1
|
Hart R, Moran NA, Ochman H. Genomic divergence across the tree of life. Proc Natl Acad Sci U S A 2025; 122:e2319389122. [PMID: 40014554 PMCID: PMC11912424 DOI: 10.1073/pnas.2319389122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Nucleotide sequence data are being harnessed to identify species, even in cases in which organisms themselves are neither in hand nor witnessed. But how genome-wide sequence divergence maps to species status is far from clear. While gene sequence divergence is commonly used to delineate bacterial species, its correspondence to established species boundaries has yet to be explored across eukaryotic taxa. Because the processes underlying gene flow differ fundamentally between prokaryotes and eukaryotes, these domains are likely to differ in the relationship between reproductive isolation and genome-wide sequence divergence. In prokaryotes, homologous recombination, the basis of gene flow, depends directly on the degree of genomic sequence divergence, whereas in sexually reproducing eukaryotes, reproductive incompatibility can stem from changes in very few genes. Guided by measures of genome-wide sequence divergence in bacteria, we gauge how genomic criteria correspond to species boundaries in eukaryotes. In recognized species of eukaryotes, levels of gene sequence divergence within species are typically very small, averaging <1% across protein-coding regions in most animals, plants, and fungi. There are even instances in which divergence between sister species is the same or less than that among conspecifics. In contrast, bacterial species, defined as populations exchanging homologous genes, show levels of divergence both within and between species that are considerably higher. Although no single threshold delineates species, eukaryotic populations with >1% genome-wide sequence divergence are likely separate species, whereas prokaryotic populations with 1% divergence are still able to recombine and thus can be considered the same species.
Collapse
Affiliation(s)
- Rowan Hart
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
- Department of Ecology and Evolution, University of Chicago, Chicago, IL60637
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX78712
| | - Howard Ochman
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX78712
| |
Collapse
|
2
|
Crawford MR, Harper JA, Cooper TJ, Marsolier-Kergoat MC, Llorente B, Neale MJ. Separable roles of the DNA damage response kinase Mec1ATR and its activator Rad24RAD17 during meiotic recombination. PLoS Genet 2024; 20:e1011485. [PMID: 39652586 DOI: 10.1371/journal.pgen.1011485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/19/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
During meiosis, programmed DNA double-strand breaks (DSBs) are formed by the topoisomerase-like enzyme, Spo11, activating the DNA damage response (DDR) kinase Mec1ATR via the checkpoint clamp loader, Rad24RAD17. At single loci, loss of Mec1 and Rad24 activity alters DSB formation and recombination outcome, but their genome-wide roles have not been examined in detail. Here, we utilise two strategies-deletion of the mismatch repair protein, Msh2, and control of meiotic prophase length via regulation of the Ndt80 transcription factor-to help characterise the roles Mec1 and Rad24 play in meiotic recombination by enabling genome-wide mapping of meiotic progeny. In line with previous studies, we observe severely impacted spore viability and a reduction in the frequency of recombination upon deletion of RAD24-driven by a shortened prophase. By contrast, loss of Mec1 function increases recombination frequency, consistent with its role in DSB trans-interference, and has less effect on spore viability. Despite these differences, complex multi-chromatid events initiated by closely spaced DSBs-rare in wild-type cells-occur more frequently in the absence of either Rad24 or Mec1, suggesting a loss of spatial regulation at the level of DSB formation in both. Mec1 and Rad24 also have important roles in the spatial regulation of crossovers (COs). Upon loss of either Mec1 or Rad24, CO distributions become more random-suggesting reductions in the global manifestation of interference. Such effects are similar to, but less extreme than, the phenotype of 'ZMM' mutants such as zip3Δ, and may be driven by reductions in the proportion of interfering COs. Collectively, in addition to shared roles in CO regulation, our results highlight separable roles for Rad24 as a pro-CO factor, and for Mec1 as a regulator of recombination frequency, the loss of which helps to suppress any broader defects in CO regulation caused by abrogation of the DDR.
Collapse
Affiliation(s)
- Margaret R Crawford
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Jon A Harper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
| | - Tim J Cooper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
| | - Marie-Claude Marsolier-Kergoat
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- UMR7206 Eco-Anthropology and Ethno-Biology, CNRS-MNHN-University Paris Diderot, Musée de l'Homme, Paris, France
| | - Bertrand Llorente
- Cancer Research Centre of Marseille, CNRS, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille Université UM105, Marseille, France
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, United Kingdom
| |
Collapse
|
3
|
Chen HJ, Sawasdee A, Lin YL, Chiang MY, Chang HY, Li WH, Wang CS. Reverse Mutations in Pigmentation Induced by Sodium Azide in the IR64 Rice Variety. Curr Issues Mol Biol 2024; 46:13328-13346. [PMID: 39727923 PMCID: PMC11727009 DOI: 10.3390/cimb46120795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Pigmentation in rice is due mainly to the accumulation of anthocyanins. Five color mutant lines, AZ1701, AZ1702, AZ1711, AZ1714, and AZ1715, derived from the sodium azide mutagenesis on the non-pigmented IR64 variety, were applied to study inheritance modes and genes for pigmentation. The mutant line AZ1711, when crossed with IR64, displays pigmentation in various tissues, exhibiting a 3:1 pigmented to non-pigmented ratio in the F2 progeny, indicating a single dominant locus controlling pigmentation. Eighty-four simple sequence repeat (SSR) markers were applied to map the pigment gene using 92 F2 individuals. RM6773, RM5754, RM253, and RM2615 markers are found to be linked to the color phenotype. RM253 explains 78% of the phenotypic variation, implying linkage to the pigmentation gene(s). Three candidate genes, OsC1 (MYB), bHLH, and 3GT, as anthocyanin biosynthesis-related genes, were identified within a 0.83 Mb region tightly linked to RM253. PCR cloning and sequencing revealed 10 bp and 72 bp insertions in the OsC1 and 3GT genes, respectively, restoring pigmentation as in wild rice. The 72 bp insertion is highly homologous to a sequence of Ty1-Copia retrotransposon and shows a particular secondary structure, suggesting that it was derived from the transposition of Ty1-Copia in the IR64 genome.
Collapse
Affiliation(s)
- Hsian-Jun Chen
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (H.-J.C.); (A.S.); (Y.-L.L.); (M.-Y.C.); (H.-Y.C.)
| | - Anuchart Sawasdee
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (H.-J.C.); (A.S.); (Y.-L.L.); (M.-Y.C.); (H.-Y.C.)
| | - Yu-Ling Lin
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (H.-J.C.); (A.S.); (Y.-L.L.); (M.-Y.C.); (H.-Y.C.)
| | - Min-Yu Chiang
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (H.-J.C.); (A.S.); (Y.-L.L.); (M.-Y.C.); (H.-Y.C.)
| | - Hsin-Yi Chang
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (H.-J.C.); (A.S.); (Y.-L.L.); (M.-Y.C.); (H.-Y.C.)
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung 402, Taiwan; (H.-J.C.); (A.S.); (Y.-L.L.); (M.-Y.C.); (H.-Y.C.)
| |
Collapse
|
4
|
Lukaszewski AJ. Dosage Effect of the Ph1 Locus on Homologous Crossovers in a Segment of Chromosome 1B of Bread Wheat (Triticum aestivum L.). Cytogenet Genome Res 2024; 164:165-169. [PMID: 39299222 DOI: 10.1159/000541484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION The Ph1 locus in polyploid wheat enforces strictly bivalent behaviour in meiotic metaphase I, by preventing homoeologues from crossing over. It has always been considered as completely dominant as no homoeologous metaphase I pairing has ever been detected with its single dose present. However, Ph1 also affects pairing and crossing over of homologous chromosomes. METHODS Homologous crossover frequencies with Ph1 in two, one, and null doses were scored cytologically, as exchanges within a ca. 9.5-9.9 Mbp terminal wheat segment of a wheat-rye translocation T-9 and corresponding segments in chromosome arms 1BS originating from four wheat cultivars. RESULTS In all cases, the crossover rates in the tested homologous segment of wheat genome, with a single dose of Ph1 present, were intermediate between those at two and null Ph1 doses. Averaging across all four chromosomes, the crossover rate with a single dose of Ph1 present was 37% higher from that with two doses and 46.4% lower of that with a zero dosage. CONCLUSION The Ph1 locus in wheat affects homologues and appears to operate in a dosage-dependent manner.
Collapse
Affiliation(s)
- Adam J Lukaszewski
- Department of Botany and Plant Science, University of California Riverside, Riverside, California, USA
| |
Collapse
|
5
|
Liu CC, Capart MMM, Lin JJ. Mismatch repair enzymes regulate telomere recombination in Saccharomycescerevisiae. Biochem Biophys Res Commun 2024; 707:149768. [PMID: 38489874 DOI: 10.1016/j.bbrc.2024.149768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
DNA mismatch repair (MMR) is a crucial mechanism that ensures chromosome stability and prevents the development of various human cancers. Apart from its role in correcting mismatches during DNA replication, MMR also plays a significant role in regulating recombination between non-identical sequences, a process known as homeologous recombination. Telomeres, the protective ends of eukaryotic chromosomes, possess sequences that are not perfectly homologous. While telomerase primarily maintains telomere length in the yeast Saccharomyces cerevisiae, recombination between telomeres becomes a major pathway for length maintenance in cells lacking telomerase. This study investigates the participation of MMR in telomere recombination. Our findings reveal that mutations in MMR genes activate type I recombination. Notably, among the MMR proteins, MutSα (Msh2 and Msh6) and MutLα (Mlh1 and Pms1) exerted the most pronounced effects on telomere recombination. We also found that yeast cells containing simple human telomeric TTAGGG DNA sequences preferentially utilize type II recombination to maintain their telomeres, highlighting the influence of the heterogeneous nature of yeast telomeric sequences on type II recombination. Furthermore, our observations indicate that MMR activity is indispensable for its impact on telomere recombination. Collectively, these results contribute to a more comprehensive understanding of the role of MMR in telomere recombination.
Collapse
Affiliation(s)
- Chia-Chun Liu
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mathilde M M Capart
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
6
|
Cook D, Kozmin SG, Yeh E, Petes TD, Bloom K. Dicentric chromosomes are resolved through breakage and repair at their centromeres. Chromosoma 2024; 133:117-134. [PMID: 38165460 PMCID: PMC11180013 DOI: 10.1007/s00412-023-00814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/11/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Chromosomes with two centromeres provide a unique opportunity to study chromosome breakage and DNA repair using completely endogenous cellular machinery. Using a conditional transcriptional promoter to control the second centromere, we are able to activate the dicentric chromosome and follow the appearance of DNA repair products. We find that the rate of appearance of DNA repair products resulting from homology-based mechanisms exceeds the expected rate based on their limited centromere homology (340 bp) and distance from one another (up to 46.3 kb). In order to identify whether DNA breaks originate in the centromere, we introduced 12 single-nucleotide polymorphisms (SNPs) into one of the centromeres. Analysis of the distribution of SNPs in the recombinant centromeres reveals that recombination was initiated with about equal frequency within the conserved centromere DNA elements CDEII and CDEIII of the two centromeres. The conversion tracts range from about 50 bp to the full length of the homology between the two centromeres (340 bp). Breakage and repair events within and between the centromeres can account for the efficiency and distribution of DNA repair products. We propose that in addition to providing a site for kinetochore assembly, the centromere may be a point of stress relief in the face of genomic perturbations.
Collapse
Affiliation(s)
- Diana Cook
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Stanislav G Kozmin
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Elaine Yeh
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599-3280, USA
| | - Thomas D Petes
- Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina Chapel Hill, Chapel Hill, NC, 27599-3280, USA.
| |
Collapse
|
7
|
Wang L, Yang S, Xue Y, Bo T, Xu J, Wang W. Mismatch Repair Protein Msh6 Tt Is Necessary for Nuclear Division and Gametogenesis in Tetrahymena thermophila. Int J Mol Sci 2023; 24:17619. [PMID: 38139447 PMCID: PMC10743813 DOI: 10.3390/ijms242417619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
DNA mismatch repair (MMR) improves replication accuracy by up to three orders of magnitude. The MutS protein in E. coli or its eukaryotic homolog, the MutSα (Msh2-Msh6) complex, recognizes base mismatches and initiates the mismatch repair mechanism. Msh6 is an essential protein for assembling the heterodimeric complex. However, the function of the Msh6 subunit remains elusive. Tetrahymena undergoes multiple DNA replication and nuclear division processes, including mitosis, amitosis, and meiosis. Here, we found that Msh6Tt localized in the macronucleus (MAC) and the micronucleus (MIC) during the vegetative growth stage and starvation. During the conjugation stage, Msh6Tt only localized in MICs and newly developing MACs. MSH6Tt knockout led to aberrant nuclear division during vegetative growth. The MSH6TtKO mutants were resistant to treatment with the DNA alkylating agent methyl methanesulfonate (MMS) compared to wild type cells. MSH6Tt knockout affected micronuclear meiosis and gametogenesis during the conjugation stage. Furthermore, Msh6Tt interacted with Msh2Tt and MMR-independent factors. Downregulation of MSH2Tt expression affected the stability of Msh6Tt. In addition, MSH6Tt knockout led to the upregulated expression of several MSH6Tt homologs at different developmental stages. Msh6Tt is involved in macronuclear amitosis, micronuclear mitosis, micronuclear meiosis, and gametogenesis in Tetrahymena.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (L.W.); (S.Y.); (Y.X.); (T.B.)
| | - Sitong Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (L.W.); (S.Y.); (Y.X.); (T.B.)
| | - Yuhuan Xue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (L.W.); (S.Y.); (Y.X.); (T.B.)
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (L.W.); (S.Y.); (Y.X.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| | - Jing Xu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (L.W.); (S.Y.); (Y.X.); (T.B.)
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China; (L.W.); (S.Y.); (Y.X.); (T.B.)
- Shanxi Key Laboratory of Biotechnology, Taiyuan 030006, China
| |
Collapse
|
8
|
Förster M, Rathmann I, Yüksel M, Power JJ, Maier B. Genome-wide transformation reveals extensive exchange across closely related Bacillus species. Nucleic Acids Res 2023; 51:12352-12366. [PMID: 37971327 PMCID: PMC10711437 DOI: 10.1093/nar/gkad1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial transformation is an important mode of horizontal gene transfer that helps spread genetic material across species boundaries. Yet, the factors that pose barriers to genome-wide cross-species gene transfer are poorly characterized. Here, we develop a replacement accumulation assay to study the effects of genomic distance on transfer dynamics. Using Bacillus subtilis as recipient and various species of the genus Bacillus as donors, we find that the rate of orthologous replacement decreases exponentially with the divergence of their core genomes. We reveal that at least 96% of the B. subtilis core genes are accessible to replacement by alleles from Bacillus spizizenii. For the more distantly related Bacillus atrophaeus, gene replacement events cluster at genomic locations with high sequence identity and preferentially replace ribosomal genes. Orthologous replacement also creates mosaic patterns between donor and recipient genomes, rearranges the genome architecture, and governs gain and loss of accessory genes. We conclude that cross-species gene transfer is dominated by orthologous replacement of core genes which occurs nearly unrestricted between closely related species. At a lower rate, the exchange of accessory genes gives rise to more complex genome dynamics.
Collapse
Affiliation(s)
- Mona Förster
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
| | - Isabel Rathmann
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
| | - Melih Yüksel
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
| | - Jeffrey J Power
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Majka M, Janáková E, Jakobson I, Järve K, Cápal P, Korchanová Z, Lampar A, Juračka J, Valárik M. The chromatin determinants and Ph1 gene effect at wheat sites with contrasting recombination frequency. J Adv Res 2023; 53:75-85. [PMID: 36632886 PMCID: PMC10658417 DOI: 10.1016/j.jare.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Meiotic recombination is one of the most important processes of evolution and adaptation to environmental conditions. Even though there is substantial knowledge about proteins involved in the process, targeting specific DNA loci by the recombination machinery is not well understood. OBJECTIVES This study aims to investigate a wheat recombination hotspot (H1) in comparison with a "regular" recombination site (Rec7) on the sequence and epigenetic level in conditions with functional and non-functional Ph1 locus. METHODS The DNA sequence, methylation pattern, and recombination frequency were analyzed for the H1 and Rec7 in three mapping populations derived by crossing introgressive wheat line 8.1 with cv. Chinese Spring (with Ph1 and ph1 alleles) and cv. Tähti. RESULTS The H1 and Rec7 loci are 1.586 kb and 2.538 kb long, respectively. High-density mapping allowed to delimit the Rec7 and H1 to 19 and 574 bp and 593 and 571 bp CO sites, respectively. A new method (ddPing) allowed screening recombination frequency in almost 66 thousand gametes. The screening revealed a 5.94-fold higher recombination frequency at the H1 compared to the Rec7. The H1 was also found out of the Ph1 control, similarly as gamete distortion. The recombination was strongly affected by larger genomic rearrangements but not by the SNP proximity. Moreover, chromatin markers for open chromatin and DNA hypomethylation were found associated with crossover occurrence except for the CHH methylation. CONCLUSION Our results, for the first time, allowed study of wheat recombination directly on sequence, shed new light on chromatin landmarks associated with particular recombination sites, and deepened knowledge about role of the Ph1 locus in control of wheat recombination processes. The results are suggesting more than one recombination control pathway. Understanding this phenomenon may become a base for more efficient wheat genome manipulation, gene pool enrichment, breeding, and study processes of recombination itself.
Collapse
Affiliation(s)
- Maciej Majka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Polish Academy of Sciences, Institute of Plant Genetics, Strzeszyńska 34, Poznań 60-479, Poland
| | - Eva Janáková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Irena Jakobson
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Kadri Järve
- Tallinn University of Technology, Department of Chemistry and Biotechnology, Akadeemia tee 15, Tallinn 19086, Estonia
| | - Petr Cápal
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic
| | - Zuzana Korchanová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Adam Lampar
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Jakub Juračka
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic; Department of Computer Science, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University, 17. listopadu 1192/12, Olomouc 779 00, Czech Republic
| | - Miroslav Valárik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc 779 00, Czech Republic.
| |
Collapse
|
10
|
Dluzewska J, Dziegielewski W, Szymanska-Lejman M, Gazecka M, Henderson IR, Higgins JD, Ziolkowski PA. MSH2 stimulates interfering and inhibits non-interfering crossovers in response to genetic polymorphism. Nat Commun 2023; 14:6716. [PMID: 37872134 PMCID: PMC10593791 DOI: 10.1038/s41467-023-42511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023] Open
Abstract
Meiotic crossovers can be formed through the interfering pathway, in which one crossover prevents another from forming nearby, or by an independent non-interfering pathway. In Arabidopsis, local sequence polymorphism between homologs can stimulate interfering crossovers in a MSH2-dependent manner. To understand how MSH2 regulates crossovers formed by the two pathways, we combined Arabidopsis mutants that elevate non-interfering crossovers with msh2 mutants. We demonstrate that MSH2 blocks non-interfering crossovers at polymorphic loci, which is the opposite effect to interfering crossovers. We also observe MSH2-independent crossover inhibition at highly polymorphic sites. We measure recombination along the chromosome arms in lines differing in patterns of heterozygosity and observe a MSH2-dependent crossover increase at the boundaries between heterozygous and homozygous regions. Here, we show that MSH2 is a master regulator of meiotic DSB repair in Arabidopsis, with antagonistic effects on interfering and non-interfering crossovers, which shapes the crossover landscape in relation to interhomolog polymorphism.
Collapse
Affiliation(s)
- Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Wojciech Dziegielewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | - Monika Gazecka
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
- Department of Molecular Virology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
11
|
Fus-Kujawa A, Mendrek B, Bajdak-Rusinek K, Diak N, Strzelec K, Gutmajster E, Janelt K, Kowalczuk A, Trybus A, Rozwadowska P, Wojakowski W, Gawron K, Sieroń AL. Gene-repaired iPS cells as novel approach for patient with osteogenesis imperfecta. Front Bioeng Biotechnol 2023; 11:1205122. [PMID: 37456734 PMCID: PMC10348904 DOI: 10.3389/fbioe.2023.1205122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction: The benefits of patient's specific cell/gene therapy have been reported in relation to numerous genetic related disorders including osteogenesis imperfecta (OI). In osteogenesis imperfecta particularly also a drug therapy based on the administration of bisphosphonates partially helped to ease the symptoms. Methods: In this controlled trial, fibroblasts derived from patient diagnosed with OI type II have been successfully reprogrammed into induced Pluripotent Stem cells (iPSCs) using Yamanaka factors. Those cells were subjected to repair mutations found in the COL1A1 gene using homologous recombination (HR) approach facilitated with star polymer (STAR) as a carrier of the genetic material. Results: Delivery of the correct linear DNA fragment to the osteogenesis imperfecta patient's cells resulted in the repair of the DNA mutation with an 84% success rate. IPSCs showed 87% viability after STAR treatment and 82% with its polyplex. Discussion: The use of novel polymer Poly[N,N-Dimethylaminoethyl Methacrylate-co-Hydroxyl-Bearing Oligo(Ethylene Glycol) Methacrylate] Arms (P(DMAEMA-co-OEGMA-OH) with star-like structure has been shown as an efficient tool for nucleic acids delivery into cells (Funded by National Science Centre, Contract No. UMO-2020/37/N/NZ2/01125).
Collapse
Affiliation(s)
- Agnieszka Fus-Kujawa
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Barbara Mendrek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Natalia Diak
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Karolina Strzelec
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Ewa Gutmajster
- Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Kamil Janelt
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Anna Trybus
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Patrycja Rozwadowska
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Students Scientific Society, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wojciech Wojakowski
- Division of Cardiology and Structural Heart Diseases, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander L. Sieroń
- Formerly Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
12
|
Trost H, Merkell A, Lopezcolorado FW, Stark J. Resolution of sequence divergence for repeat-mediated deletions shows a polarity that is mediated by MLH1. Nucleic Acids Res 2023; 51:650-667. [PMID: 36620890 PMCID: PMC9881173 DOI: 10.1093/nar/gkac1240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Repeat-mediated deletions (RMDs) are a type of chromosomal rearrangement between two homologous sequences that causes loss of the sequence between the repeats, along with one of the repeats. Sequence divergence between repeats suppresses RMDs; the mechanisms of such suppression and of resolution of the sequence divergence remains poorly understood. We identified RMD regulators using a set of reporter assays in mouse cells that test two key parameters: repeat sequence divergence and the distances between one repeat and the initiating chromosomal break. We found that the mismatch repair factor MLH1 suppresses RMDs with sequence divergence in the same pathway as MSH2 and MSH6, and which is dependent on residues in MLH1 and its binding partner PMS2 that are important for nuclease activity. Additionally, we found that the resolution of sequence divergence in the RMD product has a specific polarity, where divergent bases that are proximal to the chromosomal break end are preferentially removed. Moreover, we found that the domain of MLH1 that forms part of the MLH1-PMS2 endonuclease is important for polarity of resolution of sequence divergence. We also identified distinctions between MLH1 versus TOP3α in regulation of RMDs. We suggest that MLH1 suppresses RMDs with sequence divergence, while also promoting directional resolution of sequence divergence in the RMD product.
Collapse
Affiliation(s)
- Hannah Trost
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Jeremy M Stark
- To whom correspondence should be addressed. Tel: +1 626 218-6346; Fax: +1 626 218 8892;
| |
Collapse
|
13
|
Michelotti LA, Sun S, Heitman J, James TY. Clonal evolution in serially passaged Cryptococcus neoformans × deneoformans hybrids reveals a heterogenous landscape of genomic change. Genetics 2022; 220:iyab142. [PMID: 34849836 PMCID: PMC8733418 DOI: 10.1093/genetics/iyab142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/25/2021] [Indexed: 11/14/2022] Open
Abstract
Cryptococcus neoformans × deneoformans hybrids (also known as serotype AD hybrids) are basidiomycete yeasts that are common in a clinical setting. Like many hybrids, the AD hybrids are largely locked at the F1 stage and are mostly unable to undergo normal meiotic reproduction. However, these F1 hybrids, which display a high (∼10%) sequence divergence are known to genetically diversify through mitotic recombination and aneuploidy, and this diversification may be adaptive. In this study, we evolved a single AD hybrid genotype in six diverse environments by serial passaging and then used genome resequencing of evolved clones to determine evolutionary mechanisms of adaptation. The evolved clones generally increased fitness after passaging, accompanied by an average of 3.3 point mutations, 2.9 loss of heterozygosity (LOH) events, and 0.7 trisomic chromosomes per clone. LOH occurred through nondisjunction of chromosomes, crossing over consistent with break-induced replication, and gene conversion, in that order of prevalence. The breakpoints of these recombination events were significantly associated with regions of the genome with lower sequence divergence between the parents and clustered in sub-telomeric regions, notably in regions that had undergone introgression between the two parental species. Parallel evolution was observed, particularly through repeated homozygosity via nondisjunction, yet there was little evidence of environment-specific parallel change for either LOH, aneuploidy, or mutations. These data show that AD hybrids have both a remarkable genomic plasticity and yet are challenged in the ability to recombine through sequence divergence and chromosomal rearrangements, a scenario likely limiting the precision of adaptive evolution to novel environments.
Collapse
Affiliation(s)
- Lucas A Michelotti
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Shen S, Li Y, Wang J, Wei C, Wang Z, Ge W, Yuan M, Zhang L, Wang L, Sun S, Teng J, Xiao Q, Bao S, Feng Y, Zhang Y, Wang J, Hao Y, Lei T, Wang J. Illegitimate Recombination between Duplicated Genes Generated from Recursive Polyploidizations Accelerated the Divergence of the Genus Arachis. Genes (Basel) 2021; 12:genes12121944. [PMID: 34946893 PMCID: PMC8701993 DOI: 10.3390/genes12121944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/11/2023] Open
Abstract
The peanut (Arachis hypogaea L.) is the leading oil and food crop among the legume family. Extensive duplicate gene pairs generated from recursive polyploidizations with high sequence similarity could result from gene conversion, caused by illegitimate DNA recombination. Here, through synteny-based comparisons of two diploid and three tetraploid peanut genomes, we identified the duplicated genes generated from legume common tetraploidy (LCT) and peanut recent allo-tetraploidy (PRT) within genomes. In each peanut genome (or subgenomes), we inferred that 6.8–13.1% of LCT-related and 11.3–16.5% of PRT-related duplicates were affected by gene conversion, in which the LCT-related duplicates were the most affected by partial gene conversion, whereas the PRT-related duplicates were the most affected by whole gene conversion. Notably, we observed the conversion between duplicates as the long-lasting contribution of polyploidizations accelerated the divergence of different Arachis genomes. Moreover, we found that the converted duplicates are unevenly distributed across the chromosomes and are more often near the ends of the chromosomes in each genome. We also confirmed that well-preserved homoeologous chromosome regions may facilitate duplicates’ conversion. In addition, we found that these biological functions contain a higher number of preferentially converted genes, such as catalytic activity-related genes. We identified specific domains that are involved in converted genes, implying that conversions are associated with important traits of peanut growth and development.
Collapse
Affiliation(s)
- Shaoqi Shen
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yuxian Li
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Jianyu Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Chendan Wei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Zhenyi Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Weina Ge
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Min Yuan
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Lan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Li Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Sangrong Sun
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Jia Teng
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Qimeng Xiao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Shoutong Bao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yishan Feng
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yan Zhang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Jiaqi Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Yanan Hao
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
| | - Tianyu Lei
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
- Correspondence: (T.L.); (J.W.)
| | - Jinpeng Wang
- Center for Genomics and Computational Biology, School of Life Sciences, North China University of Science and Technology, Tangshan 063000, China; (S.S.); (Y.L.); (J.W.); (C.W.); (Z.W.); (W.G.); (M.Y.); (L.Z.); (L.W.); (S.S.); (J.T.); (Q.X.); (S.B.); (Y.F.); (Y.Z.); (J.W.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Correspondence: (T.L.); (J.W.)
| |
Collapse
|
15
|
Jeffries DL, Gerchen JF, Scharmann M, Pannell JR. A neutral model for the loss of recombination on sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200096. [PMID: 34247504 PMCID: PMC8273504 DOI: 10.1098/rstb.2020.0096] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2021] [Indexed: 01/10/2023] Open
Abstract
The loss of recombination between sex chromosomes has occurred repeatedly throughout nature, with important implications for their subsequent evolution. Explanations for this remarkable convergence have generally invoked only adaptive processes (e.g. sexually antagonistic selection); however, there is still little evidence for these hypotheses. Here we propose a model in which recombination on sex chromosomes is lost due to the neutral accumulation of sequence divergence adjacent to (and thus, in linkage disequilibrium with) the sex determiner. Importantly, we include in our model the fact that sequence divergence, in any form, reduces the probability of recombination between any two sequences. Using simulations, we show that, under certain conditions, a region of suppressed recombination arises and expands outwards from the sex-determining locus, under purely neutral processes. Further, we show that the rate and pattern of recombination loss are sensitive to the pre-existing recombination landscape of the genome and to sex differences in recombination rates, with patterns consistent with evolutionary strata emerging under some conditions. We discuss the applicability of these results to natural systems. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Daniel L. Jeffries
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jörn F. Gerchen
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mathias Scharmann
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - John R. Pannell
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Fan C, Hao M, Jia Z, Neri C, Chen X, Chen W, Liu D, Lukaszewski AJ. Some characteristics of crossing over in induced recombination between chromosomes of wheat and rye. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1665-1676. [PMID: 33346910 DOI: 10.1111/tpj.15140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Allopolyploid wheat (Triticum aestivum L.) carries three pairs of homoeologous genomes but its meiotic pairing is diploid-like. This is the effect of the Ph (pairing homoeologous) system which restricts chromosome pairing to strictly homologous. Ph1 is the locus with the strongest effect. Disabling Ph1 permits pairing between homoeologues and is routinely used in chromosome engineering to introgress alien variation into breeding stocks. Whereas the efficiency of Ph1 and the general pattern of homoeologous crossovers in its absence are quite well known from numerous studies, other characteristics of such crossovers remain unknown. This study analyzed the crossover points in four sets of the ph1b-induced recombinants between wheat homologues as well as between three wheat and rye (Secale cereale) homoeologous chromosome arms, and compared them to crossovers between homologues in a reference wheat population. The results show the Ph1 locus also controls crossing over of homologues, and the general patterns of homologous (with Ph1) and homoeologous (with ph1b) crossing over are the same. In all intervals analyzed, homoeologous crossovers fell within the range of frequency distribution of homologous crossovers among individual families of the reference population. No specific DNA sequence characteristics were identified that could be recognized by the Ph1 locus; the only difference between homologous and homoeologous crossing over appears to be in frequency. It is concluded that the Ph1 locus likely recognizes DNA sequence similarity; crossing over is permitted between very similar sequences. In the absence of Ph1 dissimilarities are ignored, in proportion to the level of the sequence divergence.
Collapse
Affiliation(s)
- Chaolan Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Christian Neri
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Xue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenshuai Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Adam J Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
17
|
Ferreira MTM, Glombik M, Perničková K, Duchoslav M, Scholten O, Karafiátová M, Techio VH, Doležel J, Lukaszewski AJ, Kopecký D. Direct evidence for crossover and chromatid interference in meiosis of two plant hybrids (Lolium multiflorum×Festuca pratensis and Allium cepa×A. roylei). JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:254-267. [PMID: 33029645 PMCID: PMC7853598 DOI: 10.1093/jxb/eraa455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 05/02/2023]
Abstract
Crossing over, in addition to its strictly genetic role, also performs a critical mechanical function, by bonding homologues in meiosis. Hence, it is responsible for an orderly reduction of the chromosome number. As such, it is strictly controlled in frequency and distribution. The well-known crossover control is positive crossover interference which reduces the probability of a crossover in the vicinity of an already formed crossover. A poorly studied aspect of the control is chromatid interference. Such analyses are possible in very few organisms as they require observation of all four products of a single meiosis. Here, we provide direct evidence of chromatid interference. Using in situ probing in two interspecific plant hybrids (Lolium multiflorum×Festuca pratensis and Allium cepa×A. roylei) during anaphase I, we demonstrate that the involvement of four chromatids in double crossovers is significantly more frequent than expected (64% versus 25%). We also provide a physical measure of the crossover interference distance, covering ~30-40% of the relative chromosome arm length, and show that the centromere acts as a barrier for crossover interference. The two arms of a chromosome appear to act as independent units in the process of crossing over. Chromatid interference has to be seriously addressed in genetic mapping approaches and further studies.
Collapse
Affiliation(s)
- Marco Tulio Mendes Ferreira
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Department of Biology, Federal University of Lavras, Lavras-MG, Brazil
| | - Marek Glombik
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska, Brno, Czech Republic
| | - Kateřina Perničková
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska, Brno, Czech Republic
| | - Martin Duchoslav
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Olga Scholten
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Miroslava Karafiátová
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Jaroslav Doležel
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Adam J Lukaszewski
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - David Kopecký
- Institute of Experimental Botany, Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
18
|
Priest SJ, Coelho MA, Mixão V, Clancey SA, Xu Y, Sun S, Gabaldón T, Heitman J. Factors enforcing the species boundary between the human pathogens Cryptococcus neoformans and Cryptococcus deneoformans. PLoS Genet 2021; 17:e1008871. [PMID: 33465111 PMCID: PMC7846113 DOI: 10.1371/journal.pgen.1008871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/29/2021] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Hybridization has resulted in the origin and variation in extant species, and hybrids continue to arise despite pre- and post-zygotic barriers that limit their formation and evolutionary success. One important system that maintains species boundaries in prokaryotes and eukaryotes is the mismatch repair pathway, which blocks recombination between divergent DNA sequences. Previous studies illuminated the role of the mismatch repair component Msh2 in blocking genetic recombination between divergent DNA during meiosis. Loss of Msh2 results in increased interspecific genetic recombination in bacterial and yeast models, and increased viability of progeny derived from yeast hybrid crosses. Hybrid isolates of two pathogenic fungal Cryptococcus species, Cryptococcus neoformans and Cryptococcus deneoformans, are isolated regularly from both clinical and environmental sources. In the present study, we sought to determine if loss of Msh2 would relax the species boundary between C. neoformans and C. deneoformans. We found that crosses between these two species in which both parents lack Msh2 produced hybrid progeny with increased viability and high levels of aneuploidy. Whole-genome sequencing revealed few instances of recombination among hybrid progeny and did not identify increased levels of recombination in progeny derived from parents lacking Msh2. Several hybrid progeny produced structures associated with sexual reproduction when incubated alone on nutrient-rich medium in light, a novel phenotype in Cryptococcus. These findings represent a unique, unexpected case where rendering the mismatch repair system defective did not result in increased meiotic recombination across a species boundary. This suggests that alternative pathways or other mismatch repair components limit meiotic recombination between homeologous DNA and enforce species boundaries in the basidiomycete Cryptococcus species. Several mechanisms enforce species boundaries by either preventing the formation of hybrid zygotes, known as pre-zygotic barriers, or preventing the viability and fecundity of hybrids, known as post-zygotic barriers. Despite these barriers, interspecific hybrids form at an appreciable frequency, such as hybrid isolates of the human fungal pathogenic species, Cryptococcus neoformans and Cryptococcus deneoformans, which are regularly isolated from both clinical and environmental sources. C. neoformans x C. deneoformans hybrids are typically highly aneuploid, sterile, and display phenotypes intermediate to those of either parent, although self-fertile isolates and transgressive phenotypes have been observed. One important mechanism known to enforce species boundaries or lead to incipient speciation is the DNA mismatch repair system, which blocks recombination between divergent DNA sequences during meiosis. The aim of this study was to determine if genetically deleting the DNA mismatch repair component Msh2 would relax the species boundary between C. neoformans and C. deneoformans. Progeny derived from C. neoformans x C. deneoformans crosses in which both parental strains lacked Msh2 had higher viability, and unlike previous studies in Saccharomyces, these Cryptococcus hybrid progeny had higher levels of aneuploidy and no observable increase in meiotic recombination at the whole-genome level.
Collapse
Affiliation(s)
- Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marco A. Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Verónica Mixão
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yitong Xu
- Program in Cell and Molecular Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Toni Gabaldón
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Mackenroth B, Alani E. Collaborations between chromatin and nuclear architecture to optimize DNA repair fidelity. DNA Repair (Amst) 2021; 97:103018. [PMID: 33285474 PMCID: PMC8486310 DOI: 10.1016/j.dnarep.2020.103018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 01/22/2023]
Abstract
Homologous recombination (HR), considered the highest fidelity DNA double-strand break (DSB) repair pathway that a cell possesses, is capable of repairing multiple DSBs without altering genetic information. However, in "last resort" scenarios, HR can be directed to low fidelity subpathways which often use non-allelic donor templates. Such repair mechanisms are often highly mutagenic and can also yield chromosomal rearrangements and/or deletions. While the choice between HR and its less precise counterpart, non-homologous end joining (NHEJ), has received much attention, less is known about how cells manage and prioritize HR subpathways. In this review, we describe work focused on how chromatin and nuclear architecture orchestrate subpathway choice and repair template usage to maintain genome integrity without sacrificing cell survival. Understanding the relationships between nuclear architecture and recombination mechanics will be critical to understand these cellular repair decisions.
Collapse
Affiliation(s)
- Beata Mackenroth
- Department of Molecular Biology and Genetics, Cornell University, 459 Biotechnology Building, Ithaca, NY, 14853-2703, United States
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, 459 Biotechnology Building, Ithaca, NY, 14853-2703, United States.
| |
Collapse
|
20
|
Blackwell AR, Dluzewska J, Szymanska-Lejman M, Desjardins S, Tock AJ, Kbiri N, Lambing C, Lawrence EJ, Bieluszewski T, Rowan B, Higgins JD, Ziolkowski PA, Henderson IR. MSH2 shapes the meiotic crossover landscape in relation to interhomolog polymorphism in Arabidopsis. EMBO J 2020; 39:e104858. [PMID: 32935357 PMCID: PMC7604573 DOI: 10.15252/embj.2020104858] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
During meiosis, DNA double-strand breaks undergo interhomolog repair to yield crossovers between homologous chromosomes. To investigate how interhomolog sequence polymorphism affects crossovers, we sequenced multiple recombinant populations of the model plant Arabidopsis thaliana. Crossovers were elevated in the diverse pericentromeric regions, showing a local preference for polymorphic regions. We provide evidence that crossover association with elevated diversity is mediated via the Class I crossover formation pathway, although very high levels of diversity suppress crossovers. Interhomolog polymorphism causes mismatches in recombining molecules, which can be detected by MutS homolog (MSH) mismatch repair protein heterodimers. Therefore, we mapped crossovers in a msh2 mutant, defective in mismatch recognition, using multiple hybrid backgrounds. Although total crossover numbers were unchanged in msh2 mutants, recombination was remodelled from the diverse pericentromeres towards the less-polymorphic sub-telomeric regions. Juxtaposition of megabase heterozygous and homozygous regions causes crossover remodelling towards the heterozygous regions in wild type Arabidopsis, but not in msh2 mutants. Immunostaining showed that MSH2 protein accumulates on meiotic chromosomes during prophase I, consistent with MSH2 regulating meiotic recombination. Our results reveal a pro-crossover role for MSH2 in regions of higher sequence diversity in A. thaliana.
Collapse
Affiliation(s)
| | - Julia Dluzewska
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Maja Szymanska-Lejman
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Stuart Desjardins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Nadia Kbiri
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | | | - Emma J Lawrence
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tomasz Bieluszewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Beth Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Piotr A Ziolkowski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Liu C, Wang J, Sun P, Yu J, Meng F, Zhang Z, Guo H, Wei C, Li X, Shen S, Wang X. Illegitimate Recombination Between Homeologous Genes in Wheat Genome. FRONTIERS IN PLANT SCIENCE 2020; 11:1076. [PMID: 32849677 PMCID: PMC7396543 DOI: 10.3389/fpls.2020.01076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/30/2020] [Indexed: 05/30/2023]
Abstract
Polyploidies produce a large number of duplicated regions and genes in genomes, which have a long-term impact and stimulate genetic innovation. The high similarity between homeologous chromosomes, forming different subgenomes, or homologous regions after genome repatterning, may permit illegitimate DNA recombination. Here, based on gene colinearity, we aligned the (sub)genomes of common wheat (Triticum aestivum, AABBDD genotype) and its relatives, including Triticum urartu (AA), Aegilops tauschii (DD), and T. turgidum ssp. dicoccoides (AABB) to detect the homeologous (paralogous or orthologous) colinear genes within and between (sub)genomes. Besides, we inferred more ancient paralogous regions produced by a much ancient grass-common tetraploidization. By comparing the sequence similarity between paralogous and orthologous genes, we assumed abnormality in the topology of constructed gene trees, which could be explained by gene conversion as a result of illegitimate recombination. We found large numbers of inferred converted genes (>2,000 gene pairs) suggested long-lasting genome instability of the hexaploid plant, and preferential donor roles by DD genes. Though illegitimate recombination was much restricted, duplicated genes produced by an ancient whole-genome duplication, which occurred millions of years ago, also showed evidence of likely gene conversion. As to biological function, we found that ~40% catalytic genes in colinearity, including those involved in starch biosynthesis, were likely affected by gene conversion. The present study will contribute to understanding the functional and structural innovation of the common wheat genome.
Collapse
Affiliation(s)
- Chao Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jinpeng Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
- National Key Laboratory for North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, China
| | - Pengchuan Sun
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jigao Yu
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Fanbo Meng
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
- Institute for Genomics and Bio-Big-Data, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhikang Zhang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
- Institute for Genomics and Bio-Big-Data, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - He Guo
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Chendan Wei
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Xinyu Li
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Shaoqi Shen
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Xiyin Wang
- School of Life Sciences, North China University of Science and Technology, Tangshan, China
- National Key Laboratory for North China Crop Improvement and Regulation, Hebei Agriculture University, Baoding, China
- Institute for Genomics and Bio-Big-Data, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Hum YF, Jinks-Robertson S. Mismatch recognition and subsequent processing have distinct effects on mitotic recombination intermediates and outcomes in yeast. Nucleic Acids Res 2019; 47:4554-4568. [PMID: 30809658 PMCID: PMC6511840 DOI: 10.1093/nar/gkz126] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/12/2019] [Accepted: 02/23/2019] [Indexed: 01/25/2023] Open
Abstract
The post-replicative mismatch repair (MMR) system has anti-recombination activity that limits interactions between diverged sequences by recognizing mismatches in strand-exchange intermediates. In contrast to their equivalent roles during replication-error repair, mismatch recognition is more important for anti-recombination than subsequent mismatch processing. To obtain insight into this difference, ectopic substrates with 2% sequence divergence were used to examine mitotic recombination outcome (crossover or noncrossover; CO and NCO, respectively) and to infer molecular intermediates formed during double-strand break repair in Saccharomyces cerevisiae. Experiments were performed in an MMR-proficient strain, a strain with compromised mismatch-recognition activity (msh6Δ) and a strain that retained mismatch-recognition activity but was unable to process mismatches (mlh1Δ). While the loss of either mismatch binding or processing elevated the NCO frequency to a similar extent, CO events increased only when mismatch binding was compromised. The molecular features of NCOs, however, were altered in fundamentally different ways depending on whether mismatch binding or processing was eliminated. These data suggest a model in which mismatch recognition reverses strand-exchange intermediates prior to the initiation of end extension, while subsequent mismatch processing that is linked to end extension specifically destroys NCO intermediates that contain conflicting strand-discrimination signals for mismatch removal.
Collapse
Affiliation(s)
- Yee Fang Hum
- University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
23
|
Chakraborty U, Mackenroth B, Shalloway D, Alani E. Chromatin Modifiers Alter Recombination Between Divergent DNA Sequences. Genetics 2019; 212:1147-1162. [PMID: 31221666 PMCID: PMC6707472 DOI: 10.1534/genetics.119.302395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Recombination between divergent DNA sequences is actively prevented by heteroduplex rejection mechanisms. In baker's yeast, such antirecombination mechanisms can be initiated by the recognition of DNA mismatches in heteroduplex DNA by MSH proteins, followed by recruitment of the Sgs1-Top3-Rmi1 helicase-topoisomerase complex to unwind the recombination intermediate. We previously showed that the repair/rejection decision during single-strand annealing recombination is temporally regulated by MSH (MutShomolog) protein levels and by factors that excise nonhomologous single-stranded tails. These observations, coupled with recent studies indicating that mismatch repair (MMR) factors interact with components of the histone chaperone machinery, encouraged us to explore roles for epigenetic factors and chromatin conformation in regulating the decision to reject vs. repair recombination between divergent DNA substrates. This work involved the use of an inverted repeat recombination assay thought to measure sister chromatid repair during DNA replication. Our observations are consistent with the histone chaperones CAF-1 and Rtt106, and the histone deacetylase Sir2, acting to suppress heteroduplex rejection and the Rpd3, Hst3, and Hst4 deacetylases acting to promote heteroduplex rejection. These observations, and double-mutant analysis, have led to a model in which nucleosomes located at DNA lesions stabilize recombination intermediates and compete with MMR factors that mediate heteroduplex rejection.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Beata Mackenroth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - David Shalloway
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703
| |
Collapse
|
24
|
Passer AR, Coelho MA, Billmyre RB, Nowrousian M, Mittelbach M, Yurkov AM, Averette AF, Cuomo CA, Sun S, Heitman J. Genetic and Genomic Analyses Reveal Boundaries between Species Closely Related to Cryptococcus Pathogens. mBio 2019; 10:e00764-19. [PMID: 31186317 PMCID: PMC6561019 DOI: 10.1128/mbio.00764-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Speciation is a central mechanism of biological diversification. While speciation is well studied in plants and animals, in comparison, relatively little is known about speciation in fungi. One fungal model is the Cryptococcus genus, which is best known for the pathogenic Cryptococcus neoformans/Cryptococcus gattii species complex that causes >200,000 new human infections annually. Elucidation of how these species evolved into important human-pathogenic species remains challenging and can be advanced by studying the most closely related nonpathogenic species, Cryptococcus amylolentus and Tsuchiyaea wingfieldii However, these species have only four known isolates, and available data were insufficient to determine species boundaries within this group. By analyzing full-length chromosome assemblies, we reappraised the phylogenetic relationships of the four available strains, confirmed the genetic separation of C. amylolentus and T. wingfieldii (now Cryptococcus wingfieldii), and revealed an additional cryptic species, for which the name Cryptococcus floricola is proposed. The genomes of the three species are ∼6% divergent and exhibit significant chromosomal rearrangements, including inversions and a reciprocal translocation that involved intercentromeric ectopic recombination, which together likely impose significant barriers to genetic exchange. Using genetic crosses, we show that while C. wingfieldii cannot interbreed with any of the other strains, C. floricola can still undergo sexual reproduction with C. amylolentus However, most of the resulting spores were inviable or sterile or showed reduced recombination during meiosis, indicating that intrinsic postzygotic barriers had been established. Our study and genomic data will foster additional studies addressing fungal speciation and transitions between nonpathogenic and pathogenic Cryptococcus lineages.IMPORTANCE The evolutionary drivers of speciation are critical to our understanding of how new pathogens arise from nonpathogenic lineages and adapt to new environments. Here we focus on the Cryptococcus amylolentus species complex, a nonpathogenic fungal lineage closely related to the human-pathogenic Cryptococcus neoformans/Cryptococcus gattii complex. Using genetic and genomic analyses, we reexamined the species boundaries of four available isolates within the C. amylolentus complex and revealed three genetically isolated species. Their genomes are ∼6% divergent and exhibit chromosome rearrangements, including translocations and small-scale inversions. Although two of the species (C. amylolentus and newly described C. floricola) were still able to interbreed, the resulting hybrid progeny were usually inviable or sterile, indicating that barriers to reproduction had already been established. These results advance our understanding of speciation in fungi and highlight the power of genomics in assisting our ability to correctly identify and discriminate fungal species.
Collapse
Affiliation(s)
- Andrew Ryan Passer
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Marco A Coelho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Robert Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Minou Nowrousian
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Moritz Mittelbach
- Geobotany, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Andrey M Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Anna Floyd Averette
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
25
|
Interhomolog polymorphism shapes meiotic crossover within the Arabidopsis RAC1 and RPP13 disease resistance genes. PLoS Genet 2018; 14:e1007843. [PMID: 30543623 PMCID: PMC6307820 DOI: 10.1371/journal.pgen.1007843] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/27/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022] Open
Abstract
During meiosis, chromosomes undergo DNA double-strand breaks (DSBs), which can be repaired using a homologous chromosome to produce crossovers. Meiotic recombination frequency is variable along chromosomes and tends to concentrate in narrow hotspots. We mapped crossover hotspots located in the Arabidopsis thaliana RAC1 and RPP13 disease resistance genes, using varying haplotypic combinations. We observed a negative non-linear relationship between interhomolog divergence and crossover frequency within the hotspots, consistent with polymorphism locally suppressing crossover repair of DSBs. The fancm, recq4a recq4b, figl1 and msh2 mutants, or lines with increased HEI10 dosage, are known to show increased crossovers throughout the genome. Surprisingly, RAC1 crossovers were either unchanged or decreased in these genetic backgrounds, showing that chromosome location and local chromatin environment are important for regulation of crossover activity. We employed deep sequencing of crossovers to examine recombination topology within RAC1, in wild type, fancm, recq4a recq4b and fancm recq4a recq4b backgrounds. The RAC1 recombination landscape was broadly conserved in the anti-crossover mutants and showed a negative relationship with interhomolog divergence. However, crossovers at the RAC1 5'-end were relatively suppressed in recq4a recq4b backgrounds, further indicating that local context may influence recombination outcomes. Our results demonstrate the importance of interhomolog divergence in shaping recombination within plant disease resistance genes and crossover hotspots.
Collapse
|
26
|
Rogers DW, McConnell E, Ono J, Greig D. Spore-autonomous fluorescent protein expression identifies meiotic chromosome mis-segregation as the principal cause of hybrid sterility in yeast. PLoS Biol 2018; 16:e2005066. [PMID: 30419022 PMCID: PMC6258379 DOI: 10.1371/journal.pbio.2005066] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 11/26/2018] [Accepted: 10/29/2018] [Indexed: 11/19/2022] Open
Abstract
Genome-wide sequence divergence between populations can cause hybrid sterility through the action of the anti-recombination system, which rejects crossover repair of double strand breaks between nonidentical sequences. Because crossovers are necessary to ensure proper segregation of homologous chromosomes during meiosis, the reduced recombination rate in hybrids can result in high levels of nondisjunction and therefore low gamete viability. Hybrid sterility in interspecific crosses of Saccharomyces yeasts is known to be associated with such segregation errors, but estimates of the importance of nondisjunction to postzygotic reproductive isolation have been hampered by difficulties in accurately measuring nondisjunction frequencies. Here, we use spore-autonomous fluorescent protein expression to quantify nondisjunction in both interspecific and intraspecific yeast hybrids. We show that segregation is near random in interspecific hybrids. The observed rates of nondisjunction can explain most of the sterility observed in interspecific hybrids through the failure of gametes to inherit at least one copy of each chromosome. Partially impairing the anti-recombination system by preventing expression of the RecQ helicase SGS1 during meiosis cuts nondisjunction frequencies in half. We further show that chromosome loss through nondisjunction can explain nearly all of the sterility observed in hybrids formed between two populations of a single species. The rate of meiotic nondisjunction of each homologous pair was negatively correlated with chromosome size in these intraspecific hybrids. Our results demonstrate that sequence divergence is not only associated with the sterility of hybrids formed between distantly related species but may also be a direct cause of reproductive isolation in incipient species.
Collapse
Affiliation(s)
- David W. Rogers
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- * E-mail:
| | - Ellen McConnell
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jasmine Ono
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Duncan Greig
- Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
27
|
Li S, Wehrenberg B, Waldman BC, Waldman AS. Mismatch tolerance during homologous recombination in mammalian cells. DNA Repair (Amst) 2018; 70:25-36. [PMID: 30103093 DOI: 10.1016/j.dnarep.2018.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/19/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
We investigated the homology dependency of recombination in thymidine kinase (tk)-deficient mouse fibroblasts. Cells were transfected with DNA constructs harboring a herpes tk gene (the "recipient") rendered non-functional by an oligonucleotide containing the recognition site for endonuclease I-SceI. Constructs also contained a "donor" tk sequence that could restore function to the recipient gene through spontaneous gene conversion or via repair of a double-strand break (DSB) at the I-SceI site. Recombination events were recoverable by selection for tk-positive clones. Three different donors were used containing 16, 25, or 33 mismatches relative to the recipient. The mismatches were clustered, forming an interval of "homeology" relative to the recipient sequences. We show that when homeologous sequences were surrounded by high homology, mismatches were frequently included in gene conversion events. Notably, conversion tracts from spontaneous recombination included either all or none of the mismatches, suggesting that recombination must begin and end in high homology. This requirement was relaxed for events that occurred near an induced DSB, as a significant number of these latter conversion tracts had one end positioned within homeology. Knock-down of mismatch repair showed that incorporation of mismatches into gene conversion tracts can involve repair of mismatched heteroduplex intermediates, indicating that mismatch repair does not necessarily impede homeologous genetic exchange. Our results illustrate (1) genetic exchange between homeologous sequences in a mammalian genome is enabled by nearby homology, (2) proximity to a DSB impacts the homology requirements for where genetic exchange may begin and end, and (3) mismatch correction and previously documented anti-recombination activity are separable functions of the mismatch repair machinery in mammalian cells.
Collapse
Affiliation(s)
- Shen Li
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Building, 700 Sumter Street, Columbia, South Carolina, 29208, USA
| | - Bryan Wehrenberg
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Building, 700 Sumter Street, Columbia, South Carolina, 29208, USA
| | - Barbara C Waldman
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Building, 700 Sumter Street, Columbia, South Carolina, 29208, USA
| | - Alan S Waldman
- Department of Biological Sciences, University of South Carolina, Coker Life Sciences Building, 700 Sumter Street, Columbia, South Carolina, 29208, USA.
| |
Collapse
|
28
|
Cross-Contamination Explains "Inter and Intraspecific Horizontal Genetic Transfers" between Asexual Bdelloid Rotifers. Curr Biol 2018; 28:2436-2444.e14. [PMID: 30017483 DOI: 10.1016/j.cub.2018.05.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/07/2017] [Accepted: 05/23/2018] [Indexed: 11/22/2022]
Abstract
A few metazoan lineages are thought to have persisted for millions of years without sexual reproduction. If so, they would offer important clues to the evolutionary paradox of sex itself [1, 2]. Most "ancient asexuals" are subject to ongoing doubt because extant populations continue to invest in males [3-9]. However, males are famously unknown in bdelloid rotifers, a class of microscopic invertebrates comprising hundreds of species [10-12]. Bdelloid genomes have acquired an unusually high proportion of genes from non-metazoans via horizontal transfer [13-17]. This well-substantiated finding has invited speculation [13] that homologous horizontal transfer between bdelloid individuals also may occur, perhaps even "replacing" sex [14]. In 2016, Current Biology published an article claiming to supply evidence for this idea. Debortoli et al. [18] sampled rotifers from natural populations and sequenced one mitochondrial and four nuclear loci. Species assignments were incongruent among loci for several samples, which was interpreted as evidence of "interspecific horizontal genetic transfers." Here, we use sequencing chromatograms supplied by the authors to demonstrate that samples treated as individuals actually contained two or more highly divergent mitochondrial and ribosomal sequences, revealing cross-contamination with DNA from multiple animals of different species. Other chromatograms indicate contamination with DNA from conspecific animals, explaining genetic and genomic evidence for "intraspecific horizontal exchanges" reported in the same study. Given the clear evidence of contamination, the data and findings of Debortoli et al. [18] provide no reliable support for their conclusions that DNA is transferred horizontally between or within bdelloid species.
Collapse
|
29
|
León-Ortiz AM, Panier S, Sarek G, Vannier JB, Patel H, Campbell PJ, Boulton SJ. A Distinct Class of Genome Rearrangements Driven by Heterologous Recombination. Mol Cell 2018; 69:292-305.e6. [PMID: 29351848 PMCID: PMC5783719 DOI: 10.1016/j.molcel.2017.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/02/2017] [Accepted: 12/18/2017] [Indexed: 11/25/2022]
Abstract
Erroneous DNA repair by heterologous recombination (Ht-REC) is a potential threat to genome stability, but evidence supporting its prevalence is lacking. Here we demonstrate that recombination is possible between heterologous sequences and that it is a source of chromosomal alterations in mitotic and meiotic cells. Mechanistically, we find that the RTEL1 and HIM-6/BLM helicases and the BRCA1 homolog BRC-1 counteract Ht-REC in Caenorhabditis elegans, whereas mismatch repair does not. Instead, MSH-2/6 drives Ht-REC events in rtel-1 and brc-1 mutants and excessive crossovers in rtel-1 mutant meioses. Loss of vertebrate Rtel1 also causes a variety of unusually large and complex structural variations, including chromothripsis, breakage-fusion-bridge events, and tandem duplications with distant intra-chromosomal insertions, whose structure are consistent with a role for RTEL1 in preventing Ht-REC during break-induced replication. Our data establish Ht-REC as an unappreciated source of genome instability that underpins a novel class of complex genome rearrangements that likely arise during replication stress.
Collapse
Affiliation(s)
- Ana María León-Ortiz
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stephanie Panier
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Grzegorz Sarek
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jean-Baptiste Vannier
- Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Peter J Campbell
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
30
|
Billmyre RB, Clancey SA, Heitman J. Natural mismatch repair mutations mediate phenotypic diversity and drug resistance in Cryptococcus deuterogattii. eLife 2017; 6. [PMID: 28948913 PMCID: PMC5614558 DOI: 10.7554/elife.28802] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/25/2017] [Indexed: 12/14/2022] Open
Abstract
Pathogenic microbes confront an evolutionary conflict between the pressure to maintain genome stability and the need to adapt to mounting external stresses. Bacteria often respond with elevated mutation rates, but little evidence exists of stable eukaryotic hypermutators in nature. Whole genome resequencing of the human fungal pathogen Cryptococcus deuterogattii identified an outbreak lineage characterized by a nonsense mutation in the mismatch repair component MSH2. This defect results in a moderate mutation rate increase in typical genes, and a larger increase in genes containing homopolymer runs. This allows facile inactivation of genes with coding homopolymer runs including FRR1, which encodes the target of the immunosuppresive antifungal drugs FK506 and rapamycin. Our study identifies a eukaryotic hypermutator lineage spread over two continents and suggests that pathogenic eukaryotic microbes may experience similar selection pressures on mutation rate as bacterial pathogens, particularly during long periods of clonal growth or while expanding into new environments. As humans, we often think of genetic mutations as being bad. Over the past several decades we have seen health warnings issued on a variety of environmental exposures, from cigarettes to tanning beds, and with good reason because they cause mutations. For multicellular organisms like humans, these mutations are strongly associated with cancer. But in bacteria, this is not true. In fact, the rate at which mutations occur sometimes increases to help bacteria cope with stressful environments. Unlike bacteria, humans are eukaryotes – the name given to organisms whose cells contain different compartments separated by membranes, such as the nucleus of the cell. For years, we have assumed that eukaryotic microbes, like fungi and parasites, act more like humans than like bacteria because work in budding yeast (another eukaryote) has suggested this to be the case. However, recent work in disease-causing fungi has shown that, much like bacteria, elevated mutation rates may help them to respond to stress. This could also enable fungi to become resistant to drugs used to treat fungal infections. Cryptococcus deuterogattii is a fungus that causes human diseases including meningoencephalitis and a lung infection called pulmonary cryptococcosis. An ongoing outbreak of the fungus began in the Pacific Northwest of Canada in the late 1990s and emerged in the United States in 2006/2007. Among isolates closely related to those fungi causing the outbreak, three were found that appear to have a specific mutation in their DNA mismatch repair pathway, meaning that they may also experience a higher mutation rate. These strains are also less able to cause disease than others. Billmyre et al. now demonstrate experimentally that all three isolates have a specific DNA mismatch repair defect, and show that these fungi experience elevated mutation rates, resulting in what is known as a hypermutator state. Furthermore, whole genome sequencing and phylogenetic analysis showed that these hypermutator strains are derived from the outbreak-causing fungi, and that their reduced ability to cause disease is likely a result of accumulating mutations and the loss of the ability to grow at the higher temperatures found in the human body. Fungal infections are difficult to treat, in part because there are a limited number of available drugs. Elevated mutation rates will likely increase how often and how rapidly fungi develop resistance to these drugs. Understanding how commonly fungi exhibit a hypermutator state that could impact the development of drug resistance will therefore be important for treating patients with fungal infections, which account for millions of infections and hundreds of thousands of deaths annually worldwide.
Collapse
Affiliation(s)
- R Blake Billmyre
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States
| | - Shelly Applen Clancey
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Duke University Medical Center, Durham, United States
| |
Collapse
|
31
|
Yin Y, Dominska M, Yim E, Petes TD. High-resolution mapping of heteroduplex DNA formed during UV-induced and spontaneous mitotic recombination events in yeast. eLife 2017; 6. [PMID: 28714850 PMCID: PMC5531827 DOI: 10.7554/elife.28069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
In yeast, DNA breaks are usually repaired by homologous recombination (HR). An early step for HR pathways is formation of a heteroduplex, in which a single-strand from the broken DNA molecule pairs with a strand derived from an intact DNA molecule. If the two strands of DNA are not identical, there will be mismatches within the heteroduplex DNA (hetDNA). In wild-type strains, these mismatches are repaired by the mismatch repair (MMR) system, producing a gene conversion event. In strains lacking MMR, the mismatches persist. Most previous studies involving hetDNA formed during mitotic recombination were restricted to one locus. Below, we present a global mapping of hetDNA formed in the MMR-defective mlh1 strain. We find that many recombination events are associated with repair of double-stranded DNA gaps and/or involve Mlh1-independent mismatch repair. Many of our events are not explicable by the simplest form of the double-strand break repair model of recombination. DOI:http://dx.doi.org/10.7554/eLife.28069.001
Collapse
Affiliation(s)
- Yi Yin
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Margaret Dominska
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Eunice Yim
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology and University Program in Genetics and Genomics, Duke University Medical Center, Durham, United States
| |
Collapse
|
32
|
Chen CC, Avdievich E, Zhang Y, Zhang Y, Wei K, Lee K, Edelmann W, Jasin M, LaRocque JR. EXO1 suppresses double-strand break induced homologous recombination between diverged sequences in mammalian cells. DNA Repair (Amst) 2017; 57:98-106. [PMID: 28711786 DOI: 10.1016/j.dnarep.2017.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 11/17/2022]
Abstract
DNA double-strand breaks (DSBs) can be repaired through several mechanisms, including homologous recombination (HR). While HR between identical sequences is robust in mammalian cells, HR between diverged sequences is suppressed by DNA mismatch-repair (MMR) components such as MSH2. Exonuclease I (EXO1) interacts with the MMR machinery and has been proposed to act downstream of the mismatch recognition proteins in mismatch correction. EXO1 has also been shown to participate in extensive DSB end resection, an initial step in the HR pathway. To assess the contribution of EXO1 to HR in mammalian cells, DSB-inducible reporters were introduced into Exo1-/- mouse embryonic stem cells, including a novel GFP reporter containing several silent polymorphisms to monitor HR between diverged sequences. Compared to HR between identical sequences which was not clearly affected, HR between diverged sequences was substantially increased in Exo1-/- cells although to a lesser extent than seen in Msh2-/- cells. Thus, like canonical MMR proteins, EXO1 can restrain aberrant HR events between diverged sequence elements in the genome.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, 10065, USA
| | - Elena Avdievich
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, 10461, USA
| | - Yongwei Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, 10461, USA
| | - Yu Zhang
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Kaichun Wei
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, 10461, USA
| | - Kyeryoung Lee
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, 10461, USA
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, 10461, USA.
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA.
| | - Jeannine R LaRocque
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA; Department of Human Science, Georgetown University Medical Center, 3700 Reservoir Rd. NW, Washington, D.C., 20057, USA.
| |
Collapse
|
33
|
DNA mismatch repair and its many roles in eukaryotic cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:174-187. [PMID: 28927527 DOI: 10.1016/j.mrrev.2017.07.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore, the mechanism by which the eukaryotic MMR machinery discriminates between the parental (template) and the daughter (nascent) DNA strand is incompletely understood and how cells choose between the EXO1-dependent and the EXO1-independent subpathways of MMR is not known. This review summarizes recent literature on eukaryotic MMR, with emphasis on the diverse cellular roles of eukaryotic MMR proteins, the mechanism of strand discrimination and cross-talk/interactions between and co-regulation of MMR and other DNA repair pathways in eukaryotic cells. The main conclusion of the review is that MMR proteins contribute to genome stability through their ability to recognize and promote an appropriate cellular response to aberrant DNA structures, especially when they arise during DNA replication. Although the molecular mechanism of MMR in the eukaryotic cell is still not completely understood, increased used of single-molecule analyses in the future may yield new insight into these unsolved questions.
Collapse
|
34
|
Hu Q, Li Y, Wang H, Shen Y, Zhang C, Du G, Tang D, Cheng Z. Meiotic Chromosome Association 1 Interacts with TOP3α and Regulates Meiotic Recombination in Rice. THE PLANT CELL 2017; 29:1697-1708. [PMID: 28696221 PMCID: PMC5559755 DOI: 10.1105/tpc.17.00241] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/14/2017] [Accepted: 07/06/2017] [Indexed: 05/18/2023]
Abstract
Homologous recombination plays a central role in guaranteeing chromosome segregation during meiosis. The precise regulation of the resolution of recombination intermediates is critical for the success of meiosis. Many proteins, including the RECQ DNA helicases (Sgs1/BLM) and Topoisomerase 3α (TOP3α), have essential functions in managing recombination intermediates. However, many other factors involved in this process remain to be defined. Here, we report the isolation of meiotic chromosome association 1 (MEICA1), a novel protein participating in meiotic recombination in rice (Oryza sativa). Loss of MEICA1 leads to nonhomologous chromosome association, the formation of massive chromosome bridges, and fragmentation. MEICA1 interacts with MSH7, suggesting its role in preventing nonallelic recombination. In addition, MEICA1 has an anticrossover activity revealed by suppressing the defects of crossover formation in msh5 meica1 compared with that in msh5, showing the similar function with its interacted protein TOP3α. Thus, our data establish two pivotal roles for MEICA1 in meiosis: preventing aberrant meiotic recombination and regulating crossover formation.
Collapse
Affiliation(s)
- Qing Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjun Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Jahid S, Sun J, Gelincik O, Blecua P, Edelmann W, Kucherlapati R, Zhou K, Jasin M, Gümüş ZH, Lipkin SM. Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair. Oncotarget 2017; 8:71574-71586. [PMID: 29069730 PMCID: PMC5641073 DOI: 10.18632/oncotarget.17776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/24/2017] [Indexed: 01/15/2023] Open
Abstract
Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression.
Collapse
Affiliation(s)
- Sohail Jahid
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, 10021, NY, USA
| | - Jian Sun
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, 10021, NY, USA
| | - Ozkan Gelincik
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, 10021, NY, USA
| | - Pedro Blecua
- Division of Clinical Genetics, Memorial Sloan Kettering Cancer Center, 10065, NY, USA
| | - Winfried Edelmann
- Department of Cell Biology and Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, 10461, NY, USA
| | - Raju Kucherlapati
- Department of Genetics, Harvard Medical School, 02115, Boston, MA, USA
| | - Kathy Zhou
- Department of Biostatistics and Epidemiology, Weill Cornell Medical College, 10021, NY, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 10065, NY, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 10029, NY, USA.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, 10029, NY, USA
| | - Steven M Lipkin
- Departments of Medicine and Genetic Medicine, Weill Cornell Medicine, 10021, NY, USA
| |
Collapse
|
36
|
Anand R, Beach A, Li K, Haber J. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates. Nature 2017; 544:377-380. [PMID: 28405019 PMCID: PMC5544500 DOI: 10.1038/nature22046] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/06/2017] [Indexed: 01/14/2023]
Abstract
The Rad51 (also known as RecA) family of recombinases executes the critical step in homologous recombination: the search for homologous DNA to serve as a template during the repair of DNA double-strand breaks (DSBs). Although budding yeast Rad51 has been extensively characterized in vitro, the stringency of its search and sensitivity to mismatched sequences in vivo remain poorly defined. Here, in Saccharomyces cerevisiae, we analysed Rad51-dependent break-induced replication in which the invading DSB end and its donor template share a 108-base-pair homology region and the donor carries different densities of single-base-pair mismatches. With every eighth base pair mismatched, repair was about 14% of that of completely homologous sequences. With every sixth base pair mismatched, repair was still more than 5%. Thus, completing break-induced replication in vivo overcomes the apparent requirement for at least 6-8 consecutive paired bases that has been inferred from in vitro studies. When recombination occurs without a protruding nonhomologous 3' tail, the mismatch repair protein Msh2 does not discourage homeologous recombination. However, when the DSB end contains a 3' protruding nonhomologous tail, Msh2 promotes the rejection of mismatched substrates. Mismatch correction of strand invasion heteroduplex DNA is strongly polar, favouring correction close to the DSB end. Nearly all mismatch correction depends on the proofreading activity of DNA polymerase-δ, although the repair proteins Msh2, Mlh1 and Exo1 influence the extent of correction.
Collapse
Affiliation(s)
| | - Annette Beach
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| | - Kevin Li
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| | - James Haber
- Rosenstiel Basic Medical Sciences Research Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02254-9110
| |
Collapse
|
37
|
Guo C, Du J, Wang L, Yang S, Mauricio R, Tian D, Gu T. Insertions/Deletions-Associated Nucleotide Polymorphism in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1792. [PMID: 27965694 PMCID: PMC5127803 DOI: 10.3389/fpls.2016.01792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
Although high levels of within-species variation are commonly observed, a general mechanism for the origin of such variation is still lacking. Insertions and deletions (indels) are a widespread feature of genomes and we hypothesize that there might be an association between indels and patterns of nucleotide polymorphism. Here, we investigate flanking sequences around 18 indels (>100 bp) among a large number of accessions of the plant, Arabidopsis thaliana. We found two distinct haplotypes, i.e., a nucleotide dimorphism, present around each of these indels and dimorphic haplotypes always corresponded to the indel-present/-absent patterns. In addition, the peaks of nucleotide diversity between the two divergent alleles were closely associated with these indels. Thus, there exists a close association between indels and dimorphisms. Further analysis suggests that indel-associated substitutions could be an important component of genetic variation shaping nucleotide polymorphism in Arabidopsis. Finally, we suggest a mechanism by which indels might generate these highly divergent haplotypes. This study provides evidence that nucleotide dimorphisms, which are frequently regarded as evidence of frequency-dependent selection, could be explained simply by structural variation in the genome.
Collapse
Affiliation(s)
- Changjiang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Jianchang Du
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Sihai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Rodney Mauricio
- Department of Genetics, University of GeorgiaAthens, GA, USA
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Tingting Gu
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
38
|
Phylogenetic Analysis Reveals That ERVs "Die Young" but HERV-H Is Unusually Conserved. PLoS Comput Biol 2016; 12:e1004964. [PMID: 27295277 PMCID: PMC4905674 DOI: 10.1371/journal.pcbi.1004964] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023] Open
Abstract
About 8% of the human genome is made up of endogenous retroviruses (ERVs). Though most human endogenous retroviruses (HERVs) are thought to be irrelevant to our biology notable exceptions include members of the HERV-H family that are necessary for the correct functioning of stem cells. ERVs are commonly found in two forms, the full-length proviral form, and the more numerous solo-LTR form, thought to result from homologous recombination events. Here we introduce a phylogenetic framework to study ERV insertion and solo-LTR formation. We then apply the framework to site patterns sampled from a set of long alignments covering six primate genomes. Studying six categories of ERVs we quantitatively recapitulate patterns of insertional activity that are usually described in qualitative terms in the literature. A slowdown in most ERV groups is observed but we suggest that HERV-K activity may have increased in humans since they diverged from chimpanzees. We find that the rate of solo-LTR formation decreases rapidly as a function of ERV age and that an age dependent model of solo-LTR formation describes the history of ERVs more accurately than the commonly used exponential decay model. We also demonstrate that HERV-H loci are markedly less likely to form solo-LTRs than ERVs from other families. We conclude that the slower dynamics of HERV-H suggest a host role for the internal regions of these exapted elements and posit that in future it will be possible to use the relationship between full-length proviruses and solo-LTRs to help identify large scale co-options in distant vertebrate genomes. Animal genomes contain ancient pathogens known as endogenous retroviruses (ERVs). Though the widespread abundance of ERVs is due to their ability to self replicate, some ERVs are known to have become important to host processes including placentation, and in the case of HERV-H, the functioning of human stem cells. In our study we place the insertion and deletion activity of primate ERV families in direct quantitative comparison. In particular, we show that ERV deletion is an age dependent process, so that as an ERV ages it becomes less likely to be deleted at any given instant. We also find that ERVs from the HERV-H family are unusually slowly deleted, an interesting result that suggests that the exaptation of HERV-H may have involved internal regions of the virus and not just its terminal promoters. Assuming the behaviour of primate ERVs is not unusual, our study suggests that future bioinformatics screening for ERVs with slow deletion dynamics could help identify large-scale exaptations in distant species. Furthermore, as we demonstrate that ERVs are deleted rapidly, we think that such screening could be performed using ratios of conserved to deleted elements and could therefore be applied to single genomes.
Collapse
|
39
|
Smagulova F, Brick K, Pu Y, Camerini-Otero RD, Petukhova GV. The evolutionary turnover of recombination hot spots contributes to speciation in mice. Genes Dev 2016; 30:266-80. [PMID: 26833728 PMCID: PMC4743057 DOI: 10.1101/gad.270009.115] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/15/2015] [Indexed: 01/12/2023]
Abstract
Meiotic recombination is required for the segregation of homologous chromosomes and is essential for fertility. In most mammals, the DNA double-strand breaks (DSBs) that initiate meiotic recombination are directed to a subset of genomic loci (hot spots) by sequence-specific binding of the PRDM9 protein. Rapid evolution of the DNA-binding specificity of PRDM9 and gradual erosion of PRDM9-binding sites by gene conversion will alter the recombination landscape over time. To better understand the evolutionary turnover of recombination hot spots and its consequences, we mapped DSB hot spots in four major subspecies of Mus musculus with different Prdm9 alleles and in their F1 hybrids. We found that hot spot erosion governs the preferential usage of some Prdm9 alleles over others in hybrid mice and increases sequence diversity specifically at hot spots that become active in the hybrids. As crossovers are disfavored at such hot spots, we propose that sequence divergence generated by hot spot turnover may create an impediment for recombination in hybrids, potentially leading to reduced fertility and, eventually, speciation.
Collapse
Affiliation(s)
- Fatima Smagulova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, Maryland 20814, USA
| | - Kevin Brick
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Yongmei Pu
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, Maryland 20814, USA
| | - R Daniel Camerini-Otero
- National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Galina V Petukhova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of Health Sciences, Bethesda, Maryland 20814, USA
| |
Collapse
|
40
|
Abstract
Given the sizes of the three genomes in wheat (A, B, and D) and a limited number of chiasmata formed in meiosis, recombination by crossing-over is a very rare event. It is also restricted to very similar homologues; the pairing homoeologous (Ph) system of wheat prevents differentiated chromosomes from pairing and crossing-over. This chapter presents an overview and describes several systems by which the frequency or density of crossing-over can be increased, both in homologues and homoeologues. It also presents the standard system of E.R. Sears for engineering alien chromosome transfers into wheat.
Collapse
|
41
|
Chaudhari NT, Tupkari JV, Joy T, Ahire MS. Human MutL homolog 1 immunoexpression in oral leukoplakia and oral squamous cell carcinoma: A prospective study in Indian population. J Oral Maxillofac Pathol 2016; 20:453-461. [PMID: 27721611 PMCID: PMC5051294 DOI: 10.4103/0973-029x.190948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mammalian mismatch repair system is responsible for maintaining genomic stability during repeated duplications, and human MutL homolog 1 (hMLH1) protein constitutes an important part of it. Various isolated studies have reported the altered expression of hMLH1 in oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC). Research is lacking in the quantitative estimation and comparison of hMLH1 expression in OL and OSCC. AIMS To evaluate, quantify and compare hMLH1 immunoexpression in normal oral mucosa, OL and OSCC. SETTINGS AND DESIGN Thirty patients of OL and thirty patients of OSCC formed the study group and thirty patients were included in the control group (normal oral mucosa). Formalin-fixed paraffin wax blocks were prepared from the tissue samples. MATERIALS AND METHODS Immunohistochemistry for hMLH1 was performed, and the total number of positive cells was counted in high-power fields, and based on that percentage positivity of hMLH1 was calculated in all the cases. STATISTICAL ANALYSIS Kruskal-Wallis and t-test were used. P < 0.05 was considered to be statistically significant. RESULTS The mean hMLH1 value in control group, leukoplakia and OSCC was 78.26, 54.33 and 40.97 respectively. hMLH1 immunoexpression showed decreasing indexes from control group to leukoplakia and then further to OSCC. hMLH1 expression was significantly lower in OSCC as compared to leukoplakia. There was no significant correlation of mean hMLH1 expression between different clinical and histopathological stages of leukoplakia and OSCC. CONCLUSIONS hMLH1 immunoexpression was inversely related to the degree of dysplasia. These findings suggest that there is a progressive decrease in hMLH1 expression from control to leukoplakia and further to OSCC. Thus, it can be concluded that hMLH1 can be used as a reliable biomarker for malignant transformation.
Collapse
Affiliation(s)
- Narendra T Chaudhari
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Mumbai, Maharashtra, India
| | - Jagdish V Tupkari
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Mumbai, Maharashtra, India
| | - Tabita Joy
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Mumbai, Maharashtra, India
| | - Manisha S Ahire
- Department of Oral Pathology and Microbiology, Government Dental College and Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
42
|
Mismatch repair and homeologous recombination. DNA Repair (Amst) 2015; 38:75-83. [PMID: 26739221 DOI: 10.1016/j.dnarep.2015.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 10/26/2015] [Accepted: 11/30/2015] [Indexed: 12/27/2022]
Abstract
DNA mismatch repair influences the outcome of recombination events between diverging DNA sequences. Here we discuss how mismatch repair proteins are active in different homologous recombination subpathways and specific reaction steps, resulting in differential modulation of these recombination events, with a focus on the mechanism of heteroduplex rejection during the inhibition of recombination between slightly diverged (homeologous) DNA sequences.
Collapse
|
43
|
Rugbjerg P, Knuf C, Förster J, Sommer MOA. Recombination-stable multimeric green fluorescent protein for characterization of weak promoter outputs inSaccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fov085. [DOI: 10.1093/femsyr/fov085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2015] [Indexed: 01/26/2023] Open
|
44
|
Abstract
Recombination is a central process to stably maintain and transmit a genome through somatic cell divisions and to new generations. Hence, recombination needs to be coordinated with other events occurring on the DNA template, such as DNA replication, transcription, and the specialized chromosomal functions at centromeres and telomeres. Moreover, regulation with respect to the cell-cycle stage is required as much as spatiotemporal coordination within the nuclear volume. These regulatory mechanisms impinge on the DNA substrate through modifications of the chromatin and directly on recombination proteins through a myriad of posttranslational modifications (PTMs) and additional mechanisms. Although recombination is primarily appreciated to maintain genomic stability, the process also contributes to gross chromosomal arrangements and copy-number changes. Hence, the recombination process itself requires quality control to ensure high fidelity and avoid genomic instability. Evidently, recombination and its regulatory processes have significant impact on human disease, specifically cancer and, possibly, neurodegenerative diseases.
Collapse
Affiliation(s)
- Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California 95616-8665 Department of Molecular and Cellular Biology, University of California, Davis, Davis, California 95616-8665
| |
Collapse
|
45
|
Parks MM, Lawrence CE, Raphael BJ. Detecting non-allelic homologous recombination from high-throughput sequencing data. Genome Biol 2015; 16:72. [PMID: 25886137 PMCID: PMC4425883 DOI: 10.1186/s13059-015-0633-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/16/2015] [Indexed: 12/27/2022] Open
Abstract
Non-allelic homologous recombination (NAHR) is a common mechanism for generating genome rearrangements and is implicated in numerous genetic disorders, but its detection in high-throughput sequencing data poses a serious challenge. We present a probabilistic model of NAHR and demonstrate its ability to find NAHR in low-coverage sequencing data from 44 individuals. We identify NAHR-mediated deletions or duplications in 109 of 324 potential NAHR loci in at least one of the individuals. These calls segregate by ancestry, are more common in closely spaced repeats, often result in duplicated genes or pseudogenes, and affect highly studied genes such as GBA and CYP2E1.
Collapse
Affiliation(s)
- Matthew M Parks
- Division of Applied Mathematics, Brown University, Providence, USA.
| | - Charles E Lawrence
- Division of Applied Mathematics, Brown University, Providence, USA. .,Center for Computational Molecular Biology, Brown University, Providence, USA.
| | - Benjamin J Raphael
- Center for Computational Molecular Biology, Brown University, Providence, USA. .,Department of Computer Science, Brown University, Providence, USA.
| |
Collapse
|
46
|
Morales ME, White TB, Streva VA, DeFreece CB, Hedges DJ, Deininger PL. The contribution of alu elements to mutagenic DNA double-strand break repair. PLoS Genet 2015; 11:e1005016. [PMID: 25761216 PMCID: PMC4356517 DOI: 10.1371/journal.pgen.1005016] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/22/2015] [Indexed: 11/18/2022] Open
Abstract
Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events. DNA double-strand breaks (DSBs) are a highly mutagenic form of DNA damage that can be repaired through one of several pathways with varied degrees of sequence preservation. Faithful repair of DSBs often occurs through gene conversion in which a sister chromatid is used as a repair template. Unfaithful repair of DSBs can occur through non-allelic homologous or homeologous recombination, which leads to chromosomal abnormalities such as deletions, duplications, and translocations and has been shown to cause several human genetic diseases. Substrates for these homologous and homeologous events include Alu elements, which are approximately 300 bp elements that comprise ~11% of the human genome. We use a new reporter assay to show that repair of DSBs results in Alu-mediated deletions that resolve through several distinct repair pathways. Either single-strand annealing (SSA) repair or microhomology-mediated end joining occurs ‘in register’ between two Alu elements when Alu sequence divergence is low. However, with more diverged Alu elements, like those typically found in the human genome, repair of DSBs appears to use the Alu/Alu homeology to direct non-homologous end joining in the general vicinity of the Alu elements. Mutagenic NHEJ repair involving divergent Alu elements may represent a common repair event in primate genomes.
Collapse
Affiliation(s)
- Maria E. Morales
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Travis B. White
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Vincent A. Streva
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Cecily B. DeFreece
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana, United States of America
| | - Dale J. Hedges
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Prescott L. Deininger
- Tulane Cancer Center and Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
Homologous recombination (HR) and mismatch repair (MMR) are inextricably linked. HR pairs homologous chromosomes before meiosis I and is ultimately responsible for generating genetic diversity during sexual reproduction. HR is initiated in meiosis by numerous programmed DNA double-strand breaks (DSBs; several hundred in mammals). A characteristic feature of HR is the exchange of DNA strands, which results in the formation of heteroduplex DNA. Mismatched nucleotides arise in heteroduplex DNA because the participating parental chromosomes contain nonidentical sequences. These mismatched nucleotides may be processed by MMR, resulting in nonreciprocal exchange of genetic information (gene conversion). MMR and HR also play prominent roles in mitotic cells during genome duplication; MMR rectifies polymerase misincorporation errors, whereas HR contributes to replication fork maintenance, as well as the repair of spontaneous DSBs and genotoxic lesions that affect both DNA strands. MMR suppresses HR when the heteroduplex DNA contains excessive mismatched nucleotides, termed homeologous recombination. The regulation of homeologous recombination by MMR ensures the accuracy of DSB repair and significantly contributes to species barriers during sexual reproduction. This review discusses the history, genetics, biochemistry, biophysics, and the current state of studies on the role of MMR in homologous and homeologous recombination from bacteria to humans.
Collapse
Affiliation(s)
- Maria Spies
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242
| | - Richard Fishel
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University Medical Center and Comprehensive Cancer Center, Columbus, Ohio 43210 Human Genetics Institute, The Ohio State University Medical Center, Columbus, Ohio 43210 Physics Department, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
48
|
Anand RP, Tsaponina O, Greenwell PW, Lee CS, Du W, Petes TD, Haber JE. Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev 2014; 28:2394-406. [PMID: 25367035 PMCID: PMC4215184 DOI: 10.1101/gad.250258.114] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Anand et al. examined break-induced replication (BIR) and template switching between highly diverged sequences in S. cerevisiae, induced during repair of a site-specific double-strand break (DSB). Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution. Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution.
Collapse
Affiliation(s)
- Ranjith P Anand
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | - Olga Tsaponina
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | - Patricia W Greenwell
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Cheng-Sheng Lee
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | - Wei Du
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA
| | - Thomas D Petes
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - James E Haber
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, Massachusetts 02254, USA;
| |
Collapse
|
49
|
Seplyarskiy VB, Logacheva MD, Penin AA, Baranova MA, Leushkin EV, Demidenko NV, Klepikova AV, Kondrashov FA, Kondrashov AS, James TY. Crossing-over in a hypervariable species preferentially occurs in regions of high local similarity. Mol Biol Evol 2014; 31:3016-25. [PMID: 25135947 PMCID: PMC4209137 DOI: 10.1093/molbev/msu242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recombination between double-stranded DNA molecules is a key genetic process which occurs in a wide variety of organisms. Usually, crossing-over (CO) occurs during meiosis between genotypes with 98.0–99.9% sequence identity, because within-population nucleotide diversity only rarely exceeds 2%. However, some species are hypervariable and it is unclear how CO can occur between genotypes with less than 90% sequence identity. Here, we study CO in Schizophyllum commune, a hypervariable cosmopolitan basidiomycete mushroom, a frequently encountered decayer of woody substrates. We crossed two haploid individuals, from the United States and from Russia, and obtained genome sequences for their 17 offspring. The average genetic distance between the parents was 14%, making it possible to study CO at very high resolution. We found reduced levels of linkage disequilibrium between loci flanking the CO sites indicating that they are mostly confined to hotspots of recombination. Furthermore, CO events preferentially occurred in regions under stronger negative selection, in particular within exons that showed reduced levels of nucleotide diversity. Apparently, in hypervariable species CO must avoid regions of higher divergence between the recombining genomes due to limitations imposed by the mismatch repair system, with regions under strong negative selection providing the opportunity for recombination. These patterns are opposite to those observed in a number of less variable species indicating that population genomics of hypervariable species may reveal novel biological phenomena.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Maria D Logacheva
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Aleksey A Penin
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Moscow, Moscow, Russia
| | - Maria A Baranova
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny V Leushkin
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Demidenko
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Moscow, Moscow, Russia
| | - Anna V Klepikova
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Department of Biology, Lomonosov Moscow State University, Moscow, Moscow, Russia
| | - Fyodor A Kondrashov
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 23 Pg. Lluís Companys, Barcelona, Spain
| | - Alexey S Kondrashov
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
50
|
Double-strand break repair assays determine pathway choice and structure of gene conversion events in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2014; 4:425-32. [PMID: 24368780 PMCID: PMC3962482 DOI: 10.1534/g3.113.010074] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Double-strand breaks (DSBs) must be accurately and efficiently repaired to maintain genome integrity. Depending on the organism receiving the break, the genomic location of the DSB, and the cell-cycle phase in which it occurs, a DSB can be repaired by homologous recombination (HR), nonhomologous end-joining (NHEJ), or single-strand annealing (SSA). Two novel DSB repair assays were developed to determine the contributions of these repair pathways and to finely resolve repair event structures in Drosophila melanogaster. Rad51-dependent homologous recombination is the preferred DSB repair pathway in mitotically dividing cells, and the pathway choice between HR and SSA occurs after end resection and before Rad51-dependent strand invasion. HR events are associated with long gene conversion tracts and are both bidirectional and unidirectional, consistent with repair via the synthesis-dependent strand annealing pathway. Additionally, HR between diverged sequences is suppressed in Drosophila, similar to levels reported in human cells. Junction analyses of rare NHEJ events reveal that canonical NHEJ is utilized in this system.
Collapse
|