics, J. Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz, Austria
| | - Harald Mueller
- Department of Microbiology, University of Kassel, Heinrich Plett Strasse 40, D-34132 Kassel, Germany
| | - Vassili Pastushenko
- Institute for Biophysics, J. Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz, Austria
| | - Peter Hinterdorfer
- Institute for Biophysics, J. Kepler University of Linz, Altenbergerstr. 69, A-4040 Linz, Austria
- Tel: +43 732 2468 9265; Fax: +43 732 2468 9280; E-mail:
| |
Collapse
|
21
|
Santos NC, Castanho MARB. An overview of the biophysical applications of atomic force microscopy. Biophys Chem 2004; 107:133-49. [PMID: 14962595 DOI: 10.1016/j.bpc.2003.09.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2002] [Revised: 07/30/2003] [Accepted: 09/04/2003] [Indexed: 11/27/2022]
Abstract
The potentialities of the atomic force microscopy (AFM) make it a tool of undeniable value for the study of biologically relevant samples. AFM is progressively becoming a usual benchtop technique. In average, more than one paper is published every day on AFM biological applications. This figure overcomes materials science applications, showing that 17 years after its invention, AFM has completely crossed the limits of its traditional areas of application. Its potential to image the structure of biomolecules or bio-surfaces with molecular or even sub-molecular resolution, study samples under physiological conditions (which allows to follow in situ the real time dynamics of some biological events), measure local chemical, physical and mechanical properties of a sample and manipulate single molecules should be emphasized.
Collapse
Affiliation(s)
- Nuno C Santos
- Instituto de Bioquímica/Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | | |
Collapse
|
22
|
Aharoni A, Khatchatouriants A, Manevitch A, Lewis A, Sheves M. Protein−β-Ionone Ring Interactions Enhance the Light-Induced Dipole of the Chromophore in Bacteriorhodopsin. J Phys Chem B 2003. [DOI: 10.1021/jp027702q] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amir Aharoni
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Artium Khatchatouriants
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alexandra Manevitch
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Aaron Lewis
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mordechai Sheves
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel, and Department of Applied Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
23
|
Zadok U, Khatchatouriants A, Lewis A, Ottolenghi M, Sheves M. Light-induced charge redistribution in the retinal chromophore is required for initiating the bacteriorhodopsin photocycle. J Am Chem Soc 2002; 124:11844-5. [PMID: 12358516 DOI: 10.1021/ja0274251] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteriorhodopsin's photocycle is initiated by the retinal chromophore light absorption. It has usually been assumed that light primarily isomerizes a retinal double bond which in turn induces protein conformational alterations and biological activity. We have studied several artificial pigments derived from retinal analogues tailored to substantially reduce the light-induced chromophore polarization. The lack of chromophore polarization was reflected in an undetectable second harmonic generation (SHG) signal. It was revealed that these artificial pigments did not exhibit any detectable light-induced photocycle nor light acceleration of the hydroxylamine-bleaching reaction. We suggest that light-induced retinal polarization triggers protein polarization which controls the course of the isomerization reaction by determining the relative efficiency of forward versus back-branching processes.
Collapse
Affiliation(s)
- Uri Zadok
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
24
|
Wang J, Link S, Heyes CD, El-Sayed MA. Comparison of the dynamics of the primary events of bacteriorhodopsin in its trimeric and monomeric states. Biophys J 2002; 83:1557-66. [PMID: 12202380 PMCID: PMC1302253 DOI: 10.1016/s0006-3495(02)73925-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this paper, femtosecond pump-probe spectroscopy in the visible region of the spectrum has been used to examine the ultrafast dynamics of the retinal excited state in both the native trimeric state and the monomeric state of bacteriorhodopsin (bR). It is found that the excited state lifetime (probed at 490 nm) increases only slightly upon the monomerization of bR. No significant kinetic difference is observed in the recovery process of the bR ground state probed at 570 nm nor in the fluorescent state observed at 850 nm. However, an increase in the relative amplitude of the slow component of bR excited state decay is observed in the monomer, which is due to the increase in the concentration of the 13-cis retinal isomer in the ground state of the light-adapted bR monomer. Our data indicate that when the protein packing around the retinal is changed upon bR monomerization, there is only a subtle change in the retinal potential surface, which is dependent on the charge distribution and the dipoles within the retinal-binding cavity. In addition, our results show that 40% of the excited state bR molecules return to the ground state on three different time scales: one-half-picosecond component during the relaxation of the excited state and the formation of the J intermediate, a 3-ps component as the J changes to the K intermediate where retinal photoisomerization occurs, and a subnanosecond component during the photocycle.
Collapse
Affiliation(s)
- Jianping Wang
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400 USA
| | | | | | | |
Collapse
|
25
|
Aharoni A, Ottolenghi M, Sheves M. Photoreduction of bacteriorhodopsin Schiff base at low humidity. A study with C13=C14 nonisomerizable artificial pigments. Photochem Photobiol 2002; 75:668-74. [PMID: 12081330 DOI: 10.1562/0031-8655(2002)075<0668:pobsba>2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The retinal protonated Schiff base of bacteriorhodopsin is photoreactive to reducing agents such as NaBH4. In the present work we have studied the effect of different protein hydration levels on the photoreductive reaction, as well as the consequences of preventing isomerization around the critical C13=C14 retinal double bond. It was revealed that the rate of light-induced NaBH4 reaction can be fitted to three phases, between 100 and 87%, from 87 to 35% and below 35% relative humidities (r.h.). The three phases are attributed to three protein regions characterized by different water affinities. Furthermore, it is shown that the PSB reduction reaction is light catalyzed even in artificial pigments derived from retinal analogs, in which isomerization around the C13=C14 double bond is prevented. It is suggested that the protein experiences light-induced conformational alterations that are not associated with C13=C14 double bond isomerization. In the 13-cis locked pigment the rate of reduction reaction is affected by r.h. levels only below 35%. The relatively low r.h. required for withdrawing water from the protein is attributed to the increased protein-water affinity in this specific pigment.
Collapse
Affiliation(s)
- Amir Aharoni
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
26
|
Aharoni A, Ottolenghi M, Sheves M. Light-induced hydrolysis and rebinding of nonisomerizable bacteriorhodopsin pigment. Biophys J 2002; 82:2617-26. [PMID: 11964248 PMCID: PMC1302050 DOI: 10.1016/s0006-3495(02)75603-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacteriorhodopsin (bR) is characterized by a retinal-protein protonated Schiff base covalent bond, which is stable for light absorption. We have revealed a light-induced protonated Schiff base hydrolysis reaction in a 13-cis locked bR pigment (bR5.13; lambda(max) = 550 nm) in which isomerization around the critical C13==C14 double bond is prevented by a rigid ring structure. The photohydrolysis reaction takes place without isomerization around any of the double bonds along the polyene chain and is indicative of protein conformational alterations probably due to light-induced polarization of the retinal chromophore. Two photointermediates are formed during the hydrolysis reaction, H450 (lambda(max) = 450 nm) and H430 (lambda(max) = 430 nm), which are characterized by a 13-cis configuration as analyzed by high-performance liquid chromatography. Upon blue light irradiation after the hydrolysis reaction, these intermediates rebind to the apomembrane to reform bR5.13. Irradiation of the H450 intermediate forms the original pigment, whereas irradiation of H430 at neutral pH results in a red shifted species (P580), which thermally decays back to bR5.13. Electron paramagnetic resonance (EPR) spectroscopy indicates that the cytoplasmic side of bR5.13 resembles the conformation of the N photointermediate of native bR. Furthermore, using osmotically active solutes, we have observed that the hydrolysis rate is dependent on water activity on the cytoplasmic side. Finally, we suggest that the hydrolysis reaction proceeds via the reversed pathway of the binding process and allows trapping a new intermediate, which is not accumulated in the binding process.
Collapse
Affiliation(s)
- Amir Aharoni
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
27
|
Atkinson GH, Zhou Y, Ujj L, Aharoni A, Sheves M, Ottolenghi M. Dynamics and Retinal Structural Changes in the Photocycle of the Artificial Bacteriorhodopsin Pigment BR6.9. J Phys Chem A 2002. [DOI: 10.1021/jp011911d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. H. Atkinson
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721, Department of Organic Chemistry, Weizmann Institute, Rehovot, Israel, Department of Physical Chemistry, Hebrew University, Jerusalem, Israel, and Department of Physics, University of West Florida, Pensacola, Florida 32503
| | - Y. Zhou
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721, Department of Organic Chemistry, Weizmann Institute, Rehovot, Israel, Department of Physical Chemistry, Hebrew University, Jerusalem, Israel, and Department of Physics, University of West Florida, Pensacola, Florida 32503
| | - L. Ujj
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721, Department of Organic Chemistry, Weizmann Institute, Rehovot, Israel, Department of Physical Chemistry, Hebrew University, Jerusalem, Israel, and Department of Physics, University of West Florida, Pensacola, Florida 32503
| | - A. Aharoni
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721, Department of Organic Chemistry, Weizmann Institute, Rehovot, Israel, Department of Physical Chemistry, Hebrew University, Jerusalem, Israel, and Department of Physics, University of West Florida, Pensacola, Florida 32503
| | - M. Sheves
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721, Department of Organic Chemistry, Weizmann Institute, Rehovot, Israel, Department of Physical Chemistry, Hebrew University, Jerusalem, Israel, and Department of Physics, University of West Florida, Pensacola, Florida 32503
| | - M. Ottolenghi
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721, Department of Organic Chemistry, Weizmann Institute, Rehovot, Israel, Department of Physical Chemistry, Hebrew University, Jerusalem, Israel, and Department of Physics, University of West Florida, Pensacola, Florida 32503
| |
Collapse
|
28
|
Schenkl S, Portuondo E, Zgrablić G, Chergui M, Haacke S, Friedman N, Sheves M. Ultrafast energy relaxation in bacteriorhodopsin studied by time-integrated fluorescence. Phys Chem Chem Phys 2002. [DOI: 10.1039/b205453a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Reich Z, Kapon R, Nevo R, Pilpel Y, Zmora S, Scolnik Y. Scanning force microscopy in the applied biological sciences. Biotechnol Adv 2001; 19:451-85. [PMID: 14538069 DOI: 10.1016/s0734-9750(01)00077-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Fifteen years after its invention, the scanning force microscope (SFM) is rooted deep in the biological sciences. Here we discuss the use of SFM in biotechnology and biomedical research. The spectrum of applications reviewed includes imaging, force spectroscopy and mapping, as well as sensor applications. It is our hope that this review will be useful for researchers considering the use of SFM in their studies but are uncertain about its scope of capabilities. For the benefit of readers unfamiliar with SFM technology, the fundamentals of SFM imaging and force measurement are also briefly introduced.
Collapse
Affiliation(s)
- Z Reich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
30
|
Bartl FJ, Ritter E, Hofmann KP. Signaling states of rhodopsin: absorption of light in active metarhodopsin II generates an all-trans-retinal bound inactive state. J Biol Chem 2001; 276:30161-6. [PMID: 11384968 DOI: 10.1074/jbc.m101506200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Absorption of light in rhodopsin leads through 11-cis- and all-trans-retinal isomerization, proton transfers, and structural changes to the active G-protein binding meta-II state. When meta-II is photolysed by blue light absorption, the activating pathway is apparently reverted, and rhodopsin is photoregenerated. However, the product formed, a P subspecies with A(max) = 500 nm (P(500)), is different from the ground state based on the following observations: (i) the ground state fingerprint of 11-cis-retinal does not appear in the infrared spectra, although the proton transfers and structural changes are reverted; (ii) extraction of the retinal from P(500) does not yield the expected stoichiometric amount of 11-cis-retinal but predominantly yields all-trans-retinal; (iii) the infrared spectrum of P(500) is similar to the classical meta-III intermediate, which arises from meta-II by thermal decay; and (iv) both P(500) and meta-III can be photoconverted to meta-II with the same changes in the infrared spectrum and without a significant change in the isomerization state of the extracted chromophore. The data indicate the presence of a "second switch" between active and inactive conformations that operates by photolysis but without isomerization around the C(11)-C(12) double bond. This emphasizes the exclusivity of the ground state, which is only accessible by the metabolic regeneration with 11-cis-retinal.
Collapse
Affiliation(s)
- F J Bartl
- Institute for Medical Physics and Biophysics, Medizinische Fakultät Charité, Humboldt University, Schumann Strasse 20-21, 10098 Berlin, Germany
| | | | | |
Collapse
|
31
|
Aharoni A, Weiner L, Lewis A, Ottolenghi M, Sheves M. Nonisomerizable non-retinal chromophores initiate light-induced conformational alterations in bacterioopsin. J Am Chem Soc 2001; 123:6612-6. [PMID: 11439048 DOI: 10.1021/ja004035a] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photoactivation of retinal proteins is usually interpreted in terms of C=C photoisomerization of the retinal moiety, which triggers appropriate conformational changes in the protein. In this work several dye molecules, characterized by a completely rigid structure in which no double-bond isomerization is possible, were incorporated into the binding site of bacteriorhodopsin (bR). Using a light-induced chemical reaction of a labeled EPR probe, it was observed that specific conformational alterations in the protein are induced following light absorption by the dye molecules occupying the binding site. The exact nature of these changes and their relationship to those occurring in the bR photocycle are still unclear. Nevertheless, their occurrence proves that C=C or C=NH(+) isomerization is not a prerequisite for protein conformational changes in a retinal protein. More generally, we show that conformational changes, leading to changes in reactivity, may be induced in proteins by optical excitation of simple nonisomerizable dyes located in the macromolecular matrix.
Collapse
Affiliation(s)
- A Aharoni
- Department of Organic Chemistry and Department of Chemical Services, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
32
|
Kietis P, Vengris M, Valkunas L. Electrical-to-mechanical coupling in purple membranes: membrane as electrostrictive medium. Biophys J 2001; 80:1631-40. [PMID: 11259278 PMCID: PMC1301354 DOI: 10.1016/s0006-3495(01)76135-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this paper, we present acousto-electrical measurements performed on dry films of purple membranes (PM) of Halobacterium salinarium. The purpose of these measurements is to determine the relation between mechanical and electrical phenomena in bacteriorhodopsin and to define the role of the protein in the proton transfer process. Electrical-to-mechanical coupling in PMs manifests itself as direct and inverse piezoelectric effects. Measurements performed on the samples with different degrees of PM orientation and at various values of the externally applied cross-membrane electric field indicate that piezoelectric phenomena in PMs arise from the electric asymmetry of the membranes, i.e., they originate from electrostriction. Experiments with samples made of oriented PMs allow estimation of the value of the intrinsic cross-membrane electric field, which is approximately 10(8) V/m. A hypothetical model of PM is presented where the electrical-to-mechanical coupling is suggested to be the main driving force for the proton translocation against the Coulomb forces acting in the membrane.
Collapse
Affiliation(s)
- P Kietis
- Physics Faculty, Vilnius University, 2054 Vilnius, Lithuania
| | | | | |
Collapse
|
33
|
Losi A, Michler I, Gärtner W, Braslavsky SE. Time-resolved thermodynamic changes photoinduced in 5,12-trans-locked bacteriorhodopsin. Evidence that retinal isomerization is required for protein activation. Photochem Photobiol 2000; 72:590-7. [PMID: 11107843 DOI: 10.1562/0031-8655(2000)072<0590:trtcpi>2.0.co;2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Structural volume changes upon excitation of isomerization-blocked 5,12-trans-locked bacteriorhodopsin (bR) (bacterio-opsin + 5-12-trans-locked retinal) were studied using photothermal methods. The very small prompt expansion detected using laser-induced optoacoustics (0.3 mL/mol of absorbed photons) is assigned to a charge reorganization in the chromophore protein pocket concomitant with the formation of the intermediate T5.12. The subsequent contraction associated with a 300 ns lifetime is assigned to protein movements required to reach the entire chromoprotein free energy minimum, after the 17 ps optical decay of T5.12. The volume changes comprise the entropy of medium rearrangement during T5.12 formation and decay. The slow changes detected in previous studies by atomic force microscopy might be explained by the slowing down of movements in films containing 5,12-trans-locked bR. Photothermal beam deflection data with the 5,12-trans-locked bR suspensions indicate no further changes in microseconds to hundreds of milliseconds. Thus, all the absorbed energy is either released to the solution as heat or used for entropy changes within the first 300 ns after the pulse, supporting the paradigm that isomerization is required for signal transduction in retinal proteins. Bacterio-opsin assembled with all-trans-retinal afforded (similar to data reported with wild-type bR) an expansion of 2.6 mL/mol (assigned to the production of KE) followed by a further expansion of 0.8 mL/mol (KE-->KL; KE, KL, early and late K's) involving no heat loss. For KL decay to L, a contraction of 6 mL/mol of phototransformed reconstituted all-trans bR was determined.
Collapse
Affiliation(s)
- A Losi
- Max-Planck-Institut für Strahlenchemie, Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
34
|
González-Luque R, Garavelli M, Bernardi F, Merchán M, Robb MA, Olivucci M. Computational evidence in favor of a two-state, two-mode model of the retinal chromophore photoisomerization. Proc Natl Acad Sci U S A 2000; 97:9379-84. [PMID: 10944211 PMCID: PMC16872 DOI: 10.1073/pnas.97.17.9379] [Citation(s) in RCA: 265] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this paper we use ab initio multiconfigurational second-order perturbation theory to establish the intrinsic photoisomerization path model of retinal chromophores. This is accomplished by computing the ground state (S(0)) and the first two singlet excited-state (S(1), S(2)) energies along the rigorously determined photoisomerization coordinate of the rhodopsin chromophore model 4-cis-gamma-methylnona-2,4,6,8-tetraeniminium cation and the bacteriorhodopsin chromophore model all-trans-hepta-2,4, 6-trieniminium cation in isolated conditions. The computed S(2) and S(1) energy profiles do not show any avoided crossing feature along the S(1) reaction path and maintain an energy gap >20 kcal small middle dotmol(-1). In addition, the analysis of the charge distribution shows that there is no qualitative change in the S(2) and S(1) electronic structure along the path. Thus, the S(1) state maintains a prevalent ionic (hole-pair) character whereas the S(2) state maintains a covalent (dot-dot) character. These results, together with the analysis of the S(1) reaction coordinate, support a two-state, two-mode model of the photoisomerization that constitutes a substantial revision of the previously proposed models.
Collapse
Affiliation(s)
- R González-Luque
- Departamento de Quimica-Fisica, Universitat de València, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Aharoni A, Weiner L, Ottolenghi M, Sheves M. Bacteriorhodpsin experiences light-induced conformational alterations in nonisomerizable C(13)=C(14) pigments. A study with EPR. J Biol Chem 2000; 275:21010-6. [PMID: 10801804 DOI: 10.1074/jbc.m001208200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which bacteriorhodopsin is activated following light absorption is not completely clear. We have detected protein conformational alterations following light absorption by retinal-based chromophores in the bacteriorhodopsin binding site by monitoring the rate of reduction-oxidation reactions of covalently attached spin labels, using EPR spectroscopy. It was found that the reduction reaction with hydroxylamine is light-catalyzed in the A103C-labeled pigment but not in E74C or M163C. The reaction is light-catalyzed even when isomerization of the C(13)=C(14) bond of the retinal chromophore is prevented. The reverse oxidation reaction with molecular oxygen is effective only in apomembrane derived from the mutant A103C. This reaction is light-accelerated following light absorption of the retinal oxime, which occupies the binding site. The light-induced acceleration is evident also in "locked" bacteriorhodopsin in which isomerization around the C(13)=C(14) bond is prevented. It is evident that the chromophore-protein covalent bond is not a prerequisite for protein response. In contrast to the case of the retinal oxime, a reduced C=N bond A103C-labeled pigment did not exhibit acceleration of the oxidation reaction following light absorption. Acceleration was observed, however, following substitution of the polyene by groups that modify the excited state charge delocalization. It is suggested that protein conformational alterations are induced by charge redistribution along the retinal polyene following light absorption.
Collapse
Affiliation(s)
- A Aharoni
- Departments of Organic Chemistry and Chemical Services, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
36
|
Characterization of a conical intersection between the ground and first excited state for a retinal analog. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0166-1280(00)00410-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Molteni C, Frank I, Parrinello M. An Excited State Density Functional Theory Study of the Rhodopsin Chromophore. J Am Chem Soc 1999. [DOI: 10.1021/ja983708a] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. Molteni
- Contribution from the Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - I. Frank
- Contribution from the Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - M. Parrinello
- Contribution from the Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| |
Collapse
|
38
|
Radding W, Romo T, Phillips GN. Protein-assisted pericyclic reactions: an alternate hypothesis for the action of quantal receptors. Biophys J 1999; 77:2920-9. [PMID: 10585916 PMCID: PMC1300565 DOI: 10.1016/s0006-3495(99)77125-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The rules for allowable pericyclic reactions indicate that the photoisomerizations of retinals in rhodopsins can be formally analogous to thermally promoted Diels-Alder condensations of monoenes with retinols. With little change in the seven-transmembrane helical environment these latter reactions could mimic the retinal isomerization while providing highly sensitive chemical reception. In this way archaic progenitors of G-protein-coupled chemical quantal receptors such as those for pheromones might have been evolutionarily plagiarized from the photon quantal receptor, rhodopsin, or vice versa. We investigated whether the known structure of bacteriorhodopsin exhibited any similarity in its active site with those of the two known antibody catalysts of Diels-Alder reactions and that of the photoactive yellow protein. A remarkable three-dimensional motif of aromatic side chains emerged in all four proteins despite the drastic differences in backbone structure. Molecular orbital calculations supported the possibility of transient pericyclic reactions as part of the isomerization-signal transduction mechanisms in both bacteriorhodopsin and the photoactive yellow protein. It appears that reactions in all four of the proteins investigated may be biological analogs of the organic chemists' chiral auxiliary-aided Diels-Alder reactions. Thus the light receptor and the chemical receptor subfamilies of the heptahelical receptor family may have been unified at one time by underlying pericyclic chemistry.
Collapse
Affiliation(s)
- W Radding
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA.
| | | | | |
Collapse
|
39
|
Atkinson GH, Ujj L, Zhou Y. Vibrational Spectrum of the J-625 Intermediate in the Room Temperature Bacteriorhodopsin Photocycle. J Phys Chem A 1999. [DOI: 10.1021/jp9918306] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. H. Atkinson
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721
| | - L. Ujj
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721
| | - Yidong Zhou
- Department of Chemistry and Optical Science Center, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
40
|
Affiliation(s)
- R C Dunn
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
41
|
Bezerra AG, Gomes ASL, da Silva-Filho DA, Acioli LH, de Araújo CB, de Melo CP. Molecular hyperpolarizabilities of retinal derivatives. J Chem Phys 1999. [DOI: 10.1063/1.479766] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Haupts U, Tittor J, Oesterhelt D. Closing in on bacteriorhodopsin: progress in understanding the molecule. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:367-99. [PMID: 10410806 DOI: 10.1146/annurev.biophys.28.1.367] [Citation(s) in RCA: 437] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriorhodopsin is the best understood ion transport protein and has become a paradigm for membrane proteins in general and transporters in particular. Models up to 2.5 A resolution of bacteriorhodopsin's structure have been published during the last three years and are basic for understanding its function. Thus one focus of this review is to summarize and to compare these models in detail. Another focus is to follow the protein through its catalytic cycle in summarizing more recent developments. We focus on literature published since 1995; a comprehensive series of reviews was published in 1995 (112).
Collapse
Affiliation(s)
- U Haupts
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
43
|
Lewis A, Khatchatouriants A, Treinin M, Chen Z, Peleg G, Friedman N, Bouevitch O, Rothman Z, Loew L, Sheres M. Second-harmonic generation of biological interfaces: probing the membrane protein bacteriorhodopsin and imaging membrane potential around GFP molecules at specific sites in neuronal cells of C. elegans. Chem Phys 1999. [DOI: 10.1016/s0301-0104(99)00128-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Song L, El-Sayed MA. Primary Step in Bacteriorhodopsin Photosynthesis: Bond Stretch Rather than Angle Twist of Its Retinal Excited-State Structure. J Am Chem Soc 1998. [DOI: 10.1021/ja980390d] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Li Song
- Laser Dynamics Laboratory School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta, Georgia 30332-0400
| | - M. A. El-Sayed
- Laser Dynamics Laboratory School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta, Georgia 30332-0400
| |
Collapse
|
45
|
Bikker JA, Trumpp-Kallmeyer S, Humblet C. G-Protein coupled receptors: models, mutagenesis, and drug design. J Med Chem 1998; 41:2911-27. [PMID: 9685229 DOI: 10.1021/jm970767a] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J A Bikker
- Parke-Davis Neuroscience Research Centre, Forvie Site, Robinson Way, Cambridge, United Kingdom CB2 2QB, and Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan 48105, USA
| | | | | |
Collapse
|
46
|
Rousso I, Gat Y, Lewis A, Sheves M, Ottolenghi M. Effective light-induced hydroxylamine reactions occur with C13 = C14 nonisomerizable bacteriorhodopsin pigments. Biophys J 1998; 75:413-7. [PMID: 9649399 PMCID: PMC1299711 DOI: 10.1016/s0006-3495(98)77526-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The light-driven proton pump bacteriorhodopsin (bR) undergoes a bleaching reaction with hydroxylamine in the dark, which is markedly catalyzed by light. The reaction involves cleavage of the (protonated) Schiff base bond, which links the retinyl chromophore to the protein. The catalytic light effect is currently attributed to the conformational changes associated with the photocycle of all-trans bR, which is responsible for its proton pump mechanism and is initiated by the all-trans --> 13-cis isomerization. This hypothesis is now being tested in a series of experiments, at various temperatures, using three artificial bR molecules in which the essential C13==C14 bond is locked by a rigid ring structure into an all-trans or 13-cis configuration. In all three cases we observe an enhancement of the reaction by light despite the fact that, because of locking of the C13==C14 bond, these molecules do not exhibit a photocycle, or any proton-pump activity. An analysis of the rate parameters excludes the possibility that the light-catalyzed reaction takes place during the approximately 20-ps excited state lifetimes of the locked pigments. It is concluded that the reaction is associated with a relatively long-lived (micros-ms) light-induced conformational change that is not reflected by changes in the optical spectrum of the retinyl chromophore. It is plausible that analogous changes (coupled to those of the photocycle) are also operative in the cases of native bR and visual pigments. These conclusions are discussed in view of the light-induced conformational changes recently detected in native and artificial bR with an atomic force sensor.
Collapse
Affiliation(s)
- I Rousso
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
47
|
Cordfunke R, Kort R, Pierik A, Gobets B, Koomen GJ, Verhoeven JW, Hellingwerf KJ. Trans/cis (Z/E) photoisomerization of the chromophore of photoactive yellow protein is not a prerequisite for the initiation of the photocycle of this photoreceptor protein. Proc Natl Acad Sci U S A 1998; 95:7396-401. [PMID: 9636160 PMCID: PMC22629 DOI: 10.1073/pnas.95.13.7396] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The chromophore of photoactive yellow protein (PYP) (i.e., 4-hydroxycinnamic acid) has been replaced by an analogue with a triple bond, rather than a double bond (by using 4-hydroxyphenylpropiolic acid in the reconstitution, yielding hybrid I) and by a "locked" chromophore (through reconstitution with 7-hydroxycoumarin-3-carboxylic acid, in which a covalent bridge is present across the vinyl bond, resulting in hybrid II). These hybrids absorb maximally at 464 and 443 nm, respectively, which indicates that in both hybrids the deprotonated chromophore does fit into the chromophore-binding pocket. Because the triple bond cannot undergo cis/trans (or E/Z) photoisomerization and because of the presence of the lock across the vinyl double bond in hybrid II, it was predicted that these two hybrids would not be able to photocycle. Surprisingly, both are able. We have demonstrated this ability by making use of transient absorption, low-temperature absorption, and Fourier-transform infrared (FTIR) spectroscopy. Both hybrids, upon photoexcitation, display authentic photocycle signals in terms of a red-shifted intermediate; hybrid I, in addition, goes through a blue-shifted-like intermediate state, with very slow kinetics. We interpret these results as further evidence that rotation of the carbonyl group of the thioester-linked chromophore of PYP, proposed in a previous FTIR study and visualized in recent time-resolved x-ray diffraction experiments, is of critical importance for photoactivation of PYP.
Collapse
Affiliation(s)
- R Cordfunke
- Laboratory for Microbiology, E.C. Slater Institute, BioCentrum, Achtergracht 127, 1018 WS Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Lawrence A. Bottomley
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400
| |
Collapse
|