1
|
Pfab M, Kielkowski P, Krafczyk R, Volkwein W, Sieber SA, Lassak J, Jung K. Synthetic post-translational modifications of elongation factor P using the ligase EpmA. FEBS J 2020; 288:663-677. [PMID: 32337775 DOI: 10.1111/febs.15346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/24/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
Abstract
Canonically, tRNA synthetases charge tRNA. However, the lysyl-tRNA synthetase paralog EpmA catalyzes the attachment of (R)-β-lysine to the ε-amino group of lysine 34 of the translation elongation factor P (EF-P) in Escherichia coli. This modification is essential for EF-P-mediated translational rescue of ribosomes stalled at consecutive prolines. In this study, we determined the kinetics of EpmA and its variant EpmA_A298G to catalyze the post-translational modification of K34 in EF-P with eight noncanonical substrates. In addition, acetylated EF-P was generated using an amber suppression system. The impact of these synthetically modified EF-P variants on in vitro translation of a polyproline-containing NanoLuc luciferase reporter was analyzed. Our results show that natural (R)-β-lysylation was more effective in rescuing stalled ribosomes than any other synthetic modification tested. Thus, our work not only provides new biochemical insights into the function of EF-P, but also opens a new route to post-translationally modify proteins using EpmA.
Collapse
Affiliation(s)
- Miriam Pfab
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Pavel Kielkowski
- Organic Chemistry II, Technical University of Munich, Garching, Germany
| | - Ralph Krafczyk
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Wolfram Volkwein
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Stephan A Sieber
- Organic Chemistry II, Technical University of Munich, Garching, Germany
| | - Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
2
|
Nyamai DW, Tastan Bishop Ö. Aminoacyl tRNA synthetases as malarial drug targets: a comparative bioinformatics study. Malar J 2019; 18:34. [PMID: 30728021 PMCID: PMC6366043 DOI: 10.1186/s12936-019-2665-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/27/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Treatment of parasitic diseases has been challenging due to evolution of drug resistant parasites, and thus there is need to identify new class of drugs and drug targets. Protein translation is important for survival of malarial parasite, Plasmodium, and the pathway is present in all of its life cycle stages. Aminoacyl tRNA synthetases are primary enzymes in protein translation as they catalyse amino acid addition to the cognate tRNA. This study sought to understand differences between Plasmodium and human aminoacyl tRNA synthetases through bioinformatics analysis. METHODS Plasmodium berghei, Plasmodium falciparum, Plasmodium fragile, Plasmodium knowlesi, Plasmodium malariae, Plasmodium ovale, Plasmodium vivax, Plasmodium yoelii and human aminoacyl tRNA synthetase sequences were retrieved from UniProt database and grouped into 20 families based on amino acid specificity. These families were further divided into two classes. Both families and classes were analysed. Motif discovery was carried out using the MEME software, sequence identity calculation was done using an in-house Python script, multiple sequence alignments were performed using PROMALS3D and TCOFFEE tools, and phylogenetic tree calculations were performed using MEGA vs 7.0 tool. Possible alternative binding sites were predicted using FTMap webserver and SiteMap tool. RESULTS Motif discovery revealed Plasmodium-specific motifs while phylogenetic tree calculations showed that Plasmodium proteins have different evolutionary history to the human homologues. Human aaRSs sequences showed low sequence identity (below 40%) compared to Plasmodium sequences. Prediction of alternative binding sites revealed potential druggable sites in PfArgRS, PfMetRS and PfProRS at regions that are weakly conserved when compared to the human homologues. Multiple sequence analysis, motif discovery, pairwise sequence identity calculations and phylogenetic tree analysis showed significant differences between parasite and human aaRSs proteins despite functional and structural conservation. These differences may provide a basis for further exploration of Plasmodium aminoacyl tRNA synthetases as potential drug targets. CONCLUSION This study showed that, despite, functional and structural conservation, Plasmodium aaRSs have key differences from the human homologues. These differences in Plasmodium aaRSs can be targeted to develop anti-malarial drugs with less toxicity to the host.
Collapse
Affiliation(s)
- Dorothy Wavinya Nyamai
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
3
|
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are modular enzymes globally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation. Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g., in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show huge structural plasticity related to function and limited idiosyncrasies that are kingdom or even species specific (e.g., the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS). Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably between distant groups such as Gram-positive and Gram-negative Bacteria. The review focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation, and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulated in last two decades is reviewed, showing how the field moved from essentially reductionist biology towards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRS paralogs (e.g., during cell wall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointed throughout the review and distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
Affiliation(s)
- Richard Giegé
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Mathias Springer
- Université Paris Diderot, Sorbonne Cité, UPR9073 CNRS, IBPC, 75005 Paris, France
| |
Collapse
|
4
|
Structures of two bacterial resistance factors mediating tRNA-dependent aminoacylation of phosphatidylglycerol with lysine or alanine. Proc Natl Acad Sci U S A 2015; 112:10691-6. [PMID: 26261323 DOI: 10.1073/pnas.1511167112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cytoplasmic membrane is probably the most important physical barrier between microbes and the surrounding habitat. Aminoacylation of the polar head group of the phospholipid phosphatidylglycerol (PG) catalyzed by Ala-tRNA(Ala)-dependent alanyl-phosphatidylglycerol synthase (A-PGS) or by Lys-tRNA(Lys)-dependent lysyl-phosphatidylglycerol synthase (L-PGS) enables bacteria to cope with cationic peptides that are harmful to the integrity of the cell membrane. Accordingly, these synthases also have been designated as multiple peptide resistance factors (MprF). They consist of a separable C-terminal catalytic domain and an N-terminal transmembrane flippase domain. Here we present the X-ray crystallographic structure of the catalytic domain of A-PGS from the opportunistic human pathogen Pseudomonas aeruginosa. In parallel, the structure of the related lysyl-phosphatidylglycerol-specific L-PGS domain from Bacillus licheniformis in complex with the substrate analog L-lysine amide is presented. Both proteins reveal a continuous tunnel that allows the hydrophobic lipid substrate PG and the polar aminoacyl-tRNA substrate to access the catalytic site from opposite directions. Substrate recognition of A-PGS versus L-PGS was investigated using misacylated tRNA variants. The structural work presented here in combination with biochemical experiments using artificial tRNA or artificial lipid substrates reveals the tRNA acceptor stem, the aminoacyl moiety, and the polar head group of PG as the main determinants for substrate recognition. A mutagenesis approach yielded the complementary amino acid determinants of tRNA interaction. These results have broad implications for the design of L-PGS and A-PGS inhibitors that could render microbial pathogens more susceptible to antimicrobial compounds.
Collapse
|
5
|
Adeolu M, Gupta RS. A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Antonie Van Leeuwenhoek 2014; 105:1049-72. [PMID: 24744012 DOI: 10.1007/s10482-014-0164-x] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/25/2014] [Indexed: 11/26/2022]
Abstract
The genus Borrelia contains two groups of organisms: the causative agents of Lyme disease and their relatives and the causative agents of relapsing fever and their relatives. These two groups are morphologically indistinguishable and are difficult to distinguish biochemically. In this work, we have carried out detailed comparative genomic analyses on protein sequences from 38 Borrelia genomes to identify molecular markers in the forms of conserved signature inserts/deletions (CSIs) that are specifically found in the Borrelia homologues, and conserved signature proteins (CSPs) which are uniquely present in Borrelia species. Our analyses have identified 31 CSIs and 82 CSPs that are uniquely shared by all sequenced Borrelia species, providing molecular markers for this group of organisms. In addition, our work has identified 7 CSIs and 21 CSPs which are uniquely found in the Lyme disease Borrelia species and eight CSIs and four CSPs that are specific for members of the relapsing fever Borrelia group. Additionally, 38 other CSIs, in proteins which are uniquely found in Borrelia species, also distinguish these two groups of Borrelia. The identified CSIs and CSPs provide novel and highly specific molecular markers for identification and distinguishing between the Lyme disease Borrelia and the relapsing fever Borrelia species. We also report the results of average nucleotide identity (ANI) analysis on Borrelia genomes and phylogenetic analysis for these species based upon 16S rRNA sequences and concatenated sequences for 25 conserved proteins. These analyses also support the distinctness of the two Borrelia clades. On the basis of the identified molecular markers, the results from ANI and phylogenetic studies, and the distinct pathogenicity profiles and arthropod vectors used by different Borrelia spp. for their transmission, we are proposing a division of the genus Borrelia into two separate genera: an emended genus Borrelia, containing the causative agents of relapsing fever and a novel genus, Borreliella gen. nov., containing the causative agents of Lyme disease.
Collapse
Affiliation(s)
- Mobolaji Adeolu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | | |
Collapse
|
6
|
Abstract
Aminoacyl-tRNAsynthetases (aaRSs) are modular enzymesglobally conserved in the three kingdoms of life. All catalyze the same two-step reaction, i.e., the attachment of a proteinogenic amino acid on their cognate tRNAs, thereby mediating the correct expression of the genetic code. In addition, some aaRSs acquired other functions beyond this key role in translation.Genomics and X-ray crystallography have revealed great structural diversity in aaRSs (e.g.,in oligomery and modularity, in ranking into two distinct groups each subdivided in 3 subgroups, by additional domains appended on the catalytic modules). AaRSs show hugestructural plasticity related to function andlimited idiosyncrasies that are kingdom or even speciesspecific (e.g.,the presence in many Bacteria of non discriminating aaRSs compensating for the absence of one or two specific aaRSs, notably AsnRS and/or GlnRS).Diversity, as well, occurs in the mechanisms of aaRS gene regulation that are not conserved in evolution, notably betweendistant groups such as Gram-positive and Gram-negative Bacteria.Thereview focuses on bacterial aaRSs (and their paralogs) and covers their structure, function, regulation,and evolution. Structure/function relationships are emphasized, notably the enzymology of tRNA aminoacylation and the editing mechanisms for correction of activation and charging errors. The huge amount of genomic and structural data that accumulatedin last two decades is reviewed,showing how thefield moved from essentially reductionist biologytowards more global and integrated approaches. Likewise, the alternative functions of aaRSs and those of aaRSparalogs (e.g., during cellwall biogenesis and other metabolic processes in or outside protein synthesis) are reviewed. Since aaRS phylogenies present promiscuous bacterial, archaeal, and eukaryal features, similarities and differences in the properties of aaRSs from the three kingdoms of life are pinpointedthroughout the reviewand distinctive characteristics of bacterium-like synthetases from organelles are outlined.
Collapse
|
7
|
Widmann J, Harris JK, Lozupone C, Wolfson A, Knight R. Stable tRNA-based phylogenies using only 76 nucleotides. RNA (NEW YORK, N.Y.) 2010; 16:1469-77. [PMID: 20558546 PMCID: PMC2905747 DOI: 10.1261/rna.726010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 04/16/2010] [Indexed: 05/29/2023]
Abstract
tRNAs are among the most ancient, highly conserved sequences on earth, but are often thought to be poor phylogenetic markers because they are short, often subject to horizontal gene transfer, and easily change specificity. Here we use an algorithm now commonly used in microbial ecology, UniFrac, to cluster 175 genomes spanning all three domains of life based on the phylogenetic relationships among their complete tRNA pools. We find that the overall pattern of similarities and differences in the tRNA pools recaptures universal phylogeny to a remarkable extent, and that the resulting tree is similar to the distribution of bootstrapped rRNA trees from the same genomes. In contrast, the trees derived from tRNAs of identical specificity or of individual isoacceptors generally produced trees of lower quality. However, some tRNA isoacceptors were very good predictors of the overall pattern of organismal evolution. These results show that UniFrac can extract meaningful biological patterns from even phylogenies with high level of statistical inaccuracy and horizontal gene transfer, and that, overall, the pattern of tRNA evolution tracks universal phylogeny and provides a background against which we can test hypotheses about the evolution of individual isoacceptors.
Collapse
Affiliation(s)
- Jeremy Widmann
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
8
|
Foy N, Jester B, Conant GC, Devine KM. The T box regulatory element controlling expression of the class I lysyl-tRNA synthetase of Bacillus cereus strain 14579 is functional and can be partially induced by reduced charging of asparaginyl-tRNAAsn. BMC Microbiol 2010; 10:196. [PMID: 20649968 PMCID: PMC2916919 DOI: 10.1186/1471-2180-10-196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/22/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysyl-tRNA synthetase (LysRS) is unique within the aminoacyl-tRNA synthetase family in that both class I (LysRS1) and class II (LysRS2) enzymes exist. LysRS1 enzymes are found in Archaebacteria and some eubacteria while all other organisms have LysRS2 enzymes. All sequenced strains of Bacillus cereus (except AH820) and Bacillus thuringiensis however encode both a class I and a class II LysRS. The lysK gene (encoding LysRS1) of B. cereus strain 14579 has an associated T box element, the first reported instance of potential T box control of LysRS expression. RESULTS A global study of 891 completely sequenced bacterial genomes identified T box elements associated with control of LysRS expression in only four bacterial species: B. cereus, B. thuringiensis, Symbiobacterium thermophilum and Clostridium beijerinckii. Here we investigate the T box element found in the regulatory region of the lysK gene in B. cereus strain 14579. We show that this T box element is functional, responding in a canonical manner to an increased level of uncharged tRNALys but, unusually, also responding to an increased level of uncharged tRNAAsn. We also show that B. subtilis strains with T box regulated expression of the endogenous lysS or the heterologous lysK genes are viable. CONCLUSIONS The T box element controlling lysK (encoding LysRS1) expression in B. cereus strain 14579 is functional, but unusually responds to depletion of charged tRNALys and tRNAAsn. This may have the advantage of making LysRS1 expression responsive to a wider range of nutritional stresses. The viability of B. subtilis strains with a single LysRS1 or LysRS2, whose expression is controlled by this T box element, makes the rarity of the occurrence of such control of LysRS expression puzzling.
Collapse
Affiliation(s)
- Niall Foy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2. Ireland
| | - Brian Jester
- Institut de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, 67 084 Strasbourg, France
| | - Gavin C Conant
- Division of Animal Sciences and Informatics Institute, University of Missouri, Columbia, MO 65211. USA
| | - Kevin M Devine
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2. Ireland
| |
Collapse
|
9
|
Omelchenko MV, Galperin MY, Wolf YI, Koonin EV. Non-homologous isofunctional enzymes: a systematic analysis of alternative solutions in enzyme evolution. Biol Direct 2010; 5:31. [PMID: 20433725 PMCID: PMC2876114 DOI: 10.1186/1745-6150-5-31] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 04/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. RESULTS We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. CONCLUSIONS These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity.
Collapse
Affiliation(s)
- Marina V Omelchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
10
|
Mondal UK, Das B, Ghosh TC, Sen A, Bothra AK. Nucleotide triplet based molecular phylogeny of class I and class II aminoacyl t-RNA synthetase in three domain of life process: bacteria, archaea, and eukarya. J Biomol Struct Dyn 2008; 26:321-8. [PMID: 18808198 DOI: 10.1080/07391102.2008.10507247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The aminoacyl-tRNA synthetases are one of the major protein components in the translation machinery. These essential proteins are found in all forms of life and are responsible for charging their cognate tRNAs with the correct amino acid. These important enzymes have been the subject of intense scientific inquiry for nearly half a century, but their complete evolutionary history has yet to emerge. Amino acids sequence based phylogeny has some limitation due to very low sequence similarity amongst the different tRNA synthetases and structure based phylogeny has also its limitation. In our study, tRNA nucleotide sequences of E. coli K12 (Bacteria), Saccharomyces cerevisiae (Eukarya), Thermococcus kodakaraensis KOD1, and Archaeoglobus fulgidus DSM 4304 (Archaea) were used for phylogenetic analysis. Our results complement the observation with the earlier studies based on multiple sequence alignment and structural alignment. We observed that relationship between archaeal tRNA synthetases are different that of bacteria and eucarya. Violation of Class rule of LysRS is observed here also. The uniqueness of this method is that it does not employ sequence alignment of complete nucleotide sequence of the corresponding gene.
Collapse
Affiliation(s)
- Uttam K Mondal
- Cheminformatics Bioinformatics Laboratory, Department of Chemistry, Raiganj College (University College), Raiganj-733134, Uttar Dinajpur, West Bengal, India
| | | | | | | | | |
Collapse
|
11
|
Using a strategy based on the concept of convergent evolution to identify residue substitutions responsible for thermal adaptation. Proteins 2008; 73:53-62. [DOI: 10.1002/prot.22049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Guo LT, Chen XL, Zhao BT, Shi Y, Li W, Xue H, Jin YX. Human tryptophanyl-tRNA synthetase is switched to a tRNA-dependent mode for tryptophan activation by mutations at V85 and I311. Nucleic Acids Res 2007; 35:5934-43. [PMID: 17726052 PMCID: PMC2034488 DOI: 10.1093/nar/gkm633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
For most aminoacyl-tRNA synthetases (aaRS), their cognate tRNA is not obligatory to catalyze amino acid activation, with the exception of four class I (aaRS): arginyl-tRNA synthetase, glutamyl-tRNA synthetase, glutaminyl-tRNA synthetase and class I lysyl-tRNA synthetase. Furthermore, for arginyl-, glutamyl- and glutaminyl-tRNA synthetase, the integrated 3' end of the tRNA is necessary to activate the ATP-PPi exchange reaction. Tryptophanyl-tRNA synthetase is a class I aaRS that catalyzes tryptophan activation in the absence of its cognate tRNA. Here we describe mutations located at the appended β1–β2 hairpin and the AIDQ sequence of human tryptophanyl-tRNA synthetase that switch this enzyme to a tRNA-dependent mode in the tryptophan activation step. For some mutant enzymes, ATP-PPi exchange activity was completely lacking in the absence of tRNATrp, which could be partially rescued by adding tRNATrp, even if it had been oxidized by sodium periodate. Therefore, these mutant enzymes have strong similarity to arginyl-tRNA synthetase, glutaminyl-tRNA synthetase and glutamyl-tRNA synthetase in their mode of amino acid activation. The results suggest that an aaRS that does not normally require tRNA for amino acid activation can be switched to a tRNA-dependent mode.
Collapse
Affiliation(s)
- Li-Tao Guo
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
| | - Xiang-Long Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
| | - Bo-Tao Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
| | - Yi Shi
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
| | - Wei Li
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
| | - Hong Xue
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
| | - You-Xin Jin
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031 and Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kwoloon, Hong Kong, China
- *To whom correspondence should be addressed. 0086 21 549212220086 21 5492 1011
| |
Collapse
|
13
|
Jakó É, Ittzés P, Szenes Á, Kun Á, Szathmáry E, Pál G. In silico detection of tRNA sequence features characteristic to aminoacyl-tRNA synthetase class membership. Nucleic Acids Res 2007; 35:5593-609. [PMID: 17704131 PMCID: PMC2018626 DOI: 10.1093/nar/gkm598] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aminoacyl tRNA synthetases (aaRS) are grouped into Class I and II based on primary and tertiary structure and enzyme properties suggesting two independent phylogenetic lineages. Analogously, tRNA molecules can also form two respective classes, based on the class membership of their corresponding aaRS. Although some aaRS–tRNA interactions are not extremely specific and require editing mechanisms to avoid misaminoacylation, most aaRS–tRNA interactions are rather stereospecific. Thus, class-specific aaRS features could be mirrored by class-specific tRNA features. However, previous investigations failed to detect conserved class-specific nucleotides. Here we introduce a discrete mathematical approach that evaluates not only class-specific ‘strictly present’, but also ‘strictly absent’ nucleotides. The disjoint subsets of these elements compose a unique partition, named extended consensus partition (ECP). By analyzing the ECP for both Class I and II tDNA sets from 50 (13 archaeal, 30 bacterial and 7 eukaryotic) species, we could demonstrate that class-specific tRNA sequence features do exist, although not in terms of strictly conserved nucleotides as it had previously been anticipated. This finding demonstrates that important information was hidden in tRNA sequences inaccessible for traditional statistical methods. The ECP analysis might contribute to the understanding of tRNA evolution and could enrich the sequence analysis tool repertoire.
Collapse
Affiliation(s)
- Éena Jakó
- Theoretical Biology and Ecology Research Group of the Hungarian Academy of Sciences, Department of Plant Taxonomy and Ecology, eScience Regional Knowledge Center, at Eötvös Loránd University, Collegium Budapest, Institute for Advanced Study, Budapest, Hungary, Department of Biochemistry and Department of Plant Taxonomy and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Péter Ittzés
- Theoretical Biology and Ecology Research Group of the Hungarian Academy of Sciences, Department of Plant Taxonomy and Ecology, eScience Regional Knowledge Center, at Eötvös Loránd University, Collegium Budapest, Institute for Advanced Study, Budapest, Hungary, Department of Biochemistry and Department of Plant Taxonomy and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Áron Szenes
- Theoretical Biology and Ecology Research Group of the Hungarian Academy of Sciences, Department of Plant Taxonomy and Ecology, eScience Regional Knowledge Center, at Eötvös Loránd University, Collegium Budapest, Institute for Advanced Study, Budapest, Hungary, Department of Biochemistry and Department of Plant Taxonomy and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Ádám Kun
- Theoretical Biology and Ecology Research Group of the Hungarian Academy of Sciences, Department of Plant Taxonomy and Ecology, eScience Regional Knowledge Center, at Eötvös Loránd University, Collegium Budapest, Institute for Advanced Study, Budapest, Hungary, Department of Biochemistry and Department of Plant Taxonomy and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Eörs Szathmáry
- Theoretical Biology and Ecology Research Group of the Hungarian Academy of Sciences, Department of Plant Taxonomy and Ecology, eScience Regional Knowledge Center, at Eötvös Loránd University, Collegium Budapest, Institute for Advanced Study, Budapest, Hungary, Department of Biochemistry and Department of Plant Taxonomy and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Pál
- Theoretical Biology and Ecology Research Group of the Hungarian Academy of Sciences, Department of Plant Taxonomy and Ecology, eScience Regional Knowledge Center, at Eötvös Loránd University, Collegium Budapest, Institute for Advanced Study, Budapest, Hungary, Department of Biochemistry and Department of Plant Taxonomy and Ecology, Eötvös Loránd University, Budapest, Hungary
- *To whom correspondence should be addressed. +36 1 2090555/8577+36 1 3812172
| |
Collapse
|
14
|
Abstract
At the time of its discovery four decades ago, the genetic code was viewed as the result of a "frozen accident." Our current knowledge of the translation process and of the detailed structure of its components highlights the roles of RNA structure (in mRNA and tRNA), RNA modification (in tRNA), and aminoacyl-tRNA synthetase diversity in the evolution of the genetic code. The diverse assortment of codon reassignments present in subcellular organelles and organisms of distinct lineages has 'thawed' the concept of a universal immutable code; it may not be accidental that out of more than 140 amino acids found in natural proteins, only two (selenocysteine and pyrrolysine) are known to have been added to the standard 20-member amino acid alphabet. The existence of phosphoseryl-tRNA (in the form of tRNACys and tRNASec) may presage the discovery of other cotranslationally inserted modified amino acids.
Collapse
Affiliation(s)
- Alexandre Ambrogelly
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | |
Collapse
|
15
|
Sekine SI, Shichiri M, Bernier S, Chênevert R, Lapointe J, Yokoyama S. Structural bases of transfer RNA-dependent amino acid recognition and activation by glutamyl-tRNA synthetase. Structure 2007; 14:1791-9. [PMID: 17161369 DOI: 10.1016/j.str.2006.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 10/12/2006] [Accepted: 10/13/2006] [Indexed: 10/23/2022]
Abstract
Glutamyl-tRNA synthetase (GluRS) is one of the aminoacyl-tRNA synthetases that require the cognate tRNA for specific amino acid recognition and activation. We analyzed the role of tRNA in amino acid recognition by crystallography. In the GluRS*tRNA(Glu)*Glu structure, GluRS and tRNA(Glu) collaborate to form a highly complementary L-glutamate-binding site. This collaborative site is functional, as it is formed in the same manner in pretransition-state mimic, GluRS*tRNA(Glu)*ATP*Eol (a glutamate analog), and posttransition-state mimic, GluRS*tRNA(Glu)*ESA (a glutamyl-adenylate analog) structures. In contrast, in the GluRS*Glu structure, only GluRS forms the amino acid-binding site, which is defective and accounts for the binding of incorrect amino acids, such as D-glutamate and L-glutamine. Therefore, tRNA(Glu) is essential for formation of the completely functional binding site for L-glutamate. These structures, together with our previously described structures, reveal that tRNA plays a crucial role in accurate positioning of both L-glutamate and ATP, thus driving the amino acid activation.
Collapse
Affiliation(s)
- Shun-ichi Sekine
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Hohn MJ, Park HS, O'Donoghue P, Schnitzbauer M, Söll D. Emergence of the universal genetic code imprinted in an RNA record. Proc Natl Acad Sci U S A 2006; 103:18095-100. [PMID: 17110438 PMCID: PMC1838712 DOI: 10.1073/pnas.0608762103] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular basis of the genetic code manifests itself in the interaction of the aminoacyl-tRNA synthetases and their cognate tRNAs. The fundamental biological question regarding these enzymes' role in the evolution of the genetic code remains open. Here we probe this question in a system in which the same tRNA species is aminoacylated by two unrelated synthetases. Should this tRNA possess major identity elements common to both enzymes, this would favor a scenario where the aminoacyl-tRNA synthetases evolved in the context of preestablished tRNA identity, i.e., after the universal genetic code emerged. An experimental system is provided by the recently discovered O-phosphoseryl-tRNA synthetase (SepRS), which acylates tRNA(Cys) with phosphoserine (Sep), and the well known cysteinyl-tRNA synthetase, which charges the same tRNA with cysteine. We determined the identity elements of Methanocaldococcus jannaschii tRNA(Cys) in the aminoacylation reaction for the two Methanococcus maripaludis synthetases SepRS (forming Sep-tRNA(Cys)) and cysteinyl-tRNA synthetase (forming Cys-tRNA(Cys)). The major elements, the discriminator base and the three anticodon bases, are shared by both tRNA synthetases. An evolutionary analysis of archaeal, bacterial, and eukaryotic tRNA(Cys) sequences predicted additional SepRS-specific minor identity elements (G37, A47, and A59) and suggested the dominance of vertical inheritance for tRNA(Cys) from a single common ancestor. Transplantation of the identified identity elements into the Escherichia coli tRNA(Gly) scaffold endowed facile phosphoserylation activity on the resulting chimera. Thus, tRNA(Cys) identity is an ancient RNA record that depicts the emergence of the universal genetic code before the evolution of the modern aminoacylation systems.
Collapse
Affiliation(s)
| | - Hee-Sung Park
- Departments of *Molecular Biophysics and Biochemistry and
| | | | | | - Dieter Söll
- Departments of *Molecular Biophysics and Biochemistry and
- Chemistry, Yale University, New Haven, CT 06520-8114
- To whom correspondence should be addressed at:
Department of Molecular Biophysics and Biochemistry, Yale University, P.O. Box 208114, 266 Whitney Avenue, New Haven, CT 06520-8114. E-mail:
| |
Collapse
|
17
|
Wang S, Prætorius-Ibba M, Ataide S, Roy H, Ibba M. Discrimination of cognate and noncognate substrates at the active site of class I lysyl-tRNA synthetase. Biochemistry 2006; 45:3646-52. [PMID: 16533047 PMCID: PMC2527480 DOI: 10.1021/bi0523005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aminoacyl-tRNA synthetases are divided into two unrelated structural classes, with lysyl-tRNA synthetase (LysRS) being the only enzyme represented in both classes. On the basis of the structure of l-lysine complexed with Pyrococcus horikoshii class I LysRS (LysRS1) and homology to glutamyl-tRNA synthetase (GluRS), residues implicated in amino acid recognition and noncognate substrate discrimination were systematically replaced in Borrelia burgdorferi LysRS1. The catalytic efficiency of steady-state aminoacylation (k(cat)/K(M)) with lysine by LysRS1 variants fell by 1-4 orders of magnitude compared to that of the wild type. Disruption of putative hydrogen bonding interactions through replacement of G29, T31, and Y269 caused up to 1500-fold reductions in k(cat)/K(M), similar to changes previously observed for comparable variants of class II LysRS (LysRS2). Replacements of W220 and H242, both of which are implicated in hydrophobic interactions with the side chain of lysine, resulted in more dramatic changes with up to 40000-fold reductions in k(cat)/K(M) observed. This indicates that the more compact LysRS1 active site employs both electrostatic and hydrophobic interactions during lysine discrimination, explaining the ability of LysRS1 to discriminate against noncognate substrates accepted by LysRS2. Several of the LysRS1 variants were found to be more specific than the wild type with respect to noncognate amino acid recognition but less efficient in cognate aminoacylation. This indicates that LysRS1 compromises between efficient catalysis and substrate discrimination, in contrast to LysRS2 which is considerably more effective in catalysis but is less specific than its class I counterpart.
Collapse
Affiliation(s)
- Shiming Wang
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mette Prætorius-Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sandro Ataide
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hervé Roy
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
18
|
Shaul S, Nussinov R, Pupko T. Paths of lateral gene transfer of lysyl-aminoacyl-tRNA synthetases with a unique evolutionary transition stage of prokaryotes coding for class I and II varieties by the same organisms. BMC Evol Biol 2006; 6:22. [PMID: 16529662 PMCID: PMC1475646 DOI: 10.1186/1471-2148-6-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 03/12/2006] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND While the premise that lateral gene transfer (LGT) is a dominant evolutionary force is still in considerable dispute, the case for widespread LGT in the family of aminoacyl-tRNA synthetases (aaRS) is no longer contentious. aaRSs are ancient enzymes, guarding the fidelity of the genetic code. They are clustered in two structurally unrelated classes. Only lysine aminoacyl-tRNA synthetase (LysRS) is found both as a class 1 and a class 2 enzyme (LysRS1-2). Remarkably, in several extant prokaryotes both classes of the enzyme coexist, a unique phenomenon that has yet to receive its due attention. RESULTS We applied a phylogenetic approach for determining the extent and origin of LGT in prokaryotic LysRS. Reconstructing species trees for Archaea and Bacteria, and inferring that their last common ancestors encoded LysRS1 and LysRS2, respectively, we studied the gains and losses of both classes. A complex pattern of LGT events emerged. In specific groups of organisms LysRS1 was replaced by LysRS2 (and vice versa). In one occasion, within the alpha proteobacteria, a LysRS2 to LysRS1 LGT was followed by reversal to LysRS2. After establishing the most likely LGT paths, we studied the possible origins of the laterally transferred genes. To this end, we reconstructed LysRS gene trees and evaluated the likely origins of the laterally transferred genes. While the sources of LysRS1 LGTs were readily identified, those for LysRS2 remain, for now, uncertain. The replacement of one LysRS by another apparently transits through a stage simultaneously coding for both synthetases, probably conferring a selective advantage to the affected organisms. CONCLUSION The family of LysRSs features complex LGT events. The currently available data were sufficient for identifying unambiguously the origins of LysRS1 but not of LysRS2 gene transfers. A selective advantage is suggested to organisms encoding simultaneously LysRS1-2.
Collapse
Affiliation(s)
- Shaul Shaul
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc. Center for Cancer Research, Nanobiology Program, NCI-Frederick Frederick, MD 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
19
|
Rao VRDK, Ramanjeneyulu R, Rao DM, Kumar CS. Comparative modeling of class 1 lysyl tRNA synthetase from Treponema pallidum. Bioinformation 2006; 1:81-2. [PMID: 17597860 PMCID: PMC1891664 DOI: 10.6026/97320630001081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 01/23/2006] [Accepted: 01/24/2006] [Indexed: 12/03/2022] Open
Abstract
Lysyl tRNA synthetases facilitate amino acylation and play a crucial role in the essential cellular process of translation. They are grouped into two distinct classes (class I and class II). Class I lysyl tRNA synthetase is considered as a drug target for syphilis caused by Treponema pallidum. Comparative genome analysis shows the absence of its sequence homolog in eukaryotes. The structure of class I lysyl tRNA synthetase from Treponema pallidum is unknown and the difficulties in the in vitro culturing of Treponema makes it non-trivial. We used the structural template of class I lysyl tRNA synthetase from the archaea Pyrococcus horikoshii for modeling the Treponema pallidum lysyl tRNA synthetase structure. Thus, we propose the usefulness of the modeled class I lysyl tRNA synthetase for the design of suitable inhibitors towards the treatment of syphilis.
Collapse
|
20
|
Ambrogelly A, Frugier M, Ibba M, Söll D, Giegé R. Transfer RNA recognition by class I lysyl-tRNA synthetase from the Lyme disease pathogen Borrelia burgdorferi. FEBS Lett 2005; 579:2629-34. [PMID: 15862301 DOI: 10.1016/j.febslet.2005.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 03/30/2005] [Accepted: 04/02/2005] [Indexed: 10/25/2022]
Abstract
Borrelia burgdorferi and other spirochetes contain a class I lysyl-tRNA synthetase (LysRS), in contrast to most eubacteria that have a canonical class II LysRS. We analyzed tRNA(Lys) recognition by B. burgdorferi LysRS, using two complementary approaches. First, the nucleotides of B. burgdorferi tRNA(Lys) in contact with B. burgdorferi LysRS were determined by enzymatic footprinting experiments. Second, the kinetic parameters for a series of variants of the B. burgdorferi tRNA(Lys) were then determined during aminoacylation by B. burgdorferi LysRS. The identity elements were found to be mostly located in the anticodon and in the acceptor stem. Transplantation of the identified identity elements into the Escherichia coli tRNA(Asp) scaffold endowed lysylation activity on the resulting chimera, indicating that a functional B. burgdorferi lysine tRNA identity set had been determined.
Collapse
Affiliation(s)
- Alexandre Ambrogelly
- Department of Molecular Biophysics and Biochemistry, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
21
|
Galperin MY, Koonin EV. 'Conserved hypothetical' proteins: prioritization of targets for experimental study. Nucleic Acids Res 2004; 32:5452-63. [PMID: 15479782 PMCID: PMC524295 DOI: 10.1093/nar/gkh885] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Comparative genomics shows that a substantial fraction of the genes in sequenced genomes encodes 'conserved hypothetical' proteins, i.e. those that are found in organisms from several phylogenetic lineages but have not been functionally characterized. Here, we briefly discuss recent progress in functional characterization of prokaryotic 'conserved hypothetical' proteins and the possible criteria for prioritizing targets for experimental study. Based on these criteria, the chief one being wide phyletic spread, we offer two 'top 10' lists of highly attractive targets. The first list consists of proteins for which biochemical activity could be predicted with reasonable confidence but the biological function was predicted only in general terms, if at all ('known unknowns'). The second list includes proteins for which there is no prediction of biochemical activity, even if, for some, general biological clues exist ('unknown unknowns'). The experimental characterization of these and other 'conserved hypothetical' proteins is expected to reveal new, crucial aspects of microbial biology and could also lead to better functional prediction for medically relevant human homologs.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
22
|
Gophna U, Charlebois RL, Doolittle WF. Have archaeal genes contributed to bacterial virulence? Trends Microbiol 2004; 12:213-9. [PMID: 15120140 DOI: 10.1016/j.tim.2004.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Uri Gophna
- Genome Atlantic and Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 1X5, Canada.
| | | | | |
Collapse
|
23
|
Jester BC, Levengood JD, Roy H, Ibba M, Devine KM. Nonorthologous replacement of lysyl-tRNA synthetase prevents addition of lysine analogues to the genetic code. Proc Natl Acad Sci U S A 2003; 100:14351-6. [PMID: 14623972 PMCID: PMC283595 DOI: 10.1073/pnas.2036253100] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Indexed: 11/18/2022] Open
Abstract
Insertion of lysine during protein synthesis depends on the enzyme lysyl-tRNA synthetase (LysRS), which exists in two unrelated forms, LysRS1 and LysRS2. LysRS1 has been found in most archaea and some bacteria, and LysRS2 has been found in eukarya, most bacteria, and a few archaea, but the two proteins are almost never found together in a single organism. Comparison of structures of LysRS1 and LysRS2 complexed with lysine suggested significant differences in their potential to bind lysine analogues with backbone replacements. One such naturally occurring compound, the metabolic intermediate S-(2-aminoethyl)-L-cysteine, is a bactericidal agent incorporated during protein synthesis via LysRS2. In vitro tests showed that S-(2-aminoethyl)-L-cysteine is a poor substrate for LysRS1, and that it inhibits LysRS1 200-fold less effectively than it inhibits LysRS2. In vivo inhibition by S-(2-aminoethyl)-L-cysteine was investigated by replacing the endogenous LysRS2 of Bacillus subtilis with LysRS1 from the Lyme disease pathogen Borrelia burgdorferi. B. subtilis strains producing LysRS1 alone were relatively insensitive to growth inhibition by S-(2-aminoethyl)-L-cysteine, whereas a WT strain or merodiploid strains producing both LysRS1 and LysRS2 showed significant growth inhibition under the same conditions. These growth effects arising from differences in amino acid recognition could contribute to the distribution of LysRS1 and LysRS2 in different organisms. More broadly, these data demonstrate how diversity of the aminoacyl-tRNA synthetases prevents infiltration of the genetic code by noncanonical amino acids, thereby providing a natural reservoir of potential antibiotic resistance.
Collapse
Affiliation(s)
- Brian C Jester
- Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
24
|
Abstract
The scope and impact of horizontal gene transfer (HGT) in Bacteria and Archaea has grown from a topic largely ignored by the microbiological community to a hot-button issue gaining staunch supporters (on particular points of view) at a seemingly ever-increasing rate. Opinions range from HGT being a phenomenon with minor impact on overall microbial evolution and diversification to HGT being so rampant as to obfuscate any opportunities for elucidating microbial evolution - especially organismal phylogeny - from sequence comparisons. This contentious issue has been fuelled by the influx of complete genome sequences, which has allowed for a more detailed examination of this question than previously afforded. We propose that the lack of common ground upon which to formulate consensus viewpoints probably stems from the absence of answers to four critical questions. If addressed, they could clarify concepts, reject tenuous speculation and solidify a robust foundation for the integration of HGT into a framework for long-term microbial evolution, regardless of the intellectual camp in which you reside. Here, we examine these issues, why their answers shape the outcome of this debate and the progress being made to address them.
Collapse
Affiliation(s)
- Jeffrey G Lawrence
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, 352 Crawford Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
25
|
Brevet A, Chen J, Commans S, Lazennec C, Blanquet S, Plateau P. Anticodon recognition in evolution: switching tRNA specificity of an aminoacyl-tRNA synthetase by site-directed peptide transplantation. J Biol Chem 2003; 278:30927-35. [PMID: 12766171 DOI: 10.1074/jbc.m302618200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly conserved aspartyl-, asparaginyl-, and lysyl-tRNA synthetases compose one subclass of aminoacyl-tRNA synthetases, called IIb. The three enzymes possess an OB-folded extension at their N terminus. The function of this extension is to specifically recognize the anticodon triplet of the tRNA. Three-dimensional models of bacterial aspartyl- and lysyl-tRNA synthetases complexed to tRNA indicate that a rigid scaffold of amino acid residues along the five beta-strands of the OB-fold accommodates the base U at the center of the anticodon. The binding of the adjacent anticodon bases occurs through interactions with a flexible loop joining strands 4 and 5 (L45). As a result, a switching of the specificity of lysyl-tRNA synthetase from tRNALys (anticodon UUU) toward tRNAAsp (GUC) could be attempted by transplanting the small loop L45 of aspartyl-tRNA synthetase inside lysyl-tRNA synthetase. Upon this transplantation, lysyl-tRNA synthetase loses its capacity to aminoacylate tRNALys. In exchange, the chimeric enzyme acquires the capacity to charge tRNAAsp with lysine. Upon giving the tRNAAsp substrate the discriminator base of tRNALys, the specificity shift is improved. The change of specificity was also established in vivo. Indeed, the transplanted lysyl-tRNA synthetase succeeds in suppressing a missense Lys --> Asp mutation inserted into the beta-lactamase gene. These results functionally establish that sequence variation in a small peptide region of subclass IIb aminoacyl-tRNA synthetases contributes to specification of nucleic acid recognition. Because this peptide element is not part of the core catalytic structure, it may have evolved independently of the active sites of these synthetases.
Collapse
Affiliation(s)
- Annie Brevet
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, CNRS-Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | | | | | | | | | |
Collapse
|
26
|
Polycarpo C, Ambrogelly A, Ruan B, Tumbula-Hansen D, Ataide SF, Ishitani R, Yokoyama S, Nureki O, Ibba M, Söll D. Activation of the Pyrrolysine Suppressor tRNA Requires Formation of a Ternary Complex with Class I and Class II Lysyl-tRNA Synthetases. Mol Cell 2003; 12:287-94. [PMID: 14536069 DOI: 10.1016/s1097-2765(03)00280-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Monomethylamine methyltransferase of the archaeon Methanosarcina barkeri contains a rare amino acid, pyrrolysine, encoded by the termination codon UAG. Translation of this UAG requires the aminoacylation of the corresponding amber suppressor tRNAPyl. Previous studies reported that tRNAPyl could be aminoacylated by the synthetase-like protein PylS. We now show that tRNAPyl is efficiently aminoacylated in the presence of both the class I LysRS and class II LysRS of M. barkeri, but not by either enzyme acting alone or by PylS. In vitro studies show that both the class I and II LysRS enzymes must bind tRNAPyl in order for the aminoacylation reaction to proceed. Structural modeling and selective inhibition experiments indicate that the class I and II LysRSs form a ternary complex with tRNAPyl, with the aminoacylation activity residing in the class II enzyme.
Collapse
Affiliation(s)
- Carla Polycarpo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Accurate aminoacyl-tRNA synthesis is essential for correct translation of the genetic code in all organisms. Whereas many aspects of this process are conserved, others display a surprisingly high level of divergence from the canonical Escherichia coli model system. These differences are most pronounced in archaea where novel mechanisms have recently been described for aminoacylating tRNAs with asparagine, cysteine, glutamine and lysine. Whereas these mechanisms were initially assumed to be uniquely archaeal, both the alternative asparagine and lysine pathways have subsequently been demonstrated in numerous bacteria. Similarly, studies of the means by which archaea insert the rare amino acid selenocysteine in response to UGA stop codons have helped provide a better understanding of both archaeal and eukaryal selenoprotein synthesis. Most recently a new co-translationally inserted amino acid, pyrrolysine, has been found in archaea although again there is some suggestion that it may also be present in bacteria. Thus, whereas archaea contain a preponderance of non-canonical aminoacyl-tRNA synthesis systems most are also found elsewhere albeit less frequently.
Collapse
Affiliation(s)
- Mette Praetorius-Ibba
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
28
|
Sekine SI, Nureki O, Dubois DY, Bernier S, Chênevert R, Lapointe J, Vassylyev DG, Yokoyama S. ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. EMBO J 2003; 22:676-88. [PMID: 12554668 PMCID: PMC140737 DOI: 10.1093/emboj/cdg053] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aminoacyl-tRNA synthetases catalyze the formation of an aminoacyl-AMP from an amino acid and ATP, prior to the aminoacyl transfer to tRNA. A subset of aminoacyl-tRNA synthetases, including glutamyl-tRNA synthetase (GluRS), have a regulation mechanism to avoid aminoacyl-AMP formation in the absence of tRNA. In this study, we determined the crystal structure of the 'non-productive' complex of Thermus thermophilus GluRS, ATP and L-glutamate, together with those of the GluRS.ATP, GluRS.tRNA.ATP and GluRS.tRNA.GoA (a glutamyl-AMP analog) complexes. In the absence of tRNA(Glu), ATP is accommodated in a 'non-productive' subsite within the ATP-binding site, so that the ATP alpha-phosphate and the glutamate alpha-carboxyl groups in GluRS. ATP.Glu are too far from each other (6.2 A) to react. In contrast, the ATP-binding mode in GluRS.tRNA. ATP is dramatically different from those in GluRS.ATP.Glu and GluRS.ATP, but corresponds to the AMP moiety binding mode in GluRS.tRNA.GoA (the 'productive' subsite). Therefore, tRNA binding to GluRS switches the ATP-binding mode. The interactions of the three tRNA(Glu) regions with GluRS cause conformational changes around the ATP-binding site, and allow ATP to bind to the 'productive' subsite.
Collapse
Affiliation(s)
- Shun-ichi Sekine
- Cellular Signaling Laboratory and Structurome Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan and Départements de Biochimie et Microbiologie and Chimie, Faculté des Sciences et de Génie, CREFSIP, Université Laval, Québec, Canada G1K 7P4 Corresponding authors e-mail: or
| | - Osamu Nureki
- Cellular Signaling Laboratory and Structurome Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan and Départements de Biochimie et Microbiologie and Chimie, Faculté des Sciences et de Génie, CREFSIP, Université Laval, Québec, Canada G1K 7P4 Corresponding authors e-mail: or
| | - Daniel Y. Dubois
- Cellular Signaling Laboratory and Structurome Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan and Départements de Biochimie et Microbiologie and Chimie, Faculté des Sciences et de Génie, CREFSIP, Université Laval, Québec, Canada G1K 7P4 Corresponding authors e-mail: or
| | - Stéphane Bernier
- Cellular Signaling Laboratory and Structurome Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan and Départements de Biochimie et Microbiologie and Chimie, Faculté des Sciences et de Génie, CREFSIP, Université Laval, Québec, Canada G1K 7P4 Corresponding authors e-mail: or
| | - Robert Chênevert
- Cellular Signaling Laboratory and Structurome Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan and Départements de Biochimie et Microbiologie and Chimie, Faculté des Sciences et de Génie, CREFSIP, Université Laval, Québec, Canada G1K 7P4 Corresponding authors e-mail: or
| | - Jacques Lapointe
- Cellular Signaling Laboratory and Structurome Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan and Départements de Biochimie et Microbiologie and Chimie, Faculté des Sciences et de Génie, CREFSIP, Université Laval, Québec, Canada G1K 7P4 Corresponding authors e-mail: or
| | - Dmitry G. Vassylyev
- Cellular Signaling Laboratory and Structurome Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan and Départements de Biochimie et Microbiologie and Chimie, Faculté des Sciences et de Génie, CREFSIP, Université Laval, Québec, Canada G1K 7P4 Corresponding authors e-mail: or
| | - Shigeyuki Yokoyama
- Cellular Signaling Laboratory and Structurome Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148, Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan and Départements de Biochimie et Microbiologie and Chimie, Faculté des Sciences et de Génie, CREFSIP, Université Laval, Québec, Canada G1K 7P4 Corresponding authors e-mail: or
| |
Collapse
|
29
|
Abstract
Accumulating prokaryotic gene and genome sequences reveal that the exchange of genetic information through both homology-dependent recombination and horizontal (lateral) gene transfer (HGT) is far more important, in quantity and quality, than hitherto imagined. The traditional view, that prokaryotic evolution can be understood primarily in terms of clonal divergence and periodic selection, must be augmented to embrace gene exchange as a creative force, itself responsible for much of the pattern of similarities and differences we see between prokaryotic microbes. Rather than replacing periodic selection on genetic diversity, gene loss, and other chromosomal alterations as important players in adaptive evolution, gene exchange acts in concert with these processes to provide a rich explanatory paradigm-some of whose implications we explore here. In particular, we discuss (1) the role of recombination and HGT in giving phenotypic "coherence" to prokaryotic taxa at all levels of inclusiveness, (2) the implications of these processes for the reconstruction and meaning of "phylogeny," and (3) new views of prokaryotic adaptation and diversification based on gene acquisition and exchange.
Collapse
Affiliation(s)
- J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, CT, USA
| | | | | |
Collapse
|
30
|
Francklyn C, Perona JJ, Puetz J, Hou YM. Aminoacyl-tRNA synthetases: versatile players in the changing theater of translation. RNA (NEW YORK, N.Y.) 2002; 8:1363-1372. [PMID: 12458790 PMCID: PMC1370343 DOI: 10.1017/s1355838202021180] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aminoacyl-tRNA synthetases attach amino acids to the 3' termini of cognate tRNAs to establish the specificity of protein synthesis. A recent Asilomar conference (California, January 13-18, 2002) discussed new research into the structure-function relationship of these crucial enzymes, as well as a multitude of novel functions, including participation in amino acid biosynthesis, cell cycle control, RNA splicing, and export of tRNAs from nucleus to cytoplasm in eukaryotic cells. Together with the discovery of their role in the cellular synthesis of proteins to incorporate selenocysteine and pyrrolysine, these diverse functions of aminoacyl-tRNA synthetases underscore the flexibility and adaptability of these ancient enzymes and stimulate the development of new concepts and methods for expanding the genetic code.
Collapse
|
31
|
Korencić D, Söll D, Ambrogelly A. A one-step method for in vitro production of tRNA transcripts. Nucleic Acids Res 2002; 30:e105. [PMID: 12384607 PMCID: PMC137149 DOI: 10.1093/nar/gnf104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sequencing of a large number of microbial genomes has led to the discovery of new enzymes involved in tRNA biosynthesis and tRNA function. Preparation of a great variety of RNA molecules is, therefore, of major interest for biochemical characterization of these proteins. We describe a fast, cost-effective and efficient method for in vitro production of tRNA transcripts. T7 RNA polymerase requires a double-stranded DNA promoter in order to initiate transcription; however, elongation does not require a double-stranded DNA template. A partially double-stranded transcription template formed by annealing of a short oligonucleotide, complementary to the T7 promoter, to a larger oligonucleotide is shown to be a good substrate for in vitro transcription. This method allows rapid production of a variety of tRNA transcripts which can be aminoacylated well. This eliminates the need for cloning of tRNA genes, large-scale plasmid preparation and enzymatic digestion.
Collapse
Affiliation(s)
- Dragana Korencić
- Department of Molecular Biophysics and Biochemistry and. Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
32
|
Lawrence JG, Hatfull GF, Hendrix RW. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J Bacteriol 2002; 184:4891-905. [PMID: 12169615 PMCID: PMC135278 DOI: 10.1128/jb.184.17.4891-4905.2002] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Accepted: 04/23/2002] [Indexed: 11/20/2022] Open
Abstract
The practice of classifying organisms into hierarchical groups originated with Aristotle and was codified into nearly immutable biological law by Linnaeus. The heart of taxonomy is the biological species, which forms the foundation for higher levels of classification. Whereas species have long been established among sexual eukaryotes, achieving a meaningful species concept for prokaryotes has been an onerous task and has proven exceedingly difficult for describing viruses and bacteriophages. Moreover, the assembly of viral "species" into higher-order taxonomic groupings has been even more tenuous, since these groupings were based initially on limited numbers of morphological features and more recently on overall genomic similarities. The wealth of nucleotide sequence information that catalyzed a revolution in the taxonomy of free-living organisms necessitates a reevaluation of the concept of viral species, genera, families, and higher levels of classification. Just as microbiologists discarded dubious morphological traits in favor of more accurate molecular yardsticks of evolutionary change, virologists can gain new insight into viral evolution through the rigorous analyses afforded by the molecular phylogenetics of viral genes. For bacteriophages, such dissections of genomic sequences reveal fundamental flaws in the Linnaean paradigm that necessitate a new view of viral evolution, classification, and taxonomy.
Collapse
Affiliation(s)
- Jeffrey G Lawrence
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
33
|
Ambrogelly A, Korencic D, Ibba M. Functional annotation of class I lysyl-tRNA synthetase phylogeny indicates a limited role for gene transfer. J Bacteriol 2002; 184:4594-600. [PMID: 12142429 PMCID: PMC135231 DOI: 10.1128/jb.184.16.4594-4600.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Functional and comparative genomic studies have previously shown that the essential protein lysyl-tRNA synthetase (LysRS) exists in two unrelated forms. Most prokaryotes and all eukaryotes contain a class II LysRS, whereas most archaea and a few bacteria contain a less common class I LysRS. In bacteria the class I LysRS is only found in the alpha-proteobacteria and a scattering of other groups, including the spirochetes, while the class I protein is by far the most common form of LysRS in archaea. To investigate this unusual distribution we functionally annotated a representative phylogenetic sampling of LysRS proteins. Class I LysRS proteins from a variety of bacteria and archaea were characterized in vitro by their ability to recognize Escherichia coli tRNA(Lys) anticodon mutants. Class I LysRS proteins were found to fall into two distinct groups, those that preferentially recognize the third anticodon nucleotide of tRNA(Lys) (U36) and those that recognize both the second and third positions (U35 and U36). Strong recognition of U35 and U36 was confined to the pyrococcus-spirochete grouping within the archaeal branch of the class I LysRS phylogenetic tree, while U36 recognition was seen in other archaea and an example from the alpha-proteobacteria. Together with the corresponding phylogenetic relationships, these results suggest that despite its comparative rarity the distribution of class I LysRS conforms to the canonical archaeal-bacterial division. The only exception, suggested from both functional and phylogenetic data, appears to be the horizontal transfer of class I LysRS from a pyrococcal progenitor to a limited number of bacteria.
Collapse
Affiliation(s)
- Alexandre Ambrogelly
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | |
Collapse
|
34
|
Abstract
The role of tRNA as the adaptor in protein synthesis has held an enduring fascination for molecular biologists. Over four decades of study, taking in numerous milestones in molecular biology, led to what was widely held to be a fairly complete picture of how tRNAs and amino acids are paired prior to protein synthesis. However, recent developments in genomics and structural biology have revealed an unexpected array of new enzymes, pathways and mechanisms involved in aminoacyl-tRNA synthesis. As a more complete picture of aminoacyl-tRNA synthesis now begins to emerge, the high degree of evolutionary diversity in this universal and essential process is becoming clearer.
Collapse
Affiliation(s)
- M Ibba
- Center for Biomolecular Recognition, Department of Medical Biochemistry and Genetics, Laboratory B, The Panum Institute, Blegdamsvej 3c, DK-2200, Copenhagen N,
| | | |
Collapse
|
35
|
Cavalcanti AR, Ferreira R. On the relative content of G,C bases in codons of amino acids corresponding to class I and II aminoacyl-tRNA synthetases. ORIGINS LIFE EVOL B 2001; 31:257-69. [PMID: 11434105 DOI: 10.1023/a:1010639521100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have analyzed the relative G,C content from protein coding regions of 530 organisms and found that the ratio of the G,C content of the codons of the amino acids corresponding to Class II and Class I aminoacyl-tRNA synthetases decreases in a statistically significant way from prokaryotes to animals. This can be interpreted assuming that an initial asymmetry between the G,C content of codons of Class I and II amino acids existed and has decreased in the course of evolution.
Collapse
Affiliation(s)
- A R Cavalcanti
- Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street, 60637, Chicago, IL, USA.
| | | |
Collapse
|
36
|
Raczniak G, Ibba M, Söll D. Genomics-based identification of targets in pathogenic bacteria for potential therapeutic and diagnostic use. Toxicology 2001; 160:181-9. [PMID: 11246138 DOI: 10.1016/s0300-483x(00)00454-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The availability of numerous complete microbial genome sequences has profoundly altered our understanding of a number of fundamental biological processes. For example the enzymes involved in aminoacyl-tRNA (AA-tRNA) synthesis, the key process responsible for the accuracy of protein synthesis, have been found to be highly species-specific. In particular, a number of pathogens contain certain pathways of AA-tRNA synthesis that are unrelated to those found in their mammalian hosts. Since AA-tRNA synthesis is indispensable for cell viability, the discovery of pathogen-specific pathways and enzymes presents novel therapeutic and diagnostic targets. Here we will review recent advances in the elucidation of AA-tRNA synthesis pathways and discuss the possible pharmaceutical exploitation of these discoveries. In particular, the integration of genomic and biochemical approaches to identify novel targets for the treatment of Chlamydial infections and the diagnosis and treatment of Lyme disease will be presented.
Collapse
Affiliation(s)
- G Raczniak
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208114, 266 Whitney Avenue, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
37
|
Abstract
Aminoacyl-tRNAs are substrates for translation and are pivotal in determining how the genetic code is interpreted as amino acids. The function of aminoacyl-tRNA synthesis is to precisely match amino acids with tRNAs containing the corresponding anticodon. This is primarily achieved by the direct attachment of an amino acid to the corresponding tRNA by an aminoacyl-tRNA synthetase, although intrinsic proofreading and extrinsic editing are also essential in several cases. Recent studies of aminoacyl-tRNA synthesis, mainly prompted by the advent of whole genome sequencing and the availability of a vast body of structural data, have led to an expanded and more detailed picture of how aminoacyl-tRNAs are synthesized. This article reviews current knowledge of the biochemical, structural, and evolutionary facets of aminoacyl-tRNA synthesis.
Collapse
Affiliation(s)
- M Ibba
- Center for Biomolecular Recognition, IMBG Laboratory B, The Panum Institute, DK-2200, Copenhagen N, Denmark.
| | | |
Collapse
|
38
|
Söll D, Becker HD, Plateau P, Blanquet S, Ibba M. Context-dependent anticodon recognition by class I lysyl-tRNA synthetases. Proc Natl Acad Sci U S A 2000; 97:14224-8. [PMID: 11121028 PMCID: PMC18899 DOI: 10.1073/pnas.97.26.14224] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lysyl-tRNA synthesis is catalyzed by two unrelated families of aminoacyl-tRNA synthetases. In most bacteria and all eukarya, the known lysyl-tRNA synthetases (LysRSs) are subclass IIb-type aminoacyl-tRNA synthetases, whereas many archaea and a scattering of bacteria contain an unrelated class I-type LysRS. Examination of the recognition of partially modified tRNA(Lys) anticodon variants by a bacterial (from Borrelia burgdorferi) and an archaeal (from Methanococcus maripaludis) class I lysyl-tRNA synthetase revealed differences in the pattern of anticodon recognition between the two enzymes. U35 and U36 were both important for recognition by the B. burgdorferi enzyme, whereas only U36 played a role in recognition by M. maripaludis LysRS. Examination of the phylogenetic distribution of class I LysRSs suggested a correlation between recognition of U35 and U36 and the presence of asparaginyl-tRNA synthetase (AsnRS), which also recognizes U35 and U36 in the anticodon of tRNA(Asn). However, the class II LysRS of Helicobacter pylori, an organism that lacks AsnRS, also recognizes both U35 and U36, indicating that the presence of AsnRS has solely influenced the phylogenetic distribution of class I LysRSs. These data suggest that competition between unrelated aminoacyl-tRNA synthetases for overlapping anticodon sequences is a determinant of the phylogenetic distribution of extant synthetase families. Such patterns of competition also provide a basis for the two separate horizontal gene transfer events hypothesized in the evolution of the class I lysyl-tRNA synthetases.
Collapse
Affiliation(s)
- D Söll
- Center for Biomolecular Recognition, IMBG Laboratory B, The Panum Institute, Blegdamsvej 3c, DK 2200N, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
39
|
Bunjun S, Stathopoulos C, Graham D, Min B, Kitabatake M, Wang AL, Wang CC, Vivarès CP, Weiss LM, Söll D. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Proc Natl Acad Sci U S A 2000; 97:12997-3002. [PMID: 11078517 PMCID: PMC27167 DOI: 10.1073/pnas.230444397] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cysteinyl-tRNA (Cys-tRNA) is essential for protein synthesis. In most organisms the enzyme responsible for the formation of Cys-tRNA is cysteinyl-tRNA synthetase (CysRS). The only known exceptions are the euryarchaea Methanococcus jannaschii and Methanobacterium thermoautotrophicum, which do not encode a CysRS. Deviating from the accepted concept of one aminoacyl-tRNA synthetase per amino acid, these organisms employ prolyl-tRNA synthetase as the enzyme that carries out Cys-tRNA formation. To date this dual-specificity prolyl-cysteinyl-tRNA synthetase (ProCysRS) is only known to exist in archaea. Analysis of the preliminary genomic sequence of the primitive eukaryote Giardia lamblia indicated the presence of an archaeal prolyl-tRNA synthetase (ProRS). Its proS gene was cloned and the gene product overexpressed in Escherichia coli. By using G. lamblia, M. jannaschii, or E. coli tRNA as substrate, this ProRS was able to form Cys-tRNA and Pro-tRNA in vitro. Cys-AMP formation, but not Pro-AMP synthesis, was tRNA-dependent. The in vitro data were confirmed in vivo, as the cloned G. lamblia proS gene was able to complement a temperature-sensitive E. coli cysS strain. Inhibition studies of CysRS activity with proline analogs (thiaproline and 5'-O-[N-(l-prolyl)-sulfamoyl]adenosine) in a Giardia S-100 extract predicted that the organism also contains a canonical CysRS. This prediction was confirmed by cloning and analysis of the corresponding cysS gene. Like a number of archaea, Giardia contains two enzymes, ProCysRS and CysRS, for Cys-tRNA formation. In contrast, the purified Saccharomyces cerevisiae and E. coli ProRS enzymes were unable to form Cys-tRNA under these conditions. Thus, the dual specificity is restricted to the archaeal genre of ProRS. G. lamblia's archaeal-type prolyl- and alanyl-tRNA synthetases refine our understanding of the evolution and interaction of archaeal and eukaryal translation systems.
Collapse
Affiliation(s)
- S Bunjun
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Glansdorff N. About the last common ancestor, the universal life-tree and lateral gene transfer: a reappraisal. Mol Microbiol 2000; 38:177-85. [PMID: 11069646 DOI: 10.1046/j.1365-2958.2000.02126.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An organismal tree rooted in the bacterial branch and derived from a hyperthermophilic last common ancestor (LCA) is still widely assumed to represent the path followed by evolution from the most primeval cells to the three domains recognized among contemporary organisms: Bacteria, Archaea and Eucarya. In the past few years, however, more and more discrepancies between this pattern and individual protein trees have been brought to light. There has been an overall tendency to attribute these incongruities to widespread lateral gene transfer. However, recent developments, a reappraisal of earlier evidence and considerations of our own lead us to a quite different view. It would appear (i) that the role of lateral gene transfer was overemphasized in recent discussions of molecular phylogenies; (ii) that the LCA was probably a non-thermophilic protoeukaryote from which both Archaea and Bacteria emerged by reductive evolution but not as sister groups, in keeping with a current evolutionary scheme for the biosynthesis of membrane lipids; and (iii) that thermophilic Archaea may have been the first branch to diverge from the ancestral line.
Collapse
Affiliation(s)
- N Glansdorff
- Microbiology, Free University of Brussels (VUB), Flanders Interuniversity Institute and J.-M. Wiame Microbiological Research Institute, Brussels B-1070, Belgium.
| |
Collapse
|
41
|
Tumbula DL, Becker HD, Chang WZ, Söll D. Domain-specific recruitment of amide amino acids for protein synthesis. Nature 2000; 407:106-10. [PMID: 10993083 DOI: 10.1038/35024120] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of aminoacyl-transfer RNA is a crucial step in ensuring the accuracy of protein synthesis. Despite the central importance of this process in all living organisms, it remains unknown how archaea and some bacteria synthesize Asn-tRNA and Gln-tRNA. These amide aminoacyl-tRNAs can be formed by the direct acylation of tRNA, catalysed by asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase, respectively. A separate, indirect pathway involves the formation of mis-acylated Asp-tRNA(Asn) or Glu-tRNA(Gln), and the subsequent amidation of these amino acids while they are bound to tRNA, which is catalysed by amidotransferases. Here we show that all archaea possess an archaea-specific heterodimeric amidotransferase (encoded by gatD and gatE) for Gln-tRNA formation. However, Asn-tRNA synthesis in archaea is divergent: some archaea use asparaginyl-tRNA synthetase, whereas others use a heterotrimeric amidotransferase (encoded by the gatA, gatB and gatC genes). Because bacteria primarily use transamidation, and the eukaryal cytoplasm uses glutaminyl-tRNA synthetase, it appears that the three domains use different mechanisms for Gln-tRNA synthesis; as such, this is the only known step in protein synthesis where all three domains have diverged. Closer inspection of the two amidotransferases reveals that each of them recruited a metabolic enzyme to aid its function; this provides direct evidence for a relationship between amino-acid metabolism and protein biosynthesis.
Collapse
Affiliation(s)
- D L Tumbula
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
42
|
Galperin MY, Koonin EV. Who's your neighbor? New computational approaches for functional genomics. Nat Biotechnol 2000; 18:609-13. [PMID: 10835597 DOI: 10.1038/76443] [Citation(s) in RCA: 224] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several recently developed computational approaches in comparative genomics go beyond sequence comparison. By analyzing phylogenetic profiles of protein families, domain fusions, gene adjacency in genomes, and expression patterns, these methods predict many functional interactions between proteins and help deduce specific functions for numerous proteins. Although some of the resultant predictions may not be highly specific, these developments herald a new era in genomics in which the benefits of comparative analysis of the rapidly growing collection of complete genomes will become increasingly obvious.
Collapse
Affiliation(s)
- M Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda MD 20894, USA
| | | |
Collapse
|
43
|
Abstract
The aminoacyl-tRNA synthetases are an ancient group of enzymes that catalyze the covalent attachment of an amino acid to its cognate transfer RNA. The question of specificity, that is, how each synthetase selects the correct individual or isoacceptor set of tRNAs for each amino acid, has been referred to as the second genetic code. A wealth of structural, biochemical, and genetic data on this subject has accumulated over the past 40 years. Although there are now crystal structures of sixteen of the twenty synthetases from various species, there are only a few high resolution structures of synthetases complexed with cognate tRNAs. Here we review briefly the structural information available for synthetases, and focus on the structural features of tRNA that may be used for recognition. Finally, we explore in detail the insights into specific recognition gained from classical and atomic group mutagenesis experiments performed with tRNAs, tRNA fragments, and small RNAs mimicking portions of tRNAs.
Collapse
Affiliation(s)
- P J Beuning
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
44
|
Woese CR, Olsen GJ, Ibba M, Söll D. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 2000; 64:202-36. [PMID: 10704480 PMCID: PMC98992 DOI: 10.1128/mmbr.64.1.202-236.2000] [Citation(s) in RCA: 508] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aminoacyl-tRNA synthetases (AARSs) and their relationship to the genetic code are examined from the evolutionary perspective. Despite a loose correlation between codon assignments and AARS evolutionary relationships, the code is far too highly structured to have been ordered merely through the evolutionary wanderings of these enzymes. Nevertheless, the AARSs are very informative about the evolutionary process. Examination of the phylogenetic trees for each of the AARSs reveals the following. (i) Their evolutionary relationships mostly conform to established organismal phylogeny: a strong distinction exists between bacterial- and archaeal-type AARSs. (ii) Although the evolutionary profiles of the individual AARSs might be expected to be similar in general respects, they are not. It is argued that these differences in profiles reflect the stages in the evolutionary process when the taxonomic distributions of the individual AARSs became fixed, not the nature of the individual enzymes. (iii) Horizontal transfer of AARS genes between Bacteria and Archaea is asymmetric: transfer of archaeal AARSs to the Bacteria is more prevalent than the reverse, which is seen only for the "gemini group. " (iv) The most far-ranging transfers of AARS genes have tended to occur in the distant evolutionary past, before or during formation of the primary organismal domains. These findings are also used to refine the theory that at the evolutionary stage represented by the root of the universal phylogenetic tree, cells were far more primitive than their modern counterparts and thus exchanged genetic material in far less restricted ways, in effect evolving in a communal sense.
Collapse
Affiliation(s)
- C R Woese
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Comparative analysis of the complete genome sequences of 10 bacterial pathogens available in the public databases offers the first insights into the drug discovery approaches of the near future. Genes that are conserved in different genomes often turn out to be essential, which makes them attractive targets for new broad-spectrum antibiotics. Subtractive genome analysis reveals the genes that are conserved in all or most of the pathogenic bacteria but not in eukaryotes; these are the most obvious candidates for drug targets. Species-specific genes, on the other hand, may offer the possibility to design drugs against a particular, narrow group of pathogens.
Collapse
Affiliation(s)
- M Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | |
Collapse
|
46
|
Abstract
Comparative path lengths in amino acid biosynthesis and other molecular indicators of the timing of codon assignment were examined to reconstruct the main stages of code evolution. The codon tree obtained was rooted in the 4 N-fixing amino acids (Asp, Glu, Asn, Gln) and 16 triplets of the NAN set. This small, locally phased (commaless) code evidently arose from ambiguous translation on a poly(A) collector strand, in a surface reaction network. Copolymerisation of these amino acids yields polyanionic peptide chains, which could anchor uncharged amide residues to a positively charged mineral surface. From RNA virus structure and replication in vitro, the first genes seemed to be RNA segments spliced into tRNA. Expansion of the code reduced the risk of mutation to an unreadable codon. This step was conditional on initiation at the 5'-codon of a translated sequence. Incorporation of increasingly hydrophobic amino acids accompanied expansion. As codons of the NUN set were assigned most slowly, they received the most nonpolar amino acids. The origin of ferredoxin and Gln synthetase was traced to mid-expansion phase. Surface metabolism ceased by the end of code expansion, as cells bounded by a proteo-phospholipid membrane, with a protoATPase, had emerged. Incorporation of positively charged and aromatic amino acids followed. They entered the post-expansion code by codon capture. Synthesis of efficient enzymes with acid-base catalysis was then possible. Both types of aminoacyl-tRNA synthetases were attributed to this stage. tRNA sequence diversity and error rates in RNA replication indicate the code evolved within 20 million yr in the preIsuan era. These findings on the genetic code provide empirical evidence, from a contemporaneous source, that a surface reaction network, centred on C-fixing autocatalytic cycles, rapidly led to cellular life on Earth.
Collapse
Affiliation(s)
- B K Davis
- Research Foundation of Southern California Inc., La Jolla 92037, USA
| |
Collapse
|
47
|
Abstract
Four euryarchaeal genomes have been completely sequenced and are publicly available: Methanococcus jannaschii, Methanobacterium thermoautotrophicum, Pyrococcus horikoshii and Archaeoglobus fulgidus. Four more genome sequences, two crenarchaeal and two pyrococci, will soon be released. In addition, seven more archaeal genome sequencing projects are under way, including two halophiles, two Thermoplasma, and a methanogen. These projects cover all branches of the archaeal domain and will lead to new insights into archaeal metabolism, DNA processing, and evolutionary relationships with the Bacteria and Eukarya.
Collapse
Affiliation(s)
- T Gaasterland
- Laboratory of Computational Genomics 1230 York Avenue The Rockefeller University New York, New York, 10021, USA.
| |
Collapse
|
48
|
Hamann CS, Sowers KR, Lipman RS, Hou YM. An archaeal aminoacyl-tRNA synthetase missing from genomic analysis. J Bacteriol 1999; 181:5880-4. [PMID: 10482537 PMCID: PMC94116 DOI: 10.1128/jb.181.18.5880-5884.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete genomic sequencing of Methanococcus jannaschii cannot identify the gene for the cysteine-specific member of aminoacyl-tRNA synthetases. However, we show here that enzyme activity is present in the cell lysate of M. jannaschii. The demonstration of this activity suggests a direct pathway for the synthesis of cysteinyl-tRNA(Cys) during protein synthesis.
Collapse
Affiliation(s)
- C S Hamann
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
49
|
Tumbula D, Vothknecht UC, Kim HS, Ibba M, Min B, Li T, Pelaschier J, Stathopoulos C, Becker H, Söll D. Archaeal aminoacyl-tRNA synthesis: diversity replaces dogma. Genetics 1999; 152:1269-76. [PMID: 10430557 PMCID: PMC1460689 DOI: 10.1093/genetics/152.4.1269] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurate aminoacyl-tRNA synthesis is essential for faithful translation of the genetic code and consequently has been intensively studied for over three decades. Until recently, the study of aminoacyl-tRNA synthesis in archaea had received little attention. However, as in so many areas of molecular biology, the advent of archaeal genome sequencing has now drawn researchers to this field. Investigations with archaea have already led to the discovery of novel pathways and enzymes for the synthesis of numerous aminoacyl-tRNAs. The most surprising of these findings has been a transamidation pathway for the synthesis of asparaginyl-tRNA and a novel lysyl-tRNA synthetase. In addition, seryl- and phenylalanyl-tRNA synthetases that are only marginally related to known examples outside the archaea have been characterized, and the mechanism of cysteinyl-tRNA formation in Methanococcus jannaschii and Methanobacterium thermoautotrophicum is still unknown. These results have revealed completely unexpected levels of complexity and diversity, questioning the notion that aminoacyl-tRNA synthesis is one of the most conserved functions in gene expression. It has now become clear that the distribution of the various mechanisms of aminoacyl-tRNA synthesis in extant organisms has been determined by numerous gene transfer events, indicating that, while the process of protein biosynthesis is orthologous, its constituents are not.
Collapse
Affiliation(s)
- D Tumbula
- Department of Molecular Biophysics and Biochemistry, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wolf YI, Aravind L, Grishin NV, Koonin EV. Evolution of Aminoacyl-tRNA Synthetases—Analysis of Unique Domain Architectures and Phylogenetic Trees Reveals a Complex History of Horizontal Gene Transfer Events. Genome Res 1999. [DOI: 10.1101/gr.9.8.689] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phylogenetic analysis of aminoacyl-tRNA synthetases (aaRSs) of all 20 specificities from completely sequenced bacterial, archaeal, and eukaryotic genomes reveals a complex evolutionary picture. Detailed examination of the domain architecture of aaRSs using sequence profile searches delineated a network of partially conserved domains that is even more elaborate than previously suspected. Several unexpected evolutionary connections were identified, including the apparent origin of the β-subunit of bacterial GlyRS from the HD superfamily of hydrolases, a domain shared by bacterial AspRS and the B subunit of archaeal glutamyl-tRNA amidotransferases, and another previously undetected domain that is conserved in a subset of ThrRS, guanosine polyphosphate hydrolases and synthetases, and a family of GTPases. Comparison of domain architectures and multiple alignments resulted in the delineation of synapomorphies—shared derived characters, such as extra domains or inserts—for most of the aaRSs specificities. These synapomorphies partition sets of aaRSs with the same specificity into two or more distinct and apparently monophyletic groups. In conjunction with cluster analysis and a modification of the midpoint-rooting procedure, this partitioning was used to infer the likely root position in phylogenetic trees. The topologies of the resulting rooted trees for most of the aaRSs specificities are compatible with the evolutionary “standard model” whereby the earliest radiation event separated bacteria from the common ancestor of archaea and eukaryotes as opposed to the two other possible evolutionary scenarios for the three major divisions of life. For almost all aaRSs specificities, however, this simple scheme is confounded by displacement of some of the bacterial aaRSs by their eukaryotic or, less frequently, archaeal counterparts. Displacement of ancestral eukaryotic aaRS genes by bacterial ones, presumably of mitochondrial origin, was observed for three aaRSs. In contrast, there was no convincing evidence of displacement of archaeal aaRSs by bacterial ones. Displacement of aaRS genes by eukaryotic counterparts is most common among parasitic and symbiotic bacteria, particularly the spirochaetes, in which 10 of the 19 aaRSs seem to have been displaced by the respective eukaryotic genes and two by the archaeal counterpart. Unlike the primary radiation events between the three main divisions of life, that were readily traceable through the phylogenetic analysis of aaRSs, no consistent large-scale bacterial phylogeny could be established. In part, this may be due to additional gene displacement events among bacterial lineages. Argument is presented that, although lineage-specific gene loss might have contributed to the evolution of some of the aaRSs, this is not a viable alternative to horizontal gene transfer as the principal evolutionary phenomenon in this gene class.[Complete multiple alignments of all aaRSs from complete genomes as well as the alignments of conserved regions used for phylogenetic tree construction are available at ftp://ncbi.nlm.nih.gov/pub/koonin/aaRS]
Collapse
|