1
|
Kohutova A, Münzova D, Pešl M, Rotrekl V. α 1-Adrenoceptor agonist methoxamine inhibits base excision repair via inhibition of apurinic/apyrimidinic endonuclease 1 (APE1). ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:281-291. [PMID: 37307375 DOI: 10.2478/acph-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 06/14/2023]
Abstract
Methoxamine (Mox) is a well-known α1-adrenoceptor agonist, clinically used as a longer-acting analogue of epinephrine. 1R,2S-Mox (NRL001) has been also undergoing clinical testing to increase the canal resting pressure in patients with bowel incontinence. Here we show, that Mox hydrochloride acts as an inhibitor of base excision repair (BER). The effect is mediated by the inhibition of apurinic/apyrimidinic endonuclease APE1. We link this observation to our previous report showing the biologically relevant effect of Mox on BER - prevention of converting oxidative DNA base damage to double-stranded breaks. We demonstrate that its effect is weaker, but still significant when compared to a known BER inhibitor methoxyamine (MX). We further determined Mox's relative IC 50 at 19 mmol L-1, demonstrating a significant effect of Mox on APE1 activity in clinically relevant concentrations.
Collapse
Affiliation(s)
- Aneta Kohutova
- 1Masaryk University, Faculty of Medicine, Department of Biology 625 00, Brno, Czech Republic
| | - Dita Münzova
- 1Masaryk University, Faculty of Medicine, Department of Biology 625 00, Brno, Czech Republic
| | - Martin Pešl
- 1Masaryk University, Faculty of Medicine, Department of Biology 625 00, Brno, Czech Republic
- 2International Clinical Research Center (ICRC), St.Anne's University hospital in Brno, 625 00, Brno, Czech Republic
| | - Vladimir Rotrekl
- 1Masaryk University, Faculty of Medicine, Department of Biology 625 00, Brno, Czech Republic
- 2International Clinical Research Center (ICRC), St.Anne's University hospital in Brno, 625 00, Brno, Czech Republic
| |
Collapse
|
2
|
NARall: a novel tool for reconstruction of the all-atom structure of nucleic acids from heavily coarse-grained model. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02634-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractNucleic acids are one of the most important cellular components. These molecules have been studied both experimentally and theoretically. As all-atom simulations are still limited to short time scales, coarse-grain modeling allows to study of those molecules on a longer time scale. Nucleic-Acid united RESidue (NARES-2P) is a low-resolution coarse-grained model with two centers of interaction per repeating unit. It has been successfully applied to study DNA self-assembly and telomeric properties. This force field enables the study of nucleic acids Behavior on a long time scale but lacks atomistic details. In this article, we present new software to reconstruct atomistic details from the NARES-2P model. It has been applied to RNA pseudoknot, nucleic acid four-way junction, G-quadruplex and DNA duplex converted to NARES-2P model and back. Moreover, it was applied to DNA structure folded and self-assembled with NARES-2P.
Collapse
|
3
|
An ordered assembly of MYH glycosylase, SIRT6 protein deacetylase, and Rad9-Rad1-Hus1 checkpoint clamp at oxidatively damaged telomeres. Aging (Albany NY) 2020; 12:17761-17785. [PMID: 32991318 PMCID: PMC7585086 DOI: 10.18632/aging.103934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/07/2020] [Indexed: 01/24/2023]
Abstract
In the base excision repair pathway, MYH/MUTYH DNA glycosylase prevents mutations by removing adenine mispaired with 8-oxoG, a frequent oxidative lesion. MYH glycosylase activity is enhanced by Rad9-Rad1-Hus1 (9-1-1) checkpoint clamp and SIRT6 histone/protein deacetylase. Here, we show that MYH, SIRT6, and 9-1-1 are recruited to confined oxidatively damaged regions on telomeres in mammalian cells. Using different knockout cells, we show that SIRT6 responds to damaged telomeres very early, and then recruits MYH and Hus1 following oxidative stress. However, the recruitment of Hus1 to damaged telomeres is partially dependent on SIRT6. The catalytic activities of SIRT6 are not important for SIRT6 response but are essential for MYH recruitment to damaged telomeres. Compared to wild-type MYH, the recruitment of hMYHV315A mutant (defective in both SIRT6 and Hus1 interactions), but not hMYHQ324H mutant (defective in Hus1 interaction only), to damaged telomeres is severely reduced. The formation of MYH/SIRT6/9-1-1 complex is of biological significance as interrupting their interactions can increase cell's sensitivity to H2O2 and/or elevate cellular 8-oxoG levels after H2O2 treatment. Our results establish that SIRT6 acts as an early sensor of BER enzymes and both SIRT6 and 9-1-1 serve critical roles in DNA repair to maintain telomere integrity.
Collapse
|
4
|
Khodyreva S, Lavrik O. Non-canonical interaction of DNA repair proteins with intact and cleaved AP sites. DNA Repair (Amst) 2020; 90:102847. [DOI: 10.1016/j.dnarep.2020.102847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 02/01/2023]
|
5
|
Li XY, Cui YX, Du YC, Tang AN, Kong DM. Isothermal cross-boosting extension–nicking reaction mediated exponential signal amplification for ultrasensitive detection of polynucleotide kinase. Analyst 2020; 145:3742-3748. [DOI: 10.1039/c9an02569c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel nucleic acid-based isothermal signal amplification strategy, named cross-boosting extension–nicking reaction (CBENR) is developed and successfully used for rapid and ultrasensitive detection of polynucleotide kinase (PNK) activity.
Collapse
Affiliation(s)
- Xiao-Yu Li
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - Yun-Xi Cui
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - Yi-Chen Du
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - An-Na Tang
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| | - De-Ming Kong
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Biosensing and Molecular Recognition
- Research Center for Analytical Sciences
- College of Chemistry
- Nankai University
| |
Collapse
|
6
|
Menoni H, Wienholz F, Theil AF, Janssens RC, Lans H, Campalans A, Radicella JP, Marteijn JA, Vermeulen W. The transcription-coupled DNA repair-initiating protein CSB promotes XRCC1 recruitment to oxidative DNA damage. Nucleic Acids Res 2019; 46:7747-7756. [PMID: 29955842 PMCID: PMC6125634 DOI: 10.1093/nar/gky579] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/22/2018] [Indexed: 02/05/2023] Open
Abstract
Transcription-coupled nucleotide excision repair factor Cockayne syndrome protein B (CSB) was suggested to function in the repair of oxidative DNA damage. However thus far, no clear role for CSB in base excision repair (BER), the dedicated pathway to remove abundant oxidative DNA damage, could be established. Using live cell imaging with a laser-assisted procedure to locally induce 8-oxo-7,8-dihydroguanine (8-oxoG) lesions, we previously showed that CSB is recruited to these lesions in a transcription-dependent but NER-independent fashion. Here we showed that recruitment of the preferred 8-oxoG-glycosylase 1 (OGG1) is independent of CSB or active transcription. In contrast, recruitment of the BER-scaffolding protein, X-ray repair cross-complementing protein 1 (XRCC1), to 8-oxoG lesions is stimulated by CSB and transcription. Remarkably, recruitment of XRCC1 to BER-unrelated single strand breaks (SSBs) does not require CSB or transcription. Together, our results suggest a specific transcription-dependent role for CSB in recruiting XRCC1 to BER-generated SSBs, whereas XRCC1 recruitment to SSBs generated independently of BER relies predominantly on PARP activation. Based on our results, we propose a model in which CSB plays a role in facilitating BER progression at transcribed genes, probably to allow XRCC1 recruitment to BER-intermediates masked by RNA polymerase II complexes stalled at these intermediates.
Collapse
Affiliation(s)
- Hervé Menoni
- Department of Molecular Genetics, Oncode Institute, Cancer Genomics Netherlands, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,Laboratoire de Biologie et Modélisation de la Cellule (LBMC) CNRS, ENSL, UCBL UMR 5239, Université de Lyon, Ecole Normale Supérieure de Lyon, 69007 Lyon
| | - Franziska Wienholz
- Department of Molecular Genetics, Oncode Institute, Cancer Genomics Netherlands, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Arjan F Theil
- Department of Molecular Genetics, Oncode Institute, Cancer Genomics Netherlands, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Cancer Genomics Netherlands, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Cancer Genomics Netherlands, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Anna Campalans
- CEA, Institute of Cellular and Molecular Radiobiology, F-96265 Fontenay aux Roses, France.,UMR967 CEA, INSERM, Universités Paris-Diderot et Paris-Sud, F-92265 Fontenay aux Roses, France
| | - J Pablo Radicella
- CEA, Institute of Cellular and Molecular Radiobiology, F-96265 Fontenay aux Roses, France.,UMR967 CEA, INSERM, Universités Paris-Diderot et Paris-Sud, F-92265 Fontenay aux Roses, France
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Cancer Genomics Netherlands, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Cancer Genomics Netherlands, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
7
|
Li M, Yang X, Lu X, Dai N, Zhang S, Cheng Y, Zhang L, Yang Y, Liu Y, Yang Z, Wang D, Wilson DM. APE1 deficiency promotes cellular senescence and premature aging features. Nucleic Acids Res 2019; 46:5664-5677. [PMID: 29750271 PMCID: PMC6009672 DOI: 10.1093/nar/gky326] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/23/2018] [Indexed: 12/27/2022] Open
Abstract
Base excision repair (BER) handles many forms of endogenous DNA damage, and apurinic/apyrimidinic endonuclease 1 (APE1) is central to this process. Deletion of both alleles of APE1 (a.k.a. Apex1) in mice leads to embryonic lethality, and deficiency in cells can promote cell death. Unlike most other BER proteins, APE1 expression is inversely correlated with cellular senescence in primary human fibroblasts. Depletion of APE1 via shRNA induced senescence in normal human BJ fibroblasts, a phenotype that was not seen in counterpart cells expressing telomerase. APE1 knock-down in primary fibroblasts resulted in global DNA damage accumulation, and the induction of p16INK4a and p21WAF1 stress response pathways; the DNA damage response, as assessed by γ-H2AX, was particularly pronounced at telomeres. Conditional knock-out of Apex1 in mice at post-natal day 7/12 resulted in impaired growth, reduced organ size, and increased cellular senescence. The effect of Apex1 deletion at post-natal week 6 was less obvious, other than cellular senescence, until ∼8-months of age, when premature aging characteristics, such as hair loss and impaired wound healing, were seen. Low APE1 expression in patient cancer tissue also correlated with increased senescence. Our results point to a key role for APE1 in regulating cellular senescence and aging features, with telomere status apparently affecting the outcome.
Collapse
Affiliation(s)
- Mengxia Li
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Xiao Yang
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Xianfeng Lu
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Nan Dai
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Shiheng Zhang
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Yi Cheng
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Lei Zhang
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Yuxin Yang
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Ste. 100, Baltimore, MD 21224, USA
| | - Zhenzhou Yang
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - Dong Wang
- Cancer Center of Daping Hospital, Third Military Medical University, No. 10 Changjiang Zhi Rd., Yuzhong Dist., Chongqing 400042 China
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Ste. 100, Baltimore, MD 21224, USA
| |
Collapse
|
8
|
Singh N, Kazim SN, Sultana R, Tiwari D, Borkotoky R, Kakati S, Nath Das N, Kumar Saikia A, Bose S. Oxidative stress and deregulations in base excision repair pathway as contributors to gallbladder anomalies and carcinoma - a study involving North-East Indian population. Free Radic Res 2019; 53:473-485. [PMID: 31117842 DOI: 10.1080/10715762.2019.1606423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gallbladder cancer (GBC) is a fatal condition with dismal prognosis and aggressive local invasiveness; and with uncharacterised molecular pathology relating to non-specific therapeutic modalities. Given the importance of oxidative stress in chronic diseases and carcinogenesis, and the lacunae in literature regarding its role in gallbladder diseases, this study aimed to study the involvement of oxidative stress and deregulation in the base excision repair (BER) pathway in the pathogenesis of gallbladder diseases including GBC. This study involved patients from the North-East Indian population, where the numbers of reported cases are increasing rapidly and alarmingly. Oxidative stress, based on 8-OH-dG levels, was found to be significantly higher in gallbladder anomalies (cholelithiasis [CL] and cholecystitis [CS]) and GBC at the plasma and DNA level, and was associated with GBC severity. The expressions of key BER pathway genes were downregulated in gallbladder anomalies and GBC compared to controls, and in GBC compared to both non-neoplastic controls and gallbladder anomalies. Expression of XRCC1 and hOGG1 was significantly associated with both susceptibility and severity of GBC. The XRCC1 codon280 polymorphism was associated with disease susceptibility; and significantly higher oxidative stress was observed in hOGG1 genotypic variants. The genomes of GBC patients were found to be more hypermethylated compared to controls, with the promoters of XRCC1 and hOGG1 being hypermethylated and, therefore, being silenced. This study underlined the prognostic significance of the oxidative stress marker 8-OH-dG and BER pathway genes, especially hOGG1 and XRCC1, in gallbladder anomalies and GBC, as well as stated their potential for therapeutic targeting.
Collapse
Affiliation(s)
- Nidhi Singh
- a Department of Biotechnology , Gauhati University , Guwahati , India
| | - Syed Naqui Kazim
- b Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , New Delhi , India
| | - Rizwana Sultana
- c Bioengineering and Technology , Gauhati University , Guwahati , India
| | - Diptika Tiwari
- c Bioengineering and Technology , Gauhati University , Guwahati , India
| | - Raktim Borkotoky
- a Department of Biotechnology , Gauhati University , Guwahati , India
| | | | | | - Anjan Kumar Saikia
- e Central Railway Hospital , Guwahati , India.,f GNRC Hospital , Guwahati , India
| | - Sujoy Bose
- a Department of Biotechnology , Gauhati University , Guwahati , India
| |
Collapse
|
9
|
Croft LV, Bolderson E, Adams MN, El-Kamand S, Kariawasam R, Cubeddu L, Gamsjaeger R, Richard DJ. Human single-stranded DNA binding protein 1 (hSSB1, OBFC2B), a critical component of the DNA damage response. Semin Cell Dev Biol 2019; 86:121-128. [DOI: 10.1016/j.semcdb.2018.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022]
|
10
|
Feng WH, Xue KS, Tang L, Williams PL, Wang JS. Aflatoxin B₁-Induced Developmental and DNA Damage in Caenorhabditis elegans. Toxins (Basel) 2016; 9:toxins9010009. [PMID: 28035971 PMCID: PMC5308242 DOI: 10.3390/toxins9010009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/06/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a ubiquitous mycotoxin produced by toxicogenic Aspergillus species. AFB1 has been reported to cause serious adverse health effects, such as cancers and abnormal development and reproduction, in animals and humans. AFB1 is also a potent genotoxic mutagen that causes DNA damage in vitro and in vivo. However, the link between DNA damage and abnormal development and reproduction is unclear. To address this issue, we examined the DNA damage, germline apoptosis, growth, and reproductive toxicity following exposure to AFB1, using Caenorhabditis elegans as a study model. Results found that AFB1 induced DNA damage and germline apoptosis, and significantly inhibited growth and reproduction of the nematodes in a concentration-dependent manner. Exposure to AFB1 inhibited growth or reproduction more potently in the DNA repair-deficient xpa-1 nematodes than the wild-type N2 strain. According to the relative expression level of pathway-related genes measured by real-time PCR, the DNA damage response (DDR) pathway was found to be associated with AFB1-induced germline apoptosis, which further played an essential role in the dysfunction of growth and reproduction in C. elegans.
Collapse
Affiliation(s)
- Wei-Hong Feng
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, Jiangsu, China.
| | - Kathy S Xue
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Lili Tang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Phillip L Williams
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
11
|
Kuznetsov NA, Kupryushkin MS, Abramova TV, Kuznetsova AA, Miroshnikova AD, Stetsenko DA, Pyshnyi DV, Fedorova OS. New oligonucleotide derivatives as unreactive substrate analogues and potential inhibitors of human apurinic/apyrimidinic endonuclease APE1. MOLECULAR BIOSYSTEMS 2016; 12:67-75. [PMID: 26548492 DOI: 10.1039/c5mb00692a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human apurinic/apyrimidinic endonuclease APE1 is one of the key enzymes of the base excision DNA repair system. The main biological function of APE1 is the hydrolysis of the phosphodiester bond on the 5'-side of an apurinic/apyrimidinic site (AP-site) to give the 5'-phosphate and 3'-hydroxyl group. It has long been known that AP-sites have mutagenic and cytotoxic effects and their accumulation in DNA is a potential hazard to the cell lifecycle. The structural and biochemical studies of APE1 are complicated by its high catalytic activity towards the AP-site and its cyclic or acyclic analogues. This work has focussed on the design, synthesis and analysis of oligonucleotide derivatives as potentially unreactive APE1 substrates. We have shown that the replacement of oxygen atoms in the phosphate group on the 5'-side from the AP-site analogue tetrahydrofuran (F) considerably decreases the rate of enzymatic hydrolysis of modified oligonucleotides. We have calculated that a N3'-P5' phosphoramidate linkage is hydrolysed about 30 times slower than the native phosphodiester bond while phosphorothioate or primary phosphoramidate linkages are cleaved more than three orders of magnitude slower. The value of IC50 of the oligonucleotide duplex containing a primary phosphoramidate linkage is 2.5 × 10(-7) M, which is in accordance with the APE1 association constant of DNA duplexes containing AP-sites. Thus, it is demonstrated that oligonucleotide duplexes with chemical modifications could be used as unreactive substrates and potential competitive inhibitors of APE1.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia. and Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Tatyana V Abramova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Anastasia D Miroshnikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | - Dmitry A Stetsenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia. and Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia. and Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia. and Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
12
|
Rozacky J, Nemec AA, Sweasy JB, Kidane D. Gastric cancer associated variant of DNA polymerase beta (Leu22Pro) promotes DNA replication associated double strand breaks. Oncotarget 2016; 6:24474-87. [PMID: 26090616 PMCID: PMC4695199 DOI: 10.18632/oncotarget.4426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/31/2015] [Indexed: 12/14/2022] Open
Abstract
DNA polymerase beta (Pol β) is a key enzymefor the protection against oxidative DNA lesions via itsrole in base excision repair (BER). Approximately 1/3 of tumors studied to date express Pol β variant proteins, and several tumors overexpress Pol β. Pol β possesses DNA polymerase and dRP lyase activities, both of which are known to be important for efficient BER. The dRP lyase activity resides within the 8kDa amino terminal domain of Pol β, is responsible for removal of the 5′ phosphate group (5′-dRP). The DNA polymerase subsequently fills the gaps. Previously, we demonstrated that the human gastric cancer-associated variant of Pol β (Leu22Pro (L22P)) lacks dRP lyase function in vitro. Here, we report that L22P-expressing cells harbor significantly increased replication associated DNA double strand breaks (DSBs) and defective maintenance of the nascent DNA strand (NDS) during replication stress. Moreover, L22P-expressing cells are sensitive to PARP1 inhibitors, which suggests trapped PARP1 binds to the 5′-dRP group and blocks replications forks, resulting in fork collapse and DSBs. Our data suggest that the normal function of the dRP lyase is critical to maintain replication fork integrity and prevent replication fork collapse to DSBs and cellular transformation.
Collapse
Affiliation(s)
- Jenna Rozacky
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| | - Antoni A Nemec
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Joann B Sweasy
- Departments of Therapeutic Radiology and Genetics, The Yale Comprehensive Cancer Center, New Haven CT, USA
| | - Dawit Kidane
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA
| |
Collapse
|
13
|
Boldrin E, Rumiato E, Fassan M, Rugge M, Cagol M, Marino D, Chiarion-Sileni V, Ruol A, Gusella M, Pasini F, Amadori A, Saggioro D. Genetic risk of subsequent esophageal cancer in lymphoma and breast cancer long-term survival patients: a pilot study. THE PHARMACOGENOMICS JOURNAL 2016; 16:266-271. [PMID: 26054330 DOI: 10.1038/tpj.2015.41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023]
Abstract
The occurrence of a second primary esophageal carcinoma (EC) in long-term cancer survivors may represent a late effect of previous radio-chemotherapeutic treatment. To identify the genetic factors that could increase this risk, we analyzed nine variants within ERCC1, XPD, XRCC1 and XRCC3 DNA repair pathway genes, and GSTP1, TP53 and MDM2 genes in 61 patients who received radio-chemotherapy for a prior lymphoma or breast cancer; 29 of them had a second primary EC. This cohort consists of 22 esophageal squamous cell carcinoma (ESCC) and 7 esophageal adenocarcinoma (EADC) patients. A validation cohort of 154 patients with sporadic EC was also included. The XPD Asp312Asn (rs1799793) was found to be associated with the risk of developing second primary ESCC (P=0.015). The resultant variant was also involved in the onset of sporadic ESCC (P=0.0018). To know in advance who among long-term cancer survivors have an increased risk of EC could lead to a more appropriate follow-up strategy.
Collapse
Affiliation(s)
- E Boldrin
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - E Rumiato
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - M Fassan
- Department of Medicine, Surgical Pathology and Cytopathology, University of Padova, Padova, Italy
| | - M Rugge
- Department of Medicine, Surgical Pathology and Cytopathology, University of Padova, Padova, Italy
| | - M Cagol
- Oncological Surgery, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - D Marino
- Medical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - V Chiarion-Sileni
- Medical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - A Ruol
- Department of Surgical Sciences, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - M Gusella
- Department of Oncology, ULSS 18-Rovigo, S. Maria della Misericordia Hospital, Rovigo General Hospital, Rovigo, Italy
| | - F Pasini
- Department of Oncology, ULSS 18-Rovigo, S. Maria della Misericordia Hospital, Rovigo General Hospital, Rovigo, Italy
| | - A Amadori
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
- Department of Surgical Sciences, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - D Saggioro
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| |
Collapse
|
14
|
Altered Secretory Activity of APE1/Ref-1 D148E Variants Identified in Human Patients With Bladder Cancer. Int Neurourol J 2016; 20:S30-37. [PMID: 27230458 PMCID: PMC4895906 DOI: 10.5213/inj.1632600.300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/25/2016] [Indexed: 11/17/2022] Open
Abstract
Purpose: Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multifunctional protein involved in DNA repair and redox modulation. Recently, serum and urinary APE1/Ref-1 levels were reported to be increased in patients with bladder cancer. Genetic variations of APE/Ref-1 are associated with the risk of cancer. However, the effect of APE1/Ref-1 variants on its secretory activity is yet unknown. Methods: APE1/Ref-1 variants were evaluated by DNA sequencing analysis of reverse transcription polymerase chain reaction products in coding DNA sequences (CDS) of APE1/Ref-1 in bladder tissue samples from patients with bladder cancer (n=10). Secretory activity of APE1/Ref-1 variants was evaluated with immunoblot and enzyme-linked immunosorbent assay of the culture medium supernatants. Results: Four different substitution mutants (D148E, I64V/D148E, W67R/D148E, and E86G/D148E) of APE1/Ref-1 were identified in bladder cancer specimens. However, deletion mutants of APE1/Ref-1 CDS were not found. The secretory activity of the APE1/Ref-1 variants (D148E, I64V/D148E, and E86G/D148E) was increased compared to that of wild type APE1/Ref-1. Furthermore, the secretory activity in basal or hyperacetylated conditions was much higher than that in APE1/Ref-1 D148E-transfected HEK293 cells. Conclusions: Taken together, our data suggest that the increased secretory activity of D148E might contribute to increased serum levels of APE1/Ref-1 in patients with bladder cancer.
Collapse
|
15
|
Shi Z, Zhang X, Cheng R, Li B, Jin Y. A label-free cyclic assembly of G-quadruplex nanowires for cascade amplification detection of T4 polynucleotide kinase activity and inhibition. Analyst 2016. [PMID: 26215375 DOI: 10.1039/c5an00968e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several fluorescence methods have been developed for sensitive detection of PNK activity based on signal amplification techniques, but they need fluorescently labeled DNA probes and superabundant assistant enzymes. We have addressed these limitations and report here a label-free and enzyme-free amplification strategy for sensitively and specifically studying PNK activity and inhibition via hybridization chain reaction (HCR). First, the phosphorylation of hairpin DNA H1 by T4 PNK makes it be specifically digested by lambda exonuclease (λ exo) from 5' to 3' direction to generate a single-stranded initiator which can successively open hairpins H2 and H3 to trigger an autonomous assembly of long DNA nanowires. Meanwhile, an intermolecular G-quadruplex is formed between H2 and H3, thereby providing fluorescence enhancement of N-methyl mesoporphyrin IX (NMM) which is a highly quadruplex-selective fluorophore. So, the PNK activity can be facilely and sensitively detected by using NMM as a signal probe which provides a low background signal to improve the overall sensitivity, resulting in the detection limit of 3.37 × 10(-4) U mL(-1). More importantly, its successful application for detecting PNK activity in a complex biological matrix and studying the inhibition effects of PNK inhibitors demonstrated that it provides a promising platform for screening PNK inhibitors as well as detecting PNK activity. Therefore, it is a highly sensitive, specific, reliable and cost-effective strategy which shows great potential for biological process research, drug discovery, and clinical diagnostics.
Collapse
Affiliation(s)
- Zhilu Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi'an 710062, China.
| | | | | | | | | |
Collapse
|
16
|
Shapiro AM, Miller-Pinsler L, Wells PG. Breast cancer 1 (BRCA1)-deficient embryos develop normally but are more susceptible to ethanol-initiated DNA damage and embryopathies. Redox Biol 2015; 7:30-38. [PMID: 26629949 PMCID: PMC4683388 DOI: 10.1016/j.redox.2015.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023] Open
Abstract
The breast cancer 1 (brca1) gene is associated with breast and ovarian cancers, and heterozygous (+/−) brca1 knockout progeny develop normally, suggesting a negligible developmental impact. However, our results show BRCA1 plays a broader biological role in protecting the embryo from oxidative stress. Sox2-promoted Cre-expressing hemizygous males were mated with floxed brca1 females, and gestational day 8 +/− brca1 conditional knockout embryos with a 28% reduction in protein expression were exposed in culture to the reactive oxygen species (ROS)-initiating drug ethanol (EtOH). Untreated +/− brca1-deficient embryos developed normally, but when exposed to EtOH exhibited increased levels of oxidatively damaged DNA, measured as 8-oxo-2'-deoxyguanosine, γH2AX, which is a marker of DNA double strand breaks that can result from 8-oxo-2'-deoxyguanosine, formation, and embryopathies at EtOH concentrations that did not affect their brca1-normal littermates. These results reveal that even modest BRCA1 deficiencies render the embryo more susceptible to drug-enhanced ROS formation, and corroborate a role for DNA oxidation in the mechanism of EtOH teratogenesis. Heterozygous (+/−) brca1 conditional knockout (cKO) embryos develop normally. +/− brca1 cKO embryos have 28% less BRCA1 protein than wild-type (WT) littermates. Ethanol-exposed BRCA1-deficient mice have more oxidatively damaged DNA than WTs. Ethanol-exposed BRCA1 cKO embryos exhibit more embryopathies than WT littermates. BRCA1 protects the embryo from ethanol-enhanced oxidative stress—a novel role.
Collapse
Affiliation(s)
- Aaron M Shapiro
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Lutfiya Miller-Pinsler
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter G Wells
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Hwang BJ, Jin J, Gao Y, Shi G, Madabushi A, Yan A, Guan X, Zalzman M, Nakajima S, Lan L, Lu AL. SIRT6 protein deacetylase interacts with MYH DNA glycosylase, APE1 endonuclease, and Rad9-Rad1-Hus1 checkpoint clamp. BMC Mol Biol 2015; 16:12. [PMID: 26063178 PMCID: PMC4464616 DOI: 10.1186/s12867-015-0041-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/29/2015] [Indexed: 02/07/2023] Open
Abstract
Background SIRT6, a member of the NAD+-dependent histone/protein deacetylase family, regulates genomic stability, metabolism, and lifespan. MYH glycosylase and APE1 are two base excision repair (BER) enzymes involved in mutation avoidance from oxidative DNA damage. Rad9–Rad1–Hus1 (9–1–1) checkpoint clamp promotes cell cycle checkpoint signaling and DNA repair. BER is coordinated with the checkpoint machinery and requires chromatin remodeling for efficient repair. SIRT6 is involved in DNA double-strand break repair and has been implicated in BER. Here we investigate the direct physical and functional interactions between SIRT6 and BER enzymes. Results We show that SIRT6 interacts with and stimulates MYH glycosylase and APE1. In addition, SIRT6 interacts with the 9-1-1 checkpoint clamp. These interactions are enhanced following oxidative stress. The interdomain connector of MYH is important for interactions with SIRT6, APE1, and 9–1–1. Mutagenesis studies indicate that SIRT6, APE1, and Hus1 bind overlapping but different sequence motifs on MYH. However, there is no competition of APE1, Hus1, or SIRT6 binding to MYH. Rather, one MYH partner enhances the association of the other two partners to MYH. Moreover, APE1 and Hus1 act together to stabilize the MYH/SIRT6 complex. Within human cells, MYH and SIRT6 are efficiently recruited to confined oxidative DNA damage sites within transcriptionally active chromatin, but not within repressive chromatin. In addition, Myh foci induced by oxidative stress and Sirt6 depletion are frequently localized on mouse telomeres. Conclusions Although SIRT6, APE1, and 9-1-1 bind to the interdomain connector of MYH, they do not compete for MYH association. Our findings indicate that SIRT6 forms a complex with MYH, APE1, and 9-1-1 to maintain genomic and telomeric integrity in mammalian cells. Electronic supplementary material The online version of this article (doi:10.1186/s12867-015-0041-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bor-Jang Hwang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| | - Jin Jin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| | - Ying Gao
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA. .,School of Medicine, Tsinghua University, No.1 Tsinghua Yuan, Haidian District, Beijing, 100084, China.
| | - Guoli Shi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA. .,University of Maryland School of Nursing, 655 West Lombard Street, Baltimore, MD, 21201, USA.
| | - Amrita Madabushi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA. .,Department of Natural and Physical Sciences, Life Sciences Institute, Baltimore City Community College, 801 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Austin Yan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| | - Xin Guan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| | - Michal Zalzman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA. .,Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, 16 South Eutaw Street, Baltimore, MD, 21201, USA.
| | - Satoshi Nakajima
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA. .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Li Lan
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA. .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
18
|
Hwang BJ, Jin J, Gunther R, Madabushi A, Shi G, Wilson GM, Lu AL. Association of the Rad9-Rad1-Hus1 checkpoint clamp with MYH DNA glycosylase and DNA. DNA Repair (Amst) 2015; 31:80-90. [PMID: 26021743 DOI: 10.1016/j.dnarep.2015.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 12/18/2022]
Abstract
Cell cycle checkpoints provide surveillance mechanisms to activate the DNA damage response, thus preserving genomic integrity. The heterotrimeric Rad9-Rad1-Hus1 (9-1-1) clamp is a DNA damage response sensor and can be loaded onto DNA. 9-1-1 is involved in base excision repair (BER) by interacting with nearly every enzyme in BER. Here, we show that individual 9-1-1 components play distinct roles in BER directed by MYH DNA glycosylase. Analyses of Hus1 deletion mutants revealed that the interdomain connecting loop (residues 134-155) is a key determinant of MYH binding. Both the N-(residues 1-146) and C-terminal (residues 147-280) halves of Hus1, which share structural similarity, can interact with and stimulate MYH. The Hus1(K136A) mutant retains physical interaction with MYH but cannot stimulate MYH glycosylase activity. The N-terminal domain, but not the C-terminal half of Hus1 can also bind DNA with moderate affinity. Intact Rad9 expressed in bacteria binds to and stimulates MYH weakly. However, Rad9(1-266) (C-terminal truncated Rad9) can stimulate MYH activity and bind DNA with high affinity, close to that displayed by heterotrimeric 9(1-266)-1-1 complexes. Conversely, Rad1 has minimal roles in stimulating MYH activity or binding to DNA. Finally, we show that preferential recruitment of 9(1-266)-1-1 to 5'-recessed DNA substrates is an intrinsic property of this complex and is dependent on complex formation. Together, our findings provide a mechanistic rationale for unique contributions by individual 9-1-1 subunits to MYH-directed BER based on subunit asymmetry in protein-protein interactions and DNA binding events.
Collapse
Affiliation(s)
- Bor-Jang Hwang
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jin Jin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Randall Gunther
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Amrita Madabushi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Natural and Physical Sciences, Life Sciences Institute; Baltimore City Community College, Baltimore, MD 21201, United States
| | - Guoli Shi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; University of Maryland School of Nursing, Baltimore, MD 21201, United States
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - A-Lien Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
19
|
Feng Z, Kochanek S, Close D, Wang L, Srinivasan A, Almehizia AA, Iyer P, Xie XQ, Johnston PA, Gold B. Design and activity of AP endonuclease-1 inhibitors. J Chem Biol 2015; 8:79-93. [PMID: 26101550 DOI: 10.1007/s12154-015-0131-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/25/2015] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease-1/redox effector factor-1 (APE-1) is a critical component of base excision repair that excises abasic lesions created enzymatically by the action of DNA glycosylases on modified bases and non-enzymatically by hydrolytic depurination/depyrimidination of nucleobases. Many anticancer drugs generate DNA adducts that are processed by base excision repair, and tumor resistance is frequently associated with enhanced APE-1 expression. Accordingly, APE-1 is a potential therapeutic target to treat cancer. Using computational approaches and the high resolution structure of APE-1, we developed a 5-point pharmacophore model for APE-1 small molecule inhibitors. One of the nM APE-1 inhibitors (AJAY-4) that was identified based on this model exhibited an overall median growth inhibition (GI50) of 4.19 μM in the NCI-60 cell line panel. The mechanism of action is shown to be related to the buildup of abasic sites that cause PARP activation and PARP cleavage, and the activation of caspase-3 and caspase-7, which is consistent with cell death by apoptosis. In a drug combination growth inhibition screen conducted in 10 randomly selected NCI-60 cell lines and with 20 clinically used non-genotoxic anticancer drugs, a synergy was flagged in the SK-MEL-5 melanoma cell line exposed to combinations of vemurafenib, which targets melanoma cells with V600E mutated BRAF, and AJAY-4, our most potent APE-1 inhibitor. The synergy between AJAY-4 and vemurafenib was not observed in cell lines expressing wild-type B-Raf protein. This synergistic combination may provide a solution to the resistance that develops in tumors treated with B-Raf-targeting drugs.
Collapse
Affiliation(s)
- Zhiwei Feng
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Stanton Kochanek
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - David Close
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - LiRong Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Ajay Srinivasan
- Malaria Vaccine Development Program, New Delhi, 110067 India
| | | | - Prema Iyer
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Paul A Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Barry Gold
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261 USA
| |
Collapse
|
20
|
Kutuzov MM, Khodyreva SN, Ilina ES, Sukhanova MV, Amé JC, Lavrik OI. Interaction of PARP-2 with AP site containing DNA. Biochimie 2015; 112:10-9. [PMID: 25724268 DOI: 10.1016/j.biochi.2015.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/13/2015] [Indexed: 01/26/2023]
Abstract
In eukaryotes the stability of genome is provided by functioning of DNA repair systems. One of the main DNA repair pathways in eukaryotes is the base excision repair (BER). This system requires precise regulation for correct functioning. Two members of the PARP family - PARP-1 and PARP-2, which can be activated by DNA damage - are widely considered as regulators of DNA repair processes, including BER. In contrast to PARP-1, the role of PARP-2 in BER has not been extensively studied yet. Since AP site is one of the most frequent type of DNA damage and a key intermediate of BER at the stage preceding formation of DNA breaks, in this paper we focused on the characterization of PARP-2 interaction with AP site-containing DNAs. We demonstrated that PARP-2, like PARP-1, can interact with the intact AP site via Schiff base formation, in spite of crucial difference in the structure of the DNA binding domains of these PARPs. By cross-linking of PARPs to AP DNA, we determined that the N-terminal domains of both PARPs are involved in formation of cross-links with AP DNA. We have also confirmed that DNA binding by PARP-2, in contrast to PARP-1, is not modulated by autoPARylation. PARP-2, like PARP-1, can inhibit the activity of APE1 by binding to AP site, but, in contrast to PARP-1, this inhibitory influence is hardly regulated by PAR synthesis. At the same time, 5'-dRP lyase activity of both PARPs is comparable, although being much weaker than that of Pol β, which is considered as the main 5'-dRP lyase of the BER process.
Collapse
Affiliation(s)
- Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Svetlana N Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Ekaterina S Ilina
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Jean-Christophe Amé
- UMR7242, Biotechnology and Cell Signaling, Université de Strasbourg, CNRS, MEDALIS, ESBS, Illkirch, France
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
21
|
Kosova AA, Lavrik OI, Khodyreva SN. Role of Ku antigen in the repair of apurinic/apyrimidinic sites in DNA. Mol Biol 2015. [DOI: 10.1134/s0026893315010070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Long XD, Huang HD, Huang XY, Yao JG, Xia Q. XPC codon 939 polymorphism is associated with susceptibility to DNA damage induced by aflatoxin B1 exposure. Int J Clin Exp Med 2015; 8:1197-1204. [PMID: 25785113 PMCID: PMC4358568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Aflatoxin B1 (AFB1), resulting in the formation of AFB1-DNA adducts, is a known human carcinogen. AFB1-exposure individuals with inherited susceptible carcinogen-repairing genotypes may experience an increased risk of genotoxicity. This study was aimed to investigate whether DNA repair gene xerodermapigmentosum complementation group C codon 939 polymorphism (rs2228001) affected the levels of AFB1-DNA adducts in Guangxi Population (n = 2558), from an AFB1-exposure area. AFB1-DNA adducts were measured by ELISA, and XPC codon 939 genotypes were identified by TaqMan-PCR. We found that longer AFB1-exposure years significantly increased XPC genotypes with codon 939 Gln alleles (namely, XPC-LG and -GG, odds ratios [95% confidence intervals] were 1.37 (1.15-1.63) and 1.99 (1.55-2.55), respectively) was significantly associated with higher levels of AFB1-DNA adducts. Furthermore, there was a positive joint effect between XPC genotypes and long-year AFB1 exposure in the formation of AFB1-DNA adducts. These results suggest that individuals with susceptible genotypes XPC-LG and -GG may experience an increased risk of DNA damage elicited by AFB1 exposure.
Collapse
Affiliation(s)
- Xi-Dai Long
- Department of Pathology, Youjiang Medical College for NationalitiesBaise, P.R. China
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, P.R. China
| | - Hong-Dong Huang
- Division of Nephrology, Beijing Shijitan Hospital, Capital Medical UniversityBeijing, China
| | - Xiao-Ying Huang
- Department of Pathology, Youjiang Medical College for NationalitiesBaise, P.R. China
| | - Jin-Guang Yao
- Department of Pathology, Youjiang Medical College for NationalitiesBaise, P.R. China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai, P.R. China
| |
Collapse
|
23
|
Zhou L, Shen X, Sun N, Wang K, Zhang Y, Pei R. Label-free fluorescence light-up detection of T4 polynucleotide kinase activity using the split-to-intact G-quadruplex strategy by ligation-triggered and toehold-mediated strand displacement release. Analyst 2015; 140:5450-3. [DOI: 10.1039/c5an01032b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A label-free, fluorescence light-up detection method for T4 polynucleotide kinase activity has been developed using the split-to-intact G-quadruplex strategy.
Collapse
Affiliation(s)
- Lu Zhou
- Key Laboratory of Nano-Bio Interfacce
- Division of Nanobiomedicine
- Suzhou Insitute of Nano-Tech and Nano-Bionics
- Chinese Academy of Science
- Suzhou
| | - Xiaoqiang Shen
- Key Laboratory of Nano-Bio Interfacce
- Division of Nanobiomedicine
- Suzhou Insitute of Nano-Tech and Nano-Bionics
- Chinese Academy of Science
- Suzhou
| | - Na Sun
- Key Laboratory of Nano-Bio Interfacce
- Division of Nanobiomedicine
- Suzhou Insitute of Nano-Tech and Nano-Bionics
- Chinese Academy of Science
- Suzhou
| | - Kewei Wang
- Key Laboratory of Nano-Bio Interfacce
- Division of Nanobiomedicine
- Suzhou Insitute of Nano-Tech and Nano-Bionics
- Chinese Academy of Science
- Suzhou
| | - Yuanyuan Zhang
- Key Laboratory of Nano-Bio Interfacce
- Division of Nanobiomedicine
- Suzhou Insitute of Nano-Tech and Nano-Bionics
- Chinese Academy of Science
- Suzhou
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interfacce
- Division of Nanobiomedicine
- Suzhou Insitute of Nano-Tech and Nano-Bionics
- Chinese Academy of Science
- Suzhou
| |
Collapse
|
24
|
Kaur G, Cholia RP, Mantha AK, Kumar R. DNA repair and redox activities and inhibitors of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1): a comparative analysis and their scope and limitations toward anticancer drug development. J Med Chem 2014; 57:10241-56. [PMID: 25280182 DOI: 10.1021/jm500865u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme involved in DNA repair and activation of transcription factors through its redox function. The evolutionarily conserved C- and N-termini are involved in these functions independently. It is also reported that the activity of APE1/Ref-1 abruptly increases several-fold in various human cancers. The control over the outcomes of these two functions is emerging as a new strategy to combine enhanced DNA damage and chemotherapy in order to tackle the major hurdle of increased cancer cell growth and proliferation. Studies have targeted these two domains individually for the design and development of inhibitors for APE1/Ref-1. Here, we have made, for the first time, an attempt at a comparative analysis of APE1/Ref-1 inhibitors that target both DNA repair and redox activities simultaneously. We further discuss their scope and limitations with respect to the development of potential anticancer agents.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory for Drug Design and Synthesis, Centre for Chemical and Pharmaceutical Sciences, School of Basic and Applied Sciences, Central University of Punjab , Bathinda, 151001, Punjab, India
| | | | | | | |
Collapse
|
25
|
Highly sensitive detection of T4 polynucleotide kinase activity by coupling split DNAzyme and ligation-triggered DNAzyme cascade amplification. Biosens Bioelectron 2014; 55:225-30. [DOI: 10.1016/j.bios.2013.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/23/2013] [Accepted: 12/06/2013] [Indexed: 11/23/2022]
|
26
|
Hou T, Wang X, Liu X, Lu T, Liu S, Li F. Amplified detection of T4 polynucleotide kinase activity by the coupled λ exonuclease cleavage reaction and catalytic assembly of bimolecular beacons. Anal Chem 2013; 86:884-90. [PMID: 24328238 DOI: 10.1021/ac403458b] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The phosphorylation of nucleic acid catalyzed by polynucleotide kinase is an indispensible procedure involved in many vital cellular activities such as DNA recombination and DNA repair. Herein, a novel strategy for the sensitive determination of T4 polynucleotide kinase (PNK) activity and inhibition was proposed, which combined exonuclease enzyme reaction and bimolecular beacons (bi-MBs)-based signal amplification. A hairpin probe (HP) with 5'-hydroxyl termini and two different types of molecular beacons (MBs), MB1 and MB2, is designed. Taking advantage of the efficient enzyme reactions, namely the phosphorylation of HP by PNK and the λ exonuclease cleavage reaction, the trigger DNA fragment can be released from HP and is used to trigger the catalytic assembly of bimolecular beacons, resulting in a remarkably amplified fluorescence signal toward PNK activity detection. The detection limit of this method toward PNK was obtained as 1 mU/mL, which was superior or comparable with the reported methods. Furthermore, the facile and sensitive method can also be used to screen the inhibition effects toward several common inhibitors. It provides a promising platform for sensitive determination of nucleotide kinase activity and inhibition, and also shows great potential for biological process research, drug discovery, and clinic diagnostics.
Collapse
Affiliation(s)
- Ting Hou
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University , Qingdao 266109, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Wang C, Huang XY, Yao JG, Huang BC, Huang CH, Liao P, Long XD. XRCC7 rs#7003908 Polymorphism and Helicobacter pylori Infection-Related Gastric Antrum Adenocarcinoma. Int J Genomics 2013; 2013:124612. [PMID: 24319674 PMCID: PMC3844259 DOI: 10.1155/2013/124612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
The X-ray repair cross-complementing group 7 (XRCC7) plays a key role in DNA repair that protects against genetic instability and carcinogenesis. To determine whether XRCC7 rs#7003908 polymorphism (XRCC7P) is associated with Helicobacter pylori (H. pylori) infection-related gastric antrum adenocarcinoma (GAA) risk, we conducted a hospital-based case-control study, including 642 patients with pathologically confirmed GAA and 927 individually matched controls without any evidence of tumours or precancerous lesions, among Guangxi population. Increased risks of GAA were observed for individuals with cagA positive (odds ratio (OR) 6.38; 95% confidence interval (CI) 5.03-8.09). We also found that these individuals with the genotypes of XRCC7 rs#7003908 G alleles (XRCC7-TG or -GG) featured increasing risk of GAA (ORs 2.80 and 5.13, resp.), compared with the homozygote of XRCC7 rs#7003908 T alleles (XRCC7-TT). GAA risk, moreover, did appear to differ more significantly among individuals featuring cagA-positive status, whose adjusted ORs (95% CIs) were 15.74 (10.89-22.77) for XRCC7-TG and 38.49 (22.82-64.93) for XRCC7-GG, respectively. Additionally, this polymorphism multiplicatively interacted with XRCC3 codon 241 polymorphism with respect to HCC risk (ORinteraction = 1.49). These results suggest that XRCC7P may be associated with the risk of Guangxiese GAA related to cagA.
Collapse
Affiliation(s)
- Chao Wang
- Department of Medicine, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise 533000, China
| | - Xiao-Ying Huang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise 533000, China
| | - Jin-Guang Yao
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise 533000, China
| | - Bing-Chen Huang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise 533000, China
| | - Cen-Han Huang
- Department of Medicine, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise 533000, China
| | - Pinhu Liao
- Department of Medicine, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise 533000, China
| | - Xi-Dai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise 533000, China
- Department of Liver Surgery, The Affiliated Ren Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
28
|
Wang M, Chu H, Wang S, Wang M, Wang W, Han S, Zhang Z. Genetic variant in APE1 gene promoter contributes to cervical cancer risk. Am J Obstet Gynecol 2013; 209:360.e1-7. [PMID: 23871947 DOI: 10.1016/j.ajog.2013.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/21/2013] [Accepted: 07/10/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential enzyme in the base excision repair pathway, which plays an important role in repairing DNA damage caused by oxidation and alkylation. However, the exact mechanism of APE1 associated with cervical cancer risk is still unknown. In this study, we explored whether the APE1 -656T>G polymorphism contributed to the risk of cervical cancer. STUDY DESIGN In the hospital-based case-control study, 306 cervical cancer cases and 306 cancer-free controls were genotyped for the APE1 -656T>G polymorphism using the polymerase chain reaction restriction fragment length polymorphism method. Luciferase reporter assay and electrophoretic mobility shift assay were used to evaluate the APE1 transcriptional activity and the binding ability of transcriptional factors to the APE1 promoter, respectively. RESULTS Logistic regression analysis showed that individuals with the APE1 -656 TG/GG genotypes had a significantly reduced risk of cervical cancer compared with the TT genotype (adjusted odds ratio, 0.61; 95% confidence interval, 0.42-0.89). The luciferase assays in 3 cell lines showed that the APE1 -656T>G substitution can increase the expression of APE1, which was consistent with the finding of association study. Electrophoretic mobility shift assay further indicated that the APE1 -656T>G polymorphism enhanced the binding affinity of transcriptional factors to the promoter region. CONCLUSION These findings suggested that the APE1 -656T>G polymorphism was associated with cervical cancer risk in a Chinese population by affecting the binding affinity of transcriptional factors to the promoter, leading to an increased expression level of APE1.
Collapse
|
29
|
DNA polymerase beta overexpression correlates with poor prognosis in esophageal cancer patients. CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-5956-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Chen F, Zhao Y, Qi L, Fan C. One-step highly sensitive florescence detection of T4 polynucleotide kinase activity and biological small molecules by ligation-nicking coupled reaction-mediated signal amplification. Biosens Bioelectron 2013; 47:218-24. [PMID: 23584226 DOI: 10.1016/j.bios.2013.03.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/15/2013] [Accepted: 03/15/2013] [Indexed: 12/31/2022]
Abstract
DNA phosphorylation, catalyzed by polynucleotide kinase (PNK), plays significant regulatory roles in many biological events. Herein, using T4 PNK as a model target, we describe a one-step, highly sensitive, simple and rapid fluorescence approach for monitoring its activity and inhibition. This innovative strategy is inspired by the great amplification capability of ligation-nicking coupled reaction-mediated signal amplification. In the presence of T4 PNK, one of two short oligonucleotides complementary to the loop sequence of molecular beacon (MB) are phosphorylated, and then ligated with the other by DNA ligase. Upon formation of the stable duplex between the ligated DNA and MB, the fluorescence is restored and further significantly amplified through nicking endonuclease assisted cleavage of multiple MBs. Meanwhile, the cleavage of MBs will also generate new nicks to initiate the ligation reaction. Eventually, a maximum fluorescence enhancement is obtained when the ligation and nicking process reached a dynamic equilibrium. As compared to those of the existing approaches except for the assay based on single nanoparticle counting, all limited to 1:1 signal transduction function, the sensitivity (0.00001U/mL) of the proposed strategy is 100-1700 times higher. The application of the sensing system in complex biological matrix and screening of T4 PNK inhibition are demonstrated with satisfactory results. Moreover, this approach is also successfully used to detect biological small molecules such as adenosine triphosphate (ATP), and can be further extended for nicotinamide adenine dinucleotide (NAD(+)) detection.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | | | | | | |
Collapse
|
31
|
Lin L, Liu Y, Yan J, Wang X, Li J. Sensitive nanochannel biosensor for T4 polynucleotide kinase activity and inhibition detection. Anal Chem 2012. [PMID: 23194085 DOI: 10.1021/ac302875p] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
5'-Polynucleotide kinase is a crucial class of enzyme that catalyzes the phosphorylation of nucleic acids with 5'-hydroxyl termini. This process regulates many important cellular events, especially DNA repair during strand damage and interruption. The activity and inhibition of nucleotide kinase have proven to be an evident effect on cellular nucleic acid regulation and metabolism. Here, we describe a novel nanochannel biosensor for monitoring the activity and inhibition of T4 polynucleotide kinase (PNK), a famous member of the 5'-kinase family playing a major role in the cellular responses to DNA damage. On the basis of the functionalized nanochannel system and coupled λ exonuclease cleavage reaction, the nanochannel-sensing platform exhibits high sensitivity and convenience toward kinase analysis. Biotin-labeled dsDNA effectively blocks the streptavidin-modified nanochannel through forming a closely packed arrangement of DNA structure inside the channel. When dsDNA is phosphorylated by PNK and then immediately cleaved by λ exonuclease, the pore-blocking effect almost disappears. This PNK-induced microstructural distinctness can be directly and accurately monitored by the nanochannel system, which benefits from its high sensitivity to the change of the effective pore size. Furthermore, modification convenience and mechanical robustness also ensure the stability of the test platform. This as-proposed strategy exhibits excellent analytical performance in both PNK activity analysis and inhibition evaluation. The simple and sensitive nanochannel biosensor shows great potential in developing on-chip, high-throughput assays for fundamental biochemical process research, molecular-target therapies, and clinic diagnostics.
Collapse
Affiliation(s)
- Lei Lin
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, China
| | | | | | | | | |
Collapse
|
32
|
Kothandapani A, Patrick SM. Evidence for base excision repair processing of DNA interstrand crosslinks. Mutat Res 2012; 743-744:44-52. [PMID: 23219605 DOI: 10.1016/j.mrfmmm.2012.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 11/19/2012] [Accepted: 11/24/2012] [Indexed: 12/30/2022]
Abstract
Many bifunctional alkylating agents and anticancer drugs exert their cytotoxicity by producing cross links between the two complementary strands of DNA, termed interstrand crosslinks (ICLs). This blocks the strand separating processes during DNA replication and transcription, which can lead to cell cycle arrest and apoptosis. Cells use multiple DNA repair systems to eliminate the ICLs. Concerted action of repair proteins involved in Nucleotide Excision Repair and Homologous Recombination pathways are suggested to play a key role in the ICL repair. However, recent studies indicate a possible role for Base Excision Repair (BER) in mediating the cytotoxicity of ICL inducing agents in mammalian cells. Elucidating the mechanism of BER mediated modulation of ICL repair would help in understanding the recognition and removal of ICLs and aid in the development of potential therapeutic agents. In this review, the influence of BER proteins on ICL DNA repair and the possible mechanisms of action are discussed.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| | - Steve M Patrick
- Department of Biochemistry and Cancer Biology, University of Toledo - Health Science Campus, Toledo, OH 43614, USA.
| |
Collapse
|
33
|
Jacquet P. Developmental defects and genomic instability after x-irradiation of wild-type and genetically modified mouse pre-implantation and early post-implantation embryos. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2012; 32:R13-R36. [PMID: 23032080 DOI: 10.1088/0952-4746/32/4/r13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Results obtained from the end of the 1950s suggested that ionizing radiation could induce foetal malformations in some mouse strains when administered during early pre-implantation stages. Starting in 1989, data obtained in Germany also showed that radiation exposure during that period could lead to a genomic instability in the surviving foetuses. Furthermore, the same group reported that both malformations and genomic instability could be transmitted to the next generation foetuses after exposure of zygotes to relatively high doses of radiation. As such results were of concern for radiation protection, we investigated this in more detail during recent years, using mice with varying genetic backgrounds including mice heterozygous for mutations involved in important cellular processes like DNA repair, cell cycle regulation or apoptosis. The main parameters which were investigated included morphological development, genomic instability and gene expression in the irradiated embryos or their own progeny. The aim of this review is to critically reassess the results obtained in that field in the different laboratories and to try to draw general conclusions on the risks of developmental defects and genomic instability from an exposure of early embryos to moderate doses of ionizing radiation. Altogether and in the range of doses normally used in diagnostic radiology, the risk of induction of embryonic death and of congenital malformation following the irradiation of a newly fertilised egg is certainly very low when compared to the 'spontaneous' risks for such effects. Similarly, the risk of radiation induction of a genomic instability under such circumstances seems to be very small. However, this is not a reason to not apply some precaution principles when possible. One way of doing this is to restrict the use of higher dose examinations on all potentially pregnant women to the first ten days of their menstrual cycle when conception is very unlikely to have occurred (the so-called ten-day rule), as already recommended by the Health Protection Agency. Such a precautionary attitude would also be supported by the uncertainties associated with later changes in gene expression which might result from irradiation or early embryos with moderate doses.
Collapse
Affiliation(s)
- P Jacquet
- Radiobiology Unit, Molecular and Cellular Biology, Institute for Environment, Health & Safety, SCK⋅CEN, Boeretang 200, B-2400 Mol, Belgium.
| |
Collapse
|
34
|
Kim YJ, Wilson DM. Overview of base excision repair biochemistry. Curr Mol Pharmacol 2012; 5:3-13. [PMID: 22122461 DOI: 10.2174/1874467211205010003] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/25/2010] [Indexed: 02/06/2023]
Abstract
Base excision repair (BER) is an evolutionarily conserved pathway, which could be considered the "workhorse" repair mechanism of the cell. In particular, BER corrects most forms of spontaneous hydrolytic decay products in DNA, as well as everyday oxidative and alkylative modifications to bases or the sugar phosphate backbone. The repair response involves five key enzymatic steps that aim to remove the initial DNA lesion and restore the genetic material back to its original state: (i) excision of a damaged or inappropriate base, (ii) incision of the phosphodiester backbone at the resulting abasic site, (iii) termini clean-up to permit unabated repair synthesis and/or nick ligation, (iv) gap-filling to replace the excised nucleotide, and (v) sealing of the final, remaining DNA nick. These repair steps are executed by a collection of enzymes that include DNA glycosylases, apurinic/apyrimidinic endonucleases, phosphatases, phosphodiesterases, kinases, polymerases and ligases. Defects in BER components lead to reduced cell survival, elevated mutation rates, and DNA-damaging agent hypersensitivities. In addition, the pathway plays a significant role in determining cellular responsiveness to relevant clinical anti-cancer agents, such as alkylators (e.g. temozolomide), nucleoside analogs (e.g. 5-fluorouracil), and ionizing radiation. The molecular details of BER and the contribution of the pathway to therapeutic agent resistance are reviewed herein.
Collapse
Affiliation(s)
- Yun-Jeong Kim
- Laboratory of Molecular Gerontology, Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
35
|
He K, Li W, Nie Z, Huang Y, Liu Z, Nie L, Yao S. Enzyme-Regulated Activation of DNAzyme: A Novel Strategy for a Label-Free Colorimetric DNA Ligase Assay and Ligase-Based Biosensing. Chemistry 2012; 18:3992-9. [DOI: 10.1002/chem.201102290] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/13/2012] [Indexed: 12/12/2022]
|
36
|
Borjigin M, Arenaz P, Stec B. Chinese hamster AP endonuclease operates by a two-metal ion assisted catalytic mechanism. FEBS Lett 2012; 586:242-7. [PMID: 22209979 DOI: 10.1016/j.febslet.2011.12.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 12/18/2011] [Accepted: 12/20/2011] [Indexed: 11/26/2022]
Abstract
The APE1, an important mammalian AP endonuclease, is an essential enzyme in the base excision DNA repair pathway (BER). The number of metal ions involved directly in the catalysis remains controversial. Here we describe the metal ion titration experiments that demonstrate the requirement for two metal ions for the endonuclease activity of the Chinese hamster APE1. The titration with the non-activating metal ion La(3+) showed a biphasic behavior with activating and inhibitory effects of La(3+) in the range of 0-100 μM in the presence of 5 mM Mg(2+). Modeling of the enzyme-substrate/product complexes provided insight into the endonuclease activity and elucidated the nature of the crystal structures. Accordingly, we proposed a reaction scheme for the two-metal ion assisted catalysis of chAPE1 endonuclease activity.
Collapse
Affiliation(s)
- Mandula Borjigin
- Department of Chemistry, Bowling Green State University, 144 Overman Hall, Bowling Green, OH 43403, USA.
| | | | | |
Collapse
|
37
|
Hegde ML, Izumi T, Mitra S. Oxidized base damage and single-strand break repair in mammalian genomes: role of disordered regions and posttranslational modifications in early enzymes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:123-53. [PMID: 22749145 DOI: 10.1016/b978-0-12-387665-2.00006-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidative genome damage induced by reactive oxygen species includes oxidized bases, abasic (AP) sites, and single-strand breaks, all of which are repaired via the evolutionarily conserved base excision repair/single-strand break repair (BER/SSBR) pathway. BER/SSBR in mammalian cells is complex, with preferred and backup sub-pathways, and is linked to genome replication and transcription. The early BER/SSBR enzymes, namely, DNA glycosylases (DGs) and the end-processing proteins such as abasic endonuclease 1 (APE1), form complexes with downstream repair (and other noncanonical) proteins via pairwise interactions. Furthermore, a unique feature of mammalian early BER/SSBR enzymes is the presence of a disordered terminal extension that is absent in their Escherichia coli prototypes. These nonconserved segments usually contain organelle-targeting signals, common interaction interfaces, and sites of posttranslational modifications that may be involved in regulating their repair function including lesion scanning. Finally, the linkage of BER/SSBR deficiency to cancer, aging, and human neurodegenerative diseases, and therapeutic targeting of BER/SSBR are discussed.
Collapse
Affiliation(s)
- Muralidhar L Hegde
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | |
Collapse
|
38
|
Zhao L, Long XD, Yao JG, Wang C, Ma Y, Huang YZ, Li YQ, Wang MF, Fu GH. Genetic polymorphism of XRCC3 codon 241 and Helicobacter pylori infection-related gastric antrum adenocarcinoma in Guangxi Population, China: a hospital-based case-control study. Cancer Epidemiol 2011; 35:564-568. [PMID: 21937297 DOI: 10.1016/j.canep.2011.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 03/07/2011] [Accepted: 03/16/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND The relationship between Helicobacter pylori infection and gastric antrum adenocarcinoma (GAA) has previously been demonstrated and supported with strong epidemiological evidence. However, the role of genetic polymorphism of X-ray cross-complementing group 3 (XRCC3) Thr241Met (rs#861539), which may be involved in the repair of DNA double-strand breaks caused by carcinogens such as CagA, a protein produced by H. pylori, has been less well elaborated. METHODS We conducted a hospital-based case-control study, including 721 patients with pathologically confirmed GAA and 989 individually matched controls without any evidence of tumors or precancerous lesions to evaluate the associations between this polymorphism and GAA risk in the Guangxi population. XRCC3 codon 241 genotypes and CagA status were determined using TaqMan-PCR and PCR, respectively. RESULTS Increased risks of GAA were found for cagA-positive individuals [odds ratio (OR), 7.31; 95% confidence interval (CI), 5.87-9.09]. We also found that individuals with the XRCC3 genotypes with codon 241 Met (namely XRCC3-TM or XRCC3-MM) had an increased risk of GAA compared with those with the homozygote of XRCC3 codon 241 Thr alleles (namely XRCC3-TT, adjusted ORs 1.76 and 3.73; 95% CIs 1.37-2.24 and 2.66-5.23, respectively). The risk of GAA, moreover, appeared to differ more significantly among individuals featuring cagA-positive status, whose adjusted ORs (95% CIs) were 11.31 (8.34-15.33) and 27.48 (15.17-49.78), respectively. CONCLUSION These results suggest that XRCC3 Thr241Met polymorphism may be associated with the risk of GAA related to CagA.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Base excision repair pathway genes polymorphism in prostate and bladder cancer risk in North Indian population. Mech Ageing Dev 2011; 133:127-32. [PMID: 22019847 DOI: 10.1016/j.mad.2011.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 09/24/2011] [Accepted: 10/06/2011] [Indexed: 12/30/2022]
Abstract
PURPOSE Carcinogens causes DNA damage, including oxidative lesions that are removed efficiently by the base excision repair (BER) pathway. Variations in BER genes may reduce DNA repair capacity, leading to development of urological cancers. METHODS This study included 195 prostate cancer (PCa) and 212 bladder cancer (BC) patients and 250 controls who had been frequency matched by age, sex, and ethnicity. We genotyped XRCC1 Exon 6 (C>T), 9 (G>A), 10 (G>A), OGG1 Exon 7 (C>G) and APE1 Exon 5 (T>G) genes polymorphism using PCR-RFLP and ARMS. RESULTS GA of XRCC1 Exon 9 demonstrated increased risk with PCa as well as in BC (p=0.001; p=0.006). Similarly variant containing genotype revealed association with PCa (p=0.031). Haplotype of XRCC1 also associated with significant risk for PCa and BC. The APE1 GG genotype showed a decreased risk of BC (OR=0.25; p=0.017). Variant genotype GG of OGG1 demonstrated significant risk with BC (p=0.028). CONCLUSIONS Our observations suggested increased risk for PCa and BC in case of GA genotype for XRCC1, and variant GG in case of OGG1. However APE1 GG genotype conferred a protective association with BC susceptibility. Larger studies and the more SNPs in the same pathway are needed to verify these findings.
Collapse
|
40
|
McNeill DR, Lin PC, Miller MG, Pistell PJ, de Souza-Pinto NC, Fishbein KW, Spencer RG, Liu Y, Pettan-Brewer C, Ladiges WC, Wilson DM. XRCC1 haploinsufficiency in mice has little effect on aging, but adversely modifies exposure-dependent susceptibility. Nucleic Acids Res 2011; 39:7992-8004. [PMID: 21737425 PMCID: PMC3185405 DOI: 10.1093/nar/gkr280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/08/2011] [Accepted: 04/11/2011] [Indexed: 01/25/2023] Open
Abstract
Oxidative DNA damage plays a role in disease development and the aging process. A prominent participant in orchestrating the repair of oxidative DNA damage, particularly single-strand breaks, is the scaffold protein XRCC1. A series of chronological and biological aging parameters in XRCC1 heterozygous (HZ) mice were examined. HZ and wild-type (WT) C57BL/6 mice exhibit a similar median lifespan of ~26 months and a nearly identical maximal life expectancy of ~37 months. However, a number of HZ animals (7 of 92) showed a propensity for abdominal organ rupture, which may stem from developmental abnormalities given the prominent role of XRCC1 in endoderm and mesoderm formation. For other end-points evaluated-weight, fat composition, blood chemistries, condition of major organs, tissues and relevant cell types, behavior, brain volume and function, and chromosome and telomere integrity-HZ mice exhibited by-and-large a normal phenotype. Treatment of animals with the alkylating agent azoxymethane resulted in both liver toxicity and an increased incidence of precancerous lesions in the colon of HZ mice. Our study indicates that XRCC1 haploinsufficiency in mammals has little effect on chronological longevity and many key biological markers of aging in the absence of environmental challenges, but may adversely affect normal animal development or increase disease susceptibility to a relevant genotoxic exposure.
Collapse
Affiliation(s)
- Daniel R. McNeill
- Laboratory of Molecular Gerontology, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, IRP, Biomedical Research Center, Baltimore, MD 21224, Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, Department of Psychology, Towson University, Towson, MD 21252, USA, Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil and Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ping-Chang Lin
- Laboratory of Molecular Gerontology, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, IRP, Biomedical Research Center, Baltimore, MD 21224, Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, Department of Psychology, Towson University, Towson, MD 21252, USA, Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil and Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Marshall G. Miller
- Laboratory of Molecular Gerontology, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, IRP, Biomedical Research Center, Baltimore, MD 21224, Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, Department of Psychology, Towson University, Towson, MD 21252, USA, Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil and Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Paul J. Pistell
- Laboratory of Molecular Gerontology, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, IRP, Biomedical Research Center, Baltimore, MD 21224, Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, Department of Psychology, Towson University, Towson, MD 21252, USA, Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil and Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nadja C. de Souza-Pinto
- Laboratory of Molecular Gerontology, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, IRP, Biomedical Research Center, Baltimore, MD 21224, Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, Department of Psychology, Towson University, Towson, MD 21252, USA, Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil and Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kenneth W. Fishbein
- Laboratory of Molecular Gerontology, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, IRP, Biomedical Research Center, Baltimore, MD 21224, Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, Department of Psychology, Towson University, Towson, MD 21252, USA, Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil and Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Richard G. Spencer
- Laboratory of Molecular Gerontology, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, IRP, Biomedical Research Center, Baltimore, MD 21224, Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, Department of Psychology, Towson University, Towson, MD 21252, USA, Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil and Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yie Liu
- Laboratory of Molecular Gerontology, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, IRP, Biomedical Research Center, Baltimore, MD 21224, Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, Department of Psychology, Towson University, Towson, MD 21252, USA, Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil and Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Christina Pettan-Brewer
- Laboratory of Molecular Gerontology, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, IRP, Biomedical Research Center, Baltimore, MD 21224, Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, Department of Psychology, Towson University, Towson, MD 21252, USA, Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil and Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Warren C. Ladiges
- Laboratory of Molecular Gerontology, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, IRP, Biomedical Research Center, Baltimore, MD 21224, Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, Department of Psychology, Towson University, Towson, MD 21252, USA, Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil and Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - David M. Wilson
- Laboratory of Molecular Gerontology, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, IRP, Biomedical Research Center, Baltimore, MD 21224, Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, Department of Psychology, Towson University, Towson, MD 21252, USA, Departmento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil and Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
41
|
Kishton RJ, Miller SE, Perry H, Lynch T, Patel M, Gore VK, Akkaraju GR, Varadarajan S. DNA site-specific N3-adenine methylation targeted to estrogen receptor-positive cells. Bioorg Med Chem 2011; 19:5093-102. [PMID: 21839641 DOI: 10.1016/j.bmc.2011.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/11/2011] [Accepted: 07/15/2011] [Indexed: 11/16/2022]
Abstract
A compound that can target cells expressing the estrogen receptor (ER), and produce predominantly 3-MeA adducts in those cells has been designed and synthesized. This compound produces mainly the 3-MeA adduct upon reaction with calf thymus DNA, and binds to the ER with a relative binding affinity of 51% (estradiol = 100%). The compound is toxic to ER-expressing MCF-7 breast cancer cells, and pre-treatment with the ER antagonist fulvestrant abrogates the toxicity. Pre-treatment of MCF-7 cells with netropsin, which inhibits N3-adenine methylation by the compound, resulted in a threefold decrease in the toxicity. These results demonstrate the feasibility of this strategy for producing 3-MeA adducts in targeted cells.
Collapse
Affiliation(s)
- Rigel J Kishton
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC 28403-5932, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Prasad R, Beard WA, Batra VK, Liu Y, Shock DD, Wilson SH. A review of recent experiments on step-to-step “hand-off” of the DNA intermediates in mammalian base excision repair pathways. Mol Biol 2011. [DOI: 10.1134/s0026893311040091] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Prasad R, Beard WA, Batra VK, Liu Y, Shock DD, Wilson SH. A review of recent experiments on step-to-step "hand-off" of the DNA intermediates in mammalian base excision repair pathways. Mol Biol (Mosk) 2011; 45:586-600. [PMID: 21954590 PMCID: PMC3188441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The current "working model" for mammalian base excision repair involves two sub-pathways termed single-nucleotide base excision repair and long patch base excision repair that are distinguished by their repair patch sizes and the enzymes/co-factors involved. These base excision repair sub-pathways are designed to sequester the various DNA intermediates, passing them along from one step to the next without allowing these toxic molecules to trigger cell cycle arrest, necrotic cell death, or apoptosis. Although a variety of DNA-protein and protein-protein interactions are known for the base excision repair intermediates and enzymes/co-factors, the molecular mechanisms accounting for step-to-step coordination are not well understood. In this review, we explore the question of whether there is an actual step-to-step "hand-off" of the DNA intermediates during base excision repair in vitro. The results show that when base excision repair enzymes are pre-bound to the initial single-nucleotide base excision repair intermediate, the DNA is channeled from apurinic/apyrimidinic endonuclease 1 to DNA polymerase beta and then to DNA ligase. In the long patch base excision repair sub-pathway, where the 5'-end of the incised strand is blocked, the intermediate after polymerase beta gap filling is not channeled from polymerase beta to the subsequent enzyme, flap endonuclease 1. Instead, flap endonuclease 1 must recognize and bind to the intermediate in competition with other molecules.
Collapse
Affiliation(s)
- R. Prasad
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709, USA;
| | - W. A. Beard
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709, USA;
| | - V. K. Batra
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709, USA;
| | - Y. Liu
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709, USA;
- Florida International University, Miami, Florida, 33174, USA
| | - D. D. Shock
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709, USA;
| | - S. H. Wilson
- Laboratory of Structural Biology, National Institutes of Health, NIEHS, 111 T.W. Alexander Drive, PO Box 12233, MD F1-12, Research Triangle Park, North Carolina 27709, USA;
| |
Collapse
|
44
|
Zheng R, Jia Z, Li J, Huang S, Mu P, Zhang F, Wang C, Yuan C. Fast repair of DNA radicals in the earliest stage of carcinogenesis suppresses hallmarks of cancer. RSC Adv 2011. [DOI: 10.1039/c1ra00523e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
45
|
Wilson DM, Kim D, Berquist BR, Sigurdson AJ. Variation in base excision repair capacity. Mutat Res 2010; 711:100-12. [PMID: 21167187 DOI: 10.1016/j.mrfmmm.2010.12.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/29/2010] [Accepted: 12/07/2010] [Indexed: 01/20/2023]
Abstract
The major DNA repair pathway for coping with spontaneous forms of DNA damage, such as natural hydrolytic products or oxidative lesions, is base excision repair (BER). In particular, BER processes mutagenic and cytotoxic DNA lesions such as non-bulky base modifications, abasic sites, and a range of chemically distinct single-strand breaks. Defects in BER have been linked to cancer predisposition, neurodegenerative disorders, and immunodeficiency. Recent data indicate a large degree of sequence variability in DNA repair genes and several studies have associated BER gene polymorphisms with disease risk, including cancer of several sites. The intent of this review is to describe the range of BER capacity among individuals and the functional consequences of BER genetic variants. We also discuss studies that associate BER deficiency with disease risk and the current state of BER capacity measurement assays.
Collapse
Affiliation(s)
- David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States.
| | | | | | | |
Collapse
|
46
|
Rapid DNA-protein cross-linking and strand scission by an abasic site in a nucleosome core particle. Proc Natl Acad Sci U S A 2010; 107:22475-80. [PMID: 21149689 DOI: 10.1073/pnas.1012860108] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Apurinic/apyrimidinic (AP) sites are ubiquitous DNA lesions that are highly mutagenic and cytotoxic if not repaired. In addition, clusters of two or more abasic lesions within one to two turns of DNA, a hallmark of ionizing radiation, are repaired much less efficiently and thus present greater mutagenic potential. Abasic sites are chemically labile, but naked DNA containing them undergoes strand scission slowly with a half-life on the order of weeks. We find that independently generated AP sites within nucleosome core particles are highly destabilized, with strand scission occurring ∼60-fold more rapidly than in naked DNA. The majority of core particles containing single AP lesions accumulate DNA-protein cross-links, which persist following strand scission. The N-terminal region of histone protein H4 contributes significantly to DNA-protein cross-links and strand scission when AP sites are produced approximately 1.5 helical turns from the nucleosome dyad, which is a known hot spot for nucleosomal DNA damage. Reaction rates for AP sites at two positions within this region differ by ∼4-fold. However, the strand scission of the slowest reacting AP site is accelerated when it is part of a repair resistant bistranded lesion composed of two AP sites, resulting in rapid formation of double strand breaks in high yields. Multiple lysine residues within a single H4 protein catalyze double strand cleavage through a mechanism believed to involve a templating effect. These results show that AP sites within the nucleosome produce significant amounts of DNA-protein cross-links and generate double strand breaks, the most deleterious form of DNA damage.
Collapse
|
47
|
Apurinic/apyrimidinic (AP) site recognition by the 5'-dRP/AP lyase in poly(ADP-ribose) polymerase-1 (PARP-1). Proc Natl Acad Sci U S A 2010; 107:22090-5. [PMID: 21127267 DOI: 10.1073/pnas.1009182107] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The capacity of human poly(ADP-ribose) polymerase-1 (PARP-1) to interact with intact apurinic/apyrimidinic (AP) sites in DNA has been demonstrated. In cell extracts, sodium borohydride reduction of the PARP-1/AP site DNA complex resulted in covalent cross-linking of PARP-1 to DNA; the identity of cross-linked PARP-1 was confirmed by mass spectrometry. Using purified human PARP-1, the specificity of PARP-1 binding to AP site-containing DNA was confirmed in competition binding experiments. PARP-1 was only weakly activated to conduct poly(ADP-ribose) synthesis upon binding to AP site-containing DNA, but was strongly activated for poly(ADP-ribose) synthesis upon strand incision by AP endonuclease 1 (APE1). By virtue of its binding to AP sites, PARP-1 could be poised for its role in base excision repair, pending DNA strand incision by APE1 or the 5'-dRP/AP lyase activity in PARP-1.
Collapse
|
48
|
Borjigin M, Martinez B, Purohit S, de la Rosa G, Arenaz P, Stec B. Chinese hamster apurinic/apyrimidinic endonuclease (chAPE1) expressed in sf9 cells reveals that its endonuclease activity is regulated by phosphorylation. FEBS J 2010; 277:4732-40. [PMID: 20955519 DOI: 10.1111/j.1742-4658.2010.07879.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Apurinic/apyrimidinic endonuclease (APE), an essential DNA repair enzyme, initiates the base excision repair pathway by creating a nick 5' to an abasic site in double-stranded DNA. Although the Chinese hamster ovary cells remain an important model for DNA repair studies, the Chinese hamster APE (chAPE1) has not been studied in vitro in respect to its kinetic characteristics. Here we report the results of a kinetic study performed on cloned and overexpressed enzyme in sf9 cells. The kinetic parameters were fully compatible with the broad range of kinetic parameters reported for the human enzyme. However, the activity measures depended on the time point of the culture. We applied inductivity coupled plasma spectrometry to measure the phosphorylation level of chAPE1. Our data showed that a higher phosphorylation of chAPE1 in the expression host was correlated to a lower endonuclease activity. The phosphorylation of a higher activity batch of chAPE1 by casein kinase II decreased the endonuclease activity, and the dephosphorylation of chAPE1 by lambda phosphatase increased the endonuclease activity. The exonuclease activity of chAPE1 was not observed in our kinetic analysis. The results suggest that noticeable divergence in reported activity levels for the human APE1 endonuclease might be caused by unaccounted phosphorylation. Our data also demonstrate that only selected kinases and phosphatases exert regulatory effects on chAPE1 endonuclease activity, suggesting further that this regulatory mechanism may function in vivo to turn on and off the function of this important enzyme in different organisms.
Collapse
Affiliation(s)
- Mandula Borjigin
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Prasad R, Shock DD, Beard WA, Wilson SH. Substrate channeling in mammalian base excision repair pathways: passing the baton. J Biol Chem 2010; 285:40479-88. [PMID: 20952393 DOI: 10.1074/jbc.m110.155267] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The current model for base excision repair (BER) involves two general sub-pathways termed single-nucleotide BER and long patch BER that are distinguished by their repair patch sizes and the enzymes/co-factors involved. Both sub-pathways involve a series of sequential steps from initiation to completion of repair. The BER sub-pathways are designed to sequester the various intermediates, passing them along from one step to the next without allowing these toxic molecules to trigger cell cycle arrest, necrotic cell death, or apoptosis. Although a variety of DNA-protein and protein-protein interactions are known for the BER intermediates and enzymes/co-factors, the molecular mechanisms accounting for step-to-step coordination are not well understood. In the present study we designed an in vitro assay to explore the question of whether there is a channeling or "hand-off" of the repair intermediates during BER in vitro. The results show that when BER enzymes are pre-bound to the initial single-nucleotide BER intermediate, the DNA is channeled from apurinic/apyrimidinic endonuclease 1 to DNA polymerase β and then to DNA ligase. In the long patch BER subpathway, where the 5'-end of the incised strand is blocked, the intermediate after DNA polymerase β gap filling is not channeled to the subsequent enzyme, flap endonuclease 1. Instead, flap endonuclease 1 must recognize and bind to the intermediate in competition with other molecules.
Collapse
Affiliation(s)
- Rajendra Prasad
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
50
|
Long XD, Ma Y, Zhou YF, Ma AM, Fu GH. Polymorphism in xeroderma pigmentosum complementation group C codon 939 and aflatoxin B1-related hepatocellular carcinoma in the Guangxi population. Hepatology 2010; 52:1301-1309. [PMID: 20658464 DOI: 10.1002/hep.23807] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
UNLABELLED Genetic polymorphisms in DNA repair genes may influence individual variations in DNA repair capacity, and this may be associated with the risk and outcome of hepatocellular carcinoma (HCC) related to aflatoxin B1 (AFB1) exposure. In this study, we focused on the polymorphism of xeroderma pigmentosum complementation group C (XPC) codon 939 (rs#2228001), which is involved in nucleotide excision repair. We conducted a case-control study including 1156 HCC cases and 1402 controls without any evidence of hepatic disease to evaluate the associations between this polymorphism and HCC risk and prognosis in the Guangxi population. AFB1 DNA adduct levels, XPC genotypes, and XPC protein levels were tested with a comparative enzyme-linked immunosorbent assay, TaqMan polymerase chain reaction for XPC genotypes, and immunohistochemistry, respectively. Higher AFB1 exposure was observed among HCC patients versus the control group [odds ratio (OR) = 9.88 for AFB1 exposure years and OR = 6.58 for AFB1 exposure levels]. The XPC codon 939 Gln alleles significantly increased HCC risk [OR = 1.25 (95% confidence interval = 1.03-1.52) for heterozygotes of the XPC codon 939 Lys and Gln alleles (XPC-LG) and OR = 1.81 (95% confidence interval = 1.36-2.40) for homozygotes of the XPC codon 939 Gln alleles (XPC-GG)]. Significant interactive effects between genotypes and AFB1 exposure status were also observed in the joint-effects analysis. This polymorphism, moreover, was correlated with XPC expression levels in cancerous tissues (r = -0.369, P < 0.001) and with the overall survival of HCC patients (the median survival times were 30, 25, and 19 months for patients with homozygotes of the XPC codon 939 Lys alleles, XPC-LG, and XPC-GG, respectively), especially under high AFB1 exposure conditions. Like AFB1 exposure, the XPC codon 939 polymorphism was an independent prognostic factor influencing the survival of HCC. Additionally, this polymorphism multiplicatively interacted with the xeroderma pigmentosum complementation group D codon 751 polymorphism with respect to HCC risk (OR(interaction) = 1.71). CONCLUSION These results suggest that the XPC codon 939 polymorphism may be associated with the risk and outcome of AFB1-related HCC in the Guangxi population and may interact with AFB1 exposure in the process of HCC induction by AFB1.
Collapse
Affiliation(s)
- Xi-Dai Long
- Department of Pathology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|