1
|
Fogg JM, Judge AK, Stricker E, Chan HL, Zechiedrich L. Supercoiling and looping promote DNA base accessibility and coordination among distant sites. Nat Commun 2021; 12:5683. [PMID: 34584096 PMCID: PMC8478907 DOI: 10.1038/s41467-021-25936-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022] Open
Abstract
DNA in cells is supercoiled and constrained into loops and this supercoiling and looping influence every aspect of DNA activity. We show here that negative supercoiling transmits mechanical stress along the DNA backbone to disrupt base pairing at specific distant sites. Cooperativity among distant sites localizes certain sequences to superhelical apices. Base pair disruption allows sharp bending at superhelical apices, which facilitates DNA writhing to relieve torsional strain. The coupling of these processes may help prevent extensive denaturation associated with genomic instability. Our results provide a model for how DNA can form short loops, which are required for many essential processes, and how cells may use DNA loops to position nicks to facilitate repair. Furthermore, our results reveal a complex interplay between site-specific disruptions to base pairing and the 3-D conformation of DNA, which influences how genomes are stored, replicated, transcribed, repaired, and many other aspects of DNA activity.
Collapse
Affiliation(s)
- Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Houston, TX, USA
| | - Allison K Judge
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA
| | - Erik Stricker
- Department of Molecular Virology and Microbiology, Houston, TX, USA
| | - Hilda L Chan
- Graduate Program in Immunology and Microbiology, Houston, TX, USA
- Medical Scientist Training Program, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Houston, TX, USA.
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Houston, TX, USA.
- Department of Pharmacology and Chemical Biology, Houston, TX, USA.
- Graduate Program in Immunology and Microbiology, Houston, TX, USA.
| |
Collapse
|
2
|
Kim SH, Ganji M, Kim E, van der Torre J, Abbondanzieri E, Dekker C. DNA sequence encodes the position of DNA supercoils. eLife 2018; 7:e36557. [PMID: 30523779 PMCID: PMC6301789 DOI: 10.7554/elife.36557] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
The three-dimensional organization of DNA is increasingly understood to play a decisive role in vital cellular processes. Many studies focus on the role of DNA-packaging proteins, crowding, and confinement in arranging chromatin, but structural information might also be directly encoded in bare DNA itself. Here, we visualize plectonemes (extended intertwined DNA structures formed upon supercoiling) on individual DNA molecules. Remarkably, our experiments show that the DNA sequence directly encodes the structure of supercoiled DNA by pinning plectonemes at specific sequences. We develop a physical model that predicts that sequence-dependent intrinsic curvature is the key determinant of pinning strength and demonstrate this simple model provides very good agreement with the data. Analysis of several prokaryotic genomes indicates that plectonemes localize directly upstream of promoters, which we experimentally confirm for selected promotor sequences. Our findings reveal a hidden code in the genome that helps to spatially organize the chromosomal DNA.
Collapse
Affiliation(s)
- Sung Hyun Kim
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Mahipal Ganji
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Eugene Kim
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Jaco van der Torre
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Elio Abbondanzieri
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| | - Cees Dekker
- Department of BionanoscienceKavli Institute of Nanoscience, Delft University of TechnologyDelftThe Netherlands
| |
Collapse
|
3
|
Sutthibutpong T, Matek C, Benham C, Slade GG, Noy A, Laughton C, K Doye JP, Louis AA, Harris SA. Long-range correlations in the mechanics of small DNA circles under topological stress revealed by multi-scale simulation. Nucleic Acids Res 2016; 44:9121-9130. [PMID: 27664220 PMCID: PMC5100592 DOI: 10.1093/nar/gkw815] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 09/03/2016] [Indexed: 12/14/2022] Open
Abstract
It is well established that gene regulation can be achieved through activator and repressor proteins that bind to DNA and switch particular genes on or off, and that complex metabolic networks determine the levels of transcription of a given gene at a given time. Using three complementary computational techniques to study the sequence-dependence of DNA denaturation within DNA minicircles, we have observed that whenever the ends of the DNA are constrained, information can be transferred over long distances directly by the transmission of mechanical stress through the DNA itself, without any requirement for external signalling factors. Our models combine atomistic molecular dynamics (MD) with coarse-grained simulations and statistical mechanical calculations to span three distinct spatial resolutions and timescale regimes. While they give a consensus view of the non-locality of sequence-dependent denaturation in highly bent and supercoiled DNA loops, each also reveals a unique aspect of long-range informational transfer that occurs as a result of restraining the DNA within the closed loop of the minicircles.
Collapse
Affiliation(s)
- Thana Sutthibutpong
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.,Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
| | - Christian Matek
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Craig Benham
- UC Davis Genome Centre, Health Sciences Drive, Davis, CA 95616, USA
| | - Gabriel G Slade
- Department of Physics, São Paulo State University, Rua Cristovão, São José do Rio Preto, SP 15054-000, Brazil
| | - Agnes Noy
- Department of Physics, Biological Physical Sciences Institute, University of York, York, YO10 5DD, UK
| | - Charles Laughton
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Sarah A Harris
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK .,Astbury Centre for Structural and Molecular Biology, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| |
Collapse
|
4
|
Abstract
A periodic bias in nucleotide frequency with a period of about 11 bp is characteristic for bacterial genomes. This signal is commonly interpreted to relate to the helical pitch of negatively supercoiled DNA. Functions in supercoiling-dependent RNA transcription or as a 'structural code' for DNA packaging have been suggested. Cyanobacterial genomes showed especially strong periodic signals and, on the other hand, DNA supercoiling and supercoiling-dependent transcription are highly dynamic and underlie circadian rhythms of these phototrophic bacteria. Focusing on this phylum and dinucleotides, we find that a minimal motif of AT-tracts (AT2) yields the strongest signal. Strong genome-wide periodicity is ancestral to a clade of unicellular and polyploid species but lost upon morphological transitions into two baeocyte-forming and a symbiotic species. The signal is intermediate in heterocystous species and weak in monoploid picocyanobacteria. A pronounced 'structural code' may support efficient nucleoid condensation and segregation in polyploid cells. The major source of the AT2 signal are protein-coding regions, where it is encoded preferentially in the first and third codon positions. The signal shows only few relations to supercoiling-dependent and diurnal RNA transcription in Synechocystis sp. PCC 6803. Strong and specific signals in two distinct transposons suggest roles in transposase transcription and transpososome formation.
Collapse
Affiliation(s)
- Robert Lehmann
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany
| | - Rainer Machné
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany Institute for Theoretical Chemistry, University of Vienna, Währinger Straße 17, A-1090, Vienna, Austria
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstraße 43, D-10115, Berlin, Germany
| |
Collapse
|
5
|
Abstract
AbstractShort runs of adenines are a ubiquitous DNA element in regulatory regions of many organisms. When runs of 4–6 adenine base pairs (‘A-tracts’) are repeated with the helical periodicity, they give rise to global curvature of the DNA double helix, which can be macroscopically characterized by anomalously slow migration on polyacrylamide gels. The molecular structure of these DNA tracts is unusual and distinct from that of canonical B-DNA. We review here our current knowledge about the molecular details of A-tract structure and its interaction with sequences flanking them of either side and with the environment. Various molecular models were proposed to describe A-tract structure and how it causes global deflection of the DNA helical axis. We review old and recent findings that enable us to amalgamate the various findings to one model that conforms to the experimental data. Sequences containing phased repeats of A-tracts have from the very beginning been synonymous with global intrinsic DNA bending. In this review, we show that very often it is the unique structure of A-tracts that is at the basis of their widespread occurrence in regulatory regions of many organisms. Thus, the biological importance of A-tracts may often be residing in their distinct structure rather than in the global curvature that they induce on sequences containing them.
Collapse
|
6
|
Mielke SP, Grønbech-Jensen N, Krishnan VV, Fink WH, Benham CJ. Brownian dynamics simulations of sequence-dependent duplex denaturation in dynamically superhelical DNA. J Chem Phys 2007; 123:124911. [PMID: 16392531 DOI: 10.1063/1.2038767] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The topological state of DNA in vivo is dynamically regulated by a number of processes that involve interactions with bound proteins. In one such process, the tracking of RNA polymerase along the double helix during transcription, restriction of rotational motion of the polymerase and associated structures, generates waves of overtwist downstream and undertwist upstream from the site of transcription. The resulting superhelical stress is often sufficient to drive double-stranded DNA into a denatured state at locations such as promoters and origins of replication, where sequence-specific duplex opening is a prerequisite for biological function. In this way, transcription and other events that actively supercoil the DNA provide a mechanism for dynamically coupling genetic activity with regulatory and other cellular processes. Although computer modeling has provided insight into the equilibrium dynamics of DNA supercoiling, to date no model has appeared for simulating sequence-dependent DNA strand separation under the nonequilibrium conditions imposed by the dynamic introduction of torsional stress. Here, we introduce such a model and present results from an initial set of computer simulations in which the sequences of dynamically superhelical, 147 base pair DNA circles were systematically altered in order to probe the accuracy with which the model can predict location, extent, and time of stress-induced duplex denaturation. The results agree both with well-tested statistical mechanical calculations and with available experimental information. Additionally, we find that sites susceptible to denaturation show a propensity for localizing to supercoil apices, suggesting that base sequence determines locations of strand separation not only through the energetics of interstrand interactions, but also by influencing the geometry of supercoiling.
Collapse
Affiliation(s)
- Steven P Mielke
- Biophysics Graduate Group, University of California, Davis, California 95616, USA.
| | | | | | | | | |
Collapse
|
7
|
Marilley M, Milani P, Rocca-Serra J. Gradual melting of a replication origin (Schizosaccharomyces pombe ars1): in situ atomic force microscopy (AFM) analysis. Biochimie 2007; 89:534-41. [PMID: 17397989 DOI: 10.1016/j.biochi.2007.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 02/15/2007] [Indexed: 02/02/2023]
Abstract
Local DNA melting is integral to fundamental processes such as replication or transcription. In vivo, these two processes do not occur on molecules free in solution but, instead, involve DNA molecules which are organized into DNA/proteins complexes. Atomic force microscopy imaging offers a possibility to look at individual molecules. It allowed us to follow the progress of local denaturation in liquid, but with the added constraints of DNA lying on a surface. We present a kinetic analysis of the mapping of the temperature-driven melting seen at a replication origin (Schizosaccharomyces pombe ars1). The results indicate an expected base composition dependency, but also a strong extremity effect. Noteworthy, a "structural" effect is clearly occurring - which is shown by the greater susceptibility of the strongly curved region present in the sequence to unwind. DNA melting, at this place, is seen to occur after an increase in the curvature amplitude and a simultaneous shift of the nucleotide sequence positioned at the apex. Because this may determine the position of the Replication Initiation (R.I.) site, the result suggests that eukaryotic replication origins, although described as possessing no consensus sequences, may well have their mechanics sustained by the properties of common structural features. Our analysis may, therefore, provide new information that will give genuine insights on how DNA molecules behave when organized into primosomes, replisomes, promoter initiation complexes, etc. and thus, be essential to better understanding the way genes function.
Collapse
Affiliation(s)
- Monique Marilley
- Laboratoire de régulation génique et fonctionnelle & microscopie champ proche (RGFCP), IFR 125, Faculté de Médecine, Réseau AFM, Université de la Méditerranée, 13385 Marseille cedex 5, France.
| | | | | |
Collapse
|
8
|
Kaur J, Rajamohan G, Dikshit KL. Cloning and characterization of promoter-active DNA sequences from Streptococcus equisimilis. Curr Microbiol 2006; 54:48-53. [PMID: 17171467 DOI: 10.1007/s00284-006-0249-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2006] [Accepted: 09/20/2006] [Indexed: 11/28/2022]
Abstract
Genomic fragments of Streptococcus equisimilis exhibiting potent promoter activity in Escherichia coli were isolated by transcriptional fusion to chloramphenicol acetyl transferase (CAT) structural gene. Random S. equanimities DNA, cloned in E. coli, exhibited a higher frequency of strong promoter activity than did similarly cloned E. coli fragments. The determination of the relative promoter strength of randomly selected clones with CAT assay demonstrated the dominance of sequences acting as a strong promoter in E. coli. Removal of downstream terminator from the strong promoter containing plasmid resulted in a twofold to threefold increase in CAT expression in some cases. Structural characteristics of promoter sequences of some representative streptococcal genes clearly indicate that the streptococcal promoter regions are rich in secondary structures and might be one of the factors of their instability in E. coli.
Collapse
Affiliation(s)
- Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India.
| | | | | |
Collapse
|
9
|
Fogg JM, Kolmakova N, Rees I, Magonov S, Hansma H, Perona JJ, Zechiedrich EL. Exploring writhe in supercoiled minicircle DNA. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:S145-S159. [PMID: 19337583 PMCID: PMC2662687 DOI: 10.1088/0953-8984/18/14/s01] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Using λ-Int recombination in E. coli, we have generated milligram quantities of supercoiled minicircle DNA. Intramolecular Int recombination was efficient down to lengths ~254 bp. When nicked and religated in the presence of ethidium bromide, 339 bp minicircles adopted at least seven unique topoisomers that presumably correspond to ΔLk ranging from 0 to -6, which we purified individually. We used these minicircles, with unique ΔLk, to address the partition into twist and writhe as a function of ΔLk. Gel electrophoresis and atomic force microscopy revealed progressively higher writhe conformations in the presence of 10 mM CaCl(2) or MgCl(2). From simplistic calculations of the bending and twisting energies, we predict the elastic free energy of supercoiling for these minicircles to be lower than if the supercoiling was partitioned mainly into twist. The predicted writhe corresponds closely with that which we observed experimentally in the presence of divalent metal ions. However, in the absence of divalent metal ions only limited writhe was observed, demonstrating the importance of electrostatic effects on DNA structure, when the screening of charges on the DNA is weak. This study represents a unique insight into the supercoiling of minicircle DNA, with implications for DNA structure in general.
Collapse
Affiliation(s)
- Jonathan M Fogg
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The lack of a rigorous analytical theory for DNA looping has caused many DNA-loop-mediated phenomena to be interpreted using theories describing the related process of DNA cyclization. However, distinctions in the mechanics of DNA looping versus cyclization can have profound quantitative effects on the thermodynamics of loop closure. We have extended a statistical mechanical theory recently developed for DNA cyclization to model DNA looping, taking into account protein flexibility. Notwithstanding the underlying theoretical similarity, we find that the topological constraint of loop closure leads to the coexistence of multiple classes of loops mediated by the same protein structure. These loop topologies are characterized by dramatic differences in twist and writhe; because of the strong coupling of twist and writhe within a loop, DNA looping can exhibit a complex overall helical dependence in terms of amplitude, phase, and deviations from uniform helical periodicity. Moreover, the DNA-length dependence of optimal looping efficiency depends on protein elasticity, protein geometry, and the presence of intrinsic DNA bends. We derive a rigorous theory of loop formation that connects global mechanical and geometric properties of both DNA and protein and demonstrates the importance of protein flexibility in loop-mediated protein-DNA interactions.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Molecular Biophysics, Yale University, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
11
|
Lushnikov AY, Brown BA, Oussatcheva EA, Potaman VN, Sinden RR, Lyubchenko YL. Interaction of the Zalpha domain of human ADAR1 with a negatively supercoiled plasmid visualized by atomic force microscopy. Nucleic Acids Res 2004; 32:4704-12. [PMID: 15342791 PMCID: PMC516073 DOI: 10.1093/nar/gkh810] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interest to the left-handed DNA conformation has been recently boosted by the findings that a number of proteins contain the Zalpha domain, which has been shown to specifically recognize Z-DNA. The biological function of Zalpha is presently unknown, but it has been suggested that it may specifically direct protein regions of Z-DNA induced by negative supercoiling in actively transcribing genes. Many studies, including a crystal structure in complex with Z-DNA, have focused on the human ADAR1 Zalpha domain in isolation. We have hypothesized that the recognition of a Z-DNA sequence by the Zalpha(ADAR1) domain is context specific, occurring under energetic conditions, which favor Z-DNA formation. To test this hypothesis, we have applied atomic force microscopy to image Zalpha(ADAR1) complexed with supercoiled plasmid DNAs. We have demonstrated that the Zalpha(ADAR1) binds specifically to Z-DNA and preferentially to d(CG)(n) inserts, which require less energy for Z-DNA induction compared to other sequences. A notable finding is that site-specific Zalpha binding to d(GC)(13) or d(GC)(2)C(GC)(10) inserts is observed when DNA supercoiling is insufficient to induce Z-DNA formation. These results indicate that Zalpha(ADAR1) binding facilities the B-to-Z transition and provides additional support to the model that Z-DNA binding proteins may regulate biological processes through structure-specific recognition.
Collapse
|
12
|
Oussatcheva EA, Pavlicek J, Sankey OF, Sinden RR, Lyubchenko YL, Potaman VN. Influence of global DNA topology on cruciform formation in supercoiled DNA. J Mol Biol 2004; 338:735-43. [PMID: 15099741 DOI: 10.1016/j.jmb.2004.02.075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 02/12/2004] [Accepted: 02/14/2004] [Indexed: 11/22/2022]
Abstract
DNA supercoiling plays an important role in many genetic processes such as replication, transcription, and recombination. Supercoiling provides energy for helix un-pairing and drives the formation of alternative DNA structural transitions, like cruciforms. Supercoiling also allows distant DNA regions to be brought into close proximity through the formation of inter-wound supercoils. Recently, we showed that the inverted repeat-to-cruciform transition acts as a molecular switch, influencing the global topology of a topological plasmid domain. As alternative DNA structures can affect global topology, a corollary hypothesis might be that the localization of a specific DNA sequence within a topological domain may affect the energetics required for formation of an alternative DNA structure. Here, we test this hypothesis and show that the localization of an inverted repeat to an apical position increases the rate of cruciform formation and reduces the superhelical energy required to drive the transition. For this, we created a series of plasmids containing an inverted repeat and an A-tract bent DNA sequence. The A-tract forms a permanent 180 degrees bend irrespective of DNA topology. The inverted repeat and the bent sequence were placed either at six o'clock or nine o'clock positions with respect to each other. Using 2D agarose gel electrophoresis, we show that the six o'clock construct extrudes the cruciform at a lower superhelical density than a control plasmid without the bend. Atomic force microscopy shows that the nine o'clock construct has the propensity to form branched molecules with the cruciform at the end of one branch. These results demonstrate that the localization of sequences within specific regions of a topological domain can affect the energetics of structural transitions as well as the branching structure of the domain. As structural transitions can be involved in biological processes, localization of alternative conformation-forming sequences to specific locations within a domain provides an additional means for gene regulation.
Collapse
Affiliation(s)
- Elena A Oussatcheva
- Center for Genome Research, Institute of Biosciences and Technology, Texas A and M University System Health Sciences Center, 2121 W. Holcombe Blvd., Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
13
|
Tsen H, Levene SD. Analysis of Chemical and Enzymatic Cleavage Frequencies in Supercoiled DNA. J Mol Biol 2004; 336:1087-102. [PMID: 15037071 DOI: 10.1016/j.jmb.2003.12.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 12/16/2003] [Accepted: 12/16/2003] [Indexed: 11/16/2022]
Abstract
Chemical and enzymatic probing methods are powerful techniques for examining details of sequence-dependent structure in DNA and RNA. Reagents that cleave nucleic acid molecules in a structure-specific, but relatively sequence-non-specific manner, such as hydroxyl radical or DNase I, have been used widely to probe helical geometry in nucleic acid structures, nucleic acid-drug complexes, and in nucleoprotein assemblies. Application of cleavage-based techniques to structures present in superhelical DNA has been hindered by the fact that the cleavage pattern attributable to supercoiling-dependent structures is heavily mixed with non-specific cleavage signals that are inevitable products of multiple cleavage events. We present a rigorous mathematical procedure for extracting the cleavage pattern specific to supercoiled DNA and use this method to investigate the hydroxyl radical cleavage pattern in a cruciform DNA structure formed by a 60 bp inverted repeat sequence embedded in a negatively supercoiled plasmid. Our results support the presence of a stem-loop structure in the expected location and suggest that the helical geometry of the cruciform stem differs from that of the normal duplex form.
Collapse
Affiliation(s)
- Hua Tsen
- Institute of Biomedical Sciences and Technology and Department of Molecular and Cell Biology, University of Texas at Dallas, PO Box 830688, Richardson, TX 75083, USA
| | | |
Collapse
|
14
|
Bussiek M, Klenin K, Langowski J. Kinetics of Site–Site Interactions in Supercoiled DNA with Bent Sequences. J Mol Biol 2002; 322:707-18. [PMID: 12270708 DOI: 10.1016/s0022-2836(02)00817-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A curved DNA segment is known to adopt a preferred end loop localization in superhelical (sc) DNA and thus may organize the overall conformation of the molecule. Through this process it influences the probability of site juxtaposition. We addressed the effect of a curvature on site-site interactions quantitatively by measuring the kinetics of cross-linking of two biotinylated positions in scDNA by streptavidin. The DNA was biotinylated at either symmetric or asymmetric positions with respect to a curved insert via triplex-forming oligonucleotides (TFOs) modified with biotin. We used a quench-flow device to mix the DNA with the protein and scanning force microscopy to quantify the reaction products. As a measure of the interaction probability, rate constants of cross-linking and local concentrations j(M) of one biotinylated site in the vicinity of the other were determined and compared to Monte Carlo simulations for corresponding DNAs. In good agreement with the simulations, a j(M) value of 1.74 microM between two sites 500bp apart was measured for an scDNA without curvature. When a curvature was centered between the sites, the interaction probability increased about twofold over the DNA without curvature, significantly less than expected from the simulations. However, the relative differences of the interaction probabilities due to varied biotin positions with respect to the curvature agreed quantitatively with the theory.
Collapse
Affiliation(s)
- Malte Bussiek
- German Cancer Research Center, Div. Biophysics of Macromolecules, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
15
|
Fujimoto DF, Brunskill EW, Bayles KW. Analysis of genetic elements controlling Staphylococcus aureus lrgAB expression: potential role of DNA topology in SarA regulation. J Bacteriol 2000; 182:4822-8. [PMID: 10940023 PMCID: PMC111359 DOI: 10.1128/jb.182.17.4822-4828.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin-induced killing and murein hydrolase activity in Staphylococcus aureus are dependent on a variety of regulatory elements, including the LytSR two-component regulatory system and the virulence factor regulators Agr and Sar. The LytSR effects on these processes can be explained, in part, by the recent finding that a LytSR-regulated operon, designated lrgAB, affects murein hydrolase activity and penicillin tolerance. To examine the regulation of lrgAB expression in greater detail, we performed Northern blot and promoter fusion analyses. Both methods revealed that Agr and Sar, like LytSR, positively regulate lrgAB expression. A mutation in the agr locus reduced lrgAB expression approximately sixfold, while the sar mutation reduced lrgAB expression to undetectable levels. cis-acting regulatory elements involved in lrgAB expression were identified by fusing various fragments of the lrgAB promoter region to the xylE reporter gene and integrating these constructs into the chromosome. Catechol 2,3-dioxygenase assays identified DNA sequences, including an inverted repeat and intrinsic bend sites, that contribute to maximal lrgAB expression. Confirmation of the importance of the inverted repeat was achieved by demonstrating that multiple copies of the inverted repeat reduced lrgAB promoter activity, presumably by titrating out a positive regulatory factor. The results of this study demonstrate that lrgAB expression responds to a variety of positive regulatory factors and suggest that specific DNA topology requirements are important for optimal expression.
Collapse
Affiliation(s)
- D F Fujimoto
- Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | |
Collapse
|
16
|
Katayama S, Matsushita O, Jung CM, Minami J, Okabe A. Promoter upstream bent DNA activates the transcription of the Clostridium perfringens phospholipase C gene in a low temperature-dependent manner. EMBO J 1999; 18:3442-50. [PMID: 10369683 PMCID: PMC1171423 DOI: 10.1093/emboj/18.12.3442] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The phospholipase C gene (plc) of Clostridium perfringens possesses three phased A-tracts forming bent DNA upstream of the promoter. An in vitro transcription assay involving C.perfringens RNA polymerase (RNAP) showed that the phased A-tracts have a stimulatory effect on the plc promoter, and that the effect is proportional to the number of A-tracts, and more prominent at lower temperature. A gel retardation assay and hydroxyl radical footprinting revealed that the phased A-tracts facilitate the formation of the RNAP-plc promoter complex through extension of the contact region. The upstream (UP) element of the Escherichia coli rrnB P1 promoter stimulated the downstream promoter activity temperature independently, differing from the phased A-tracts. When the UP element was placed upstream of the plc promoter, low temperature-dependent stimulation was observed, although this effect was less prominent than that of the phased A-tracts. These results suggest that both the phased A-tracts and UP element cause low temperature-dependent activation of the plc promoter through a similar mechanism, and that the more efficient low temperature-dependent activation by the phased A-tracts may be due to an increase in the bending angle at a lower temperature.
Collapse
Affiliation(s)
- S Katayama
- Department of Microbiology, Faculty of Medicine, Kagawa Medical University, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | |
Collapse
|