1
|
Gulsevin A. Nicotinic receptor pharmacology in silico: Insights and challenges. Neuropharmacology 2020; 177:108257. [PMID: 32738311 DOI: 10.1016/j.neuropharm.2020.108257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Nicotinic acetylcholine receptors (nAChR) are homo- or hetero-pentameric ligand-gated ion channels of the Cys-loop superfamily and play important roles in the nervous system and muscles. Studies on nAChR benefit from in silico modeling due to the lack of high-resolution structures for most receptor subtypes and challenges in experiments addressing the complex mechanism of activation involving allosteric sites. Although there is myriad of computational modeling studies on nAChR, the multitude of the methods and parameters used in these studies makes modeling nAChR a daunting task, particularly for the non-experts in the field. To address this problem, the modeling literature on Torpedo nAChR and α7 nAChR were focused on as examples of heteromeric and homomeric nAChR, and the key in silico modeling studies between the years 1995-2019 were concisely reviewed. This was followed by a critical analysis of these studies by comparing the findings with each other and with the emerging experimental and computational data on nAChR. Based on these critical analyses, suggestions were made to guide the future researchers in the field of in silico modeling of nAChR. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA, 37221.
| |
Collapse
|
2
|
Millar NS. A review of experimental techniques used for the heterologous expression of nicotinic acetylcholine receptors. Biochem Pharmacol 2009; 78:766-76. [PMID: 19540210 DOI: 10.1016/j.bcp.2009.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop family of neurotransmitter-gated ion channels, a family that also includes receptors for gamma-aminobutyric acid, glycine and 5-hydroxytryptamine. In humans, nAChRs have been implicated in several neurological and psychiatric disorders and are major targets for pharmaceutical drug discovery. In addition, nAChRs are important targets for neuroactive pesticides in insects and in other invertebrates. Historically, nAChRs have been one of the most intensively studied families of neurotransmitter receptors. They were the first neurotransmitter receptors to be biochemically purified and the first to be characterized by molecular cloning and heterologous expression. Although much has been learnt from studies of native nAChRs, the expression of recombinant nAChRs has provided dramatic advances in the characterization of these important receptors. This review will provide a brief history of the characterization of nAChRs by heterologous expression. It will focus, in particular, upon studies of recombinant nAChRs, work that has been conducted by many hundreds of scientists during a period of almost 30 years since the molecular cloning of nAChR subunits in the early 1980s.
Collapse
Affiliation(s)
- Neil S Millar
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Bernal JA, Mulet J, Castillo M, Criado M, Sala S, Sala F. Binding-gating coupling in a nondesensitizing alpha7 nicotinic receptor A single channel pharmacological study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:410-6. [PMID: 19063861 DOI: 10.1016/j.bbamem.2008.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 10/31/2008] [Accepted: 11/04/2008] [Indexed: 11/29/2022]
Abstract
The highly conserved alphaLys145 has been suggested to play an important role in the early steps of activation of the nicotinic acetylcholine receptor (nAChR) by acetylcholine. Both macroscopic and single channel currents were recorded in the slowly desensitizing mutants L248T- and K145A-L248T-alpha7 receptors expressed in Xenopus oocytes. On ACh-evoked currents, substitution of Lys145 by alanine showed the same effects that in wild type receptors: moderately decreased gating function and a more-than-expected loss of ACh potency, thus validating the experimental model. Single channel analysis quantitatively agreed with macroscopic data and revealed that impaired gating function in the double mutant alpha7K145A/L248T is the consequence of a slower opening rate, beta. Several nicotinic agonists were also studied, showing important features. Particularly, dimethylphenylpiperazinium (DMPP), acting as an antagonist in alpha7K145A, became a full agonist in alpha7K145A/L248T. Single channel analysis of DMPP-evoked currents showed effects of Lys145 removal similar to those observed with ACh. Data suggest that alpha7Lys145 facilitates the early steps of channel activation. Moreover, the slowly desensitizing mutant alpha7L248T could be an interesting tool for the study of channel activation in alpha7 receptors. Nevertheless, its extensively altered pharmacology precludes the simple extrapolation of pharmacological data obtained in singly mutated alpha7 receptors.
Collapse
Affiliation(s)
- José Antonio Bernal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550-Alicante, Spain
| | | | | | | | | | | |
Collapse
|
4
|
Levandoski MM, Robertson AP, Kuiper S, Qian H, Martin RJ. Single-channel properties of N- and L-subtypes of acetylcholine receptor in Ascaris suum. Int J Parasitol 2005; 35:925-34. [PMID: 15950977 DOI: 10.1016/j.ijpara.2005.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 03/04/2005] [Accepted: 03/08/2005] [Indexed: 11/30/2022]
Abstract
We are interested in the properties of the target site of cholinergic anti-nematodal drugs for therapeutic reasons. The target receptors are ligand-gated ion channels that have different subtypes, and each subtype may have a different pharmacology. In a contraction assay using the parasitic nematode Ascaris suum, our laboratory has identified several subtypes, including an N-subtype, preferentially activated by nicotine, and an L-subtype, preferentially activated by levamisole. Here we use patch-clamp recordings to test the hypothesis that the single-channel selectivities of nicotine and levamisole are different. Unitary currents evoked by nicotine in this preparation were characterised for the first time. In some patches, both nicotine and levamisole activated small- and large-conductance channels. In other patches, the agonists activated just one channel amplitude. Discriminant analysis allowed classification of the one-conductance patch channels into the small or large categories, based on sets defined by the two-conductance patch data. The small channels had a conductance of 26.1+/-1.5 pS, n=18 (mean+/-SEM); the large conductance channels had a conductance of 38.8+/-1.2 pS, n=23 (mean+/-SEM). Analysis of amplitude histograms of the two-conductance patches showed that nicotine preferentially activated the small-conductance channels and levamisole preferentially activated the large-conductance channels. Our observations suggest that the N-subtype receptor channel has a conductance of 26 pS channel and the L-subtype receptor channel has a conductance of 39 pS.
Collapse
|
5
|
Keramidas A, Moorhouse AJ, Schofield PR, Barry PH. Ligand-gated ion channels: mechanisms underlying ion selectivity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 86:161-204. [PMID: 15288758 DOI: 10.1016/j.pbiomolbio.2003.09.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anion/cation selectivity is a critical property of ion channels and underpins their physiological function. Recently, there have been numerous mutagenesis studies, which have mapped sites within the ion channel-forming segments of ligand-gated ion channels that are determinants of the ion selectivity. Site-directed mutations to specific amino acids within or flanking the M2 transmembrane segments of the anion-selective glycine, GABA(A) and GABA(C) receptors and the cation-selective nicotinic acetylcholine and serotonin (type 3) receptors have revealed discrete, equivalent regions within the ion channel that form the principal selectivity filter, leading to plausible molecular mechanisms and mathematical models to describe how ions preferentially permeate these channels. In particular, the dominant factor determining anion/cation selectivity seems to be the sign and exposure of charged amino acids lining the selectivity filter region of the open channel. In addition, the minimum pore diameter, which can be influenced by the presence of a local proline residue, also makes a contribution to such ion selectivity in LGICs with smaller diameters increasing anion/cation selectivity and larger ones decreasing it.
Collapse
Affiliation(s)
- Angelo Keramidas
- Department of Physiology and Pharmacology, School of Medical Sciences, The University of New South Wales, UNSW Sydney, NSW 2052, Australia
| | | | | | | |
Collapse
|
6
|
Hogg RC, Hopping G, Alewood PF, Adams DJ, Bertrand D. Alpha-conotoxins PnIA and [A10L]PnIA stabilize different states of the alpha7-L247T nicotinic acetylcholine receptor. J Biol Chem 2003; 278:26908-14. [PMID: 12746432 DOI: 10.1074/jbc.m212628200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of the native alpha-conotoxin PnIA, its synthetic derivative [A10L]PnIA and alanine scan derivatives of [A10L]PnIA were investigated on chick wild type alpha7 and alpha7-L247T mutant nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes. PnIA and [A10L]PnIA inhibited acetylcholine (ACh)-activated currents at wtalpha7 receptors with IC50 values of 349 and 168 nm, respectively. Rates of onset of inhibition were similar for PnIA and [A10L]PnIA; however, the rate of recovery was slower for [A10L]PnIA, indicating that the increased potency of [A10L]PnIA at alpha7 receptors is conveyed by its slower rate of dissociation from the receptors. All the alanine mutants of [A10L]PnIA inhibited ACh-activated currents at wtalpha7 receptors. Insertion of an alanine residue between position 5 and 13 and at position 15 significantly reduced the ability of [A10L]PnIA to inhibit ACh-evoked currents. PnIA inhibited the non-desensitizing ACh-activated currents at alpha7-L247T receptors with an IC50 194 nm. In contrast, [A10L]PnIA and the alanine mutants potentiated the ACh-activated current alpha7-L247T receptors and in addition [A10L]PnIA acted as an agonist. PnIA stabilized the receptor in a state that is non-conducting in both the wild type and mutant receptors, whereas [A10L]PnIA stabilized a state that is non-conducting in the wild type receptor and conducting in the alpha7-L247T mutant. These data indicate that the change of a single amino acid side-chain, at position 10, is sufficient to change the toxin specificity for receptor states in the alpha7-L247T mutant.
Collapse
Affiliation(s)
- Ron C Hogg
- Department of Physiology, CMU, 1 rue Michel Servet, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | |
Collapse
|
7
|
Grassi F, Palma E, Tonini R, Amici M, Ballivet M, Eusebi F. Amyloid beta(1-42) peptide alters the gating of human and mouse alpha-bungarotoxin-sensitive nicotinic receptors. J Physiol 2003; 547:147-57. [PMID: 12562926 PMCID: PMC2342606 DOI: 10.1113/jphysiol.2002.035436] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The beta-amyloid(1-42) peptide (Abeta(1-42)), a major constituent of the Alzheimer's disease amyloid plaque, specifically binds to the neuronal alpha-bungarotoxin (alpha-BuTx)-sensitive alpha7 nicotinic acetylcholine receptor (alpha7 nAChR). Accordingly, Abeta1-42 interferes with the function of alpha7 nAChRs in chick and rodent neurons. To gain insights into the human disease, we studied the action of Abeta(1-42) on human alpha7 nAChRs expressed in Xenopus oocytes. In voltage-clamped oocytes expressing the wild-type receptor, Abeta(1-42) blocked ACh-evoked currents. The block was non-competitive, required over 100 s to develop and was partially reversible. In oocytes expressing the mutant L248T receptor, Abeta(1-42) activated methyllycaconitine-sensitive currents in a dose-dependent manner. Peptide-evoked unitary events, recorded in outside-out patches, showed single-channel conductances and open duration comparable to ACh-evoked events. Abeta(1-42) had no effect on the currents evoked by glutamate, GABA or glycine in oocytes expressing human or mouse receptors for these transmitters. Muscle nAChRs are also alpha-BuTx-sensitive and we therefore investigated whether they respond to Abeta(1-42). In human kidney BOSC 23 cells expressing the fetal or adult mouse muscle nAChRs, Abeta(1-42) blocked ACh-evoked whole-cell currents, accelerating their decay. Outside-out single-channel recordings showed that the block was due to a reduced channel open probability and enhanced block upon ACh application. We also report that the inverse peptide Abeta(42-1), but not Abeta(40-1), partially mimicked the effects of the physiological Abeta(1-42) peptide. Possible implications for degenerative neuronal and muscular diseases are discussed.
Collapse
Affiliation(s)
- Francesca Grassi
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Università La Sapienza Ple A Moro 5, I-00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Broad LM, Felthouse C, Zwart R, McPhie GI, Pearson KH, Craig PJ, Wallace L, Broadmore RJ, Boot JR, Keenan M, Baker SR, Sher E. PSAB-OFP, a selective alpha 7 nicotinic receptor agonist, is also a potent agonist of the 5-HT3 receptor. Eur J Pharmacol 2002; 452:137-44. [PMID: 12354563 DOI: 10.1016/s0014-2999(02)02273-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
5-Hydroxytryptamine 3 (5-HT(3)) and alpha 7 nicotinic receptors share high sequence homology and pharmacological cross-reactivity. An assessment of the potential role of alpha 7 receptors in many neurophysiological processes, and hence their therapeutic value, requires the development of selective alpha 7 receptor agonists. We used a recently reported selective alpha 7 receptor agonist, (R)-(-)-5'Phenylspiro[1-azabicyclo[2.2.2] octane-3,2'-(3'H)furo[2,3-b]pyridine (PSAB-OFP) and confirmed its activity on human recombinant alpha 7 receptors. However, PSAB-OFP also displayed high affinity binding to 5-HT(3) receptors. To assess the functional activity of PSAB-OFP on 5-HT(3) receptors we studied recombinant human 5-HT(3) receptors expressed in Xenopus oocytes, as well as native mouse 5-HT(3) receptors expressed in N1E-115 neuroblastoma cells, using whole-cell patch clamp and Ca(2+) imaging. Our results show that PSAB-OFP is an equipotent, partial agonist of both alpha 7 and 5-HT(3) receptors. We conclude that it will be necessary to identify the determinant of this overlapping pharmacology in order to develop more selective alpha 7 receptor ligands.
Collapse
Affiliation(s)
- Lisa M Broad
- Eli Lilly and Company Limited, Lilly Research Centre, Erl Wood Manor, Sunninghill Road, Surrey, GU20 6PH, Windlesham, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fucile S, Palma E, Eusebi F, Miledi R. Serotonin antagonizes the human neuronal alpha7 nicotinic acetylcholine receptor and becomes an agonist after L248T alpha7 mutation. Neuroscience 2002; 110:169-79. [PMID: 11882381 DOI: 10.1016/s0306-4522(01)00567-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of serotonin (5-hydroxytryptamine or 5HT) on chick alpha7 nicotinic receptors have already been described. However similar studies on human alpha7 receptors have been lacking. To begin to fill this deficiency, studies were made on wild-type and mutant human alpha7 (halpha7) receptors expressed in Xenopus oocytes or human BOSC 23 cells. In oocytes wild-type halpha7 receptors were blocked by 5HT, and this block was voltage-dependent. In contrast, 5HT acted as an agonist on halpha7-mutant receptors (L248T). Outside-out membrane-patches from BOSC 23 cells expressing halpha7-mutant receptors exhibited spontaneous channel openings of two conductance levels (59 pS and 76 pS) and short mean open time (0.9 ms). halpha7-Mutant channels activated by nicotine or 5HT displayed similar conductances and high Ca(2+) permeability; but longer duration (2.7 ms) than the spontaneous openings. Mutations at Cys190 and Cys191, in the extracellular N-terminus of the human alpha7 gene, did not prevent receptor expression and incorporation in the oocyte membrane (determined by alpha-bungarotoxin binding). However, both 5HT and nicotine were incapable of gating the channels, indicating that the mutated Cys residues are in, or near, the 5HT- and nicotine-binding site. This is the first report that alpha7 receptors have spontaneous openings; and that 5HT is an agonist of halpha7-mutant receptors, and an antagonist of halpha7-wild-type receptors, through interactions at, or near the acetylcholine-binding sites.
Collapse
Affiliation(s)
- S Fucile
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Fisiologia Umana e Farmacologia, Universitá di Roma La Sapienza, Viale Regina Elena 324, I-00161 Rome, Italy
| | | | | | | |
Collapse
|
10
|
Rangel-González FJ, García-Colunga J, Miledi R. Inhibition of neuronal nicotinic acetylcholine receptors by La(3+). Eur J Pharmacol 2002; 441:15-21. [PMID: 12007916 DOI: 10.1016/s0014-2999(01)01522-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A study was made of the effects of La(3+) on neuronal alpha 2 beta 4 nicotinic acetylcholine receptors expressed in Xenopus oocytes. La(3+) by itself (up to 10 microM) did not elicit significant membrane currents. However, La(3+) reversibly inhibited the ionic currents induced by acetylcholine (IC(50)=13.5+/-4.3 microM). When La(3+) and acetylcholine were simultaneously applied onto an oocyte, the level of inhibition of the acetylcholine response was the same as when the oocyte was first preincubated with La(3+) and then exposed to acetylcholine plus La(3+). In the presence of La(3+), the EC(50) decreased from 43.8+/-6.4 to 26.5+/-5.1 microM, suggesting a small increase in the affinity of acetylcholine for the receptors through a noncompetitive mechanism. The inhibition of acetylcholine response was independent of the membrane potential. From these results we conclude that La(3+) regulates nicotinic receptors, reversibly and noncompetitively, presumably by inhibiting allosterically the receptor through interactions at an external domain of the receptor complex.
Collapse
Affiliation(s)
- Francisco J Rangel-González
- Centro de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Apartado Postal 1-1141, Juriquilla, Querétaro 76001, Mexico
| | | | | |
Collapse
|
11
|
Fucile S, Palma E, Martinez-Torres A, Miledi R, Eusebi F. The single-channel properties of human acetylcholine alpha 7 receptors are altered by fusing alpha 7 to the green fluorescent protein. Proc Natl Acad Sci U S A 2002; 99:3956-61. [PMID: 11891309 PMCID: PMC122630 DOI: 10.1073/pnas.052699599] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2001] [Indexed: 11/18/2022] Open
Abstract
Neuronal nicotinic acetylcholine (AcCho) receptors composed of alpha7-subunits (alpha7-AcChoRs) are involved in many physiological activities. Nevertheless, very little is known about their single-channel characteristics. By using outside-out patch-clamp recordings from Xenopus oocytes expressing wild-type (wt) alpha7-AcChoRs, we identified two classes of channel conductance: a low conductance (gamma(L)) of 72 pS and a high one (gamma(H)) of 87 pS, with mean open-times (tau(op)) of 0.6 ms. The same classes of conductances, but longer tau(op) (3 ms), were seen in experiments with chimeric alpha7 receptors in which the wtalpha7 extracellular C terminus was fused to the green fluorescent protein (wtalpha7-GFP AcChoRs). In contrast, channels with three different conductances were gated by AcCho in oocytes expressing alpha7 receptors carrying a Leu-to-Thr 248 mutation (mutalpha7) or oocytes expressing chimeric mutalpha7-GFP receptors. These conductance levels were significantly smaller, and their mean open-times were larger, than those of wtalpha7-AcChoRs. Interestingly, in the absence of AcCho, these oocytes showed single-channel openings of the same conductances, but shorter tau(op), than those activated by AcCho. Accordingly, human homomeric wtalpha7 receptors open channels of high conductance and brief lifetime, and fusion to GFP lengthens their lifetime. In contrast, mutalpha7 receptors open channels of lower conductance and longer lifetime than those gated by wtalpha7-AcChoRs, and these parameters are not greatly altered by fusing the mutalpha7 to GFP. All this evidence shows that GFP-tagging can alter importantly receptor kinetics, a fact that has to be taken into account whenever tagged proteins are used to study their function.
Collapse
Affiliation(s)
- Sergio Fucile
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Fisiologia Umana e Farmacologia, Universita' di Roma La Sapienza, P.le A Moro 5, I00185 Rome, Italy
| | | | | | | | | |
Collapse
|
12
|
Demuro A, Palma E, Eusebi F, Miledi R. Inhibition of nicotinic acetylcholine receptors by bicuculline. Neuropharmacology 2001; 41:854-61. [PMID: 11684149 DOI: 10.1016/s0028-3908(01)00137-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A study was made on the effects of bicuculline, the classical gamma-aminobutyric acid-A receptor antagonist, on heteromeric mouse muscle alphabetagammadelta, heteromeric neuronal rat alpha2beta4 and alpha4beta2 and homomeric human alpha7 nicotinic acetylcholine receptors (nAChRs), expressed in Xenopus oocytes. Bicuculline reduced the ACh-induced currents in a rapid and reversible way, with IC50 values of 34+/-1.5 microM for mouse muscle alphabetagammadelta and 12.4+/-0.7 and 18+/-1 microM for rat neuronal alpha2beta4 and alpha4beta2 nAChRs, respectively. Therefore, the three types of heteromeric receptors are inhibited by bicuculline but the neuronal alpha2beta4 and alpha4beta2 receptors were more sensitive than the muscle alphabetagammadelta receptor. The Hill coefficients for ACh-current inhibition were close to one for all types of receptors, suggesting a single site of action for bicuculline inhibition of nAChRs. Bicuculline shifted the ACh-dose-current response curve to the right and the maximal current was reduced, a reduction that for the heteromeric receptors was not overcome by high concentrations of ACh. The effect of bicuculline was examined at different membrane potentials, and the ACh-current-membrane potential relationships obtained indicate that the inhibition by bicuculline is voltage-dependent for muscle alphabetagammadelta and neuronal alpha2beta4 and alpha4beta2 nAChRs. All these results are consistent with the notion that bicuculline blocks the heteromeric muscle and neuronal nAChRs in a non-competitive way. Studies were also made on the wild type (wt alpha7) and mutant leu-to-threo (L248T) homomeric human neuronal alpha7-nAChRs. In sharp contrast to the heteromeric ACh receptors examined, bicuculline blocked in a competitive way the homomeric wt alpha7-nAChRs, as evidenced by a parallel shift of the bicuculline dose-ACh-current inhibition on raising the ACh concentration. Moreover, similar to the effects of serotonin on wt and mutant alpha7 ACh receptors, the mutation converted bicuculline from an antagonist into a competitive agonist. All this suggests that bicuculline may serve as a lead molecule to design new anticholinergic substances.
Collapse
Affiliation(s)
- A Demuro
- Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | | | | | |
Collapse
|
13
|
López-Valdés HE, García-Colunga J. Antagonism of nicotinic acetylcholine receptors by inhibitors of monoamine uptake. Mol Psychiatry 2001; 6:511-9. [PMID: 11526465 DOI: 10.1038/sj.mp.4000885] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2000] [Revised: 01/18/2001] [Accepted: 01/24/2001] [Indexed: 11/08/2022]
Abstract
A study was made of the effects of several monoamine-uptake inhibitors on membrane currents elicited by acetylcholine (ACh-currents) generated by rat neuronal alpha2beta4 and mouse muscle nicotinic acetylcholine receptors (AChRs) expressed in Xenopus laevis oocytes. For the two types of receptors the monoamine-uptake inhibitors reduced the ACh-currents albeit to different degrees. The order of inhibitory potency was norfluoxetine > clomipramine > indatraline > fluoxetine > imipramine > zimelidine > 6-nitro-quipazine > trazodone for neuronal alpha2beta4 AChRs, and norfluoxetine > fluoxetine > imipramine > clomipramine > indatraline > zimelidine > trazodone > 6-nitro-quipazine for muscle AChRs. Thus, the most potent inhibitor was norfluoxetine, whilst the weakest ones were trazodone, 6-nitro-quipazine and zimelidine. Effects of the tricyclic antidepressant imipramine were studied in more detail. Imipramine inhibited reversibly and non-competitively the ACh-current with a similar inhibiting potency for both neuronal alpha2beta4 and muscle AChRs. The half-inhibitory concentrations of imipramine were 3.65 +/- 0.30 microM for neuronal alpha2beta4 and 5.57 +/- 0.19 microM for muscle receptors. The corresponding Hill coefficients were 0.73 and 1.2 respectively. The inhibition of imipramine was slightly voltage-dependent, with electric distances of approximately 0.10 and approximately 0.12 for neuronal alpha2beta4 and muscle AChRs respectively. Moreover, imipramine accelerated the rate of decay of ACh- currents of both muscle and neuronal AChRs. The ACh-current inhibition was stronger when oocytes, expressing neuronal alpha2beta4 or muscle receptors, were preincubated with imipramine alone than when it was applied after the ACh-current had been generated, suggesting that imipramine acts also on non-activated or closed AChRs. We conclude that monoamine-uptake inhibitors reduce ACh-currents and that imipramine regulates reversibly and non- competitively neuronal alpha2beta4 and muscle AChRs through similar mechanisms, perhaps by interacting externally on a non-conducting state of the AChR and by blocking the open receptor-channel complex close to the vestibule of the channel. These studies may be important for understanding the regulation of AChRs as well as for understanding antidepressant- and side-effects of monoamine-uptake inhibitors.
Collapse
Affiliation(s)
- H E López-Valdés
- Centro de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Apartado Postal 1-1141, Juriquilla, Querétaro 76001, México
| | | |
Collapse
|
14
|
Morgado-Valle C, García-Colunga J, Miledi R, Díaz-Muñoz M. A motif present in the main cytoplasmic loop of nicotinic acetylcholine receptors and catalases. Proc Biol Sci 2001; 268:967-72. [PMID: 11370971 PMCID: PMC1088695 DOI: 10.1098/rspb.2001.1571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A motif containing five conserved amino acids (RXPXTH(X)14P) was detected in 111 proteins, including 82 nicotinic acetylcholine receptor (nAChR) subunits and 20 catalases. To explore possible functional roles of this motif in nAChRs two approaches were used: first, the motif sequences in nAChR subunits and catalases were analysed and compared; and, second, deletions in the rat alpha2 and beta4 nAChR subunits expressed in Xenopus oocytes were analysed. Compared to the three-dimensional structure of bovine hepatic catalase, structural coincidences were found in the motif of catalases and nAChRs. On the other hand, partial deletions of the motif in the alpha2 or beta4 subunits and injection of the mutants into oocytes was followed by a very weak expression of functional nAChRs; oocytes injected with alpha2 and beta4 subunits in which the entire motif had been deleted failed to elicit any acetylcholine currents. The results suggest that the motif may play a role in the activation of nAChRs.
Collapse
Affiliation(s)
- C Morgado-Valle
- Centro de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro
| | | | | | | |
Collapse
|
15
|
Arias HR. Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem Int 2000; 36:595-645. [PMID: 10771117 DOI: 10.1016/s0197-0186(99)00154-0] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Identification of all residues involved in the recognition and binding of cholinergic ligands (e.g. agonists, competitive antagonists, and noncompetitive agonists) is a primary objective to understand which structural components are related to the physiological function of the nicotinic acetylcholine receptor (AChR). The picture for the localization of the agonist/competitive antagonist binding sites is now clearer in the light of newer and better experimental evidence. These sites are located mainly on both alpha subunits in a pocket approximately 30-35 A above the surface membrane. Since both alpha subunits are identical, the observed high and low affinity for different ligands on the receptor is conditioned by the interaction of the alpha subunit with other non-alpha subunits. This molecular interaction takes place at the interface formed by the different subunits. For example, the high-affinity acetylcholine (ACh) binding site of the muscle-type AChR is located on the alphadelta subunit interface, whereas the low-affinity ACh binding site is located on the alphagamma subunit interface. Regarding homomeric AChRs (e.g. alpha7, alpha8, and alpha9), up to five binding sites may be located on the alphaalpha subunit interfaces. From the point of view of subunit arrangement, the gamma subunit is in between both alpha subunits and the delta subunit follows the alpha aligned in a clockwise manner from the gamma. Although some competitive antagonists such as lophotoxin and alpha-bungarotoxin bind to the same high- and low-affinity sites as ACh, other cholinergic drugs may bind with opposite specificity. For instance, the location of the high- and the low-affinity binding site for curare-related drugs as well as for agonists such as the alkaloid nicotine and the potent analgesic epibatidine (only when the AChR is in the desensitized state) is determined by the alphagamma and the alphadelta subunit interface, respectively. The case of alpha-conotoxins (alpha-CoTxs) is unique since each alpha-CoTx from different species is recognized by a specific AChR type. In addition, the specificity of alpha-CoTxs for each subunit interface is species-dependent. In general terms we may state that both alpha subunits carry the principal component for the agonist/competitive antagonist binding sites, whereas the non-alpha subunits bear the complementary component. Concerning homomeric AChRs, both the principal and the complementary component exist on the alpha subunit. The principal component on the muscle-type AChR involves three loops-forming binding domains (loops A-C). Loop A (from mouse sequence) is mainly formed by residue Y(93), loop B is molded by amino acids W(149), Y(152), and probably G(153), while loop C is shaped by residues Y(190), C(192), C(193), and Y(198). The complementary component corresponding to each non-alpha subunit probably contributes with at least four loops. More specifically, the loops at the gamma subunit are: loop D which is formed by residue K(34), loop E that is designed by W(55) and E(57), loop F which is built by a stretch of amino acids comprising L(109), S(111), C(115), I(116), and Y(117), and finally loop G that is shaped by F(172) and by the negatively-charged amino acids D(174) and E(183). The complementary component on the delta subunit, which corresponds to the high-affinity ACh binding site, is formed by homologous loops. Regarding alpha-neurotoxins, several snake and alpha-CoTxs bear specific residues that are energetically coupled with their corresponding pairs on the AChR binding site. The principal component for snake alpha-neurotoxins is located on the residue sequence alpha1W(184)-D(200), which includes loop C. In addition, amino acid sequence 55-74 from the alpha1 subunit (which includes loop E), and residues gammaL(119) (close to loop F) and gammaE(176) (close to loop G) at the low-affinity binding site, or deltaL(121) (close to the homologous region of loop G) at the high-affinity binding site, are i
Collapse
Affiliation(s)
- H R Arias
- Instituto de Matemática de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
16
|
Palma E, Fucile S, Barabino B, Miledi R, Eusebi F. Strychnine activates neuronal alpha7 nicotinic receptors after mutations in the leucine ring and transmitter binding site domains. Proc Natl Acad Sci U S A 1999; 96:13421-6. [PMID: 10557336 PMCID: PMC23963 DOI: 10.1073/pnas.96.23.13421] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/1999] [Indexed: 11/18/2022] Open
Abstract
Recent work has shown that strychnine, the potent and selective antagonist of glycine receptors, is also an antagonist of nicotinic acetylcholine (AcCho) receptors including neuronal homomeric alpha7 receptors, and that mutating Leu-247 of the alpha7 nicotinic AcCho receptor-channel domain (L247Talpha7; mut1) converts some nicotinic antagonists into agonists. Therefore, a study was made of the effects of strychnine on Xenopus oocytes expressing the chick wild-type alpha7 or L247Talpha7 receptors. In these oocytes, strychnine itself did not elicit appreciable membrane currents but reduced the currents elicited by AcCho in a reversible and dose-dependent manner. In sharp contrast, in oocytes expressing L247Talpha(7) receptors with additional mutations at Cys-189 and Cys-190, in the extracellular N-terminal domain (L247T/C189-190Salpha7; mut2), micromolar concentrations of strychnine elicited inward currents that were reversibly inhibited by the nicotinic receptor blocker alpha-bungarotoxin. Single-channel recordings showed that strychnine gated mut2-channels with two conductance levels, 56 pS and 42 pS, and with kinetic properties similar to AcCho-activated channels. We conclude that strychnine is a modulator, as well as an activator, of some homomeric nicotinic alpha7 receptors. After injecting oocytes with mixtures of cDNAs encoding mut1 and mut2 subunits, the expressed hybrid receptors were activated by strychnine, similar to the mut2, and had a high affinity to AcCho like the mut1. A pentameric symmetrical model yields the striking conclusion that two identical alpha7 subunits may be sufficient to determine the functional properties of alpha7 receptors.
Collapse
Affiliation(s)
- E Palma
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Medicina Sperimentale e Patologia, Universitá di Roma "La Sapienza, " Viale Regina Elena 324, I00161 Rome, Italy
| | | | | | | | | |
Collapse
|
17
|
Palma E, Maggi L, Barabino B, Eusebi F, Ballivet M. Nicotinic acetylcholine receptors assembled from the alpha7 and beta3 subunits. J Biol Chem 1999; 274:18335-40. [PMID: 10373437 DOI: 10.1074/jbc.274.26.18335] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intracellular recordings were performed in voltage-clamped Xenopus oocytes upon injection with a mixture of cDNAs encoding the beta3 and mutant alpha7 (L247Talpha7) neuronal nicotinic acetylcholine receptor (nAChR) subunits. The expressed receptors maintained sensitivity to methyllycaconitine and to alpha-bungarotoxin but exhibited a functional profile strikingly different from that of the homomeric L247Talpha7 receptor. The heteromeric L247Talpha7beta3 nAChR had a lower apparent affinity and a faster rate of desensitization than L247Talpha7 nAChR, exhibited nonlinearity in the I-V relationship, and was inhibited by 5-hydroxytryptamine, much like wild type alpha7 (WTalpha7) nAChR. Single channel recordings in cell-attached mode revealed unitary events with a slope conductance of 19 picosiemens and a lifetime of 5 ms, both values being much smaller than those of the homomeric receptor channel. Upon injection with a mixture of WTalpha7 and beta3 cDNAs, clear evidence was obtained for the plasma membrane assembly of heteromeric nAChRs, although ACh could not activate these receptors. It is concluded that beta3, long believed to be an orphan subunit, readily co-assembles with other subunits to form heteromeric receptors, some of which may be negative regulators of cholinergic function.
Collapse
Affiliation(s)
- E Palma
- Istituto Pasteur-Fondazione Cenci Bolognetti and Dipartimento di Medicina Sperimentale Universita' di Roma "La Sapienza", via delle Messi d' Oro 156, 00158 Roma, Italy
| | | | | | | | | |
Collapse
|
18
|
García-Colunga J, Miledi R. Modulation of nicotinic acetylcholine receptors by strychnine. Proc Natl Acad Sci U S A 1999; 96:4113-8. [PMID: 10097172 PMCID: PMC22429 DOI: 10.1073/pnas.96.7.4113] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strychnine, a potent and selective antagonist at glycine receptors, was found to inhibit muscle (alpha1beta1gammadelta, alpha1beta1gamma, and alpha1beta1delta) and neuronal (alpha2beta2 and alpha2beta4) nicotinic acetylcholine receptors (AcChoRs) expressed in Xenopus oocytes. Strychnine alone (up to 500 microM) did not elicit membrane currents in oocytes expressing AcChoRs, but, when applied before, concomitantly, or during superfusion of acetylcholine (AcCho), it rapidly and reversibly inhibited the current elicited by AcCho (AcCho-current). Although in the three cases the AcCho-current was reduced to the same level, its recovery was slower when the oocytes were preincubated with strychnine. The amount of AcCho-current inhibition depended on the receptor subtype, and the order of blocking potency by strychnine was alpha1beta1gammadelta > alpha2beta4 > alpha2beta2. With the three forms of drug application, the Hill coefficient was close to one, suggesting a single site for the receptor interaction with strychnine, and this interaction appears to be noncompetitive. The inhibitory effects on muscle AcChoRs were voltage-independent, and the apparent dissociation constant for AcCho was not appreciably changed by strychnine. In contrast, the inhibitory effects on neuronal AcChoRs were voltage-dependent, with an electrical distance of approximately 0.35. We conclude that strychnine regulates reversibly and noncompetitively the embryonic type of muscle AcChoR and some forms of neuronal AcChoRs. In the former case, strychnine presumably inhibits allosterically the receptor by binding at an external domain whereas, in the latter case, it blocks the open receptor-channel complex.
Collapse
Affiliation(s)
- J García-Colunga
- Centro de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Apartado Postal 1-1141, Juriquilla, Querétaro 76001, México
| | | |
Collapse
|
19
|
Palma E, Maggi L, Miledi R, Eusebi F. Effects of Zn2+ on wild and mutant neuronal alpha7 nicotinic receptors. Proc Natl Acad Sci U S A 1998; 95:10246-50. [PMID: 9707632 PMCID: PMC21493 DOI: 10.1073/pnas.95.17.10246] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zn2+ is a key structural/functional component of many proteins and is present at high concentrations in the brain and retina, where it modulates ligand-gated receptors. Therefore, a study was made of the effects of zinc on homomeric neuronal nicotinic receptors expressed in Xenopus oocytes after injection of cDNAs encoding the chicken wild or mutant alpha7 subunits. In oocytes expressing wild-type receptors, Zn2+ alone did not elicit appreciable membrane currents. Acetylcholine (AcCho) elicited large currents (IAcCho) that were reduced by Zn2+ in a reversible and dose-dependent manner, with an IC50 of 27 microM and a Hill coefficient of 0.4. The inhibition of IAcCho by Zn2+ was competitive and voltage-independent, a behavior incompatible with a channel blockade mechanism. In sharp contrast, in oocytes expressing a receptor mutant, with a threonine-for-leucine 247 substitution (L247Talpha7), subnanomolar concentrations of Zn2+ elicited membrane currents (IZn) that were reversibly inhibited by the nicotinic receptor blockers methyllycaconitine and alpha-bungarotoxin. Cell-attached single-channel recordings showed that Zn2+ opened channels that had a mean open time of 5 ms and a conductance of 48 pS. At millimolar concentrations Zn2+ reduced IAcCho and the block became stronger with cell hyperpolarization. Thus, Zn2+ is a reversible blocker of wild-type alpha7 receptors, but becomes an agonist, as well as an antagonist, following mutation of the highly conserved leucine residue 247 located in the M2 channel domain. We conclude that Zn2+ is a modulator as well as an activator of homomeric nicotinic alpha7 receptors.
Collapse
Affiliation(s)
- E Palma
- Laboratorio di Biofisica, Centro Ricerca Sperimentale Istituto Regina Elena, via delle Messi d' Oro 156 I00158 Rome, Italy.
| | | | | | | |
Collapse
|
20
|
Gurley DA, Lanthorn TH. Nicotinic agonists competitively antagonize serotonin at mouse 5-HT3 receptors expressed in Xenopus oocytes. Neurosci Lett 1998; 247:107-10. [PMID: 9655604 DOI: 10.1016/s0304-3940(98)00306-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 5-HT3 receptor (5-HT3R) is part of a superfamily of ligand-gated ion channels which includes nicotinic acetylcholine receptors (nAChR). cRNA derived from the long isoform cloned mouse 5-HT3R was used to drive expression of 5-HT3Rs in Xenopus oocytes. 5-HT-induced currents were monitored using two-electrode voltage-clamp. Eight nicotinic agonists, including ACh and nicotine, but not alpha-anatoxin, were found to antagonize 5-HT-induced currents. With the exception of 3-(2,4)-dimethoxybenzylidene-anabaseine (DMXB-anabaseine; GTS-21) this antagonism appeared to be competitive since it could be overcome by increasing concentrations of 5-HT. Potency of 5-HT3 antagonism was comparable to reported values for nAChR alpha7 activation. These results confirm the notion of families of receptors and further indicate that strong similarities can exist in some critical binding domains.
Collapse
Affiliation(s)
- D A Gurley
- Astra Arcus USA, Rochester, NY 14534, USA.
| | | |
Collapse
|