1
|
Tao S, Pu Y, Yang EJ, Ren G, Shi C, Chen LJ, Chen L, Shim JS. Inhibition of GSK3β is synthetic lethal with FHIT loss in lung cancer by blocking homologous recombination repair. Exp Mol Med 2025; 57:167-183. [PMID: 39762409 PMCID: PMC11799392 DOI: 10.1038/s12276-024-01374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/06/2024] [Accepted: 10/06/2024] [Indexed: 02/07/2025] Open
Abstract
FHIT is a fragile site tumor suppressor that is primarily inactivated upon tobacco smoking. FHIT loss is frequently observed in lung cancer, making it an important biomarker for the development of targeted therapy for lung cancer. Here, we report that inhibitors of glycogen synthase kinase 3 beta (GSK3β) and the homologous recombination DNA repair (HRR) pathway are synthetic lethal with FHIT loss in lung cancer. Pharmacological inhibition or siRNA depletion of GSK3β selectively suppressed the growth of FHIT-deficient lung cancer tumors in vitro and in animal models. We further showed that FHIT inactivation leads to the activation of DNA damage repair pathways, including the HRR and NHEJ pathways, in lung cancer cells. Conversely, FHIT-deficient cells are highly dependent on HRR for survival under DNA damage stress. The inhibition of GSK3β in FHIT-deficient cells suppressed the ATR/BRCA1/RAD51 axis in HRR signaling via two distinct pathways and suppressed DNA double-strand break repair, leading to the accumulation of DNA damage and apoptosis. Small molecule inhibitors of HRR, but not NHEJ or PARP, induced synthetic lethality in FHIT-deficient lung cancer cells. The findings of this study suggest that the GSK3β and HRR pathways are potential drug targets in lung cancer patients with FHIT loss.
Collapse
Affiliation(s)
- Shishi Tao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yue Pu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Eun Ju Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guowen Ren
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, China
| | - Changxiang Shi
- Nanjing Key Laboratory of Female Fertility Preservation and Restoration, Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, 210004, China
| | - Li-Jie Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Liang Chen
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
2
|
Zhang R, Zhang W, Wang C, Wen CK. Arabidopsis Fhit-like tumor suppressor resumes early terminated constitutive triple response1-10 mRNA translation. PLANT PHYSIOLOGY 2024; 195:2073-2093. [PMID: 38563472 DOI: 10.1093/plphys/kiae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
The Arabidopsis (Arabidopsis thaliana) constitutive triple response1-10 (ctr1-10) mutant produces a reduced level of CTR1 protein and exhibits a weak ctr1 mutant phenotype. Sequence analysis revealed highly active translation of the upstream open reading frame (uORF) at the extended 5'-UTR of the ctr1-10 mRNA, resulting from T-DNA insertion. Enhancer screening for ctr1-10 isolated the fragile histidine triad-1 (fhit-1) mutation. The fhit-1 ctr1-10 mutant phenotypically resembled strong ctr1 mutants and barely produced CTR1, and the fhit-1 mutation reduced the translation efficiency of ctr1-10 but not that of CTR1 mRNA. The human (Homo sapiens) Fhit that involves tumorigenesis and genome instability has the in vitro dinucleotide 5',5'″-P1, P3-triphosphate hydrolase activity, and expression of the human HsFHIT or the hydrolase-defective HsFHITH96N transgene reversed the fhit-1 ctr1-10 mutant phenotype and restored CTR1 levels. Genetic editing that in situ disrupts individual upstream ATG codons proximal to the ctr1-10 mORF elevated CTR1 levels in ctr1-10 plants independent of FHIT. EUKARYOTIC INITIATION FACTOR3G (eIF3G), which is involved in translation and reinitiation, interacted with FHIT, and both were associated with the polysome. We propose that FHIT resumes early terminated ctr1-10 mORF translation in the face of active and complex uORF translation. Our study unveils a niche that may lead to investigations on the molecular mechanism of Fhit-like proteins in translation reinitiation. The biological significance of FHIT-regulated translation is discussed.
Collapse
Affiliation(s)
- Ranran Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenrunshu Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Mohammad F, Pandith AA, Rasool SUA, Guru FR, Qasim I, Geelani S, Nisar S, Baba SM, Ganie FA, Kouser S, Rasool J. Significance and implications of FHIT gene expression and promoter hypermethylation in acute lymphoblastic leukemia (ALL). Discov Oncol 2024; 15:108. [PMID: 38587694 PMCID: PMC11001825 DOI: 10.1007/s12672-024-00971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Fragile histidine triad (FHIT) has been documented to play a vital role in various cancers including acute lymphoblastic leukemia (ALL). Keeping in view the plausible role of FHIT gene, we aimed to examine DNA promoter hypermethylation and mRNA expression in ALL cases in Kashmir (North India). METHODS A total of 66 cases of ALL were analyzed for FHIT mRNA expression and promoter methylation by qRT-PCR and Methylation Specific-PCR (MS-PCR) respectively. RESULTS FHIT mRNA expression showed significantly decreased expression in ALL cases with mean fold change of 9.24 ± 5.44 as compared to healthy controls (p = 0.01). The pattern of FHIT deregulation in ALL cases differed significantly between decreased and increased expression (p < 0.0001). A threefold decreased expression was observed in 75% of ALL cases than healthy controls (- 3.58 ± 2.32). ALL patients with FHIT gene promoter hypermethylation presented significantly higher in 80% (53/66) of cases (p = 0.0005). The association of FHIT gene hypermethylation and its subsequent expression showed FHIT mRNA expression as significantly lower in ALL cases with hypermethylation (p = 0.0008). B-ALL cases exhibited a highly significant association between the methylation pattern and its mRNA expression (p = 0.000). In low range WBC group, a significant association was found between increased expression (26%) of the cases and methylated (4%)/unmethylated group 86% (p = 0.0006). CONCLUSION The present study conclude that FHIT gene hypermethylation and its altered expression may be linked in the pathogenesis of ALL and provide an evidence for the role of FHIT in the development of ALL.
Collapse
Affiliation(s)
- Fozia Mohammad
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, 302017, India
| | - Arshad A Pandith
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India.
| | - Shayaq Ul Abeer Rasool
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
| | - Faisal R Guru
- Department of Medical Oncology, SKIMS, Srinagar, J&K,, 190011, India
| | - Iqbal Qasim
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
| | - Sajad Geelani
- Department of Hematology, SKIMS, Srinagar, 190011, J&K, India
| | - Syed Nisar
- Department of Medical Oncology, SKIMS, Srinagar, J&K,, 190011, India
| | - Shahid M Baba
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
- Department of Urology, SKIMS, Srinagar, 190011, J&K, India
| | | | - Safiya Kouser
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, J&K, 190011, India
| | - Javid Rasool
- Department of Hematology, SKIMS, Srinagar, 190011, J&K, India
| |
Collapse
|
4
|
Simón-Carrasco L, Pietrini E, López-Contreras AJ. Integrated analysis of FHIT gene alterations in cancer. Cell Cycle 2024; 23:92-113. [PMID: 38234243 PMCID: PMC11005815 DOI: 10.1080/15384101.2024.2304509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024] Open
Abstract
The Fragile Histidine Triad Diadenosine Triphosphatase (FHIT) gene is located in the Common Fragile Site FRA3B and encodes an enzyme that hydrolyzes the dinucleotide Ap3A. Although FHIT loss is one of the most frequent copy number alterations in cancer, its relevance for cancer initiation and progression remains unclear. FHIT is frequently lost in cancers from the digestive tract, which is compatible with being a cancer driver event in these tissues. However, FHIT loss could also be a passenger event due to the inherent fragility of the FRA3B locus. Moreover, the physiological relevance of FHIT enzymatic activity and the levels of Ap3A is largely unclear. We have conducted here a systematic pan-cancer analysis of FHIT status in connection with other mutations and phenotypic alterations, and we have critically discussed our findings in connection with the literature to provide an overall view of FHIT implications in cancer.
Collapse
Affiliation(s)
- Lucía Simón-Carrasco
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
| | - Elena Pietrini
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
| | - Andrés J. López-Contreras
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla - Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
5
|
Suzuki T, Sakai S, Ota K, Yoshida M, Uchida C, Niida H, Suda T, Kitagawa M, Ohhata T. Expression of Tumor Suppressor FHIT Is Regulated by the LINC00173-SNAIL Axis in Human Lung Adenocarcinoma. Int J Mol Sci 2023; 24:17011. [PMID: 38069335 PMCID: PMC10707390 DOI: 10.3390/ijms242317011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a critical role in a variety of human diseases such as cancer. Here, to elucidate a novel function of a lncRNA called LINC00173, we investigated its binding partner, target gene, and its regulatory mechanism in lung adenocarcinoma, including the A549 cell line and patients. In the A549 cell line, RNA immunoprecipitation (RIP) assays revealed that LINC00173 efficiently binds to SNAIL. RNA-seq and RT-qPCR analyses revealed that the expression of FHIT was decreased upon LINC00173 depletion, indicating that FHIT is a target gene of LINC00173. Overexpression of SNAIL suppressed and depletion of SNAIL increased the expression of FHIT, indicating that SNAIL negatively regulates FHIT. The downregulation of FHIT expression upon LINC00173 depletion was restored by additional SNAIL depletion, revealing a LINC00173-SNAIL-FHIT axis for FHIT regulation. Data from 501 patients with lung adenocarcinoma also support the existence of a LINC00173-SNAIL-FHIT axis, as FHIT expression correlated positively with LINC00173 (p = 1.75 × 10-6) and negatively with SNAIL (p = 7.00 × 10-5). Taken together, we propose that LINC00173 positively regulates FHIT gene expression by binding to SNAIL and inhibiting its function in human lung adenocarcinoma. Thus, this study sheds light on the LINC00173-SNAIL-FHIT axis, which may be a key mechanism for carcinogenesis and progression in human lung adenocarcinoma.
Collapse
Grants
- 19H03501 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 22H02901 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 20K07569 Ministry of Education, Culture, Sports, Science and Technology of Japan
- NA Project Mirai Cancer Research Grants, the Princes Takamatsu Cancer Research Foundation
- NA The Smoking Research Foundation
- NA Hamamatsu University School of Medicine Grant-in-Aid
Collapse
Affiliation(s)
- Takahito Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kosuke Ota
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mika Yoshida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
6
|
The Rosetta Stone Hypothesis-Based Interaction of the Tumor Suppressor Proteins Nit1 and Fhit. Cells 2023; 12:cells12030353. [PMID: 36766695 PMCID: PMC9913352 DOI: 10.3390/cells12030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023] Open
Abstract
In previous studies, we have identified the tumor suppressor proteins Fhit (fragile histidine triad) and Nit1 (Nitrilase1) as interaction partners of β-catenin both acting as repressors of the canonical Wnt pathway. Interestingly, in D. melanogaster and C. elegans these proteins are expressed as NitFhit fusion proteins. According to the Rosetta Stone hypothesis, if proteins are expressed as fusion proteins in one organism and as single proteins in others, the latter should interact physically and show common signaling function. Here, we tested this hypothesis and provide the first biochemical evidence for a direct association between Nit1 and Fhit. In addition, size exclusion chromatography of purified recombinant human Nit1 showed a tetrameric structure as also previously observed for the NitFhit Rosetta Stone fusion protein Nft-1 in C. elegans. Finally, in line with the Rosetta Stone hypothesis we identified Hsp60 and Ubc9 as other common interaction partners of Nit1 and Fhit. The interaction of Nit1 and Fhit may affect their enzymatic activities as well as interaction with other binding partners.
Collapse
|
7
|
Kawaguchi M, Furuse Y, Ieda N, Nakagawa H. Development of Nucleoside Diphosphate-Bearing Fragile Histidine Triad-Imaging Fluorescence Probes with Well-Tuned Hydrophobicity for Intracellular Delivery. ACS Sens 2022; 7:2732-2742. [PMID: 35981239 DOI: 10.1021/acssensors.2c01273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorescence-guided cancer surgery can dramatically improve recurrence rates and postoperative quality of life of patients by accurately distinguishing the boundary between normal and cancer tissues during surgery, thereby minimizing excision of normal tissue. One promising target in early stage cancer is fragile histidine triad (FHIT), a cancer suppressor protein with dinucleoside triphosphate hydrolase activity. In this study, we have developed fluorescence probes containing a nucleoside diphosphate moiety, which dramatically improves the reactivity and specificity for FHIT, and a moderately lipophilic ester moiety to increase the membrane permeability. The ester moiety is cleaved by ubiquitous intracellular esterases, and then, FHIT in the cells specifically cleaves nucleoside monophosphate. The remaining phosphate moiety is rapidly cleaved by ubiquitous intracellular phosphatases to release the fluorescent dye. We confirmed that this probe can detect FHIT activity in living cells. A comprehensive evaluation of the effects of various ester moieties revealed that probes with CLogP = 5-7 showed good membrane permeability and were good substrates of the target enzyme; these findings may be helpful in the rational design of other multiple phosphate-containing probes targeting intracellular enzymes.
Collapse
Affiliation(s)
- Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Yuri Furuse
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
8
|
Herzog D, Jansen J, Mißun M, Diederichs K, Stengel F, Marx A. Chemical Proteomics of the Tumor Suppressor Fhit Covalently Bound to the Cofactor Ap 3A Elucidates Its Inhibitory Action on Translation. J Am Chem Soc 2022; 144:8613-8623. [PMID: 35522782 PMCID: PMC9121386 DOI: 10.1021/jacs.2c00815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumor suppressor protein fragile histidine triad (Fhit) is known to be associated with genomic instability and apoptosis. The tumor-suppressive function of Fhit depends on the interaction with the alarmone diadenosine triphosphate (Ap3A), a noncanonical nucleotide whose concentration increases upon cellular stress. How the Fhit-Ap3A complex exerts its signaling function is unknown. Here, guided by a chemical proteomics approach employing a synthetic stable Fhit-Ap3A complex, we found that the Fhit-Ap3A complex, but not Fhit or Ap3A alone, impedes translation. Our findings provide a mechanistic model in which Fhit translocates from the nucleolus into the cytosol upon stress to form an Fhit-Ap3A complex. The Fhit-Ap3A complex impedes translation both in vitro and in vivo, resulting in reduced cell viability. Overall, our findings provide a mechanistic model by which the tumor suppressor Fhit collaborates with the alarmone Ap3A to regulate cellular proliferation.
Collapse
|
9
|
Molecular Biology of the WWOX Gene That Spans Chromosomal Fragile Site FRA16D. Cells 2021; 10:cells10071637. [PMID: 34210081 PMCID: PMC8305172 DOI: 10.3390/cells10071637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/25/2021] [Indexed: 12/11/2022] Open
Abstract
It is now more than 20 years since the FRA16D common chromosomal fragile site was characterised and the WWOX gene spanning this site was identified. In this time, much information has been discovered about its contribution to disease; however, the normal biological role of WWOX is not yet clear. Experiments leading to the identification of the WWOX gene are recounted, revealing enigmatic relationships between the fragile site, its gene and the encoded protein. We also highlight research mainly using the genetically tractable model organism Drosophila melanogaster that has shed light on the integral role of WWOX in metabolism. In addition to this role, there are some particularly outstanding questions that remain regarding WWOX, its gene and its chromosomal location. This review, therefore, also aims to highlight two unanswered questions. Firstly, what is the biological relationship between the WWOX gene and the FRA16D common chromosomal fragile site that is located within one of its very large introns? Secondly, what is the actual substrate and product of the WWOX enzyme activity? It is likely that understanding the normal role of WWOX and its relationship to chromosomal fragility are necessary in order to understand how the perturbation of these normal roles results in disease.
Collapse
|
10
|
Kawaguchi M, Sekimoto E, Ohta Y, Ieda N, Murakami T, Nakagawa H. Synthesis of Fluorescent Probes Targeting Tumor-Suppressor Protein FHIT and Identification of Apoptosis-Inducing FHIT Inhibitors. J Med Chem 2021; 64:9567-9576. [PMID: 34160227 DOI: 10.1021/acs.jmedchem.1c00874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For the early diagnosis of cancer, leading to a better chance of full recovery, marker genes whose expression is already altered in precancerous lesions are desirable, and the tumor-suppressor gene FHIT is one candidate. The gene product, FHIT protein, has a unique dinucleoside triphosphate hydrolase (AP3Aase) activity, and in this study, we designed and synthesized a series of FHIT fluorescent probes utilizing this activity. We optimized the probe structure for high and specific reactivity with FHIT and applied the optimized probe in a screening assay for FHIT inhibitors. Screening of a compound library with this assay identified several hits. Structural development of a hit compound afforded potent FHIT inhibitors. These inhibitors induce apoptosis in FHIT-expressing cancers via caspase activation. Our results support the idea that FHIT binders, no matter whether inhibitors or agonists of AP3Aase activity, might be promising anticancer agents.
Collapse
Affiliation(s)
- Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Eriko Sekimoto
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Yuhei Ohta
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan.,Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Takashi Murakami
- Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama, Iruma, Saitama 350-0495, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
11
|
Tanshinones induce tumor cell apoptosis via directly targeting FHIT. Sci Rep 2021; 11:12217. [PMID: 34108553 PMCID: PMC8190080 DOI: 10.1038/s41598-021-91708-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/17/2021] [Indexed: 02/08/2023] Open
Abstract
The liposoluble tanshinones are bioactive components in Salvia miltiorrhiza and are widely investigated as anti-cancer agents, while the molecular mechanism is to be clarified. In the present study, we identified that the human fragile histidine triad (FHIT) protein is a direct binding protein of sodium tanshinone IIA sulfonate (STS), a water-soluble derivative of Tanshinone IIA (TSA), with a Kd value of 268.4 ± 42.59 nM. We also found that STS inhibited the diadenosine triphosphate (Ap3A) hydrolase activity of FHIT through competing for the substrate-binding site with an IC50 value of 2.2 ± 0.05 µM. Notably, near 100 times lower binding affinities were determined between STS and other HIT proteins, including GALT, DCPS, and phosphodiesterase ENPP1, while no direct binding was detected with HINT1. Moreover, TSA, Tanshinone I (TanI), and Cryptotanshinone (CST) exhibited similar inhibitory activity as STS. Finally, we demonstrated that depletion of FHIT significantly blocked TSA's pro-apoptotic function in colorectal cancer HCT116 cells. Taken together, our study sheds new light on the molecular basis of the anti-cancer effects of the tanshinone compounds.
Collapse
|
12
|
Danese A, Marchi S, Vitto VAM, Modesti L, Leo S, Wieckowski MR, Giorgi C, Pinton P. Cancer-Related Increases and Decreases in Calcium Signaling at the Endoplasmic Reticulum-Mitochondria Interface (MAMs). Rev Physiol Biochem Pharmacol 2020; 185:153-193. [PMID: 32789789 DOI: 10.1007/112_2020_43] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.
Collapse
Affiliation(s)
- Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Modesti
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sara Leo
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
13
|
Sjölander JJ, Sunnerhagen P. The fission yeast FHIT homolog affects checkpoint control of proliferation and is regulated by mitochondrial electron transport. Cell Biol Int 2019; 44:412-423. [PMID: 31538680 PMCID: PMC7003880 DOI: 10.1002/cbin.11241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/15/2019] [Indexed: 11/08/2022]
Abstract
Genetic analysis has strongly implicated human FHIT (Fragile Histidine Triad) as a tumor suppressor gene, being mutated in a large proportion of early‐stage cancers. The functions of the FHIT protein have, however, remained elusive. Here, we investigated aph1+, the fission yeast homolog of FHIT, for functions related to checkpoint control and oxidative metabolism. In sublethal concentrations of DNA damaging agents, aph1Δ mutants grew with a substantially shorter lag phase. In aph1Δ mutants carrying a hypomorphic allele of cds1 (the fission yeast homolog of Chk2), in addition, increased chromosome fragmentation and missegregation were found. We also found that under hypoxia or impaired electron transport function, the Aph1 protein level was strongly depressed. Previously, FHIT has been linked to regulation of the human 9‐1‐1 checkpoint complex constituted by Hus1, Rad1, and Rad9. In Schizosaccharomyces pombe, the levels of all three 9‐1‐1 proteins are all downregulated by hypoxia in similarity with Aph1. Moreover, deletion of the aph1+ gene reduced the Rad1 protein level, indicating a direct relationship between these two proteins. We conclude that the fission yeast FHIT homolog has a role in modulating DNA damage checkpoint function, possibly through an effect on the 9‐1‐1 complex, and that this effect may be critical under conditions of limiting oxidative metabolism and reoxygenation.
Collapse
Affiliation(s)
- Johanna J Sjölander
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, Göteborg, SE-405 30, Sweden
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, Lundberg Laboratory, University of Gothenburg, P.O. Box 462, Göteborg, SE-405 30, Sweden
| |
Collapse
|
14
|
Formation of the Alarmones Diadenosine Triphosphate and Tetraphosphate by Ubiquitin- and Ubiquitin-like-Activating Enzymes. Cell Chem Biol 2019; 26:1535-1543.e5. [PMID: 31492597 DOI: 10.1016/j.chembiol.2019.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 08/08/2019] [Indexed: 01/14/2023]
Abstract
Diadenosine polyphosphates (ApnAs) such as diadenosine tri- and tetraphosphates are formed in prokaryotic as well as eukaryotic cells. Since upon stress intracellular ApnA concentrations increase, it was postulated that ApnAs are alarmones triggering stress-adaptive processes. The major synthesis pathway of ApnAs is assumed to be a side reaction of amino acid activation. How this process is linked to stress adaptation remains enigmatic. The first step of one of the most prominent eukaryotic post-translational modification systems-the conjugation of ubiquitin (Ub) and ubiquitin-like proteins (Ubl) to target proteins-involves the formation of an adenylate as intermediate. Like ApnA formation, Ub and Ubl conjugation is significantly enhanced during stress conditions. Here, we demonstrate that diadenosine tri- and tetraphosphates are indeed synthesized during activation of Ub and Ubls. This links one of the most prevalent eukaryotic protein-modification systems to ApnA formation for the first time.
Collapse
|
15
|
Druck T, Cheung DG, Park D, Trapasso F, Pichiorri F, Gaspari M, Palumbo T, Aqeilan RI, Gaudio E, Okumura H, Iuliano R, Raso C, Green K, Huebner K, Croce CM. Fhit-Fdxr interaction in the mitochondria: modulation of reactive oxygen species generation and apoptosis in cancer cells. Cell Death Dis 2019; 10:147. [PMID: 30770797 PMCID: PMC6377664 DOI: 10.1038/s41419-019-1414-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/08/2023]
Abstract
Fhit protein is lost in cancers of most, perhaps all, cancer types; when restored, it can induce apoptosis and suppress tumorigenicity, as shown in vitro and in mouse tumor models in vivo. Following protein cross-linking and proteomics analyses, we characterized a Fhit protein complex involved in triggering Fhit-mediated apoptosis. The complex includes the heat-shock chaperonin pair, HSP60/10, which is likely involved in importing Fhit into the mitochondria, where it interacts with ferredoxin reductase, responsible for transferring electrons from NADPH to cytochrome P450 via ferredoxin, in electron transport chain complex III. Overexpression of Fhit protein in Fhit-deficient cancer cells modulates the production of intracellular reactive oxygen species, causing increased ROS, following peroxide treatment, with subsequent increased apoptosis of lung cancer cells under oxidative stress conditions; conversely, Fhit-negative cells escape ROS overproduction and ROS-induced apoptosis, likely carrying oxidative damage. Thus, characterization of Fhit-interacting proteins has identified direct effectors of a Fhit-mediated apoptotic signal pathway that is lost in many cancers. This is of translational interest considering the very recent emphasis in a number of high-profile publications, concerning the role of oxidative phosphorylation in the treatment of human cancers, and especially cancer stem cells that rely upon oxidative phosphorylation for survival. Additionally, we have shown that cells from a Fhit-deficient lung cancer cell line, are sensitive to killing by exposure to atovaquone, thought to act as a selective oxidative phosphorylation inhibitor by targeting the CoQ10 dependence of the mitochondrial complex III, while the Fhit-expressing sister clone is resistant to this treatment.
Collapse
Affiliation(s)
- Teresa Druck
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Douglas G Cheung
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Dongju Park
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Francesco Trapasso
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Marco Gaspari
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy
| | - Tiziana Palumbo
- Dipartimento di Farmacologia Sperimentale Preclinica e Clinica, University of Catania, Catania, 95123, Italy
| | - Rami I Aqeilan
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
- Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eugenio Gaudio
- Università della Svizzera italiana, Institute of Oncology Research, Bellinzona, Switzerland
| | - Hiroshi Okumura
- Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Rodolfo Iuliano
- Dipartimento di Medicina Sperimentale e Clinica, University "Magna Græcia" of Catanzaro, Catanzaro, 88100, Italy
| | - Cinzia Raso
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Dublin, Ireland
| | - Kari Green
- Department of Chemistry, Mass Spectrometry Research and Education Center, University of Florida, 126 Sisler Hall, Gainesville, FL, 32611-7200, USA
| | - Kay Huebner
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
16
|
Xu Z, Wu J, Cai P, Zhou X, Yi C, Wang B. Effects of FHIT gene on proliferation and apoptosis of osteosarcoma cells. Oncol Lett 2018; 17:877-882. [PMID: 30655842 PMCID: PMC6312956 DOI: 10.3892/ol.2018.9696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/10/2018] [Indexed: 01/13/2023] Open
Abstract
Regulatory effects of fragile histidine triad (FHIT) gene on proliferation and apoptosis of osteosarcoma cells were studied. The hFOB1.19 and Saos2 cells were routinely cultured, pcDNA3.1-FHIT overexpression vectors carrying FHIT gene fragments and blank pcDNA3.1 vectors were transfected into Saos2 cells, respectively, and the cells were divided into hFOB, Saos2, transfection and no-load transfection groups. After transfection for 48 h, the cells were collected and analyzed. The expression of FHIT messenger ribonucleic acid (mRNA) was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression of FHIT protein was detected by western blot analysis. Cell Counting Kit 8 (CCK8) was used to detect cell proliferation, and flow cytometry was used to detect apoptosis. The expression of FHIT mRNA was significantly decreased in Saos2 group compared with that in hFOB group, and the difference was statistically significant (P<0.05). The expression of FHIT mRNA was significantly increased in transfection group compared with that in Saos2 group, and the difference was statistically significant (P<0.05). The expression of FHIT protein was obviously decreased in Saos2 group compared with that in hFOB group, and there was a statistically significant difference (P<0.05). The expression of FHIT protein was obviously increased in transfection group compared with that in Saos2 group, and the difference was statistically significant (P<0.05). Compared with that in the hFOB group, the cell proliferation rate was remarkably increased in Saos2 group, while the apoptosis rate was remarkably decreased, showing statistically significant differences (P<0.05). Compared with those in Saos2 group, the cell proliferation rate was significantly decreased in transfection group, while the apoptosis rate was significantly increased, and the differences were statistically significant (P<0.05). In conclusion, FHIT gene regulates the proliferation and apoptosis of Saos2 osteosarcoma cells, inhibits the proliferation and promotes apoptosis of Saos2 osteosarcoma cells.
Collapse
Affiliation(s)
- Zhengfeng Xu
- Department of Orthopedics, Zhoupu Hospital Affiliated to Shanghai University of Medicine and Health Science, Shanghai 201318, P.R. China
| | - Jiajun Wu
- Department of Orthopedics, Zhoupu Hospital Affiliated to Shanghai University of Medicine and Health Science, Shanghai 201318, P.R. China
| | - Pan Cai
- Department of Orthopedics, Zhoupu Hospital Affiliated to Shanghai University of Medicine and Health Science, Shanghai 201318, P.R. China
| | - Xiaoxiao Zhou
- Department of Orthopedics, Zhoupu Hospital Affiliated to Shanghai University of Medicine and Health Science, Shanghai 201318, P.R. China
| | - Cunguo Yi
- Department of Orthopedics, Zhoupu Hospital Affiliated to Shanghai University of Medicine and Health Science, Shanghai 201318, P.R. China
| | - Bin Wang
- Department of Orthopedics, Zhoupu Hospital Affiliated to Shanghai University of Medicine and Health Science, Shanghai 201318, P.R. China
| |
Collapse
|
17
|
In vivo identification of novel TGIF2LX target genes in colorectal adenocarcinoma using the cDNA-AFLP method. Arab J Gastroenterol 2018; 19:65-70. [PMID: 29960902 DOI: 10.1016/j.ajg.2018.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 04/04/2018] [Accepted: 05/28/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND STUDY AIMS Homeobox-containing genes are composed of a group of regulatory genes encoding transcription factors involved in the control of developmental processes. The homeodomain proteins could activate or repress the expression of downstream target genes. This study was conducted to in vivo identify the potential target gene(s) of TGIF2LX in colorectal adenocarcinoma. METHODS A human colorectal adenocarcinoma cell line, SW48, was transfected with the recombinant pEGFPN1-TGIF2LX. The cells were injected subcutaneously into the flank of the three groups of 6-week-old female athymic C56BL/6 nude mice (n = 6 per group). The transcript profiles in the developed tumours were investigated using the cDNA amplified fragment length polymorphism (cDNA-AFLP) technique. RESULTS The real-time RT-PCR and DNA sequencing data for the identified genes indicated that the N-terminal domain-interacting receptor 1 (Nir1) gene was suppressed whereas Nir2 and fragile histidine triad (FHIT) genes were upregulated followed by the overexpression of TGIF2LX gene. CONCLUSION Downregulation of Nir1 and upregulation of Nir2 and FHIT genes due to the overexpression of TGIF2LX suggests that the gene plays an important role as a suppressor in colorectal adenocarcinoma.
Collapse
|
18
|
Lee TG, Jeong EH, Kim SY, Kim HR, Kim H, Kim CH. Fhit, a tumor suppressor protein, induces autophagy via 14-3-3τ in non-small cell lung cancer cells. Oncotarget 2018; 8:31923-31937. [PMID: 28404875 PMCID: PMC5458259 DOI: 10.18632/oncotarget.16652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/16/2017] [Indexed: 12/14/2022] Open
Abstract
Inactivation of the fragile histidine triad (Fhit) gene has been reported in the majority of human cancers, particularly in lung cancer. The role of Fhit as a tumor suppressor gene has been well documented, and restoration of Fhit expression suppresses tumorigenicity in tumor cell lines and in mouse models by inducing apoptosis and inhibiting proliferation of tumor cells. Autophagy is a catabolic pathway, whereby cytoplasmic proteins and organelles are sequestered in vacuoles and delivered to lysosomes for degradation and recycling. Although autophagy is necessary for cell survival under stress conditions, recent studies have shown that autophagy can also promote cell death. Due to the fact that both autophagy induction and Fhit expression are commonly associated with nutrient starvation, we hypothesized that Fhit expression may be related to autophagy induction. In the present study, we assessed whether Fhit overexpression by gene transfer induces autophagy in Fhit-deficient non-small cell lung cancer (NSCLC) cells. The results of our study indicate that Fhit protein induces autophagy in NSCLC cells, and that this autophagy prevents apoptotic cell death in vivo and in vitro in a 14-3-3τ protein-dependent manner. To the best of our knowledge, this is the first report to describe Fhit-induced autophagy. Suppressing autophagy might be a promising therapeutic option to enhance the efficacy of Fhit gene therapy in NSCLC.
Collapse
Affiliation(s)
- Tae-Gul Lee
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea.,School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Eun-Hui Jeong
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Seo Yun Kim
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Hye-Ryoun Kim
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Hyunggee Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Cheol-Hyeon Kim
- Division of Pulmonology, Department of Internal Medicine, Korea Cancer Center Hospital, Seoul, Korea
| |
Collapse
|
19
|
Kiss DL, Baez W, Huebner K, Bundschuh R, Schoenberg DR. Impact of FHIT loss on the translation of cancer-associated mRNAs. Mol Cancer 2017; 16:179. [PMID: 29282095 PMCID: PMC5745650 DOI: 10.1186/s12943-017-0749-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/10/2017] [Indexed: 11/30/2022] Open
Abstract
Background FHIT is a genome caretaker/tumor suppressor that is silenced in >50% of cancers. Although it was identified more than 20 years ago, questions remain as to how FHIT loss contributes to cancer, and conversely, how FHIT acts to maintain genome integrity and suppress malignancy. Fhit belongs to the histidine triad family of enzymes that catalyze the degradation of nucleoside 5′,5′-triphosphates, including the m7GpppN ‘caps’ that are generated when mRNAs undergo 3′-5′ decay. This raised the possibility that Fhit loss might affect changes in the translation of cancer-associated mRNAs, possibly as a consequence of increased intracellular concentrations of these molecules. Results Ribosome profiling identified several hundred mRNAs for which coding region ribosome occupancy changed as a function of Fhit expression. While many of these changes could be explained by changes in mRNA steady-state, a subset of these showed changes in translation efficiency as a function of Fhit expression. The onset of malignancy has been linked to changes in 5’-UTR ribosome occupancy and this analysis also identified ribosome binding to 5′-untranslated regions (UTRs) of a number of cancer-associated mRNAs. 5’-UTR ribosome occupancy of these mRNAs differed between Fhit-negative and Fhit-positive cells, and in some cases these differences correlated with differences in coding region ribosome occupancy. Conclusions In summary, these findings show Fhit expression impacts the translation of a number of cancer associated genes, and they support the hypothesis that Fhit’s genome protective/tumor suppressor function is associated with post-transcriptional changes in expression of genes whose dysregulation contributes to malignancy. Electronic supplementary material The online version of this article (10.1186/s12943-017-0749-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel L Kiss
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.,Biomarker Research Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - William Baez
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Kay Huebner
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.,Department of Physics, The Ohio State University, Columbus, OH, 43210, USA.,Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel R Schoenberg
- Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA. .,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
20
|
Bahari G, Hashemi M, Naderi M, Sadeghi-Bojd S, Taheri M. FHIT promoter DNA methylation and expression analysis in childhood acute lymphoblastic leukemia. Oncol Lett 2017; 14:5034-5038. [PMID: 29085517 DOI: 10.3892/ol.2017.6796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/16/2017] [Indexed: 12/27/2022] Open
Abstract
Fragile histidine triad (FHIT) is a tumor suppressor gene, which is involved in several malignancies. Epigenetic alterations in FHIT have been hypothesized to contribute to tumorigenesis. The present study aimed to examine DNA promoter methylation and gene expression levels of FHIT in childhood acute lymphoblastic leukemia (ALL), in a sample of Iranian patients. The promoter methylation status of FHIT was analyzed in 100 patients diagnosed with ALL and 120 healthy control patients. mRNA expression levels were assessed in 30 new cases of ALL compared with 32 healthy controls. Hypermethylation of the FHIT promoter was significantly more frequent in patients with ALL than in healthy controls (OR=3.83, 95% CI=1.51-9.75, P=0.007). Furthermore, FHIT mRNA expression levels were significantly reduced in childhood ALL patients compared with healthy controls (P=0.032). The results of the present study revealed that dysregulation of the FHIT gene may contribute to the pathogenesis of childhood ALL. Future studies investigating a larger sample population with greater ethnic diversity would be beneficial, to confirm the results from the present study.
Collapse
Affiliation(s)
- Gholamreza Bahari
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran.,Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Mohammad Hashemi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran.,Department of Clinical Biochemistry, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Majid Naderi
- Department of Pediatrics, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Simin Sadeghi-Bojd
- Department of Pediatrics, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 98167-43181, Iran
| |
Collapse
|
21
|
Madireddy A, Kosiyatrakul ST, Boisvert RA, Herrera-Moyano E, García-Rubio ML, Gerhardt J, Vuono EA, Owen N, Yan Z, Olson S, Aguilera A, Howlett NG, Schildkraut CL. FANCD2 Facilitates Replication through Common Fragile Sites. Mol Cell 2017; 64:388-404. [PMID: 27768874 DOI: 10.1016/j.molcel.2016.09.017] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 08/08/2016] [Accepted: 09/14/2016] [Indexed: 12/27/2022]
Abstract
Common fragile sites (CFSs) are genomic regions that are unstable under conditions of replicative stress. Although the characteristics of CFSs that render them vulnerable to stress are associated mainly with replication, the cellular pathways that protect CFSs during replication remain unclear. Here, we identify and describe a role for FANCD2 as a trans-acting facilitator of CFS replication, in the absence of exogenous replicative stress. In the absence of FANCD2, replication forks stall within the AT-rich fragility core of CFS, leading to dormant origin activation. Furthermore, FANCD2 deficiency is associated with DNA:RNA hybrid formation at CFS-FRA16D, and inhibition of DNA:RNA hybrid formation suppresses replication perturbation. In addition, we also found that FANCD2 reduces the number of potential sites of replication initiation. Our data demonstrate that FANCD2 protein is required to ensure efficient CFS replication and provide mechanistic insight into how FANCD2 regulates CFS stability.
Collapse
Affiliation(s)
- Advaitha Madireddy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | - Rebecca A Boisvert
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Emilia Herrera-Moyano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, 41092 Seville, Spain
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, 41092 Seville, Spain
| | - Jeannine Gerhardt
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Elizabeth A Vuono
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Nichole Owen
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Zi Yan
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Susan Olson
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa, Universidad de Sevilla, 41092 Seville, Spain
| | - Niall G Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Carl L Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
22
|
Lange S, Hacker SM, Schmid P, Scheffner M, Marx A. Small-Molecule Inhibitors of the Tumor Suppressor Fhit. Chembiochem 2017. [PMID: 28643453 DOI: 10.1002/cbic.201700226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The tumor suppressor Fhit and its substrate diadenosine triphosphate (Ap3 A) are important factors in cancer development and progression. Fhit has Ap3 A hydrolase activity and cleaves Ap3 A into adenosine monophosphate (AMP) and adenosine diphosphate (ADP); this is believed to terminate Fhit-mediated signaling. How the catalytic activity of Fhit is regulated and how the Fhit⋅Ap3 A complex might exert its growth-suppressive function remain to be discovered. Small-molecule inhibitors of the enzymatic activity of Fhit would provide valuable tools for the elucidation of its tumor-suppressive functions. Here we describe the development of a high-throughput screen for the identification of such small-molecule inhibitors of Fhit. Two clusters of inhibitors that decreased the activity of Fhit by at least 90 % were identified. Several derivatives were synthesized and exhibited in vitro IC50 values in the nanomolar range.
Collapse
Affiliation(s)
- Sandra Lange
- Department of Chemistry, Konstanz Research School-Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Stephan M Hacker
- Department of Chemistry, Konstanz Research School-Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Philipp Schmid
- Department of Chemistry, Konstanz Research School-Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School-Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
23
|
Zhang Y, Xu X, Chen Z, Zhao Z. Association of FHIT expression and FHIT gene hypermethylation with liver cancer risk: a PRISMA-compliant meta-analysis. Onco Targets Ther 2017; 10:3083-3093. [PMID: 28790842 PMCID: PMC5488786 DOI: 10.2147/ott.s138036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background There have been suggestions that fragile histidine triad protein (FHIT) expression and FHIT gene hypermethylation were crucial to the pathogenesis of liver cancer. However, the conclusions remained unclear because of small sample size, disease subtype, and different detection techniques. Therefore, we performed a meta-analysis to estimate the associations of FHIT expression and FHIT gene hypermethylation with liver cancer pathogenesis. Methods Studies that were published in electronic databases, such as PubMed, Web of Knowledge, China National Knowledge Infrastructure (CNKI), VIP, and WanFang, were retrieved and selected for the meta-analysis. Relative risk (RR) and 95% confidence interval (CI) were calculated to determine the correlations of FHIT expression and FHIT gene hyper-methylation with liver cancer pathogenesis with Stata 12.0 software. Results A total of 17 papers that evaluated the associations of FHIT expression (14 articles) and FHIT gene methylation (3 articles) with liver cancer pathogenesis were included in this meta-analysis. In the overall analysis, the pooled relative risk was 1.93 (95% CI =1.72–2.17), which indicated a significant association between FHIT low expression and liver cancer risk. According to the results of clinical information, there were significant associations of FHIT expression with TNM-stage (RR =2.13, 95% CI =1.72–2.64), tumor size (RR =1.67, 95% CI =1.36–2.05), and merger of cirrhosis (RR =1.34, 95% CI =1.06–1.69) of liver cancer in the Chinese population. In addition, the FHIT gene hypermethylation was significantly associated with the risk of liver cancer (RR =1.45, 95% CI =1.08–1.93). Conclusion The FHIT expression and hypermethylation of FHIT gene were significantly associated with the risk of liver cancer, especially in the Chinese population. Furthermore, the results indicated significant associations between FHIT low expression and TNM-stage, tumor size, and merging of cirrhosis of liver cancer in the Chinese population.
Collapse
Affiliation(s)
| | | | - Zhiliang Chen
- Department of Hepatobiliary Surgery, Shaoxing City People's Hospital, Shaoxing, Zhejiang Province, People's Republic of China
| | | |
Collapse
|
24
|
Krakowiak A, Kocoń-Rębowska B, Dolot R, Piotrzkowska D. New interactions between tumor suppressor Fhit protein and a nonhydrolyzable analog of its A P4 A substrate. FEBS Lett 2017; 591:548-559. [PMID: 28094435 DOI: 10.1002/1873-3468.12560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/14/2016] [Accepted: 01/10/2017] [Indexed: 11/06/2022]
Abstract
Fragile histidine triad protein (Fhit) is a protein which primarily hydrolyses dinucleoside polyphosphates. To investigate possible interactions between the protein and a substrate, we used a nonhydrolyzable phosphorothioate analog of Ap4 A, containing 5-bromo-2'-deoxyuridine instead of one adenosine residue. Photocrosslinking, followed by LC-MS experiments, determined a complex in which the probe was covalently linked to the NDSIYEELQK peptide (residues 110-119). The peptide was located within the 'disordered' region, which is invisible in the known crystal structures of Fhit. This invisible and flexible part seems to play a role in the stabilization of the Fhit-substrate complex, which may be important for its tumor suppressor activity.
Collapse
Affiliation(s)
- Agnieszka Krakowiak
- Department of Bioorganic Chemistry, Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Lodz, Poland
| | - Beata Kocoń-Rębowska
- Department of Bioorganic Chemistry, Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Lodz, Poland
| | - Rafał Dolot
- Department of Bioorganic Chemistry, Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Lodz, Poland
| | - Danuta Piotrzkowska
- Department of Bioorganic Chemistry, Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Lodz, Poland
| |
Collapse
|
25
|
Kiss DL, Waters CE, Ouda IM, Saldivar JC, Karras JR, Amin ZA, Mahrous S, Druck T, Bundschuh RA, Schoenberg DR, Huebner K. Identification of Fhit as a post-transcriptional effector of Thymidine Kinase 1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:374-382. [PMID: 28093273 DOI: 10.1016/j.bbagrm.2017.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 11/30/2022]
Abstract
FHIT is a genome caretaker gene that is silenced in >50% of cancers. Loss of Fhit protein expression promotes accumulation of DNA damage, affects apoptosis and epithelial-mesenchymal transition, though molecular mechanisms underlying these alterations have not been fully elucidated. Initiation of genome instability directly follows Fhit loss and the associated reduced Thymidine Kinase 1 (TK1) protein expression. The effects on TK1 of Fhit knockdown and Fhit induction in the current study confirmed the role of Fhit in regulating TK1 expression. Changes in Fhit expression did not impact TK1 protein turnover or transcription from the TK1 promoter, nor steady-state levels of TK1 mRNA or turnover. Polysome profile analysis showed that up-regulated Fhit expression resulted in decreased TK1 RNA in non-translating messenger ribonucleoproteins and increased ribosome density on TK1 mRNA. Fhit does not bind RNA but its expression increased luciferase expression from a transgene bearing the TK1 5'-UTR. Fhit has been reported to act as a scavenger decapping enzyme, and a similar result with a mutant (H96) that binds but does not cleave nucleoside 5',5'-triphosphates suggests the impact on TK1 translation is due to its ability to modulate the intracellular level of cap-like molecules. Consistent with this, cells expressing Fhit mutants with reduced activity toward cap-like dinucleotides exhibit DNA damage resulting from TK1 deficiency, whereas cells expressing wild-type Fhit or the H96N mutant do not. The results have implications for the mechanism by which Fhit regulates TK1 mRNA, and more broadly, for its modulation of multiple functions as tumor suppressor/genome caretaker.
Collapse
Affiliation(s)
- Daniel L Kiss
- Center for RNA Biology, 484 West 12th Ave., Columbus, OH 43210 USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Rd., Columbus, OH 43210 USA
| | - Catherine E Waters
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
| | - Iman M Ouda
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
- Department of Clinical Pathology, Faculty of Medicine, 2nd floor, Surgery Hospital, Zagazig University, Zagazig 44519, Egypt
| | - Joshua C Saldivar
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
| | - Jenna R Karras
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
| | - Zaynab A Amin
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
| | - Seham Mahrous
- Department of Clinical Pathology, Faculty of Medicine, 2nd floor, Surgery Hospital, Zagazig University, Zagazig 44519, Egypt
| | - Teresa Druck
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
| | - Ralf A Bundschuh
- Center for RNA Biology, 484 West 12th Ave., Columbus, OH 43210 USA
- Department of Physics, Department of Chemistry and Biochemistry, and Division of Hematology, Department of Internal Medicine, The Ohio State University, 191 West Woodruff Ave., Columbus, OH 43210 USA
| | - Daniel R Schoenberg
- Center for RNA Biology, 484 West 12th Ave., Columbus, OH 43210 USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, 1060 Carmack Rd., Columbus, OH 43210 USA
| | - Kay Huebner
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12 Ave., Columbus, OH 43210 USA
| |
Collapse
|
26
|
Madireddy A, Gerhardt J. Replication Through Repetitive DNA Elements and Their Role in Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:549-581. [PMID: 29357073 DOI: 10.1007/978-981-10-6955-0_23] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human cells contain various repetitive DNA sequences, which can be a challenge for the DNA replication machinery to travel through and replicate correctly. Repetitive DNA sequence can adopt non-B DNA structures, which could block the DNA replication. Prolonged stalling of the replication fork at the endogenous repeats in human cells can have severe consequences such as genome instability that includes repeat expansions, contractions, and chromosome fragility. Several neurological and muscular diseases are caused by a repeat expansion. Furthermore genome instability is the major cause of cancer. This chapter describes some of the important classes of repetitive DNA sequences in the mammalian genome, their ability to form secondary DNA structures, their contribution to replication fork stalling, and models for repeat expansion as well as chromosomal fragility. Included in this chapter are also some of the strategies currently employed to detect changes in DNA replication and proteins that could prevent the repeat-mediated disruption of DNA replication in human cells. Additionally summarized are the consequences of repeat-associated perturbation of the DNA replication, which could lead to specific human diseases.
Collapse
|
27
|
Karras JR, Schrock MS, Batar B, Zhang J, La Perle K, Druck T, Huebner K. Fhit loss-associated initiation and progression of neoplasia in vitro. Cancer Sci 2016; 107:1590-1598. [PMID: 27513973 PMCID: PMC5132276 DOI: 10.1111/cas.13032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022] Open
Abstract
The FHIT gene, encompassing an active common fragile site, FRA3B, is frequently silenced in preneoplasia and cancer, through gene rearrangement or methylation of regulatory sequences. Silencing of Fhit protein expression causes thymidine kinase 1 downregulation, resulting in dNTP imbalance, and spontaneous replication stress that leads to chromosomal aberrations, allele copy number variations, insertions/deletions, and single-base substitutions. Thus, Fhit, which is reduced in expression in the majority of human cancers, is a genome "caretaker" whose loss initiates genome instability in preneoplastic lesions. To follow the early genetic alterations and functional changes induced by Fhit loss that may recapitulate the neoplastic process in vitro, we established epithelial cell lines from kidney tissues of Fhit-/- and +/+ mouse pups early after weaning, and subjected cell cultures to nutritional and carcinogen stress, which +/+ cells did not survive. Through transcriptome profiling and protein expression analysis, we observed changes in the Trp53/p21 and survivin apoptotic pathways in -/- cells, and in expression of proteins involved in epithelial-mesenchymal transition. Some Fhit-deficient cell lines showed anchorage-independent colony formation and increased invasive capacity in vitro. Furthermore, cells of stressed Fhit-/- cell lines formed s.c. and metastatic tumors in nude mice. Collectively, we show that Fhit loss and subsequent thymidine kinase 1 inactivation, combined with selective pressures, leads to neoplasia-associated alterations in genes and gene expression patterns in vitro and in vivo.
Collapse
Affiliation(s)
- Jenna R. Karras
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Morgan S. Schrock
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Bahadir Batar
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Jie Zhang
- Department of Biomedical InformaticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Krista La Perle
- Department of Veterinary BiosciencesCollege of Veterinary MedicineOhio State UniversityColumbusOhioUSA
| | - Teresa Druck
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| | - Kay Huebner
- Department of Cancer Biology and GeneticsOhio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
28
|
Chen P, Chen Z, Li J, Yang H, Zhu Y, Zhang N, Yan M, Shao Y, Chen C, Jin T. Gene polymorphisms are associated with clinical outcome in Chinese resected laryngeal carcinoma patients. Oncotarget 2016; 7:71703-71709. [PMID: 27765935 PMCID: PMC5342113 DOI: 10.18632/oncotarget.12323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
We examined the multigenetic index on the progression of laryngeal carcinoma in Chinese population. This study aims to assess the effects of single nucleotide polymorphisms (SNPs) on survival of Laryngeal Carcinoma (LC) patients. Eighteen SNPs were selected and genotyped using the Sequenom iPLEX genotyping system in a cohort of 170 resected Chinese LC patients. Multivariate Cox proportional hazards model and Kaplan-Meier curve were used for the prognosis analysis. Overall, the median survival time (MST) was 38.00 months. The one, three and five year Kaplan-Meier survival rate was 0.847 ± 0.028, 0.572 ± 0.038 and 0.471 ± 0.041 respectively. The risks of death with the Hazard Ratio (HR) [95% confidence intervals] (CI) of 2.40 (1.15–4.50), 2.17 (1.45–3.25), 2.39 (1.58–3.62), 3.29 (2.10–5.18), respectively. There was significant associations between the SNPs and OS when the entire study population was examined. The rs1321311 TG genotype (vs.GG), rs2494938 AA genotype (vs. GG) and rs9363918 TG genotype (vs. GG) were associated with a worse prognosis for OS (adjusted HR = 1.64; 95%confidence interval = 1.07–2.51; P = 0.022, adjusted HR = 2.85; P =0.12; adjusted HR = 1.78; P = 0.009; respectively). The results suggest for the first time that these gene polymorphisms may serve as an independent prognostic marker for LC patients.
Collapse
Affiliation(s)
- Peng Chen
- The National Engineering Research Centre for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China.,Institution of Basic Medical Science, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Zhengshuai Chen
- The National Engineering Research Centre for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China
| | - Jinglie Li
- The National Engineering Research Centre for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China
| | - Hua Yang
- The National Engineering Research Centre for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China
| | - Yuanyuan Zhu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China
| | - Ning Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China
| | - Mengdan Yan
- The National Engineering Research Centre for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China
| | - Yuan Shao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chao Chen
- The National Engineering Research Centre for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China
| | - Tianbo Jin
- The National Engineering Research Centre for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi 710069, China
| |
Collapse
|
29
|
Kaczmarek R, Krakowiak A, Korczyński D, Baraniak J, Nawrot B. Phosphorothioate analogs of P1,P3-di(nucleosid-5′-yl) triphosphates: Synthesis, assignment of the absolute configuration at P-atoms and P-stereodependent recognition by Fhit hydrolase. Bioorg Med Chem 2016; 24:5068-5075. [DOI: 10.1016/j.bmc.2016.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/03/2016] [Accepted: 08/18/2016] [Indexed: 11/25/2022]
|
30
|
Schrock MS, Karras JR, Guggenbiller MJ, Druck T, Batar B, Huebner K. Fhit and Wwox loss-associated genome instability: A genome caretaker one-two punch. Adv Biol Regul 2016; 63:167-176. [PMID: 27773744 DOI: 10.1016/j.jbior.2016.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 11/28/2022]
Abstract
Expression of Fhit and Wwox protein is frequently lost or reduced in many human cancers. In this report, we provide data that further characterizes the molecular consequences of Fhit loss in the initiation of DNA double-strand breaks (DSBs), and of Wwox loss in altered repair of DSBs. We show that loss of Fhit initiates mild genome instability in early passage mouse kidney cells, confirming that DNA damage associated with Fhit-deficiency is not limited to cancer cells. We also demonstrate that the cause of Fhit-deficient DSBs: thymidine deficiency-induced replication stress, can be resolved with thymidine supplementation in early passage mouse kidney cells before extensive genome instability occurs. As for consequences of Wwox loss in cancer, we show in a small panel of breast cancer cells and mouse embryonic fibroblasts that Wwox expression predicts response to radiation and mitomycin C, all agents that cause DSBs. In addition, loss of Wwox significantly reduced progression free survival in a cohort of ovarian cancer patients treated with platin-based chemotherapies. Finally, stratification of a cohort of squamous lung cancers by Fhit expression reveals that Wwox expression is significantly reduced in the low Fhit-expressing group, suggesting that loss of Fhit is quickly succeeded by loss of Wwox. We propose that Fhit and Wwox loss work synergistically in cancer progression and that DNA damage caused by Fhit could be targeted early in cancer initiation for prevention, while DNA damage caused by Wwox loss could be targeted later in cancer progression, particularly in cancers that develop resistance to genotoxic therapies.
Collapse
Affiliation(s)
- Morgan S Schrock
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jenna R Karras
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew J Guggenbiller
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Teresa Druck
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bahadir Batar
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kay Huebner
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
31
|
Czarnecka KH, Migdalska-Sęk M, Domańska D, Pastuszak-Lewandoska D, Dutkowska A, Kordiak J, Nawrot E, Kiszałkiewicz J, Antczak A, Brzeziańska-Lasota E. FHIT promoter methylation status, low protein and high mRNA levels in patients with non-small cell lung cancer. Int J Oncol 2016; 49:1175-84. [DOI: 10.3892/ijo.2016.3610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/12/2016] [Indexed: 11/06/2022] Open
|
32
|
Lin HY, Hung SK, Lee MS, Chiou WY, Huang TT, Tseng CE, Shih LY, Lin RI, Lin JMJ, Lai YH, Chang CB, Hsu FC, Chen LC, Tsai SJ, Su YC, Li SC, Lai HC, Hsu WL, Liu DW, Tai CK, Wu SF, Chan MWY. DNA methylome analysis identifies epigenetic silencing of FHIT as a determining factor for radiosensitivity in oral cancer: an outcome-predicting and treatment-implicating study. Oncotarget 2015; 6:915-34. [PMID: 25460508 PMCID: PMC4359265 DOI: 10.18632/oncotarget.2821] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/24/2014] [Indexed: 12/17/2022] Open
Abstract
Radioresistance is still an emerging problem for radiotherapy of oral cancer. Aberrant epigenetic alterations play an important role in cancer development, yet the role of such alterations in radioresistance of oral cancer is not fully explored. Using a methylation microarray, we identified promoter hypermethylation of FHIT (fragile histidine triad) in radioresistant OML1-R cells, established from hypo-fractionated irradiation of parental OML1 radiosensitive oral cancer cells. Further analysis confirmed that transcriptional repression of FHIT was due to promoter hypermethylation, H3K27me3 and overexpression of methyltransferase EZH2 in OML1-R cells. Epigenetic interventions or depletion of EZH2 restored FHIT expression. Ectopic expression of FHIT inhibited tumor growth in both in vitro and in vivo models, while also resensitizing radioresistant cancer cells to irradiation, by restoring Chk2 phosphorylation and G2/M arrest. Clinically, promoter hypermethylation of FHIT inversely correlated with its expression and independently predicted both locoregional control and overall survival in 40 match-paired oral cancer patient samples. Further in vivo therapeutic experiments confirmed that inhibition of DNA methylation significantly resensitized radioresistant oral cancer cell xenograft tumors. These results show that epigenetic silencing of FHIT contributes partially to radioresistance and predicts clinical outcomes in irradiated oral cancer. The radiosensitizing effect of epigenetic interventions warrants further clinical investigation.
Collapse
Affiliation(s)
- Hon-Yi Lin
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC.,School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC
| | - Shih-Kai Hung
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC.,School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Moon-Sing Lee
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC.,School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC.,School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Tze-Ta Huang
- Department of Oral and Maxillofacial Surgery, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC.,School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC.,Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chih-En Tseng
- Department of Anatomic Pathology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC.,School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Liang-Yu Shih
- Department of Anatomic Pathology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC.,School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Ru-Inn Lin
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC.,School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC.,Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC
| | - Jora M J Lin
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC.,Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC
| | - Yi-Hui Lai
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC.,Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC
| | - Chia-Bin Chang
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC.,Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC
| | - Feng-Chun Hsu
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC
| | - Liang-Cheng Chen
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC
| | - Shiang-Jiun Tsai
- Department of Radiation Oncology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC
| | - Yu-Chieh Su
- Department of Hematology-Oncology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC.,School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Szu-Chi Li
- Department of Hematology-Oncology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC.,School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Hung-Chih Lai
- Department of Hematology-Oncology, Buddhist Dalin Tzu Chi General Hospital, Taiwan, ROC.,School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Wen-Lin Hsu
- Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Dai-Wei Liu
- Department of Radiation Oncology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan, ROC.,School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chien-Kuo Tai
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC.,Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC
| | - Shu-Fen Wu
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC.,Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC
| | - Michael W Y Chan
- Institute of Molecular Biology, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC.Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC.Human Epigenomics Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, ROC
| |
Collapse
|
33
|
Hacker SM, Buntz A, Zumbusch A, Marx A. Direct Monitoring of Nucleotide Turnover in Human Cell Extracts and Cells by Fluorogenic ATP Analogs. ACS Chem Biol 2015; 10:2544-52. [PMID: 26274552 DOI: 10.1021/acschembio.5b00459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleotides containing adenosine play pivotal roles in every living cell. Adenosine triphosphate (ATP), for example, is the universal energy currency, and ATP-consuming processes also contribute to posttranslational protein modifications. Nevertheless, detecting the turnover of adenosine nucleotides in the complex setting of a cell remains challenging. Here, we demonstrate the use of fluorogenic analogs of ATP and adenosine tetraphosphate to study nucleotide hydrolysis in lysates of human cell lines and in intact human cells. We found that the adenosine triphosphate analog is completely stable in lysates of human cell lines, whereas the adenosine tetraphosphate analog is rapidly turned over. The observed activity in human cell lysates can be assigned to a single enzyme, namely, the human diadenosine tetraphosphate hydrolase NudT2. Since NudT2 has been shown to be a prognostic factor for breast cancer, the adenosine tetraphosphate analog might contribute to a better understanding of its involvement in cancerogenesis and allow the straightforward screening for inhibitors. Studying hydrolysis of the analogs in intact cells, we found that electroporation is a suitable method to deliver nucleotide analogs into the cytoplasm and show that high FRET efficiencies can be detected directly after internalization. Time-dependent experiments reveal that adenosine triphosphate and tetraphosphate analogs are both processed in the cellular environment. This study demonstrates that these nucleotide analogs indeed bear the potential to be powerful tools for the exploration of nucleotide turnover in the context of whole cells.
Collapse
Affiliation(s)
- Stephan M. Hacker
- Department of Chemistry,
Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Annette Buntz
- Department of Chemistry,
Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Andreas Zumbusch
- Department of Chemistry,
Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry,
Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
34
|
Zuo H, Wong YH. Association of activated Gαq to the tumor suppressor Fhit is enhanced by phospholipase Cβ. BMC Cancer 2015; 15:775. [PMID: 26497576 PMCID: PMC4619496 DOI: 10.1186/s12885-015-1802-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND G proteins are known to modulate various growth signals and are implicated in the regulation of tumorigenesis. The tumor suppressor Fhit is a newly identified interaction partner of Gq proteins that typically stimulate the phospholipase C pathway. Activated Gαq subunits have been shown to interact directly with Fhit, up-regulate Fhit expression and enhance its suppressive effect on cell growth and migration. Other signaling molecules may be involved in modulating Gαq/Fhit interaction. METHODS To test the relationship of PLCβ with the interaction between Gαq and Fhit, co-immunoprecipication assay was performed on HEK293 cells co-transfected with different combinations of Flag-Fhit, Gα16, Gα16QL, pcDNA3 vector, and PLCβ isoforms. Possible associations of Fhit with other effectors of Gαq were also demonstrated by co-immunoprecipitation. The regions of Gαq for Fhit interaction and PLCβ stimulation were further evaluated by inositol phosphates accumulation assay using a series of Gα16/z chimeras with discrete regions of Gα16 replaced by those of Gαz. RESULTS PLCβ1, 2 and 3 interacted with Fhit regardless of the expression of Gαq. Expression of PLCβ increased the affinities of Fhit for both wild-type and activated Gαq. Swapping of the Fhit-interacting α2-β4 region of Gαq with Gαi eliminated the association of Gαq with Fhit without affecting the ability of the mutant to stimulate PLCβ. Other effectors of Gαq including RGS2 and p63RhoGEF were unable to interact with Fhit. CONCLUSIONS PLCβ may participate in the regulation of Fhit by Gq in a unique way. PLCβ interacts with Fhit and increases the interaction between Gαq and Fhit. The Gαq/PLCβ/Fhit complex formation points to a novel signaling pathway that may negatively regulate tumor cell growth.
Collapse
Affiliation(s)
- Hao Zuo
- Division of Life Sciences, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. .,Present address: Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| | - Yung H Wong
- Division of Life Sciences, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. .,State Key Laboratory of Molecular Neuroscience, and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
35
|
Bianchi F, Sasso M, Turdo F, Beretta GL, Casalini P, Ghirelli C, Sfondrini L, Ménard S, Tagliabue E, Campiglio M. Fhit Nuclear Import Following EGF Stimulation Sustains Proliferation of Breast Cancer Cells. J Cell Physiol 2015; 230:2661-70. [PMID: 25711523 DOI: 10.1002/jcp.24968] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 02/18/2015] [Indexed: 11/06/2022]
Abstract
The tumor-suppressor protein fragile histidine triad (Fhit) exerts its functions in the cytoplasm, although some reports suggest that it may also act in the nucleus. We previously showed that cytosolic Fhit protein levels in cancer cell lines stimulated to proliferate were reduced by proteasomal degradation. Here, we demonstrate that Fhit is physiologically present in the nucleus of breast cancer cell lines and tissues at a low level and that proliferative stimulation increases nuclear levels. Breast cancer cells expressing the FhitY114F mutant, which do not undergo proteasomal degradation, contained mutated Fhit in the nucleus, while cells treated with a proteasome inhibitor accumulated nuclear Fhit during proliferation. Thus, Fhit nuclear shuttling and proteasome degradation phenomena occur independently. When Fhit was coupled to a nuclear localization sequence, the proliferation rate of the transfected cells increased together with levels of proliferation pathway mediators cyclin D1, phospho-MAPK, and phospho-STAT3. Fhit nuclear translocation upon mitogenic stimulation may represent a new regulatory mechanism that allows rapid restoration of Fhit cytoplasmic levels and promotes the proliferation cascade activated by mitogenic stimulation.
Collapse
Affiliation(s)
- Francesca Bianchi
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Marianna Sasso
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federica Turdo
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni L Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Casalini
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Cristina Ghirelli
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Sylvie Ménard
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manuela Campiglio
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
36
|
Jin DH, Park SE, Lee J, Kim KM, Kim S, Kim DH, Park J. Copy Number Gains at 8q24 and 20q11-q13 in Gastric Cancer Are More Common in Intestinal-Type than Diffuse-Type. PLoS One 2015; 10:e0137657. [PMID: 26360582 PMCID: PMC4567330 DOI: 10.1371/journal.pone.0137657] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 08/19/2015] [Indexed: 12/21/2022] Open
Abstract
The present study was aimed at discovering DNA copy number alterations (CNAs) involved in the carcinogenesis of stomach and at understanding their clinicopathological significances in the Korean population. DNA copy numbers were analyzed using Agilent 244K or 400K array comparative genomic hybridization (aCGH) in fresh-frozen tumor and matched normal tissues from 40 gastric cancer patients. Some of the detected CNA regions were validated using multiplex ligation-dependent probe amplification (MLPA) in six of the 40 patients and customized Agilent 60K aCGH in an independent set of 48 gastric cancers. The mRNA levels of genes at common CNA regions were analyzed using quantitative real-time PCR. Copy number gains were more common than losses across the entire genome in tumor tissues compared to matched normal tissues. The mean number of alterations per case was 64 for gains and 40 for losses, and the median aberration length was 44016 bp for gains and 4732 bp for losses. Copy number gains were frequently detected at 7p22.1 (20%), 8q24.21 (27%-30%), 8q24.3 (22%-48%), 13q34 (20%-31%), and 20q11-q13 (25%-30%), and losses at 3p14.2 (43%), 4q35.2 (27%), 6q26 (23%), and 17p13.3 (20%-23%). CNAs at 7p22.1, 13q34, and 17p13.3 have not been reported in other populations. Most of the copy number losses were associated with down-regulation of mRNA levels, but the correlation between copy number gains and mRNA expression levels varied in a gene-dependent manner. In addition, copy number gains tended to occur more commonly in intestinal-type cancers than in diffuse-type cancers. In conclusion, the present study suggests that copy number gains at 8q24 and 20q11-q13 and losses at 3p14.2 may be common events in gastric cancer but CNAs at 7p22.1, 13q34, and 17p13.3 may be Korean-specific.
Collapse
Affiliation(s)
- Dong-Hao Jin
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 135–710, Korea
| | - Seong-Eun Park
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 135–710, Korea
| | - Jeeyun Lee
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135–710, Korea
| | - Kyung-Mi Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135–710, Seoul, Korea
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 135–710, Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 135–710, Korea
| | - Joobae Park
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, 135–710, Korea
| |
Collapse
|
37
|
Prognostic significance of decreased expression of six large common fragile site genes in oropharyngeal squamous cell carcinomas. Transl Oncol 2014; 7:726-31. [PMID: 25500082 PMCID: PMC4311028 DOI: 10.1016/j.tranon.2014.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/22/2014] [Accepted: 09/26/2014] [Indexed: 11/20/2022] Open
Abstract
Common fragile sites (CFSs) are large regions with profound genomic instability that often span extremely large genes a number of which have been found to be important tumor suppressors. RNA sequencing previously revealed that there was a group of six large CFS genes which frequently had decreased expression in oropharyngeal squamous cell carcinomas (OPSCCs) and real-time reverse transcriptase polymerase chain reaction experiments validated that these six large CFS genes (PARK2, DLG2, NBEA, CTNNA3, DMD, and FHIT) had decreased expression in most of the tumor samples. In this study, we investigated whether the decreased expression of these genes has any clinical significance in OPSCCs. We analyzed the six CFS large genes in 45 OPSCC patients and found that 27 (60%) of the OPSCC tumors had decreased expression of these six genes. When we correlated the expression of these six genes to each patient's clinical records, for 11 patients who had tumor recurrence, 10 of them had decreased expression of almost all 6 genes. When we divided the patients into two groups, one group with decreased expression of the six genes and the other group with either slight changes or increased expression of the six genes, we found that there is significant difference in the incidence of tumor recurrence between these two groups by Kaplan-Meier plot analysis (P < .05). Our results demonstrated that those OPSCC tumors with decreased expression of this select group of six large CFS genes were much more likely to be associated with tumor recurrence and these genes are potential prognostic markers for predicting tumor recurrence in OPSCC.
Collapse
|
38
|
Hacker SM, Mortensen F, Scheffner M, Marx A. Selektive Beobachtung der enzymatischen Aktivität des Tumorsuppressors Fhit. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Hacker SM, Mortensen F, Scheffner M, Marx A. Selective monitoring of the enzymatic activity of the tumor suppressor Fhit. Angew Chem Int Ed Engl 2014; 53:10247-50. [PMID: 25098403 DOI: 10.1002/anie.201405259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/25/2014] [Indexed: 11/07/2022]
Abstract
Cancer is a leading cause of death worldwide. Functional inactivation of tumor suppressor proteins, mainly by mutations in the corresponding genes, is a key event in cancer development. The fragile histidine triade protein (Fhit) is a tumor suppressor that is frequently affected in different cancer types. Fhit possesses diadenosine triphosphate hydrolase activity, but although reduction of its enzymatic activity appears to be important for exerting its tumor suppressor function, the regulation of Fhit activity is poorly understood. Here, we introduce a novel fluorogenic probe that is suited to selectively analyze the enzymatic activity of Fhit in extracts derived from human cells. This novel method will allow in-depth insight into the mechanisms involved in Fhit regulation in biologically relevant setups and, thus, into its role in the development of cancer.
Collapse
Affiliation(s)
- Stephan M Hacker
- Department of Chemistry and Department of Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz (Germany)
| | | | | | | |
Collapse
|
40
|
Replicative Stress and the FHIT Gene: Roles in Tumor Suppression, Genome Stability and Prevention of Carcinogenesis. Cancers (Basel) 2014; 6:1208-19. [PMID: 24901304 PMCID: PMC4074825 DOI: 10.3390/cancers6021208] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/21/2014] [Accepted: 05/26/2014] [Indexed: 12/25/2022] Open
Abstract
The fragile FHIT gene, encompassing the chromosomal fragile site FRA3B, is an early target of DNA damage in precancerous cells. While vulnerable to DNA damage itself, FHIT protein expression is essential to protect from DNA damage-induced cancer initiation and progression by modulating genome stability, oxidative stress and levels of accumulating DNA damage. Thus, FHIT, whose expression is lost or reduced in many human cancers, is a tumor suppressor and genome caretaker whose loss initiates genome instability in preneoplastic lesions. Ongoing studies are seeking more detailed understanding of the role of FHIT in the cellular response to oxidative damage. This review discusses the relationship between FHIT, reactive oxygen species production, and DNA damage in the context of cancer initiation and progression.
Collapse
|
41
|
Hu B, Ying X, Wang J, Piriyapongsa J, Jordan IK, Sheng J, Yu F, Zhao P, Li Y, Wang H, Ng WL, Hu S, Wang X, Wang C, Zheng X, Li W, Curran WJ, Wang Y. Identification of a tumor-suppressive human-specific microRNA within the FHIT tumor-suppressor gene. Cancer Res 2014; 74:2283-94. [PMID: 24556720 DOI: 10.1158/0008-5472.can-13-3279] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Loss or attenuated expression of the tumor-suppressor gene FHIT is associated paradoxically with poor progression of human tumors. Fhit promotes apoptosis and regulates reactive oxygen species; however, the mechanism by which Fhit inhibits tumor growth in animals remains unclear. In this study, we used a multidisciplinary approach based on bioinformatics, small RNA library screening, human tissue analysis, and a xenograft mouse model to identify a novel member of the miR-548 family in the fourth intron of the human FHIT gene. Characterization of this human-specific microRNA illustrates the importance of this class of microRNAs in tumor suppression and may influence interpretation of Fhit action in human cancer.
Collapse
Affiliation(s)
- Baocheng Hu
- Authors' Affiliations: Department of Medical Molecular Biology, Beijing Institute of Biotechnology; Center of Computational Biology, Beijing Institute of Basic Medical Sciences; Department of Pathology, Chinese PLA General Hospital; Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China; Department of Radiation Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University; School of Biology, Georgia Institute of Technology, Atlanta, Georgia; Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania; and Genome Institute, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gao G, Kasperbauer JL, Tombers NM, Wang V, Mayer K, Smith DI. A selected group of large common fragile site genes have decreased expression in oropharyngeal squamous cell carcinomas. Genes Chromosomes Cancer 2014; 53:392-401. [DOI: 10.1002/gcc.22150] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
| | | | | | - Vivian Wang
- Mayo Medical Genome Facilities; Mayo Clinic; Rochester MN
| | - Kevin Mayer
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
| | - David I. Smith
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology; Mayo Clinic; Rochester MN
| |
Collapse
|
43
|
Joannes A, Grelet S, Duca L, Gilles C, Kileztky C, Dalstein V, Birembaut P, Polette M, Nawrocki-Raby B. Fhit Regulates EMT Targets through an EGFR/Src/ERK/Slug Signaling Axis in Human Bronchial Cells. Mol Cancer Res 2014; 12:775-83. [DOI: 10.1158/1541-7786.mcr-13-0386-t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Kapitanović S, Čačev T, Lončar B, Catela Ivković T, Križanac Š, Pavelić K. Reduced FHIT expression is associated with tumor progression in sporadic colon adenocarcinoma. Exp Mol Pathol 2013; 96:92-7. [PMID: 24370550 DOI: 10.1016/j.yexmp.2013.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE Tumor supressor gene FHIT was identified at chromosome 3p14.2 spanning the FRA3B fragile site and is very often inactivated in different types of cancer. The aim of this study was to examine the frequency of FHIT gene LOH as well as FHIT mRNA and protein expression in sporadic colon adenocarcinoma. METHODS The results of LOH, real-time qRT-PCR and imunohistochemical analyses were correlated with clinico-pathological characteristics of patients and their tumors in order to evaluate the role of FHIT gene/protein in sporadic colon adenocarcinoma tumorigenesis. RESULTS One hundred and thirty one (96.3%) samples were informative for both markers and 33/131 (25.2%) demonstrated LOH. Expression of FHIT mRNA was significantly decreased in colon tumors relative to that in corresponding normal tissue (p = 7.2×10(-6)). Most of the samples (54.0%) were negative for FHIT protein, 26.4% adenocarcinomas showed a weak to moderate immunostaining and 19.6% adenocarcinomas showed strong FHIT immunostaining. No correlation was found between FHIT gene LOH status, mRNA expression or FHIT protein immunostaining and clinico-pathological characteristics. Expression of FHIT mRNA was significantly decreased in FHIT LOH positive tumors (p = 0.027). Patients with LOH negative tumors or FHIT protein positive tumors had longer survival but this findings were not statistically significant. CONCLUSIONS Our overall results suggest that reduced expression of FHIT gene may be associated with the progression of these malignant tumors.
Collapse
Affiliation(s)
- Sanja Kapitanović
- Laboratory for Personalized Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia.
| | - Tamara Čačev
- Laboratory for Personalized Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Božo Lončar
- Department of Surgery, Clinical Hospital Dubrava, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | - Tina Catela Ivković
- Laboratory for Personalized Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Šimun Križanac
- Department of Clinical Pathology, Clinical Hospital Dubrava, Avenija Gojka Šuška 6, 10000 Zagreb, Croatia
| | - Krešimir Pavelić
- Laboratory for Personalized Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
45
|
Lung cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
46
|
Zuo H, Chan ASL, Ammer H, Wong YH. Activation of Gαq subunits up-regulates the expression of the tumor suppressor Fhit. Cell Signal 2013; 25:2440-52. [PMID: 23993961 DOI: 10.1016/j.cellsig.2013.08.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/24/2013] [Indexed: 12/31/2022]
Abstract
The tumor suppressor Fhit protein is defective or absent in many tumor cells due to methylation, mutation or deletion of the FHIT gene. Despite numerous attempts to unravel the functions of Fhit, the mechanisms by which the function and expression of Fhit are regulated remain poorly understood. We have recently shown that activated Gαq subunits interact directly with Fhit and enhance its inhibitory effect on cell growth. Here we investigated the regulation of Fhit expression by Gq. Our results showed that Fhit was up-regulated specifically by activating Gα subunits of the Gq subfamily but not by those of the other G protein subfamilies. This up-regulation effect was mediated by a PKC/MEK pathway independent of Src-mediated Fhit Tyr(114) phosphorylation. We further demonstrated that elevated Fhit expression was due to the specific regulation of Fhit protein synthesis in the ribosome by activated Gαq, where the regulations of cap-dependent protein synthesis were apparently not required. Moreover, we showed that activated Gαq could increase cell-cell adhesion through Fhit. These findings provide a possible handle to modulate the level of the Fhit tumor suppressor by manipulating the activity of Gq-coupled receptors.
Collapse
Affiliation(s)
- Hao Zuo
- Division of Life Sciences, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | |
Collapse
|
47
|
Zuo H, Chan GPW, Zhu J, Yeung WWS, Chan ASL, Ammer H, Wong YH. Activation state-dependent interaction between Gαq subunits and the Fhit tumor suppressor. Cell Commun Signal 2013; 11:59. [PMID: 23947369 PMCID: PMC3751744 DOI: 10.1186/1478-811x-11-59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/12/2013] [Indexed: 12/30/2022] Open
Abstract
Background The FHIT tumor suppressor gene is arguably the most commonly altered gene in cancer since it is inactivated in about 60% of human tumors. The Fhit protein is a member of the ubiquitous histidine triad proteins which hydrolyze dinucleoside polyphosphates such as Ap3A. Despite the fact that Fhit functions as a tumor suppressor, the pathway through which Fhit inhibits growth of cancer cells remains largely unknown. Phosphorylation by Src tyrosine kinases provides a linkage between Fhit and growth factor signaling. Since many G proteins can regulate cell proliferation through multiple signaling components including Src, we explored the relationship between Gα subunits and Fhit. Results Several members of the Gαq subfamily (Gα16, Gα14, and Gαq) were found to co-immunoprecipitate with Fhit in their GTP-bound active state in HEK293 cells. The binding of activated Gαq members to Fhit appeared to be direct and was detectable in native DLD-1 colon carcinoma cells. The use of Gα16/z chimeras further enabled the mapping of the Fhit-interacting domain to the α2-β4 region of Gα16. However, Gαq/Fhit did not affect either Ap3A binding and hydrolysis by Fhit, or the ability of Gαq/16 to regulate downstream effectors including phospholipase Cβ, Ras, ERK, STAT3, and IKK. Functional mutants of Fhit including the H96D, Y114F, L25W and L25W/I10W showed comparable abilities to associate with Gαq. Despite the lack of functional regulation of Gq signaling by Fhit, stimulation of Gq-coupled receptors in HEK293 and H1299 cells stably overexpressing Fhit led to reduced cell proliferation, as opposed to an enhanced cell proliferation typically seen with parental cells. Conclusions Activated Gαq members interact with Fhit through their α2-β4 region which may result in enhancement of the growth inhibitory effect of Fhit, thus providing a possible avenue for G protein-coupled receptors to modulate tumor suppression.
Collapse
Affiliation(s)
- Hao Zuo
- Division of Life Sciences, Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
One-carbon metabolism involving the folate and methionine cycles integrates nutritional status from amino acids, glucose and vitamins, and generates diverse outputs, such as the biosynthesis of lipids, nucleotides and proteins, the maintenance of redox status and the substrates for methylation reactions. Long considered a 'housekeeping' process, this pathway has recently been shown to have additional complexity. Genetic and functional evidence suggests that hyperactivation of this pathway is a driver of oncogenesis and establishes a link to cellular epigenetic status. Given the wealth of clinically available agents that target one-carbon metabolism, these new findings could present opportunities for translation into precision cancer medicine.
Collapse
Affiliation(s)
- Jason W Locasale
- Field of Biochemistry and Molecular Cell Biology, Cornell University, Ithaca New York 14850, USA.
| |
Collapse
|
49
|
Dayan S, O'Keefe LV, Choo A, Richards RI. Common chromosomal fragile siteFRA16Dtumor suppressorWWOXgene expression and metabolic reprograming in cells. Genes Chromosomes Cancer 2013; 52:823-31. [DOI: 10.1002/gcc.22078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/11/2013] [Indexed: 11/06/2022] Open
Affiliation(s)
- Sonia Dayan
- Discipline of Genetics; School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide; Adelaide SA 5005 Australia
| | - Louise V. O'Keefe
- Discipline of Genetics; School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide; Adelaide SA 5005 Australia
| | - Amanda Choo
- Discipline of Genetics; School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide; Adelaide SA 5005 Australia
| | - Robert I. Richards
- Discipline of Genetics; School of Molecular and Biomedical Sciences and ARC Special Research Centre for the Molecular Genetics of Development, The University of Adelaide; Adelaide SA 5005 Australia
| |
Collapse
|
50
|
High-resolution whole-genome analysis of skull base chordomas implicates FHIT loss in chordoma pathogenesis. Neoplasia 2013; 14:788-98. [PMID: 23019410 DOI: 10.1593/neo.12526] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 02/07/2023] Open
Abstract
Chordoma is a rare tumor arising in the sacrum, clivus, or vertebrae. It is often not completely resectable and shows a high incidence of recurrence and progression with shortened patient survival and impaired quality of life. Chemotherapeutic options are limited to investigational therapies at present. Therefore, adjuvant therapy for control of tumor recurrence and progression is of great interest, especially in skull base lesions where complete tumor resection is often not possible because of the proximity of cranial nerves. To understand the extent of genetic instability and associated chromosomal and gene losses or gains in skull base chordoma, we undertook whole-genome single-nucleotide polymorphism microarray analysis of flash frozen surgical chordoma specimens, 21 from the clivus and 1 from C1 to C2 vertebrae. We confirm the presence of a deletion at 9p involving CDKN2A, CDKN2B, and MTAP but at a much lower rate (22%) than previously reported for sacral chordoma. At a similar frequency (21%), we found aneuploidy of chromosome 3. Tissue microarray immunohistochemistry demonstrated absent or reduced fragile histidine triad (FHIT) protein expression in 98% of sacral chordomas and 67%of skull base chordomas. Our data suggest that chromosome 3 aneuploidy and epigenetic regulation of FHIT contribute to loss of the FHIT tumor suppressor in chordoma. The finding that FHIT is lost in a majority of chordomas provides new insight into chordoma pathogenesis and points to a potential new therapeutic target for this challenging neoplasm.
Collapse
|