1
|
Kang K, Lin X, Chen P, Liu H, Liu F, Xiong W, Li G, Yi M, Li X, Wang H, Xiang B. T cell exhaustion in human cancers. Biochim Biophys Acta Rev Cancer 2024; 1879:189162. [PMID: 39089484 DOI: 10.1016/j.bbcan.2024.189162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
T cell exhaustion refers to a progressive state in which T cells become functionally impaired due to sustained antigenic stimulation, which is characterized by increased expression of immune inhibitory receptors, but weakened effector functions, reduced self-renewal capacity, altered epigenetics, transcriptional programme and metabolism. T cell exhaustion is one of the major causes leading to immune escape of cancer, creating an environment that supports tumor development and metastatic spread. In addition, T cell exhaustion plays a pivotal role to the efficacy of current immunotherapies for cancer. This review aims to provide a comprehensive view of roles of T cell exhaustion in cancer development and progression. We summerized the regulatory mechanisms that involved in T cell exhaustion, including transcription factors, epigenetic and metabolic reprogramming events, and various microenvironmental factors such as cytokines, microorganisms, and tumor autocrine substances. The paper also discussed the challenges posed by T cell exhaustion to cancer immunotherapies, including immune checkpoint blockade (ICB) therapies and chimeric antigen receptor T cell (CAR-T) therapy, highlightsing the obstacles encountered in ICB therapies and CAR-T therapies due to T cell exhaustion. Finally, the article provides an overview of current therapeutic options aimed to reversing or alleviating T cell exhaustion in ICB and CAR-T therapies. These therapeutic approaches seek to overcome T cell exhaustion and enhance the effectiveness of immunotherapies in treating tumors.
Collapse
Affiliation(s)
- Kuan Kang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Xin Lin
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Huai Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Feng Liu
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Wei Xiong
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China
| | - Mei Yi
- Department of Dermatology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Infammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| | - Bo Xiang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410008, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China; FuRong Laboratory, Changsha 410078, Hunan, China.
| |
Collapse
|
2
|
Castillo JG, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry approach to track the evolution of T cell responses during infection and immunotherapy by paired T cell receptor repertoire and T cell differentiation state analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575237. [PMID: 38260336 PMCID: PMC10802618 DOI: 10.1101/2024.01.11.575237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
T cell receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we developed a mass cytometric (CyTOF) approach combining antibodies specific for different TCR Vα- and Vβ-chains with antibodies against T cell activation and differentiation proteins to identify antigen-specific expansions of T cell subsets and assess aspects of cellular function. This strategy allowed for the identification of expansions of specific Vβ and Vα chain expressing CD8+ and CD4+ T cells with varying differentiation states in response to Listeria monocytogenes, tumors, and respiratory influenza infection. Expanded Vβ chain expressing T cells could be directly linked to the recognition of specific antigens from Listeria, tumor cells, or influenza. In the setting of influenza infection, we showed that the common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the clonal diversity and differentiation state of responding T cells. Thus, we present a new method to monitor broad changes in TCR specificity paired with T cell differentiation during adaptive immune responses.
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| |
Collapse
|
3
|
Massey J, Artuz C, Dyer Z, Jackson K, Khoo M, Visweswaran M, Withers B, Moore J, Ma D, Sutton I. Diversification and expansion of the EBV-reactive cytotoxic T lymphocyte repertoire following autologous haematopoietic stem cell transplant for multiple sclerosis. Clin Immunol 2023; 254:109709. [PMID: 37495004 DOI: 10.1016/j.clim.2023.109709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Both genetic susceptibility and environmental exposures are thought to be involved in multiple sclerosis (MS) pathogenesis. Of all viruses potentially relevant to MS aetiology, Epstein-Barr virus (EBV) is the best-studied. EBV is a B cell lymphotropic virus which is able to evade the immune system by establishing latent infection in memory B cells, and EBV reactivation is restricted by CD8 cytotoxic T cell (CTL) responses in immune competent individuals. Autologous haematopoietic stem cell transplantation (AHSCT) is considered to be the most effective therapy in the treatment of relapsing MS even though chemotherapy-induced lymphopenia can associate with the re-emergence of latent viruses. Despite the increasing interest in EBV and MS pathogenesis the relationship between AHSCT, EBV and viral immunity in people with MS has not been investigated to date. This study analysed immune responses to EBV in a well characterised cohort of 13 individuals with MS by utilising pre-AHSCT, and 6-, 12- and 24-month post AHSCT bio-banked peripheral blood mononuclear cells and plasma samples. It is demonstrated that the infused stem cell product contains latently EBV-infected memory B cells, and that EBV viremia occurs in the immune-compromised recipient post-transplant. High throughput TCR analysis detected expansion and diversification of the CD8 CTL responses reactive with EBV lytic and latent antigens from 6 to 24 months following AHSCT. Increased levels of latent EBV infection found within the B cell pool following treatment, as measured by EBV genomic detection, did not associate with disease relapse. This is the first study of EBV immunity following application of AHSCT in the treatment of MS and not only raises important questions about the role of EBV infection in MS pathogenesis, but is of clinical importance given the expanding clinical trials of adoptive EBV-specific CTLs in MS.
Collapse
Affiliation(s)
- Jennifer Massey
- Department of Neurology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia.
| | - Crisbel Artuz
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Zoe Dyer
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia
| | - Katherine Jackson
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Melissa Khoo
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Malini Visweswaran
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia
| | - Barbara Withers
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia; Department of Haematology, St Vincent's Hospital; Darlinghurst, NSW 2010, Australia
| | - John Moore
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia; Department of Haematology, St Vincent's Hospital; Darlinghurst, NSW 2010, Australia
| | - David Ma
- Blood Stem Cell and Cancer Research Group, St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia; Department of Haematology, St Vincent's Hospital; Darlinghurst, NSW 2010, Australia
| | - Ian Sutton
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW, Sydney, Australia; Department of Neurology, St Vincent's Clinic; Darlinghurst, NSW 2010, Australia
| |
Collapse
|
4
|
Hsiung S, Egawa T. Population dynamics and gene regulation of T cells in response to chronic antigen stimulation. Int Immunol 2023; 35:67-77. [PMID: 36334059 DOI: 10.1093/intimm/dxac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022] Open
Abstract
T cells are activated by antigen and co-stimulatory receptor signaling and undergo robust proliferation and differentiation into effector cells with protective function. Such quantitatively and qualitatively amplified T cell responses are effective in controlling acute infection and are followed by contraction of the effector population and the formation of resting memory T cells for enhanced protection against previously experienced antigens. However, in the face of persistent antigen during chronic viral infection, in autoimmunity, or in the tumor microenvironment, T cells exhibit distinct responses relative to those in acute insult in several aspects, including reduced clonal expansion and impaired effector function associated with inhibitory receptor expression, a state known as exhaustion. Nevertheless, their responses to chronic infection and tumors are sustained through the establishment of hierarchical heterogeneity, which preserves the duration of the response by generating newly differentiated effector cells. In this review, we highlight recent findings on distinct dynamics of T cell responses under "exhausting" conditions and the roles of the transcription factors that support attenuated yet long-lasting T cell responses as well as the establishment of dysfunctional states.
Collapse
Affiliation(s)
- Sunnie Hsiung
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA
| |
Collapse
|
5
|
Ando S, Araki K. CD8 T cell heterogeneity during T cell exhaustion and PD-1-targeted immunotherapy. Int Immunol 2022; 34:571-577. [PMID: 35901837 PMCID: PMC9533227 DOI: 10.1093/intimm/dxac038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022] Open
Abstract
Persistent antigenic stimulation results in loss of effector function or physical deletion of antigen-specific CD8 T cells. This T cell state is called T cell exhaustion and occurs during chronic infection and cancer. Antigen-specific CD8 T cells during T cell exhaustion express the inhibitory receptor PD-1, the expression of which plays a major role in T cell dysfunction. PD-1 blockade re-invigorates CD8 T cell immunity and has been proven effective against many different types of human cancer. To further improve the efficacy of PD-1-targeted immunotherapy in cancer patients, a better understanding of T cell exhaustion is required. Recent studies have revealed that antigen-specific CD8 T cells during T cell exhaustion are heterogeneous and have also uncovered the detailed mechanisms for PD-1-targeted immunotherapy. Here, we review the CD8 T cell subsets that arise during T cell exhaustion, the lineage relationship among these individual subsets and the role of each subset in PD-1 blockade. Also, we discuss potential strategies to enhance the efficacy of PD-1-targeted immunotherapy.
Collapse
Affiliation(s)
- Satomi Ando
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, 45229 OH, USA
| | - Koichi Araki
- Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, 45229 OH, USA
| |
Collapse
|
6
|
Dickow J, Francois S, Kaiserling RL, Malyshkina A, Drexler I, Westendorf AM, Lang KS, Santiago ML, Dittmer U, Sutter K. Diverse Immunomodulatory Effects of Individual IFNα Subtypes on Virus-Specific CD8 + T Cell Responses. Front Immunol 2019; 10:2255. [PMID: 31608062 PMCID: PMC6771563 DOI: 10.3389/fimmu.2019.02255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Clinical administration of Interferon α (IFNα) resulted in limited therapeutic success against some viral infections. Immune modulation of CD8+ T cell responses during IFNα therapy is believed to play a pivotal role in promoting viral clearance. However, these clinical studies primarily focused on IFNα subtype 2. To date, the immunomodulatory roles of the remaining 10-13 IFNα subtypes remains poorly understood, thereby precluding assessments of their potential for more effective treatments. Here, we report that virus-specific CD8+ T cell responses were influenced to various extents by individual IFNα subtypes. IFNα4, 6, and 9 had the strongest effects on CD8+ T cells, including antiproliferative effects, improved cytokine production and cytotoxicity. Interestingly, augmented cytokine responses were dependent on IFNα subtype stimulation of dendritic cells (DCs), while antiproliferative effects and cytotoxicity were mediated by IFNAR signaling in either CD8+ T cells or DCs. Thus, precise modulation of virus-specific CD8+ T cell responses may be feasible for specific antiviral immunotherapies through careful selection and administration of individual IFNα subtypes.
Collapse
Affiliation(s)
- Julia Dickow
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sandra Francois
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Rouven-Luca Kaiserling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Malyshkina
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ingo Drexler
- Institute of Virology, University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Düsseldorf, Germany
| | - Astrid Maria Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl Sebastian Lang
- Institute for Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mario L. Santiago
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Drabczyk-Pluta M, Werner T, Hoffmann D, Leng Q, Chen L, Dittmer U, Zelinskyy G. Granulocytic myeloid-derived suppressor cells suppress virus-specific CD8 + T cell responses during acute Friend retrovirus infection. Retrovirology 2017; 14:42. [PMID: 28835242 PMCID: PMC5569525 DOI: 10.1186/s12977-017-0364-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/11/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) can suppress T cell responses in several different diseases. Previously these suppressive cells were observed to expand in HIV patients and in a mouse retrovirus model, yet their suppressive effect on virus-specific CD8+ T cells in vitro and in vivo has not been characterized thus far. RESULTS We used the Friend retrovirus (FV) model to demonstrate that MDSCs expand and become activated during the late phase of acute FV infection. Only the subpopulation of granulocytic MDSCs (gMDSCs) but not monocytic MDSC suppressed virus-specific CD8+ T cell proliferation and function in vitro. gMDSCs expressed arginase 1, high levels of the inhibitory ligand PD-L1 and the ATP dephosphorylating enzyme CD39 on the cell surface upon infection. All three molecules were involved in the suppressive effect of the gMDSCs in vitro. MDSC depletion experiments in FV-infected mice revealed that they restrict virus-specific CD8+ T cell responses and thus affect the immune control of chronic retroviruses in vivo. CONCLUSIONS Our study demonstrates that MDSCs become activated and expand during the acute phase of retrovirus infection. Their suppressive activity on virus-specific CD8+ T cells may contribute to T cell dysfunction and the development of chronic infection.
Collapse
Affiliation(s)
- Malgorzata Drabczyk-Pluta
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Tanja Werner
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Daniel Hoffmann
- Research Group Bioinformatics, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Qibin Leng
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lieping Chen
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, CT USA
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Gennadiy Zelinskyy
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
8
|
Roberts ER, Carnathan DG, Li H, Shaw GM, Silvestri G, Betts MR. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog 2016; 12:e1006135. [PMID: 28036372 PMCID: PMC5231392 DOI: 10.1371/journal.ppat.1006135] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/12/2017] [Accepted: 12/16/2016] [Indexed: 12/23/2022] Open
Abstract
Poor maintenance of cytotoxic factor expression among HIV-specific CD8+ T cells, in part caused by dysregulated expression of the transcription factor T-bet, is associated with HIV disease progression. However, the precise evolution and context in which CD8+ T cell cytotoxic functions become dysregulated in HIV infection remain unclear. Using the rhesus macaque (RM) SIV infection model, we evaluated the kinetics of SIV-specific CD8+ T cell cytolytic factor expression in peripheral blood, lymph node, spleen, and gut mucosa from early acute infection through chronic infection. We identified rapid acquisition of perforin and granzyme B expression in SIV-specific CD8+ T cells in blood, secondary lymphoid tissues and gut mucosa that collapsed rapidly during the transition to chronic infection. The evolution of this expression profile was linked to low expression of T-bet and occurred independent of epitope specificity, viral escape patterns and tissue origin. Importantly, during acute infection SIV-specific CD8+ T cells that maintained T-bet expression retained the ability to express granzyme B after stimulation, but this relationship was lost in chronic infection. Together, these data demonstrate the loss of cytolytic machinery in SIV-specific CD8+ T cells in blood and at tissue sites of viral reservoir and active replication during the transition from acute to chronic infection. This phenomenon occurs despite persistent high levels of viremia suggesting that an inability to maintain properly regulated cytotoxic T cell responses in all tissue sites enables HIV/SIV to avoid immune clearance, establish persistent viral reservoirs in lymphoid tissues and gut mucosa, and lead ultimately to immunopathogenesis and death.
Collapse
Affiliation(s)
- Emily R. Roberts
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Biomedical Graduate Studies in Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Diane G. Carnathan
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Hui Li
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George M. Shaw
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Guido Silvestri
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Michael R. Betts
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
9
|
Younes SA, Freeman ML, Mudd JC, Shive CL, Reynaldi A, Panigrahi S, Estes JD, Deleage C, Lucero C, Anderson J, Schacker TW, Davenport MP, McCune JM, Hunt PW, Lee SA, Serrano-Villar S, Debernardo RL, Jacobson JM, Canaday DH, Sekaly RP, Rodriguez B, Sieg SF, Lederman MM. IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection. J Clin Invest 2016; 126:2745-56. [PMID: 27322062 PMCID: PMC4922693 DOI: 10.1172/jci85996] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/04/2016] [Indexed: 11/17/2022] Open
Abstract
In HIV-1-infected patients, increased numbers of circulating CD8+ T cells are linked to increased risk of morbidity and mortality. Here, we identified a bystander mechanism that promotes CD8 T cell activation and expansion in untreated HIV-1-infected patients. Compared with healthy controls, untreated HIV-1-infected patients have an increased population of proliferating, granzyme B+, CD8+ T cells in circulation. Vβ expression and deep sequencing of CDR3 revealed that in untreated HIV-1 infection, cycling memory CD8 T cells possess a broad T cell repertoire that reflects the repertoire of the resting population. This suggests that cycling is driven by bystander activation, rather than specific antigen exposure. Treatment of peripheral blood mononuclear cells with IL-15 induced a cycling, granzyme B+ phenotype in CD8+ T cells. Moreover, elevated IL-15 expression in the lymph nodes of untreated HIV-1-infected patients correlated with circulating CD8+ T cell counts and was normalized in these patients following antiretroviral therapy. Together, these results suggest that IL-15 drives bystander activation of CD8+ T cells, which predicts disease progression in untreated HIV-1-infected patients and suggests that elevated IL-15 may also drive CD8+ T cell expansion that is linked to increased morbidity and mortality in treated patients.
Collapse
Affiliation(s)
- Souheil-Antoine Younes
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | - Michael L. Freeman
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | - Joseph C. Mudd
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Carey L. Shive
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | - Arnold Reynaldi
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales, Australia
| | - Soumya Panigrahi
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carissa Lucero
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jodi Anderson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy W. Schacker
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Miles P. Davenport
- Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Peter W. Hunt
- HIV/AIDS Division, Department of Medicine, UCSF, San Francisco, California, USA
| | - Sulggi A. Lee
- HIV/AIDS Division, Department of Medicine, UCSF, San Francisco, California, USA
| | | | | | - Jeffrey M. Jacobson
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - David H. Canaday
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | | | - Benigno Rodriguez
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | - Scott F. Sieg
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| | - Michael M. Lederman
- Center for AIDS Research, Department of Medicine, Case Western Reserve University and University Hospitals, Case Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Regulation of Gag- and Env-Specific CD8+ T Cell Responses in ART-Naïve HIV-Infected Patients: Potential Implications for Individualized Immunotherapy. PLoS One 2016; 11:e0153849. [PMID: 27128502 PMCID: PMC4851414 DOI: 10.1371/journal.pone.0153849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/05/2016] [Indexed: 12/16/2022] Open
Abstract
Strategies to develop a functional cure for HIV infection will likely require boosting of effector T cell responses to eliminate reactivated, latently infected cells. We have recently explored an assay for assessing antigen-specific regulation of T cell proliferation, which was related to clinical progression in untreated patients and to vaccine efficacy in two trials of therapeutic Gag-based vaccines. We here expand the same assay to further investigate regulation mediated by various inhibitory pathways. Peripheral blood mononuclear cells from 26 asymptomatic HIV-infected, antiretroviral therapy-naïve patients were stimulated with Gag and Env overlapping peptide panels for 5 days. Monoclonal antibodies (mAbs) blocking inhibitory mediators interleukin (IL) 10, transforming growth factor (TGF) β, programmed death ligand (PD–L) 1 and herpes virus entry mediator (HVEM) were added to parallel cultures. Functional T cell regulation (FTR) was defined as the difference in proliferation between stimulated cultures with and without blocking mAbs. FTR was detected in 54% of patients. Blockade of IL-10/PD-L1 and IL10/TGF-β detected all cases with Gag- and Env-associated FTR, respectively. In accordance with previous findings, isolated Env FTR was associated with higher plasma HIV RNA and lower CD4 counts, while patients with both Gag and Env FTR also had higher Gag- and Env-specific proliferative CD8+ T cell responses. There was no association between FTR and frequencies of activated regulatory T cells. In conclusion, we observed substantial heterogeneity in FTR between patients, inhibitory pathways and HIV antigens. FTR may help to individualize immunomodulation and warrants further assessment in clinical immunotherapy trials.
Collapse
|
11
|
Akhmetzyanova I, Drabczyk M, Neff CP, Gibbert K, Dietze KK, Werner T, Liu J, Chen L, Lang KS, Palmer BE, Dittmer U, Zelinskyy G. PD-L1 Expression on Retrovirus-Infected Cells Mediates Immune Escape from CD8+ T Cell Killing. PLoS Pathog 2015; 11:e1005224. [PMID: 26484769 PMCID: PMC4617866 DOI: 10.1371/journal.ppat.1005224] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 09/22/2015] [Indexed: 01/22/2023] Open
Abstract
Cytotoxic CD8+ T Lymphocytes (CTL) efficiently control acute virus infections but can become exhausted when a chronic infection develops. Signaling of the inhibitory receptor PD-1 is an important mechanism for the development of virus-specific CD8+ T cell dysfunction. However, it has recently been shown that during the initial phase of infection virus-specific CD8+ T cells express high levels of PD-1, but are fully competent in producing cytokines and killing virus-infected target cells. To better understand the role of the PD-1 signaling pathway in CD8+ T cell cytotoxicity during acute viral infections we analyzed the expression of the ligand on retrovirus-infected cells targeted by CTLs. We observed increased levels of PD-L1 expression after infection of cells with the murine Friend retrovirus (FV) or with HIV. In FV infected mice, virus-specific CTLs efficiently eliminated infected target cells that expressed low levels of PD-L1 or that were deficient for PD-L1 but the population of PD-L1high cells escaped elimination and formed a reservoir for chronic FV replication. Infected cells with high PD-L1 expression mediated a negative feedback on CD8+ T cells and inhibited their expansion and cytotoxic functions. These findings provide evidence for a novel immune escape mechanism during acute retroviral infection based on PD-L1 expression levels on virus infected target cells.
Collapse
Affiliation(s)
- Ilseyar Akhmetzyanova
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Malgorzata Drabczyk
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - C. Preston Neff
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Kathrin Gibbert
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kirsten K. Dietze
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanja Werner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jia Liu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Infectious Diseases, Union Hospital of Tonji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Lieping Chen
- Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Karl S. Lang
- Institute for Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Brent E. Palmer
- University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
12
|
Papasavvas E, Foulkes A, Yin X, Joseph J, Ross B, Azzoni L, Kostman JR, Mounzer K, Shull J, Montaner LJ. Plasmacytoid dendritic cell and functional HIV Gag p55-specific T cells before treatment interruption can inform set-point plasma HIV viral load after treatment interruption in chronically suppressed HIV-1(+) patients. Immunology 2015; 145:380-90. [PMID: 25684333 DOI: 10.1111/imm.12452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
The identification of immune correlates of HIV control is important for the design of immunotherapies that could support cure or antiretroviral therapy (ART) intensification-related strategies. ART interruptions may facilitate this task through exposure of an ART partially reconstituted immune system to endogenous virus. We investigated the relationship between set-point plasma HIV viral load (VL) during an ART interruption and innate/adaptive parameters before or after interruption. Dendritic cell (DC), natural killer (NK) cell and HIV Gag p55-specific T-cell functional responses were measured in paired cryopreserved peripheral blood mononuclear cells obtained at the beginning (on ART) and at set-point of an open-ended interruption from 31 ART-suppressed chronically HIV-1(+) patients. Spearman correlation and linear regression modeling were used. Frequencies of plasmacytoid DC (pDC), and HIV Gag p55-specific CD3(+) CD4(-) perforin(+) IFN-γ(+) cells at the beginning of interruption associated negatively with set-point plasma VL. Inclusion of both variables with interaction into a model resulted in the best fit (adjusted R(2) = 0·6874). Frequencies of pDC or HIV Gag p55-specific CD3(+) CD4(-) CSFE(lo) CD107a(+) cells at set-point associated negatively with set-point plasma VL. The dual contribution of pDC and anti-HIV T-cell responses to viral control, supported by our models, suggests that these variables may serve as immune correlates of viral control and could be integrated in cure or ART-intensification strategies.
Collapse
Affiliation(s)
| | - Andrea Foulkes
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | | | | | - Brian Ross
- The Wistar Institute, Philadelphia, PA, USA
| | | | - Jay R Kostman
- Presbyterian Hospital-University of Pennsylvania Hospital, Philadelphia, PA, USA
| | - Karam Mounzer
- Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA, USA
| | - Jane Shull
- Philadelphia Field Initiating Group for HIV-1 Trials, Philadelphia, PA, USA
| | | |
Collapse
|
13
|
Transmitted virus fitness and host T cell responses collectively define divergent infection outcomes in two HIV-1 recipients. PLoS Pathog 2015; 11:e1004565. [PMID: 25569444 PMCID: PMC4287535 DOI: 10.1371/journal.ppat.1004565] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 11/10/2014] [Indexed: 12/27/2022] Open
Abstract
Control of virus replication in HIV-1 infection is critical to delaying disease progression. While cellular immune responses are a key determinant of control, relatively little is known about the contribution of the infecting virus to this process. To gain insight into this interplay between virus and host in viral control, we conducted a detailed analysis of two heterosexual HIV-1 subtype A transmission pairs in which female recipients sharing three HLA class I alleles exhibited contrasting clinical outcomes: R880F controlled virus replication while R463F experienced high viral loads and rapid disease progression. Near full-length single genome amplification defined the infecting transmitted/founder (T/F) virus proteome and subsequent sequence evolution over the first year of infection for both acutely infected recipients. T/F virus replicative capacities were compared in vitro, while the development of the earliest cellular immune response was defined using autologous virus sequence-based peptides. The R880F T/F virus replicated significantly slower in vitro than that transmitted to R463F. While neutralizing antibody responses were similar in both subjects, during acute infection R880F mounted a broad T cell response, the most dominant components of which targeted epitopes from which escape was limited. In contrast, the primary HIV-specific T cell response in R463F was focused on just two epitopes, one of which rapidly escaped. This comprehensive study highlights both the importance of the contribution of the lower replication capacity of the transmitted/founder virus and an associated induction of a broad primary HIV-specific T cell response, which was not undermined by rapid epitope escape, to long-term viral control in HIV-1 infection. It underscores the importance of the earliest CD8 T cell response targeting regions of the virus proteome that cannot mutate without a high fitness cost, further emphasizing the need for vaccines that elicit a breadth of T cell responses to conserved viral epitopes.
Collapse
|
14
|
Salem Fourati I, Grenier AJ, Jolette É, Merindol N, Ovetchkine P, Soudeyns H. Development of an IFN-γ ELISpot assay to assess varicella-zoster virus-specific cell-mediated immunity following umbilical cord blood transplantation. J Vis Exp 2014. [PMID: 25046399 DOI: 10.3791/51643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Varicella zoster virus (VZV) is a significant cause of morbidity and mortality following umbilical cord blood transplantation (UCBT). For this reason, antiherpetic prophylaxis is administrated systematically to pediatric UCBT recipients to prevent complications associated with VZV infection, but there is no strong, evidence based consensus that defines its optimal duration. Because T cell mediated immunity is responsible for the control of VZV infection, assessing the reconstitution of VZV specific T cell responses following UCBT could provide indications as to whether prophylaxis should be maintained or can be discontinued. To this end, a VZV specific gamma interferon (IFN-γ) enzyme-linked immunospot (ELISpot) assay was developed to characterize IFN-γ production by T lymphocytes in response to in vitro stimulation with irradiated live attenuated VZV vaccine. This assay provides a rapid, reproducible and sensitive measurement of VZV specific cell mediated immunity suitable for monitoring the reconstitution of VZV specific immunity in a clinical setting and assessing immune responsiveness to VZV antigens.
Collapse
Affiliation(s)
- Insaf Salem Fourati
- Unité d'Immunopathologie Virale, Centre de Recherche du CHU Sainte-Justine, Department of Microbiology, Infectiology & Immunology, Faculty of Medicine, Université de Montréal
| | - Anne-Julie Grenier
- Unité d'Immunopathologie Virale, Centre de Recherche du CHU Sainte-Justine, Department of Microbiology, Infectiology & Immunology, Faculty of Medicine, Université de Montréal
| | - Élyse Jolette
- Unité d'Immunopathologie Virale, Centre de Recherche du CHU Sainte-Justine, Department of Microbiology, Infectiology & Immunology, Faculty of Medicine, Université de Montréal
| | - Natacha Merindol
- Unité d'Immunopathologie Virale, Centre de Recherche du CHU Sainte-Justine, Department of Microbiology, Infectiology & Immunology, Faculty of Medicine, Université de Montréal
| | - Philippe Ovetchkine
- Infectious Diseases Service, CHU Sainte-Justine, Faculty of Medicine, Université de Montréal; Department of Paediatrics, Université de Montréal
| | - Hugo Soudeyns
- Unité d'Immunopathologie Virale, Centre de Recherche du CHU Sainte-Justine, Department of Microbiology, Infectiology & Immunology, Faculty of Medicine, Université de Montréal; Department of Paediatrics, Université de Montréal;
| |
Collapse
|
15
|
Betts MR, Gray CM, Cox JH, Ferrari G. Antigen-specific T-cell-mediated immunity after HIV-1 infection: implications for vaccine control of HIV development. Expert Rev Vaccines 2014; 5:505-16. [PMID: 16989631 DOI: 10.1586/14760584.5.4.505] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The definition of immune correlates of protection in HIV-1 infection is pivotal to the design of successful vaccine candidates and strategies. Although significant methodological and conceptual strides have been made in our understanding of HIV-specific cellular immunity, we have not yet defined those parameters that have a role in controlling the spread of HIV infection. This review discusses the basis of our understanding of HIV-specific cellular immunity and identifies its shortcomings. Furthermore, potential protective characteristics will be proposed that may ultimately be required for an effective vaccine designed to stimulate cellular immunity against HIV-1.
Collapse
Affiliation(s)
- Michael R Betts
- University of Pennsylvania, Department of Microbiology, 522E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
16
|
Lind A, Brekke K, Sommerfelt M, Holmberg JO, Aass HCD, Baksaas I, Sørensen B, Dyrhol-Riise AM, Kvale D. Boosters of a therapeutic HIV-1 vaccine induce divergent T cell responses related to regulatory mechanisms. Vaccine 2013; 31:4611-8. [PMID: 23906886 DOI: 10.1016/j.vaccine.2013.07.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/02/2013] [Accepted: 07/16/2013] [Indexed: 01/29/2023]
Abstract
Therapeutic human immunodeficiency virus (HIV) vaccines aim to reduce disease progression by inducing HIV-specific T cells. Vacc-4x are peptides derived from conserved domains within HIV-1 p24 Gag. Previously, Vacc-4x induced T cell responses in 90% of patients which were associated with reduced viral loads. Here we evaluate the effects of Vacc-4x boosters on T cell immunity and immune regulation seven years after primary immunization. Twenty-five patients on effective antiretroviral therapy received two Vacc-4x doses four weeks apart and were followed for 16 weeks. Vacc-4x T cell responses were measured by proliferation (CFSE), INF-γ, CD107a, Granzyme B, Delayed-Type Hypersensitivity test (DTH) and cytokines and chemokines (Luminex). Functional regulation of Vacc-4x-specific T cell proliferation was estimated in vitro using anti-IL-10 and anti-TGF-ß monoclonal antibodies. Vacc-4x-specific CD8(+) T cell proliferation increased in 80% after either the first (64%) or second (16%) booster. Only 40% remained responders after two boosters with permanently increased Vacc-4x-specific proliferative responses (p=0.005) and improved CD8(+) T cell degranulation, IFN-γ production and DTH. At baseline, responders had higher CD8(+) T cell degranulation (p=0.05) and CD4(+) INF-γ production (p=0.01), whereas non-responders had higher production of proinflammatory TNF-α, IL-1α and IL-1ß (p<0.045) and regulatory IL-10 (p=0.07). Notably, IL-10 and TGF-ß mediated downregulation of Vacc-4x-specific CD8(+) T cell proliferation increased only in non-responders (p<0.001). Downregulation during the study correlated to higher PD-1 expression on Vacc-4x-specific CD8(+) T cells (r=0.44, p=0.037), but was inversely correlated to changes in Vacc4x-specific CD8(+) T cell proliferation (r=-0.52, p=0.012). These findings show that Vacc-4x boosters can improve T cell responses in selected patients, but also induce vaccine-specific downregulation of T cell responses in others. Broad surveillance of T cell functions during immunization may help to individualize boosting, where assessment of vaccine-related immune regulation should be further explored as a potential new parameter.
Collapse
Affiliation(s)
- Andreas Lind
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Takaku S, Nakagawa Y, Owaki A, Shimizu M, Takahashi M, Takahashi H. Induction of apoptosis-resistant and TGF-β-insensitive murine CD8(+) cytotoxic T lymphocytes specific for HIV-1 gp160. Cell Immunol 2013; 280:138-47. [PMID: 23399840 DOI: 10.1016/j.cellimm.2012.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/10/2012] [Accepted: 12/25/2012] [Indexed: 11/16/2022]
Abstract
Although TGF-β and IL-6 would turn CD8(+) T cells to differentiate into non-cytotoxic state, these treated cells were converted to cytolytic phenotypes after re-exposure to their antigenic epitope in vitro. Here, using spleen cells from TCR transgenic mice expressing TCRαβ genes of clone RT1 recognizing an epitope peptide (P18-I10: RGPGRAFVTI) of HIV-1 gp160, we generated CD8(+) cytotoxic T lymphocytes (CTLs) activated by re-exposure to P18-I10 after primarily cultured with TGF-β and IL-6 in vitro to examine their effector function. The CTLs, having strong cytotoxic activity in vitro, were not only resistant to Fas-FasL mediated apoptosis, but also insensitive to the suppression of their cytotoxicity by re-exposure to TGF-β in vitro. Moreover, adoptive transfer experiments indicated that the CTLs are capable of eliminating recombinant vaccinia virus expressing HIV-1 gp160 in vivo. Taken together, our data suggest that TGF-β and IL-6 may play pivotal roles in inducing apoptosis-resistant and TGF-β-insensitive CTLs in vitro.
Collapse
Affiliation(s)
- Shun Takaku
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo 113-8602, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Castro P, Plana M, González R, López A, Vilella A, Nicolas JM, Gallart T, Pumarola T, Bayas JM, Gatell JM, García F. Influence of episodes of intermittent viremia ("blips") on immune responses and viral load rebound in successfully treated HIV-infected patients. AIDS Res Hum Retroviruses 2013; 29:68-76. [PMID: 23121249 DOI: 10.1089/aid.2012.0145] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Presenting episodes of intermittent viremia (EIV) under combination antiretroviral therapy (cART) is frequent, but there exists some controversy about their consequences. They have been described as inducing changes in immune responses potentially associated with a better control of HIV infection. Conversely, it has been suggested that EIV increases the risk of virological failure. A retrospective analysis of a prospective, randomized double-blinded placebo-controlled study was performed. Twenty-six successfully treated HIV-infected adults were randomized to receive an immunization schedule or placebo, and after 1 year of follow-up cART was discontinued. The influence of EIV on T cell subsets, HIV-1-specific T cell immune responses, and viral load rebound, and the risk of developing genotypic mutations were evaluated, taking into account the immunization received. Patients with EIV above 200 copies/ml under cART had a lower proportion of CD4(+) and CD4(+)CD45RA(+)RO(-) T cells, a higher proportion of CD8(+) and CD4(+)CD38(+)HLADR(+) T cells, and higher HIV-specific CD8(+) T cell responses compared to persistently undetectable patients. After cART interruption, patients with EIV presented a significantly higher viral rebound (p=0.007), associated with greater increases in HIV-specific lymphoproliferative responses and T cell populations with activation markers. When patients with EIV between 20 and 200 copies/ml were included, most of the differences disappeared. Patients who present EIV above 200 copies/ml showed a lower CD4(+) T cell count and higher activation markers under cART. After treatment interruption, they showed greater specific immune responses against HIV, which did not prevent a higher virological rebound. EIV between 20 and 200 copies/ml did not have this deleterious effect.
Collapse
Affiliation(s)
- Pedro Castro
- Medical Intensive Care Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Montserrat Plana
- Retrovirology and Viral Immunopathology Laboratories, HIVACAT (HIV Vaccine Development in Catalonia), Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Raquel González
- Preventive Medicine Department Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
- Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Anna López
- Retrovirology and Viral Immunopathology Laboratories, HIVACAT (HIV Vaccine Development in Catalonia), Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Anna Vilella
- Preventive Medicine Department Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
- Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jose M. Nicolas
- Medical Intensive Care Unit, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Teresa Gallart
- Retrovirology and Viral Immunopathology Laboratories, HIVACAT (HIV Vaccine Development in Catalonia), Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
- Immunology Laboratory, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Tomàs Pumarola
- Microbiology Laboratory, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - José M. Bayas
- Preventive Medicine Department Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - José M. Gatell
- Infectious Diseases Unit, HIVACAT (HIV Vaccine Development in Catalonia), Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Felipe García
- Infectious Diseases Unit, HIVACAT (HIV Vaccine Development in Catalonia), Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Detectable viral load aggravates immunosenescence features of CD8 T-cell subsets in vertically HIV-infected children. J Acquir Immune Defic Syndr 2012; 60:447-54. [PMID: 22549383 DOI: 10.1097/qai.0b013e318259254f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND CD8 T cells are crucial in the immune responses against HIV infection, but HIV-infected adults suffer a naive CD8 T-cell depletion and accelerated senescence caused by chronic antigen stimulation. Although HIV-infected children preserve a better immune reconstitution capacity their CD8 responses are defective. We wanted to know, whether HIV vertical transmission produces a premature aging of the CD8 population due to antigen exposition to HIV from birth and persistent chronic activation. METHODS We conducted a multicentre cross-sectional study that compared vertically HIV-infected children with detectable (viremic) or undetectable (aviremic) viral load and age-matched healthy children. Using multiparameter flow cytometry, we studied within the CD8 population the frequencies of naive, memory, effector memory (effector memory), and TemRA subsets and measured markers of senescence, activation, and proliferation in these cells. RESULTS We found that naive subset in viremic children was markedly decreased and had a replicative senescence phenotype. Furthermore, viremic children showed increased frequencies of memory, TEM and TemRA CD8 T cells, with a more activated and replicative senescence phenotype. We found that HIV-infected children with undetectable viral load have an increased senescence in memory and effector CD8 T cells, but the frequencies and phenotype of the CD8 subsets analyzed are comparable to healthy children. CONCLUSIONS [corrected] Our study shows that CD8 T cells of HIV-infected children have a more senescent phenotype when compared with age-matched healthy children. Interestingly enough, our results support the importance of maintaining undetectable viral load in HIV-infected children to avoid the premature ageing and dysfunction of CD8 T cells.
Collapse
|
20
|
Nakagawa Y, Shimizu M, Norose Y, Takahashi M, Takahashi H. Induction of rapid apoptosis for class I MHC molecule-restricted CD8+ HIV-1 gp160-specific murine activated CTLs by free antigenic peptide in vivo. Int Immunol 2012; 25:11-24. [DOI: 10.1093/intimm/dxs086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Richter K, Brocker T, Oxenius A. Antigen amount dictates CD8+ T-cell exhaustion during chronic viral infection irrespective of the type of antigen presenting cell. Eur J Immunol 2012; 42:2290-304. [PMID: 22653665 DOI: 10.1002/eji.201142275] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 04/03/2012] [Accepted: 05/04/2012] [Indexed: 11/12/2022]
Abstract
Chronic viral infections lead to CD8(+) T-cell exhaustion, characterized by impaired cytokine secretion and loss of proliferative capacity. While viral load and T-cell dysfunction correlate, it is currently unclear whether the quality of a cell type presenting antigen determines the degree of T-cell exhaustion or if the overall amount of antigen recognized by T cells promotes exhaustion. We found that chronic lymphocytic chorio-meningitis virus infection led to decreased CD8(+) T-cell exhaustion in DC-MHC class I (MHCI) mice, in which CD8(+) T cells can only recognize antigen on DCs. However, this increase in CD8(+) T-cell function came at the expense of fatal immunopathology. Additional antigen recognition on nonhematopoietic cells in DC-MHCI mice promoted T-cell exhaustion and avoidance of immunopathology. Likewise, increased numbers of antigen-expressing hematopoietic cells, as well as a selective elevation of the number of DCs as the only cell type presenting antigen in DC-MHCI mice, resulted in compromised T-cell function. These results favor a scenario in which the overall amount of antigen exposure, rather than the type of cell engaging with virus-specific CD8(+) T cells, is responsible for their functional exhaustion. Furthermore, exhaustion of virus-specific CD8(+) T cells leads to avoidance of life-threatening immunopathology.
Collapse
|
22
|
Torti N, Oxenius A. T cell memory in the context of persistent herpes viral infections. Viruses 2012; 4:1116-43. [PMID: 22852044 PMCID: PMC3407898 DOI: 10.3390/v4071116] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 12/16/2022] Open
Abstract
The generation of a functional memory T cell pool upon primary encounter with an infectious pathogen is, in combination with humoral immunity, an essential process to confer protective immunity against reencounters with the same pathogen. A prerequisite for the generation and maintenance of long-lived memory T cells is the clearance of antigen after infection, which is fulfilled upon resolution of acute viral infections. Memory T cells play also a fundamental role during persistent viral infections by contributing to relative control and immuosurveillance of active replication or viral reactivation, respectively. However, the dynamics, the phenotype, the mechanisms of maintenance and the functionality of memory T cells which develop upon acute/resolved infection as opposed to chronic/latent infection differ substantially. In this review we summarize current knowledge about memory CD8 T cell responses elicited during α-, β-, and γ-herpes viral infections with major emphasis on the induction, maintenance and function of virus-specific memory CD8 T cells during viral latency and we discuss how the peculiar features of these memory CD8 T cell responses are related to the biology of these persistently infecting viruses.
Collapse
Affiliation(s)
- Nicole Torti
- Institute of Microbiology, ETH Zurich, CH-8093 Zurich, Switzerland.
| | | |
Collapse
|
23
|
Tenaya IWM, Heel K, Stumbles PA, Wilcox GE. Flow cytometric analysis of lymphocyte subset kinetics in Bali cattle experimentally infected with Jembrana disease virus. Vet Immunol Immunopathol 2012; 149:167-76. [PMID: 22776774 DOI: 10.1016/j.vetimm.2012.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 04/24/2012] [Accepted: 06/11/2012] [Indexed: 11/17/2022]
Abstract
Jembrana disease virus (JDV) is an unusual bovine lentivirus that causes an acute and sometimes fatal disease after a short incubation period in Bali cattle (Bos javanicus). The pathological changes occur primarily in lymphoid tissues, which feature proliferating lymphoblastoid-like cells predominantly throughout parafollicular (T-cell) areas, and atrophy of follicles (B-cell) areas. Five Bali cattle were experimentally infected with JDV and all developed typical clinical signs of Jembrana disease characterised by a transient febrile response, enlargement of superficial lymph nodes and a significant leukopenia. Flow cytometric analysis of PBMC during the acute (febrile) disease phase showed that the reduced number of lymphocytes was due to a significant decrease in both the proportion and absolute numbers of CD4(+) T cells, but not CD8(+) T-cells or CD21(+) B-cells. At the end of the febrile phase, total numbers of both CD8(+) T-cells and CD21(+) B-cells increased significantly, while CD4(+) T-cell numbers remained below normal values, resulting in a significantly reduced CD4(+):CD8(+) ratio. We speculate that the persistent depletion of CD4(+) T cells following JDV infection, through lack of CD4(+) T cell help to B cells, may explain the lack of production of JDV-specific antibodies for several weeks after recovery despite an increase in CD21(+) B cell numbers. Further, our previous data showing that IgG(+) plasma cells are targets for JDV infection, correlated with our current data demonstrating an increase in CD8(+) T cell numbers, supports the suggestion that anti-viral cytotoxic T cell or other cell-mediated immune responses may be critical in the recovery process, although this remains to be formally demonstrated for JDV.
Collapse
Affiliation(s)
- I W Masa Tenaya
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | | | | | | |
Collapse
|
24
|
Joly M, Pinto JM. An in-depth analysis of the HIV-1/AIDS dynamics by comprehensive mathematical modeling. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.mcm.2011.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Zelinskyy G, Myers L, Dietze KK, Gibbert K, Roggendorf M, Liu J, Lu M, Kraft AR, Teichgräber V, Hasenkrug KJ, Dittmer U. Virus-specific CD8+ T cells upregulate programmed death-1 expression during acute friend retrovirus infection but are highly cytotoxic and control virus replication. THE JOURNAL OF IMMUNOLOGY 2011; 187:3730-7. [PMID: 21873525 DOI: 10.4049/jimmunol.1101612] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It was recently reported that inhibitory molecules such as programmed death-1 (PD-1) were upregulated on CD8(+) T cells during acute Friend retrovirus infection and that the cells were prematurely exhausted and dysfunctional in vitro. The current study confirms that most activated CD8(+) T cells upregulated expression of PD-1 during acute infection and revealed a dichotomy of function between PD-1(hi) and PD-1(lo) subsets. More PD-1(lo) cells produced antiviral cytokines such as IFN-γ and TNF-α, whereas more PD-1(hi) cells displayed characteristics of cytotoxic effectors such as production of granzymes and surface expression of CD107a. Importantly, CD8(+) T cells mediated rapid in vivo cytotoxicity and were critical for control of acute Friend virus replication. Thus, direct ex vivo analyses and in vivo experiments revealed high CD8(+) T cell functionality and indicate that PD-1 expression during acute infection is not a marker of T cell exhaustion.
Collapse
Affiliation(s)
- Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen 45122, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Brunner S, Herndler-Brandstetter D, Weinberger B, Grubeck-Loebenstein B. Persistent viral infections and immune aging. Ageing Res Rev 2011; 10:362-9. [PMID: 20727987 DOI: 10.1016/j.arr.2010.08.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 12/12/2022]
Abstract
Immunosenescence comprises a set of dynamic changes occurring to both, the innate as well as the adaptive immune system that accompany human aging and result in complex manifestations of still poorly defined deficiencies in the elderly population. One of the most prominent alterations during aging is the continuous involution of the thymus gland which is almost complete by the age of 50. Consequently, the output of naïve T cells is greatly diminished in elderly individuals which puts pressure on homeostatic forces to maintain a steady T cell pool for most of adulthood. In a great proportion of the human population, this fragile balance is challenged by persistent viral infections, especially Cytomegalovirus (CMV), that oblige certain T cell clones to monoclonally expand repeatedly over a lifetime which then occupy space within the T cell pool. Eventually, these inflated memory T cell clones become exhausted and their extensive accumulation accelerates the age-dependent decline of the diversity of the T cell pool. As a consequence, infectious diseases are more frequent and severe in elderly persons and immunological protection following vaccination is reduced. This review therefore aims to shed light on how various types of persistent viral infections, especially CMV, influence the aging of the immune system and highlight potential measures to prevent the age-related decline in immune function.
Collapse
|
27
|
Turnbull EL, Baalwa J, Conrod KE, Wang S, Wei X, Wong M, Turner J, Pellegrino P, Williams I, Shaw GM, Borrow P. Escape is a more common mechanism than avidity reduction for evasion of CD8+ T cell responses in primary human immunodeficiency virus type 1 infection. Retrovirology 2011; 8:41. [PMID: 21635736 PMCID: PMC3123275 DOI: 10.1186/1742-4690-8-41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 06/02/2011] [Indexed: 12/29/2022] Open
Abstract
Background CD8+ T cells play an important role in control of viral replication during acute and early human immunodeficiency virus type 1 (HIV-1) infection, contributing to containment of the acute viral burst and establishment of the prognostically-important persisting viral load. Understanding mechanisms that impair CD8+ T cell-mediated control of HIV replication in primary infection is thus of importance. This study addressed the relative extent to which HIV-specific T cell responses are impacted by viral mutational escape versus reduction in response avidity during the first year of infection. Results 18 patients presenting with symptomatic primary HIV-1 infection, most of whom subsequently established moderate-high persisting viral loads, were studied. HIV-specific T cell responses were mapped in each individual and responses to a subset of optimally-defined CD8+ T cell epitopes were followed from acute infection onwards to determine whether they were escaped or declined in avidity over time. During the first year of infection, sequence variation occurred in/around 26/33 epitopes studied (79%). In 82% of cases of intra-epitopic sequence variation, the mutation was confirmed to confer escape, although T cell responses were subsequently expanded to variant sequences in some cases. In contrast, < 10% of responses to index sequence epitopes declined in functional avidity over the same time-frame, and a similar proportion of responses actually exhibited an increase in functional avidity during this period. Conclusions Escape appears to constitute a much more important means of viral evasion of CD8+ T cell responses in acute and early HIV infection than decline in functional avidity of epitope-specific T cells. These findings support the design of vaccines to elicit T cell responses that are difficult for the virus to escape.
Collapse
Affiliation(s)
- Emma L Turnbull
- Nuffield Department of Clinical Medicine, University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, OX3 9DS, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Presence of monoclonal T-cell populations in B-cell post-transplant lymphoproliferative disorders. Mod Pathol 2011; 24:232-40. [PMID: 20834235 DOI: 10.1038/modpathol.2010.186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As has been previously shown, the lack of immune surveillance plays a major role in the unchecked proliferation of Epstein-Barr virus (EBV)-infected B cells in the pathogenesis of B-cell post-transplant lymphoproliferative disorders. We hypothesised that the lack of immune surveillance should possibly also affect T cells, and this should lead to subsequent emergence of T-cell clones. The presence of both B- and T-cell clones in post-transplant lymphoproliferative disorders samples has rarely been demonstrated in the past. We systematically evaluated 26 B-cell post-transplant lymphoproliferative disorder, 23 human immune deficiency virus-associated B-cell lymphoma and 10 immune-competent diffuse large B-cell lymphoma samples for B- and T-cell clonality (polymerase chain reaction and heteroduplex analysis using BIOMED-2 protocol), T-cell subsets (immunohistochemistry) and EBV association (in situ hybridisation using EBER). One-half of B-cell post-transplant lymphoproliferative disorders showed evidence of monoclonal T-cell expansion, and among the T cells present in the tissue samples, CD8-positive cells predominated. Although 9/13 (69%) B-cell post-transplant lymphoproliferative disorders with the presence of monoclonal T-cell population had a CD4:CD8 ratio of ≤0.4, 0/13 of the cases without monoclonal T-cell expansion had a ratio ≤0.4 (P = 0.002). Only 2/26 (8%) demonstrated significant cytological atypia in the CD3/CD8-positive cells. There was no association between EBV and presence of T-cell clones. T-cell clones were not identified in lymphomas other than B-cell post-transplant lymphoproliferative disorders. Among 53.8% cases of EBV-positive B-cell post-transplant lymphoproliferative disorders with associated clonal expansion of T-cells tested, none had EBV-positive T cells. We conclude that half of B-cell post-transplant lymphoproliferative disorders are associated with clonal expansion of CD8-positive T cells, most of which do not amount to the coexistence of a T-cell post-transplant lymphoproliferative disorders.
Collapse
|
29
|
Gain and loss of T cell subsets in old age--age-related reshaping of the T cell repertoire. J Clin Immunol 2011; 31:137-46. [PMID: 21243520 DOI: 10.1007/s10875-010-9499-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/13/2010] [Indexed: 02/07/2023]
Abstract
The immune system is affected by the aging process and undergoes significant age-related changes, termed immunosenescence. Different T cell subsets are affected by this process. Alterations within the bone marrow and thymus lead to a shift in the composition of the T cell repertoire from naïve to antigen-experienced T cells, thereby compromising the diversity of the T cell pool. Additional infection with latent pathogens such as cytomegalovirus aggravates this process. In this review, we focus on the major age-related changes that occur in the naïve and the antigen-experienced T cell population. We discuss the mechanisms responsible for the generation and maintenance of these subsets and how age-related changes can be delayed or prevented by clinical interventions.
Collapse
|
30
|
Fluidity of HIV-1-specific T-cell responses during acute and early subtype C HIV-1 infection and associations with early disease progression. J Virol 2010; 84:12018-29. [PMID: 20826686 DOI: 10.1128/jvi.01472-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deciphering immune events during early stages of human immunodeficiency virus type 1 (HIV-1) infection is critical for understanding the course of disease. We characterized the hierarchy of HIV-1-specific T-cell gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay responses during acute subtype C infection in 53 individuals and associated temporal patterns of responses with disease progression in the first 12 months. There was a diverse pattern of T-cell recognition across the proteome, with the recognition of Nef being immunodominant as early as 3 weeks postinfection. Over the first 6 months, we found that there was a 23% chance of an increased response to Nef for every week postinfection (P = 0.0024), followed by a nonsignificant increase to Pol (4.6%) and Gag (3.2%). Responses to Env and regulatory proteins appeared to remain stable. Three temporal patterns of HIV-specific T-cell responses could be distinguished: persistent, lost, or new. The proportion of persistent T-cell responses was significantly lower (P = 0.0037) in individuals defined as rapid progressors than in those progressing slowly and who controlled viremia. Almost 90% of lost T-cell responses were coincidental with autologous viral epitope escape. Regression analysis between the time to fixed viral escape and lost T-cell responses (r = 0.61; P = 0.019) showed a mean delay of 14 weeks after viral escape. Collectively, T-cell epitope recognition is not a static event, and temporal patterns of IFN-γ-based responses exist. This is due partly to viral sequence variation but also to the recognition of invariant viral epitopes that leads to waves of persistent T-cell immunity, which appears to associate with slower disease progression in the first year of infection.
Collapse
|
31
|
Frebel H, Richter K, Oxenius A. How chronic viral infections impact on antigen-specific T-cell responses. Eur J Immunol 2010; 40:654-63. [DOI: 10.1002/eji.200940102] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Harari A, Pantaleo G. The immunopathogenesis of HIV-1 infection. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
33
|
Castro P, Plana M, González R, López A, Vilella A, Argelich R, Gallart T, Pumarola T, Bayas JM, Gatell JM, García F. Influence of a vaccination schedule on viral load rebound and immune responses in successfully treated HIV-infected patients. AIDS Res Hum Retroviruses 2009; 25:1249-59. [PMID: 19943787 DOI: 10.1089/aid.2009.0015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vaccination is recommended for HIV-infected patients. Transient increases of viral load (VL) and risk of developing resistance to HAART have been described. In addition, VL rebounds could increase HIV-specific immune responses. Twenty-six successfully treated HIV-infected adults were randomized to receive a vaccination schedule or placebo during 12 months. Afterward, HAART was discontinued. Influences of vaccination over VL, genotypic mutations, different T cell subsets, and HIV-1-specific immune responses were evaluated. Patients did not present any secondary effect. No differences in incidence of detectable VL determinations were detected between groups [relative risk 0.54 (95% CI 0.23-1.26)]. No relevant resistance mutations were detected. The vaccinated group showed a significant drop in CD4(+) T cells (p = 0.046) associated with increases in activated T cells. HIV-1-specific lymphoproliferative responses increased more in the vaccinated group during the vaccination period. Viral rebound dynamics after interrupting HAART were similar in both groups. A vaccination schedule in successfully treated HIV patients was safe, was not associated with an increase in detectable VL, and did not increase the risk of developing resistance mutations. However, it induced an increase in T cell activation and a drop in CD4(+) T cells, although these changes did not influence the VL rebound dynamics after HAART interruption.
Collapse
Affiliation(s)
- Pedro Castro
- Medical Intensive Care Unit, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Montserrat Plana
- Retrovirology and Viral Immunopathology Laboratories, IRSICAIXA-HIVACAT, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Raquel González
- Preventive Medicine Department Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Anna López
- Retrovirology and Viral Immunopathology Laboratories, IRSICAIXA-HIVACAT, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Anna Vilella
- Preventive Medicine Department Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Roger Argelich
- Infectious Diseases Unit, HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Teresa Gallart
- Retrovirology and Viral Immunopathology Laboratories, IRSICAIXA-HIVACAT, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Immunology Laboratory, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Tomàs Pumarola
- Microbiology Laboratory, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - José M. Bayas
- Preventive Medicine Department Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - José M. Gatell
- Infectious Diseases Unit, HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Felipe García
- Infectious Diseases Unit, HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Richter K, Agnellini P, Oxenius A. On the role of the inhibitory receptor LAG-3 in acute and chronic LCMV infection. Int Immunol 2009; 22:13-23. [PMID: 19880580 DOI: 10.1093/intimm/dxp107] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic viral infections are often characterized by CD8 T-cell responses with poor cytokine secretion potential and limited expansion of the CD8 T-cell pool, collectively referred to as CD8 T-cell exhaustion. Exhaustion of lymphocytic choriomeningitis virus (LCMV)-specific CD8 T cells was shown to be partially regulated by the inhibitory receptor programmed death 1 (PD-1). Here, we demonstrate that exhausted LCMV-specific CD8 T cells also express the negative regulatory receptor lymphocyte activation gene 3 (LAG-3) which is mainly expressed on cells co-expressing the negative regulatory receptors PD-1 and Tim-3. Expression levels of LAG-3 on anti-viral CD8 T cells remain stable over short-term in vitro stimulations in presence of antigenic peptide. Nevertheless, in vitro and in vivo blockade of LAG-3 did not rescue cytokine production by virus-specific CD8 T cells and did not alter the virus titer in various organs. Likewise, chronic LCMV infection of LAG-3-/- mice led to a comparable degree of T-cell exhaustion as observed in C57BL/6 controls and to similar virus titers. Further, LAG-3 did not influence T-cell activation or cell division during chronic LCMV infection. These data suggest that even though LAG-3 is continuously up-regulated on LCMV-specific exhausted CD8 T cells, it alone does not significantly contribute to T-cell exhaustion.
Collapse
Affiliation(s)
- Kirsten Richter
- Institute of Microbiology, Department of Biology, Wolfgang-Pauli-Strasse 10, HCI G401, ETH Zurich, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
35
|
Vanhoutte VJ, McAulay KA, McCarrell E, Turner M, Crawford DH, Haque T. Cytolytic mechanisms and T-cell receptor Vbeta usage by ex vivo generated Epstein-Barr virus-specific cytotoxic T lymphocytes. Immunology 2009; 127:577-86. [PMID: 19604308 DOI: 10.1111/j.1365-2567.2008.03035.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Ex-vivo-generated Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTL) have been used for cellular adoptive immunotherapy of EBV-associated lymphomas. Here we investigated the phenotypes, cytolytic mechanisms, polyfunctionality and T-cell receptor (TCR) usage in growing and established CTL, generated by weekly stimulation with an EBV-transformed autologous lymphoblastoid cell line (LCL). Our results showed that phenotypically mature CTL developed within the first 4 weeks of culture, with an increase in CD45RO and CD69, and a decrease in CD45RA, CD62L, CD27 and CD28 expression. Spectratyping analysis of the variable beta-chain of the TCR revealed that TCR repertoire remained diverse during the course of culture. Cytotoxicity of CTL was significantly inhibited by concanamycin A (P < 0.0001) and ethylene glycol-bis tetraacetic acid (P < 0.0001), indicating that a calcium and perforin-mediated exocytosis pathway with the release of granzyme B was the principal cytotoxic mechanism. The CTL mainly produced interferon-gamma (IFN-gamma) or tumour necrosis factor-alpha (TNF-alpha) upon restimulation with autologous LCL, although there were some polyfunctional cells producing IFN-gamma and TNF-alpha. Granzyme B, perforin and Fas ligand were detected in CD8(+) and CD4(+) cells in all CTL; however, a greater proportion of CD8(+) than CD4(+) T cells expressed granzyme B (P < 0.0001) and more granzyme B was detected in CD8(+) T cells than in CD4(+) T cells (P = 0.001). This difference was not observed with Fas ligand or perforin expression. Our results provide insight into the basic characteristics of ex-vivo-generated CTL.
Collapse
Affiliation(s)
- Victoria J Vanhoutte
- Clinical and Molecular Virology, University of Edinburgh, Summerhall, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
36
|
Turnbull EL, Wong M, Wang S, Wei X, Jones NA, Conrod KE, Aldam D, Turner J, Pellegrino P, Keele BF, Williams I, Shaw GM, Borrow P. Kinetics of expansion of epitope-specific T cell responses during primary HIV-1 infection. THE JOURNAL OF IMMUNOLOGY 2009; 182:7131-45. [PMID: 19454710 DOI: 10.4049/jimmunol.0803658] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple lines of evidence support a role for CD8(+) T cells in control of acute/early HIV replication; however, features of the primary HIV-specific CD8(+) T cell response that may impact on the efficiency of containment of early viral replication remain poorly defined. In this study, we performed a novel, comprehensive analysis of the kinetics of expansion of components of the HIV-specific CD8(+) T cell response in 21 acutely infected individuals. Epitope-specific T cell responses expanded asynchronously during primary infection in all subjects. The most rapidly expanded responses peaked as early as 5 days following symptomatic presentation and were typically of very limited epitope breadth. Responses of additional specificities expanded and contracted in subsequent waves, resulting in successive shifts in the epitope immunodominance hierarchy over time. Sequence variation and escape were temporally associated with the decline in magnitude of only a subset of T cell responses, suggesting that other factors such as Ag load and T cell exhaustion may play a role in driving the contraction of HIV-specific T cell responses. These observations document the preferential expansion of CD8(+) T cells recognizing a subset of epitopes during the viral burst in acute HIV-1 infection and suggest that the nature of the initial, very rapidly expanded T cell response may influence the efficiency with which viral replication is contained in acute/early HIV infection.
Collapse
Affiliation(s)
- Emma L Turnbull
- Viral Immunology Group, Jenner Institute, University of Oxford, Compton, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
WIESEL MELANIE, WALTON SENTA, RICHTER KIRSTEN, OXENIUS ANNETTE. Virus-specific CD8 T cells: activation, differentiation and memory formation. APMIS 2009; 117:356-81. [DOI: 10.1111/j.1600-0463.2009.02459.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Belair M, Dovat M, Foley B, Mayerat C, Pantaleo G, Graziosi C. The polymorphic nature of HIV type 1 env V4 affects the patterns of potential N-glycosylation sites in proviral DNA at the intrahost level. AIDS Res Hum Retroviruses 2009; 25:199-206. [PMID: 19239359 DOI: 10.1089/aid.2008.0162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have previously shown that env V4 from HIV-1 plasma RNA is highly heterogeneous within a single patient, due to indel-associated polymorphism. In this study, we have analyzed the variability of V4 in proviral DNA from unfractionated PBMC and sorted T and non-T cell populations within individual patients. Our data show that the degree of sequence variability and length polymorphism in V4 from HIV provirus is even higher than we previously reported in plasma. The data also show that the sequence of V4 depends largely on the experimental approach chosen. We could observe no clear trend for compartmentalization of V4 variants in specific cell types. Of interest is the fact that some variants that had been found to be predominant in plasma were not detected in any of the cell subsets analyzed. Consistently with our observations in plasma, V3 was found to be relatively conserved at both interpatient and intrapatient level. Our data show that V4 polymorphism involving insertions and deletions in addition to point mutations results in changes in the patterns of sequons in HIV-1 proviral DNA as well as in plasma RNA. These rearrangements may result in the coexistence, within the same individual, of a swarm of different V4 regions, each characterized by a different carbohydrate surface shield. Further studies are needed to investigate the mechanism responsible for the variability observed in V4 and its role in HIV pathogenesis.
Collapse
Affiliation(s)
| | - Magali Dovat
- Institut Universitaire de Médecine Légale, CHUV, Lausanne, Switzerland
| | - Brian Foley
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratories, Los Alamos, New Mexico 87544
| | - Claude Mayerat
- Laboratory of AIDS Immunopathogenesis, CHUV, Lausanne, Switzerland
| | | | - Cecilia Graziosi
- Laboratory of AIDS Immunopathogenesis, CHUV, Lausanne, Switzerland
| |
Collapse
|
39
|
Lubong Sabado R, Kavanagh DG, Kaufmann DE, Fru K, Babcock E, Rosenberg E, Walker B, Lifson J, Bhardwaj N, Larsson M. In vitro priming recapitulates in vivo HIV-1 specific T cell responses, revealing rapid loss of virus reactive CD4 T cells in acute HIV-1 infection. PLoS One 2009; 4:e4256. [PMID: 19165342 PMCID: PMC2626278 DOI: 10.1371/journal.pone.0004256] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/13/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The requirements for priming of HIV-specific T cell responses initially seen in infected individuals remain to be defined. Activation of T cell responses in lymph nodes requires cell-cell contact between T cells and DCs, which can give concurrent activation of T cells and HIV transmission. METHODOLOGY The study aim was to establish whether DCs pulsed with HIV-1 could prime HIV-specific T cell responses and to characterize these responses. Both infectious and aldrithiol-2 inactivated noninfectious HIV-1 were compared to establish efficiencies in priming and the type of responses elicited. FINDINGS Our findings show that both infectious and inactivated HIV-1 pulsed DCs can prime HIV-specific responses from naïve T cells. Responses included several CD4(+) and CD8(+) T cell epitopes shown to be recognized in vivo by acutely and chronically infected individuals and some CD4(+) T cell epitopes not identified previously. Follow up studies of acute and recent HIV infected samples revealed that these latter epitopes are among the earliest recognized in vivo, but the responses are lost rapidly, presumably through activation-induced general CD4(+) T cell depletion which renders the newly activated HIV-specific CD4(+) T cells prime targets for elimination. CONCLUSION Our studies highlight the ability of DCs to efficiently prime naïve T cells and induce a broad repertoire of HIV-specific responses and also provide valuable insights to the pathogenesis of HIV-1 infection in vivo.
Collapse
Affiliation(s)
- Rachel Lubong Sabado
- New York University School of Medicine, New York, New York, United States of America
| | - Daniel G. Kavanagh
- Partners AIDS Research Center (PARC), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Daniel E. Kaufmann
- Partners AIDS Research Center (PARC), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Karlhans Fru
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ethan Babcock
- New York University School of Medicine, New York, New York, United States of America
| | - Eric Rosenberg
- Partners AIDS Research Center (PARC), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Bruce Walker
- Partners AIDS Research Center (PARC), Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Jeffrey Lifson
- SAIC Fredrick, Inc., National Cancer Institute, Fredrick, Frederick, Maryland, United States of America
| | - Nina Bhardwaj
- New York University School of Medicine, New York, New York, United States of America
| | - Marie Larsson
- Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
40
|
Stevceva L, Yoon V, Carville A, Pacheco B, Santosuosso M, Korioth-Schmitz B, Mansfield K, Poznansky MC. The efficacy of T cell-mediated immune responses is reduced by the envelope protein of the chimeric HIV-1/SIV-KB9 virus in vivo. THE JOURNAL OF IMMUNOLOGY 2008; 181:5510-21. [PMID: 18832708 DOI: 10.4049/jimmunol.181.8.5510] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Gp120 is a critical component of the envelope of HIV-1. Its role in viral entry is well described. In view of its position on the viral envelope, gp120 is a part of the retrovirus that immune cells encounter first and has the potential to influence antiretroviral immune responses. We propose that high levels of gp120 are present in tissues and may contribute to the failure of the immune system to fully control and ultimately clear the virus. Herein, we show for the first time that lymphoid tissues from acutely HIV-1/SIV (SHIV)-KB9-infected macaques contain deposits of gp120 at concentrations that are high enough to induce suppressive effects on T cells, thus negatively regulating the antiviral CTL response and contributing to virus survival and persistence. We also demonstrate that SHIV-KB9 gp120 influences functional T cell responses during SHIV infection in a manner that suppresses degranulation and cytokine secretion by CTLs. Finally, we show that regulatory T cells accumulate in lymphoid tissues during acute infection and that they respond to gp120 by producing TGFbeta, a known suppressant of cytotoxic T cell activity. These findings have significant implications for our understanding of the contribution of non-entry-related functions of HIV-1 gp120 to the pathogenesis of HIV/AIDS.
Collapse
Affiliation(s)
- Liljana Stevceva
- Partners AIDS Research Center and Infectious Diseases Medicine, Massachusetts General Hospital (East), Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Therapeutic options aimed at tackling the HIV pandemic face many obstacles. The lack of readily accessible and affordable therapies means that most of those affected go untreated. The array of escape mechanisms used by HIV has undermined the efficiency of many antiviral products and continually represents a barrier to the development of an effective vaccine. Recent developments have seen a shift away from a cytopathic viral model of HIV pathogenesis towards the crucial role of immunopathogenic features--notably generalised immune activation--in the development of AIDS. As conventional vaccine strategies have sought to promote viral neutralisation and suppressive cellular responses, novel strategies that aim to address HIV immunopathogenesis should be sought. We review current opinion on HIV-induced pathogenic immune activation and strategies aimed at eliminating HIV, including a potential role for non-neutralising antibodies as part of a therapeutic vaccine option.
Collapse
|
42
|
Marcondes MCG, Sopper S, Sauermann U, Burdo TH, Watry D, Zandonatti M, Fox HS. CD4 deficits and disease course acceleration can be driven by a collapse of the CD8 response in rhesus macaques infected with simian immunodeficiency virus. AIDS 2008; 22:1441-52. [PMID: 18614867 PMCID: PMC2636707 DOI: 10.1097/qad.0b013e3283052fb5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Defects in memory CD4+ T cells correlate with development of AIDS in monkeys infected with simian immunodeficiency virus, but the early events leading to these deficits are unknown. We explored the role of cells specific to simian immunodeficiency virus and CD8 cells in the determination of CD4 failure and rapid disease course. DESIGN AND METHODS Using MamuA*01-restricted Gag and Tat epitope tetramers, we compared the kinetics of specific response in animals with regular (REG) and rapid (RAP) progression. Expressions of memory, activation and proliferation markers were examined on the global CD8 pool, as well as on CD4 T cells in those animals. In-vivo CD8 depletion in non-MamuA*01 animals was used to investigate CD8 collapse as an event leading to disease progression and CD4 deficits. RESULTS In animals with a rapid disease course, an initial development of cytotoxic T lymphocytes specific to simian immunodeficiency virus is followed by collapse accompanied by global changes in CD8 cells and occurs in synchrony with the characteristic CD4 deficiencies. Antibody-mediated depletion of CD8 cells early after infection with simian immunodeficiency virus induces similar changes in the CD4 cells and rapid development of AIDS. CONCLUSION CD8 collapse at acute time points may result in uncontrolled viral load and development of a defective and insufficient CD4 population. Our results indicate that early breakdown in CD8 cells leads to CD4 deficits and rapid progression to AIDS and suggest that therapeutic approaches should aim at strengthening CD8 T cells early after viral infection.
Collapse
Affiliation(s)
- Maria Cecilia G Marcondes
- The Scripps Research Institute, Molecular and Integrative Neurosciences Department, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Rutjens E, Vermeulen J, Verstrepen B, Hofman S, Prins JM, Srivastava I, Heeney JL, Koopman G. Chimpanzee CD4+ T cells are relatively insensitive to HIV-1 envelope-mediated inhibition of CD154 up-regulation. Eur J Immunol 2008; 38:1164-72. [PMID: 18383039 DOI: 10.1002/eji.200737792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CD40-CD154 interaction forms a key event in regulation of crosstalk between dendritic cells and CD4 T cells. In human immunodeficiency virus (HIV)-1 infected patients CD154 expression is impaired, and the resulting loss of immune responsiveness by CD4+ T cells contributes to a progressive state of immunodeficiency in humans. Although chimpanzees are susceptible to chronic HIV-1/SIVcpz infection, they are relatively resistant to the onset of AIDS. This relative resistance is characterized by maintenance of CD4+ T cell populations and function, which is highly compromised in human patients. In our cohort of chronically HIV-1- and SIVcpz-infected chimpanzees, we demonstrated the capacity to produce IL-2, following CD3/CD28 stimulation, as well as preserved CD154 up-regulation. Cross-linking of CD4 with mAb was found to inhibit CD3/CD28-induced up-regulation of CD154 equally in chimpanzees and humans. However, specific cross-linking with trimeric recombinant HIV-1 gp140 revealed reduced sensitivity for inhibition of CD154 up-regulation in chimpanzees, requiring fourfold higher concentrations of viral protein. Chimpanzee CD4+ T cells are thus less sensitive to the immune-suppressive effect of low-dose HIV-1 envelope protein than human CD4+ T cells.
Collapse
Affiliation(s)
- Erik Rutjens
- Biomedical Primate Research Centre, Department of Virology, Rijswijk, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Kedzierska K, La Gruta NL, Stambas J, Turner SJ, Doherty PC. Tracking phenotypically and functionally distinct T cell subsets via T cell repertoire diversity. Mol Immunol 2008; 45:607-18. [PMID: 17719639 PMCID: PMC2237887 DOI: 10.1016/j.molimm.2006.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 05/15/2006] [Indexed: 02/03/2023]
Abstract
Antigen-specific T cell receptors (TCRs) recognise complexes of immunogenic peptides (p) and major histocompatibility complex (MHC) glycoproteins. Responding T cell populations show profiles of preferred usage (or bias) toward one or few TCRbeta chains. Such skewing is also observed, though less commonly, in TCRalpha chain usage. The extent and character of clonal diversity within individual, antigen-specific T cell sets can be established by sequence analysis of the TCRVbeta and/or TCRValpha CDR3 loops. The present review provides examples of such TCR repertoires in prominent responses to acute and persistent viruses. The determining role of structural constraints and antigen dose is discussed, as is the way that functionally and phenotypically distinct populations can be defined at the clonal level. In addition, clonal dissection of "high" versus "low" avidity, or "central" versus "effector" memory sets provides insights into how these antigen specific T cell responses are generated and maintained. As TCR diversity potentially influences both the protective capacity of CD8+ T cells and the subversion of immune control that leads to viral escape, analysing the spectrum of TCR selection and maintenance has implications for improving the functional efficacy of T cell responsiveness and effector function.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - John Stambas
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Melbourne, Australia
- Department of Immunology, St Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
45
|
Ota MOC, Brookes RH, Hill PC, Owiafe PK, Ibanga HB, Donkor S, Awine T, McShane H, Adegbola RA. The effect of tuberculin skin test and BCG vaccination on the expansion of PPD-specific IFN-gamma producing cells ex vivo. Vaccine 2007; 25:8861-7. [PMID: 18023944 DOI: 10.1016/j.vaccine.2007.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/29/2007] [Accepted: 10/03/2007] [Indexed: 11/20/2022]
Abstract
Understanding the immunogenicity of BCG in a population where it has failed will facilitate the design of new TB vaccines. We assessed the immunogenicity of M. bovis BCG over 12 months by ELISPOT assay. Forty-one adolescents and young Gambian male adults received a tuberculin skin test (TST) which was followed one week later by BCG vaccination, but the 23 control subjects received neither of these. TST alone significantly induced PPD-specific IFN-gamma producing cells. Twenty-three percent of subjects did not respond to BCG, which was associated with higher pre-existing ex vivo response to PPD. Paradoxically, amongst BCG responders there was a correlation between pre-existing response and subsequent response to BCG. We conclude that BCG is immunogenic, but this effector response is short-lived and can be limited in higher pre-existing anti-mycobacterial immunity, suggesting a possible threshold beyond which BCG immunogenicity is inhibited.
Collapse
Affiliation(s)
- Martin O C Ota
- Bacterial Diseases Programme, Medical Research Council, P.O. Box 273, Banjul, Gambia.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Clonal focusing of epitope-specific CD8+ T lymphocytes in rhesus monkeys following vaccination and simian-human immunodeficiency virus challenge. J Virol 2007; 82:805-16. [PMID: 17977967 DOI: 10.1128/jvi.01038-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To afford the greatest possible immune protection, candidate human immunodeficiency virus (HIV) vaccines must generate diverse and long-lasting CD8(+) T lymphocyte responses. In the present study, we evaluate T-cell receptor Vbeta (variable region beta) gene usage and a CDR3 (complementarity-determining region 3) sequence to assess the clonality of epitope-specific CD8(+) T lymphocytes generated in rhesus monkeys following vaccination and simian-human immunodeficiency virus (SHIV) challenge. We found that vaccine-elicited epitope-specific CD8(+) T lymphocytes have a clonal diversity comparable to those cells generated in response to SHIV infection. Moreover, we show that the clonal diversity of vaccine-elicited CD8(+) T-lymphocyte responses is dictated by the epitope sequence and is not affected by the mode of antigen delivery to the immune system. Clonal CD8(+) T-lymphocyte populations persisted following boosting with different vectors, and these clonal cell populations could be detected for as long as 4 years after SHIV challenge. Finally, we show that the breadth of these epitope-specific T lymphocytes transiently focuses in response to intense SHIV replication. These observations demonstrate the importance of the initial immune response to SHIV, induced by vaccination or generated during primary infection, in determining the clonal diversity of cell-mediated immune responses and highlight the focusing of this clonal diversity in the setting of high viral loads. Circumventing this restricted CD8(+) T-lymphocyte clonal diversity may present a significant challenge in the development of an effective HIV vaccine strategy.
Collapse
|
47
|
Derré L, Bruyninx M, Baumgaertner P, Devevre E, Corthesy P, Touvrey C, Mahnke YD, Pircher H, Voelter V, Romero P, Speiser DE, Rufer N. In Vivo Persistence of Codominant Human CD8+ T Cell Clonotypes Is Not Limited by Replicative Senescence or Functional Alteration. THE JOURNAL OF IMMUNOLOGY 2007; 179:2368-79. [PMID: 17675498 DOI: 10.4049/jimmunol.179.4.2368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
T cell responses to viral epitopes are often composed of a small number of codominant clonotypes. In this study, we show that tumor Ag-specific T cells can behave similarly. In a melanoma patient with a long lasting HLA-A2/NY-ESO-1-specific T cell response, reaching 10% of circulating CD8 T cells, we identified nine codominant clonotypes characterized by individual TCRs. These clonotypes made up almost the entire pool of highly differentiated effector cells, but only a fraction of the small pool of less differentiated "memory" cells, suggesting that the latter serve to maintain effector cells. The different clonotypes displayed full effector function and expressed TCRs with similar functional avidity. Nevertheless, some clonotypes increased, whereas others declined in numbers over the observation period of 6 years. One clonotype disappeared from circulating blood, but without preceding critical telomere shortening. In turn, clonotypes with increasing frequency had accelerated telomere shortening, correlating with strong in vivo proliferation. Interestingly, the final prevalence of the different T cell clonotypes in circulation was anticipated in a metastatic lymph node withdrawn 2 years earlier, suggesting in vivo clonotype selection driven by metastases. Together, these data provide novel insight in long term in vivo persistence of T cell clonotypes associated with continued cell turnover but not replicative senescence or functional alteration.
Collapse
Affiliation(s)
- Laurent Derré
- Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Almeida JR, Price DA, Papagno L, Arkoub ZA, Sauce D, Bornstein E, Asher TE, Samri A, Schnuriger A, Theodorou I, Costagliola D, Rouzioux C, Agut H, Marcelin AG, Douek D, Autran B, Appay V. Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J Exp Med 2007; 204:2473-85. [PMID: 17893201 PMCID: PMC2118466 DOI: 10.1084/jem.20070784] [Citation(s) in RCA: 577] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 08/31/2007] [Indexed: 01/29/2023] Open
Abstract
The key attributes of CD8+ T cell protective immunity in human immunodeficiency virus (HIV) infection remain unclear. We report that CD8+ T cell responses specific for Gag and, in particular, the immunodominant p24 epitope KK10 correlate with control of HIV-1 replication in human histocompatibility leukocyte antigen (HLA)-B27 patients. To understand further the nature of CD8+ T cell-mediated antiviral efficacy, we performed a comprehensive study of CD8+ T cells specific for the HLA-B27-restricted epitope KK10 in chronic HIV-1 infection based on the use of multiparametric flow cytometry together with molecular clonotypic analysis and viral sequencing. We show that B27-KK10-specific CD8+ T cells are characterized by polyfunctional capabilities, increased clonal turnover, and superior functional avidity. Such attributes are interlinked and constitute the basis for effective control of HIV-1 replication. These data on the features of effective CD8+ T cells in HIV infection may aid in the development of successful T cell vaccines.
Collapse
Affiliation(s)
- Jorge R Almeida
- Cellular Immunology Laboratory, U543, Institut National de la Santé et de la Recherche Médicale, Avenir Group, 75013 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yang H, Dong T, Turnbull E, Ranasinghe S, Ondondo B, Goonetilleke N, Winstone N, di Gleria K, Bowness P, Conlon C, Borrow P, Hanke T, McMichael A, Dorrell L. Broad TCR usage in functional HIV-1-specific CD8+ T cell expansions driven by vaccination during highly active antiretroviral therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:597-606. [PMID: 17579081 DOI: 10.4049/jimmunol.179.1.597] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During chronic HIV-1 infection, continuing viral replication is associated with impaired proliferative capacity of virus-specific CD8+ T cells and with the expansion and persistence of oligoclonal T cell populations. TCR usage may significantly influence CD8+ T cell-mediated control of AIDS viruses; however, the potential to modulate the repertoire of functional virus-specific T cells by immunotherapy has not been explored. To investigate this, we analyzed the TCR Vbeta usage of CD8+ T cells populations which were expanded following vaccination with modified vaccinia virus Ankara expressing a HIV-1 gag/multiepitope immunogen (MVA.HIVA) in HIV-1-infected patients receiving highly active antiretroviral therapy. Vaccinations induced the re-expansion of HIV-1-specific CD8+ T cells and these showed broad TCR Vbeta usage which was maintained for at least 1 year in some individuals. By contrast, virus-specific CD8+ T cell populations in the same donors which failed to expand after vaccination and in unvaccinated controls were oligoclonal. Simultaneously, we observed that CD8+ T cells recognizing vaccine-derived HIV-1 epitopes displayed enhanced capacity to proliferate and to inhibit HIV-1 replication in vitro, following MVA.HIVA immunizations. Taken together, these data indicate that an attenuated viral-vectored vaccine can modulate adaptive CD8+ T cell responses to HIV-1 and improve their antiviral functional capacity. The potential therapeutic benefit of this vaccination approach warrants further investigation.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Antiretroviral Therapy, Highly Active
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Proliferation
- Chronic Disease
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Gene Products, pol/genetics
- Gene Products, pol/immunology
- Genes, T-Cell Receptor beta
- HIV Infections/drug therapy
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV-1/genetics
- HIV-1/growth & development
- HIV-1/immunology
- Humans
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Hongbing Yang
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sriram U, Wong M, Caillier SJ, Hecht FM, Elkins MK, Levy JA, Oksenberg JR, Baranzini SE. Quantitative longitudinal analysis of T cell receptor repertoire expression in HIV-infected patients on antiretroviral and interleukin-2 therapy. AIDS Res Hum Retroviruses 2007; 23:741-7. [PMID: 17531001 DOI: 10.1089/aid.2007.0209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a single-step reverse transcriptase kinetic PCR assay (kRT-PCR) to accurately determine the expression of each of the 24 TCRbetaV gene families in CD8(+) cells. We analyzed the long-term effects of highly active antiretroviral therapy (HAART) on the stability of the CD8(+) T cell receptor (TCR) repertoire in a cohort of 15 treated and 10 untreated individuals diagnosed with human immunodeficiency virus (HIV) infection. The CD4(+) TCR repertoire was studied in a second cohort receiving interleukin-2 infusions in addition to HAART. Analysis was based on kinetic (quantitative) reverse-transcription PCR (kRT-PCR) of the TCR variable B gene (TCRbetaV). Expression of each of the 24 Vbeta families was assessed at baseline immediately after infection and following initiation of HAART at 2, 4, 12, 24, and up to 192 weeks in 24-week intervals. Statistically significant family-specific expression changes were observed between treated and untreated individuals for 10 TCRbetaV families. Overall, when compared to untreated patients, a more stable expression of TCR genes was observed for HAART-treated individuals. Interestingly, this difference did not correlate with either CD4 or CD8 counts, which follow the expected curves for treated and untreated patients. When we applied our quantitative analysis to IL-2-treated patients we observed a rapid polyclonal activation of the repertoire. These results suggest that homeostasis in the T cell receptor repertoire is more robust in those patients who stay on HAART for a long time and confirm the polyclonal stimulating capacity of IL-2.
Collapse
Affiliation(s)
- Uma Sriram
- Department of Neurology University of California at San Francisco, California 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|