1
|
Ngambia Freitas FS, De Vooght L, Njiokou F, Abeele JVD, Bossard G, Tchicaya B, Corrales RM, Ravel S, Geiger A, Berthier-Teyssedre D. Evaluation of two candidate molecules-TCTP and cecropin-on the establishment of Trypanosoma brucei gambiense into the gut of Glossina palpalis gambiensis. INSECT SCIENCE 2025. [PMID: 40090966 DOI: 10.1111/1744-7917.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 01/25/2025] [Indexed: 03/19/2025]
Abstract
Trypanosomiasis, transmitted by tsetse flies (Glossina spp.), poses a significant health threat in 36 sub-Saharan African countries. Current control methods targeting tsetse flies, while effective, allow reinfestation. This study investigates paratransgenesis, a novel strategy to engineer symbiotic bacteria in tsetse flies, Sodalis glossinidius, to deliver anti-trypanosome compounds. Disrupting the trypanosome life cycle within the fly and reducing parasite transmission could offer a sustainable solution for trypanosomiasis control. In this context, we tested the effect of cecropin, reported to be lethal for Trypanosoma cruzi (Chagas disease) and TbgTCTP (Translationally Controlled Tumor Protein from Trypanosoma brucei gambiense), previously reported to modulate the growth of bacteria isolated from the fly microbiome, to delay the first peak of parasitemia and the death of trypanosome-infected mice. We have successfully cloned and transfected the genes encoding the two proteins into Sodalis strains. These Sodalis recombinant strains (recSodalisTbgTCTP and recSodaliscecropin) have been then microinjected into the L3 larval stage of Glossina palpalis gambiensis flies. The stability of the cloned genes was checked up to the 20th day after microinjection of recSodalis. The rate of fly emergence from untreated pupae was 95%; it was reduced by nearly 50% due to the mechanical injury caused by microinjection. It decreased to nearly 7% when larvae were injected with recSodalisTbgTCTP, which suggests TCTP could have a lethal impact to larvae development. When challenged with T. brucei gambiense, a slightly lower, but statistically non-significant, infection rate was recorded in flies harboring recSodaliscecropin compared to control flies. The effect of recSodalisTbgTCTP could not be measured due to the very low rate of fly emergence after corresponding treatment of the larvae. The results do not allow to conclude on the effect of cecropin or TCTP, delivered by para-transgenesis into the fly's gut, on the fly infection by the trypanosome. Nevertheless, the results are encouraging insofar as the technical approach works on the couple G. p. gambiensis/T. brucei gambiense. The next step will be to optimize the system and test other targets chosen among the ESPs (Excreted-Secreted Proteins) of the trypanosome secretum, or the differentially expressed genes associated with the sensitivity/resistance of the fly to trypanosome infection.
Collapse
Affiliation(s)
- François Sougal Ngambia Freitas
- Laboratory of Parasitology and Ecology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
- IRD-CIRAD, UMR INTERTRYP, Univ Montpellier, Cirad, IRD, Montpellier, France
| | - Linda De Vooght
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Flobert Njiokou
- Laboratory of Parasitology and Ecology, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Jan Van Den Abeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Géraldine Bossard
- IRD-CIRAD, UMR INTERTRYP, Univ Montpellier, Cirad, IRD, Montpellier, France
| | | | | | - Sophie Ravel
- IRD-CIRAD, UMR INTERTRYP, Univ Montpellier, Cirad, IRD, Montpellier, France
| | - Anne Geiger
- IRD-CIRAD, UMR INTERTRYP, Univ Montpellier, Cirad, IRD, Montpellier, France
| | | |
Collapse
|
2
|
French S, Da Silva R, Storm J, Wastika CE, Cullen I, Have MT, Hughes GL, Modahl CM. Exploiting venom toxins in paratransgenesis to prevent mosquito-borne disease. Parasit Vectors 2025; 18:32. [PMID: 39881388 PMCID: PMC11776213 DOI: 10.1186/s13071-025-06663-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Mosquitoes are responsible for the transmission of numerous pathogens, including Plasmodium parasites, arboviruses and filarial worms. They pose a significant risk to public health with over 200 million cases of malaria per annum and approximately 4 billion people at risk of arthropod-borne viruses (arboviruses). Mosquito populations are geographically expanding into temperate regions and their distribution is predicted to continue increasing. Mosquito symbionts, including fungi, bacteria and viruses, have desirable traits for mosquito disease control including spreading horizontally and vertically through mosquito populations and potentially colonising multiple important vector species. Paratransgenesis, genetic modification of mosquito symbionts with effectors to target the pathogen rather than the vector, is a promising strategy to prevent the spread of mosquito-borne diseases. A variety of effectors can be expressed but venom toxins are excellent effector candidates because they are target specific, potent and stable. However, the only toxins to be explored in mosquito paratransgenesis to date are scorpine and mutated phospholipase A2. To enhance the scope, effectiveness and durability of paratransgenesis, an expanded arsenal of effectors is required. This review discusses other potential toxin effectors for future paratransgenesis studies based on prior in vitro and in vivo antiparasitic and antiviral studies and highlights the need for further research and investment in this area. In terms of mosquito-borne diseases, paratransgenesis strategies have been developed to target Plasmodium. We postulate the potential to apply this principle to target arboviruses using antiviral toxin effectors.
Collapse
Affiliation(s)
- Stephanie French
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Rachael Da Silva
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Janet Storm
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Christida E Wastika
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - India Cullen
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Martijn Ten Have
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Cassandra M Modahl
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
3
|
Rajendran D, Vinayagam S, Sekar K, Bhowmick IP, Sattu K. Symbiotic Bacteria: Wolbachia, Midgut Microbiota in Mosquitoes and Their Importance for Vector Prevention Strategies. MICROBIAL ECOLOGY 2024; 87:154. [PMID: 39681734 PMCID: PMC11649735 DOI: 10.1007/s00248-024-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 12/18/2024]
Abstract
Mosquito-borne illnesses pose a significant threat to eradication under existing vector management measures. Chemo-based vector control strategies (use of insecticides) raise a complication of resistance and environmental pollution. Biological control methods are an alternative approach to overcoming this complication arising from insecticides. The mosquito gut microbiome is essential to supporting the factors that involve metabolic regulation and metamorphic development (from juvenile to adult), as well as the induction of an immune response. The induced immune response includes the JAK-STAT, IMD, and Toll pathways due to the microbial interaction with the midgut cells (MG cells) that prevent disease transmission to humans. The aforementioned sequel to the review provides information about endosymbiont Wolbachia, which contaminates insect cells, including germline and somatic cytoplasm, and inhibits disease-causing pathogen development and transmission by competing for resources within the cell. Moreover, it reduces the host population via cytoplasmic incompatibility (CI), feminization, male killing, and parthenogenesis. Furthermore, the Cif factor in Wolbachia is responsible for CI induction that produces inviable cells with the translocating systems and the embryonic defect-causing protein factor, WalE1 (WD0830), which manipulates the host actin. This potential of Wolbachia can be used to design a paratransgenic system to control vectors in the field. An extracellular symbiotic bacterium such as Asaia, which is grown in the growth medium, is used to transfer lethal genes within itself. Besides, the genetically transferred symbiotic bacteria infect the wild mosquito population and are easily manifold. So, it might be suitable for vector control strategies in the future.
Collapse
Affiliation(s)
- Devianjana Rajendran
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Kathirvel Sekar
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India
| | - Ipsita Pal Bhowmick
- Department of Malariology, ICMR-RMRCNE Region, Dibrugarh, Assam, 786010, India
| | - Kamaraj Sattu
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri, Tamil Nadu, 635205, India.
| |
Collapse
|
4
|
Cambronero-Heinrichs JC, Rojas-Gätjens D, Baizán M, Alvarado-Ocampo J, Rojas-Jimenez K, Loaiza R, Chavarría M, Calderón-Arguedas Ó, Troyo A. Highly abundant bacteria in the gut of Triatoma dimidiata (Hemiptera: Reduviidae) can inhibit the growth of Trypanosoma cruzi (Kinetoplastea: Trypanosomatidae). JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:1333-1344. [PMID: 38381588 DOI: 10.1093/jme/tjae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/03/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is a zoonosis primarily found in rural areas of Latin America. It is considered a neglected tropical disease, and Triatoma dimidiata is the main vector of the parasite in Central America. Despite efforts, Chagas disease continues to be a public health concern, and vector control remains a primary tool to reduce transmission. In this study, we tested the hypothesis that highly abundant bacteria in the gut of T. dimidiata inhibit the growth of T. cruzi. To achieve this, bacterial diversity in the gut of T. dimidiata specimens from Costa Rica was characterized by metabarcoding of the 16S rRNA, microbial isolation was performed, and the effect of freeze-dried supernatants of the isolates on T. cruzi was investigated. Metabarcoding showed that the most abundant genera in the gut were Corynebacterium, Tsukamurella, Brevibacterium, and Staphylococcus. Barcoding and sequences comparison confirmed that 8 of the 30 most abundant amplicon sequence variants (ASVs) were isolated, and 2 of them showed an inhibitory effect on the growth of T. cruzi epimastigotes. These bacteria correspond to isolates of Tsukamurella and Brevibacterium, which were respectively the second and sixth most abundant ASVs in the gut of T. dimidiata. Notably, only the isolate of Brevibacterium showed a significant difference in growth inhibition against epimastigotes of both T. cruzi strains tested. These findings suggest that the gut microbiota of T. dimidiata may play an active role in modulating parasite development.
Collapse
Affiliation(s)
- Juan Carlos Cambronero-Heinrichs
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
- Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Legnaro PD, Italy
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CENAT-CONARE, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Mónica Baizán
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CENAT-CONARE, San José, Costa Rica
| | - Johan Alvarado-Ocampo
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
- Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | - Randall Loaiza
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CENAT-CONARE, San José, Costa Rica
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CENAT-CONARE, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica
| | - Ólger Calderón-Arguedas
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
- Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Adriana Troyo
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
- Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
5
|
de la Fuente J, Ghosh S, Lempereur L, Garrison A, Sprong H, Lopez-Camacho C, Maritz-Olivier C, Contreras M, Moraga-Fernández A, Bente DA. Interventions for the control of Crimean-Congo hemorrhagic fever and tick vectors. NPJ Vaccines 2024; 9:181. [PMID: 39353956 PMCID: PMC11445411 DOI: 10.1038/s41541-024-00970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic disease associated with its principal tick vector, Hyalomma spp. with increasing fatal incidence worldwide. Accordingly, CCHF is a World Health Organization-prioritized disease with the absence of effective preventive interventions and approved vaccines or effective treatments. This perspective raised from a multidisciplinary gap analysis considering a One Health approach beneficial for human and animal health and the environment exploring international collaborations, gaps and recommendations.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, 13005, Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Srikant Ghosh
- Entomology Laboratory, Parasitology Division, ICAR-Indian Veterinary Research Institute, Bareilly, 243122, Uttar Pradesh, India
- Eastern Regional Station, Indian Veterinary Research Institute, Kolkata, 700037, West Bengal, India
| | - Laetitia Lempereur
- One Health & Disease Control Group (NSAH-CJW), Food and Agriculture Organization of the United Nations, 00153, Rome, Italy
| | - Aura Garrison
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, 21702, USA
| | - Hein Sprong
- Centre for Infectious Disease Control (CIb), National Institute of Public Health and Environment (RIVM), 3720 MA, Bilthoven, The Netherlands
| | | | - Christine Maritz-Olivier
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, 13005, Ciudad Real, Spain
| | - Alberto Moraga-Fernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, 13005, Ciudad Real, Spain
| | - Dennis A Bente
- Galveston National Laboratory, Institute for Human Infection and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
6
|
Dera KSM, Dieng MM, Moyaba P, Ouedraogo GMS, Pagabeleguem S, Njokou F, Ngambia Freitas FS, de Beer CJ, Mach RL, Vreysen MJB, Abd-Alla AMM. Prevalence of Spiroplasma and interaction with wild Glossina tachinoides microbiota. Parasite 2023; 30:62. [PMID: 38117272 PMCID: PMC10732139 DOI: 10.1051/parasite/2023064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
Tsetse flies (Diptera: Glossinidae) are vectors of the tropical neglected diseases sleeping sickness in humans and nagana in animals. The elimination of these diseases is linked to control of the vector. The sterile insect technique (SIT) is an environment-friendly method that has been shown to be effective when applied in an area-wide integrated pest management approach. However, as irradiated males conserve their vectorial competence, there is the potential risk of trypanosome transmission with their release in the field. Analyzing the interaction between the tsetse fly and its microbiota, and between different microbiota and the trypanosome, might provide important information to enhance the fly's resistance to trypanosome infection. This study on the prevalence of Spiroplasma in wild populations of seven tsetse species from East, West, Central and Southern Africa showed that Spiroplasma is present only in Glossina fuscipes fuscipes and Glossina tachinoides. In G. tachinoides, a significant deviation from independence in co-infection with Spiroplasma and Trypanosoma spp. was observed. Moreover, Spiroplasma infections seem to significantly reduce the density of the trypanosomes, suggesting that Spiroplasma might enhance tsetse fly's refractoriness to the trypanosome infections. This finding might be useful to reduce risks associated with the release of sterile males during SIT implementation in trypanosome endemic areas.
Collapse
Affiliation(s)
- Kiswend-Sida M Dera
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture 1400 Vienna Austria
- Insectarium de Bobo Dioulasso – Campagne d’Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT) 01 BP 1087 Bobo Dioulasso 01 Burkina Faso
| | - Mouhamadou M Dieng
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture 1400 Vienna Austria
- Université Gaston Berger Saint Louis Senegal
| | - Percy Moyaba
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture 1400 Vienna Austria
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research (ARC-OVR) Pretoria South Africa
| | - Gisele MS Ouedraogo
- Insectarium de Bobo Dioulasso – Campagne d’Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT) 01 BP 1087 Bobo Dioulasso 01 Burkina Faso
| | - Soumaïla Pagabeleguem
- Insectarium de Bobo Dioulasso – Campagne d’Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT) 01 BP 1087 Bobo Dioulasso 01 Burkina Faso
- University of Dedougou B.P. 176 Dédougou 01 Burkina Faso
| | - Flobert Njokou
- Laboratory of Parasitology and Ecology, Faculty of Sciences, University of Yaounde I Po. Box 812 Yaoundé Cameroon
| | | | - Chantel J de Beer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture 1400 Vienna Austria
| | - Robert L Mach
- Institute of Chemical, Environmental, and Bioscience Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a 1060 Vienna Austria
| | - Marc JB Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture 1400 Vienna Austria
| | - Adly MM Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture 1400 Vienna Austria
| |
Collapse
|
7
|
de la Fuente J, Mazuecos L, Contreras M. Innovative approaches for the control of ticks and tick-borne diseases. Ticks Tick Borne Dis 2023; 14:102227. [PMID: 37419001 DOI: 10.1016/j.ttbdis.2023.102227] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Ticks and tick-borne diseases constitute a major threat for human and animal health worldwide. Vaccines for the control of tick infestations and transmitted pathogens still represents a challenge for science and health. Vaccines have evolved with antigens derived from inactivated pathogens to recombinant proteins and vaccinomics approaches. Recently, vaccines for the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown the efficacy of new antigen delivery platforms. However, until now only two vaccines based on recombinant Bm86/Bm95 antigens have been registered and commercialized for the control of cattle-tick infestations. Nevertheless, recently new technologies and approaches are under consideration for vaccine development for the control of ticks and tick-borne pathogens. Genetic manipulation of tick commensal bacteria converted enemies into friends. Frankenbacteriosis was used to control tick pathogen infection. Based on these results, the way forward is to develop new paratransgenic interventions and vaccine delivery platforms for the control of tick-borne diseases.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005, Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Lorena Mazuecos
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005, Ciudad Real, Spain
| |
Collapse
|
8
|
Cardoso-Jaime V, Maya-Maldonado K, Tsutsumi V, Hernández-Martínez S. Mosquito pericardial cells upregulate Cecropin expression after an immune challenge. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104745. [PMID: 37268262 DOI: 10.1016/j.dci.2023.104745] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Most mosquito-transmitted pathogens grow or replicate in the midgut before invading the salivary glands. Pathogens are exposed to several immunological factors along the way. Recently, it was shown that hemocytes gather near the periostial region of the heart to efficiently phagocytose pathogens circulating in the hemolymph. Nerveless, not all pathogens can be phagocyted by hemocytes and eliminated by lysis. Interestingly, some studies have shown that pericardial cells (PCs) surrounding periostial regions, may produce humoral factors, such as lysozymes. Our current work provides evidence that Anopheles albimanus PCs are a major producer of Cecropin 1 (Cec1). Furthermore, our findings reveal that after an immunological challenge, PCs upregulate Cec1 expression. We conclude that PCs are positioned in a strategic location that could allow releasing humoral components, such as cecropin, to lyse pathogens on the heart or circulating in the hemolymph, implying that PCs could play a significant role in the systemic immune response.
Collapse
Affiliation(s)
- Victor Cardoso-Jaime
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Av. Universidad 655, Santa María Ahuacatitlan, Cuernavaca, Morelos, C.P. 62100, Mexico; Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN. Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, Ciudad de México, C.P. 07360, Mexico
| | - Krystal Maya-Maldonado
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Av. Universidad 655, Santa María Ahuacatitlan, Cuernavaca, Morelos, C.P. 62100, Mexico; Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN. Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, Ciudad de México, C.P. 07360, Mexico
| | - Víctor Tsutsumi
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados, IPN. Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, Ciudad de México, C.P. 07360, Mexico.
| | - Salvador Hernández-Martínez
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública. Av. Universidad 655, Santa María Ahuacatitlan, Cuernavaca, Morelos, C.P. 62100, Mexico.
| |
Collapse
|
9
|
Ghassemi M, Akhavan AA, Zahraei-Ramazani A, Yakhchali B, Arandian MH, Jafari R, Akhlaghi M, Shirani-Bidabadi L, Azam K, Koosha M, Oshaghi MA. Rodents as vehicle for delivery of transgenic bacteria to make paratransgenic sand fly vectors of cutaneous leishmaniasis in field condition. Sci Rep 2023; 13:14912. [PMID: 37689736 PMCID: PMC10492802 DOI: 10.1038/s41598-023-41526-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023] Open
Abstract
Vector-borne diseases, among them leishmaniasis, cause more than 700,000 deaths annually. The lack of an effective vaccination and the increasing resistance of sand flies to insecticides require the urgent development of innovative approaches to contain the disease. The use of engineered bacteria that express anti-parasite molecules (paratransgenesis) shows much promise. However, a challenge for implementation of this strategy is to devise means to introduce modified bacteria into sand flies in the field. In this study, we use rodent food bait as a delivery strategy to introduce two mCherry-fluorescent bacteria, Serratia AS1 and Enterobacter cloacae, into adult sand flies in field settings. Bacteria-infected food was provided to Rhombomys opimus rodents. These bacteria transiently pass through the rodent alimentary tract and are delivered to larval habitats with the rodent feces. The feces are ingested by sand fly larvae and, in the case of Serratia AS1, are trans-stadially transmitted to adults. This is the first report of targeting delivery of Serratia AS1 in a paratransgenic system to control transmission of leishmaniasis under field condition. This novel strategy shows promise for delivering transgenic bacteria to Leishmania vectors in the field.
Collapse
Affiliation(s)
- Marzieh Ghassemi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Amir Ahmad Akhavan
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Alireza Zahraei-Ramazani
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Bagher Yakhchali
- Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Islamic Republic of Iran
| | - Mohammad Hossein Arandian
- Isfahan Health Research Station, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Jafari
- Isfahan Health Research Station, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Maryam Akhlaghi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Leila Shirani-Bidabadi
- Department of Vector Biology and Control, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Kamal Azam
- Department of Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mona Koosha
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohammad Ali Oshaghi
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| |
Collapse
|
10
|
Abstract
Haematophagous arthropods, including mosquitoes, ticks, flies, triatomine bugs and lice (here referred to as vectors), are involved in the transmission of various pathogens to mammals on whom they blood feed. The diseases caused by these pathogens, collectively known as vector-borne diseases (VBDs), threaten the health of humans and animals. Although the vector arthropods differ in life histories, feeding behaviour as well as reproductive strategies, they all harbour symbiotic microorganisms, known as microbiota, on which they depend for completing essential aspects of their biology, such as development and reproduction. In this Review, we summarize the shared and unique key features of the symbiotic associations that have been characterized in the major vector taxa. We discuss the crosstalks between microbiota and their arthropod hosts that influence vector metabolism and immune responses relevant for pathogen transmission success, known as vector competence. Finally, we highlight how current knowledge on symbiotic associations is being explored to develop non-chemical-based alternative control methods that aim to reduce vector populations, or reduce vector competence. We conclude by highlighting the remaining knowledge gaps that stand to advance basic and translational aspects of vector-microbiota interactions.
Collapse
Affiliation(s)
- Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Gao H, Jiang Y, Wang L, Wang G, Hu W, Dong L, Wang S. Outer membrane vesicles from a mosquito commensal mediate targeted killing of Plasmodium parasites via the phosphatidylcholine scavenging pathway. Nat Commun 2023; 14:5157. [PMID: 37620328 PMCID: PMC10449815 DOI: 10.1038/s41467-023-40887-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
The gut microbiota is a crucial modulator of Plasmodium infection in mosquitoes, including the production of anti-Plasmodium effector proteins. But how the commensal-derived effectors are translocated into Plasmodium parasites remains obscure. Here we show that a natural Plasmodium blocking symbiotic bacterium Serratia ureilytica Su_YN1 delivers the effector lipase AmLip to Plasmodium parasites via outer membrane vesicles (OMVs). After a blood meal, host serum strongly induces Su_YN1 to release OMVs and the antimalarial effector protein AmLip into the mosquito gut. AmLip is first secreted into the extracellular space via the T1SS and then preferentially loaded on the OMVs that selectively target the malaria parasite, leading to targeted killing of the parasites. Notably, these serum-induced OMVs incorporate certain serum-derived lipids, such as phosphatidylcholine, which is critical for OMV uptake by Plasmodium via the phosphatidylcholine scavenging pathway. These findings reveal that this gut symbiotic bacterium evolved to deliver secreted effector molecules in the form of extracellular vesicles to selectively attack parasites and render mosquitoes refractory to Plasmodium infection. The discovery of the role of gut commensal-derived OMVs as carriers in cross-kingdom communication between mosquito microbiota and Plasmodium parasites offers a potential innovative strategy for blocking malaria transmission.
Collapse
Affiliation(s)
- Han Gao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yongmao Jiang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Guandong Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wenqian Hu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ling Dong
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Accoti A, Damiani C, Nunzi E, Cappelli A, Iacomelli G, Monacchia G, Turco A, D’Alò F, Peirce MJ, Favia G, Spaccapelo R. Anopheline mosquito saliva contains bacteria that are transferred to a mammalian host through blood feeding. Front Microbiol 2023; 14:1157613. [PMID: 37533823 PMCID: PMC10392944 DOI: 10.3389/fmicb.2023.1157613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Malaria transmission occurs when Plasmodium sporozoites are transferred from the salivary glands of anopheline mosquitoes to a human host through the injection of saliva. The need for better understanding, as well as novel modes of inhibiting, this key event in transmission has driven intense study of the protein and miRNA content of saliva. Until now the possibility that mosquito saliva may also contain bacteria has remained an open question despite the well documented presence of a rich microbiome in salivary glands. Methods Using both 16S rRNA sequencing and MALDI-TOF approaches, we characterized the composition of the saliva microbiome of An. gambiae and An. stephensi mosquitoes which respectively represent two of the most important vectors for the major malaria-causing parasites P. falciparum and P. vivax. Results To eliminate the possible detection of non-mosquito-derived bacteria, we used a transgenic, fluorescent strain of one of the identified bacteria, Serratiamarcescens, to infect mosquitoes and detect its presence in mosquito salivary glands as well as its transfer to, and colonization of, mammalian host tissues following a mosquito bite. We also showed that Plasmodium infection modified the mosquito microbiota, increasing the presence of Serratia while diminishing the presence of Elizabethkingia and that both P. berghei and Serratia were transferred to, and colonized mammalian tissues. Discussion These data thus document the presence of bacteria in mosquito saliva, their transfer to, and growth in a mammalian host as well as possible interactions with Plasmodium transmission. Together they raise the possible role of mosquitoes as vectors of bacterial infection and the utility of commensal mosquito bacteria for the development of transmission-blocking strategies within a mammalian host.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Claudia Damiani
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Alessia Cappelli
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Gloria Iacomelli
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Giulia Monacchia
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Antonella Turco
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Francesco D’Alò
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Matthew J. Peirce
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
| | - Guido Favia
- School of Biosciences and Veterinary Medicine, University of Camerino, CIRM Italian Malaria Network, Via Gentile III da Varano, Camerino, Italy
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, CIRM Italian Malaria Network Perugia, Functional Genomic Center (C.U.R.Ge.F), University of Perugia, Perugia, Italy
- Interuniversity Consortium for Biotechnology (C.I.B.), Trieste, Italy
| |
Collapse
|
13
|
Mazuecos L, Alberdi P, Hernández-Jarguín A, Contreras M, Villar M, Cabezas-Cruz A, Simo L, González-García A, Díaz-Sánchez S, Neelakanta G, Bonnet SI, Fikrig E, de la Fuente J. Frankenbacteriosis targeting interactions between pathogen and symbiont to control infection in the tick vector. iScience 2023; 26:106697. [PMID: 37168564 PMCID: PMC10165458 DOI: 10.1016/j.isci.2023.106697] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Tick microbiota can be targeted for the control of tick-borne diseases such as human granulocytic anaplasmosis (HGA) caused by model pathogen, Anaplasma phagocytophilum. Frankenbacteriosis is inspired by Frankenstein and defined here as paratransgenesis of tick symbiotic/commensal bacteria to mimic and compete with tick-borne pathogens. Interactions between A. phagocytophilum and symbiotic Sphingomonas identified by metaproteomics analysis in Ixodes scapularis midgut showed competition between both bacteria. Consequently, Sphingomonas was selected for frankenbacteriosis for the control of A. phagocytophilum infection and transmission. The results showed that Franken Sphingomonas producing A. phagocytophilum major surface protein 4 (MSP4) mimic pathogen and reduce infection in ticks by competition and interaction with cell receptor components of infection. Franken Sphingomonas-MSP4 transovarial and trans-stadial transmission suggests that tick larvae with genetically modified Franken Sphingomonas-MSP4 could be produced in the laboratory and released in the field to compete and replace the wildtype populations with associated reduction in pathogen infection/transmission and HGA disease risks.
Collapse
Affiliation(s)
- Lorena Mazuecos
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Pilar Alberdi
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Angélica Hernández-Jarguín
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Margarita Villar
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Ladislav Simo
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700 Maisons-Alfort, France
| | - Almudena González-García
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Sandra Díaz-Sánchez
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Sarah I. Bonnet
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, CNRS UMR 2000, Université de Paris, 75015 Paris, France
- Animal Health Department, INRAE, 37380 Nouzilly, France
| | - Erol Fikrig
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 208022, USA
| | - José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Corresponding author
| |
Collapse
|
14
|
Rojas-Pirela M, Kemmerling U, Quiñones W, Michels PAM, Rojas V. Antimicrobial Peptides (AMPs): Potential Therapeutic Strategy against Trypanosomiases? Biomolecules 2023; 13:biom13040599. [PMID: 37189347 DOI: 10.3390/biom13040599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Trypanosomiases are a group of tropical diseases that have devastating health and socio-economic effects worldwide. In humans, these diseases are caused by the pathogenic kinetoplastids Trypanosoma brucei, causing African trypanosomiasis or sleeping sickness, and Trypanosoma cruzi, causing American trypanosomiasis or Chagas disease. Currently, these diseases lack effective treatment. This is attributed to the high toxicity and limited trypanocidal activity of registered drugs, as well as resistance development and difficulties in their administration. All this has prompted the search for new compounds that can serve as the basis for the development of treatment of these diseases. Antimicrobial peptides (AMPs) are small peptides synthesized by both prokaryotes and (unicellular and multicellular) eukaryotes, where they fulfill functions related to competition strategy with other organisms and immune defense. These AMPs can bind and induce perturbation in cell membranes, leading to permeation of molecules, alteration of morphology, disruption of cellular homeostasis, and activation of cell death. These peptides have activity against various pathogenic microorganisms, including parasitic protists. Therefore, they are being considered for new therapeutic strategies to treat some parasitic diseases. In this review, we analyze AMPs as therapeutic alternatives for the treatment of trypanosomiases, emphasizing their possible application as possible candidates for the development of future natural anti-trypanosome drugs.
Collapse
|
15
|
Gilliland CA, Patel V, McCormick AC, Mackett BM, Vogel KJ. Using axenic and gnotobiotic insects to examine the role of different microbes on the development and reproduction of the kissing bug Rhodnius prolixus (Hemiptera: Reduviidae). Mol Ecol 2023; 32:920-935. [PMID: 36464913 PMCID: PMC10107482 DOI: 10.1111/mec.16800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/28/2022] [Indexed: 12/08/2022]
Abstract
Kissing bugs (Hempitera: Reduviidae) are obligately and exclusively blood feeding insects. Vertebrate blood is thought to provide insufficient B vitamins to insects, which rely on symbiotic relationships with bacteria that provision these nutrients. Kissing bugs harbour environmentally acquired bacteria in their gut lumen, without which they are unable to develop to adulthood. Rhodococcus rhodnii was initially identified as the sole symbiont of Rhodnius prolixus, but modern studies of the kissing bug microbiome suggest that R. rhodnii is not always present or abundant in wild-caught individuals. We asked whether R. rhodnii or other bacteria alone could function as symbionts of R. prolixus. We produced insects with no bacteria (axenic) or with known microbiomes (gnotobiotic). Gnotobiotic insects harbouring R. rhodnii alone developed faster, had higher survival, and laid more eggs than those harbouring other bacterial monocultures, including other described symbionts of kissing bugs. R. rhodnii grew to high titre in the guts of R. prolixus while other tested species were found at much lower abundance. Rhodococcus species tested had nearly identical B vitamin biosynthesis genes, and dietary supplementation of B vitamins had a relatively minor effect on development and survival of gnotobiotic R. prolixus. Our results indicate that R. prolixus have a higher fitness when harbouring R. rhodnii than other bacteria tested, that this may be due to R. rhodnii existing at higher titres and providing more B vitamins to the host, and that symbiont B vitamin synthesis is probably a necessary but not sufficient function of gut bacteria in kissing bugs.
Collapse
Affiliation(s)
| | - Vilas Patel
- Department of Entomology, The University of Georgia, Athens, Georgia, USA
| | - Ashley C McCormick
- Department of Entomology, The University of Georgia, Athens, Georgia, USA
| | - Bradley M Mackett
- Department of Biological Sciences, The University of Southern California, Los Angeles, California, USA
| | - Kevin J Vogel
- Department of Entomology, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
16
|
Resisting an invasion: A review of the triatomine vector (Kissing bug) defense strategies against a Trypanosoma sp infection. Acta Trop 2023; 238:106745. [PMID: 36375520 DOI: 10.1016/j.actatropica.2022.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Triatomines are an important group of insects in the Americas. They serve as transmission vectors for Trypanosoma cruzi, the etiologic agent responsible for the deadly Chagas disease in humans. The digenetic parasite has a complex life cycle, alternating between mammalian and insect hosts, facing different environments. In the insect vector, the metacyclic trypomastigote (non-replicative) and epimastigote (replicative) stages face a set of insect-mediated environmental changes, such as intestinal pH, body temperature, nutrient availability, and vector immune response. These insects have the ability to differentiate between self and non-self-particles using their innate immune system. This immune system comprises physical barriers, cellular responses (phagocytosis, nodules and encapsulation), humoral factors, including effector mechanisms (antimicrobial peptides and prophenoloxidase cascade) and the intestinal microbiota. Here, we consolidate and synthesize the available literature to describe the defense mechanisms deployed by the triatomine vector against the parasite, as documented in recent years, the possible mechanisms developed by the parasite to protect against the insect's specific microenvironment and innate immune responses, and future perspectives on the Triatomine-Trypanosome interaction.
Collapse
|
17
|
Huang W, Vega-Rodriguez J, Kizito C, Cha SJ, Jacobs-Lorena M. Combining transgenesis with paratransgenesis to fight malaria. eLife 2022; 11:e77584. [PMID: 36281969 PMCID: PMC9596157 DOI: 10.7554/elife.77584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/02/2022] [Indexed: 11/13/2022] Open
Abstract
Malaria is among the deadliest infectious diseases, and Plasmodium, the causative agent, needs to complete a complex development cycle in its vector mosquito for transmission to occur. Two promising strategies to curb transmission are transgenesis, consisting of genetically engineering mosquitoes to express antimalarial effector molecules, and paratransgenesis, consisting of introducing into the mosquito commensal bacteria engineered to express antimalarial effector molecules. Although both approaches restrict parasite development in the mosquito, it is not known how their effectiveness compares. Here we provide an in-depth assessment of transgenesis and paratransgenesis and evaluate the combination of the two approaches. Using the Q-system to drive gene expression, we engineered mosquitoes to produce and secrete two effectors - scorpine and the MP2 peptide - into the mosquito gut and salivary glands. We also engineered Serratia, a commensal bacterium capable of spreading through mosquito populations to secrete effectors into the mosquito gut. Whereas both mosquito-based and bacteria-based approaches strongly reduced the oocyst and sporozoite intensity, a substantially stronger reduction of Plasmodium falciparum development was achieved when transgenesis and paratransgenesis were combined. Most importantly, transmission of Plasmodium berghei from infected to naïve mice was maximally inhibited by the combination of the two approaches. Combining these two strategies promises to become a powerful approach to combat malaria.
Collapse
Affiliation(s)
- Wei Huang
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUnited States
| | - Chritopher Kizito
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Sung-Jae Cha
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| |
Collapse
|
18
|
Fofana A, Yerbanga RS, Bilgo E, Ouedraogo GA, Gendrin M, Ouedraogo JB. The Strategy of Paratransgenesis for the Control of Malaria Transmission. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.867104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insect-borne diseases are responsible for important burdens on health worldwide particularly in Africa. Malaria alone causes close to half a million deaths every year, mostly in developing, tropical and subtropical countries, with 94% of the global deaths in 2019 occurring in the WHO African region. With several decades, vector control measures have been fundamental to fight against malaria. Considering the spread of resistance to insecticides in mosquitoes and to drugs in parasites, the need for novel strategies to inhibit the transmission of the disease is pressing. In recent years, several studies have focused on the interaction of malaria parasites, bacteria and their insect vectors. Their findings suggested that the microbiota of mosquitoes could be used to block Plasmodium transmission. A strategy, termed paratransgenesis, aims to interfere with the development of malaria parasites within their vectors through genetically-modified microbes, which produce antimalarial effectors inside the insect host. Here we review the progress of the paratransgenesis approach. We provide a historical perspective and then focus on the choice of microbial strains and on genetic engineering strategies. We finally describe the different steps from laboratory design to field implementation to fight against malaria.
Collapse
|
19
|
Yu X, Tong L, Zhang L, Yang Y, Xiao X, Zhu Y, Wang P, Cheng G. Lipases secreted by a gut bacterium inhibit arbovirus transmission in mosquitoes. PLoS Pathog 2022; 18:e1010552. [PMID: 35679229 PMCID: PMC9182268 DOI: 10.1371/journal.ppat.1010552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Arboviruses are etiological agents of various severe human diseases that place a tremendous burden on global public health and the economy; compounding this issue is the fact that effective prophylactics and therapeutics are lacking for most arboviruses. Herein, we identified 2 bacterial lipases secreted by a Chromobacterium bacterium isolated from Aedes aegypti midgut, Chromobacterium antiviral effector-1 (CbAE-1) and CbAE-2, with broad-spectrum virucidal activity against mosquito-borne viruses, such as dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV), yellow fever virus (YFV) and Sindbis virus (SINV). The CbAEs potently blocked viral infection in the extracellular milieu through their lipase activity. Mechanistic studies showed that this lipase activity directly disrupted the viral envelope structure, thus inactivating infectivity. A mutation in the lipase motif of CbAE-1 fully abrogated the virucidal ability. Furthermore, CbAEs also exert lipase-dependent entomopathogenic activity in mosquitoes. The anti-arboviral and entomopathogenic properties of CbAEs render them potential candidates for the development of novel transmission control strategies against vector-borne diseases. Mosquito-borne viruses are the etiological agents of severe human diseases and annually lead to a great number of deaths. These viruses have spread widely and raised major public health concerns throughout the world. Although effective vaccines have been developed for a few mosquito-borne viruses, such as JEV and yellow fever virus (YFV), vaccines or antiviral therapeutics against most mosquito-borne viruses are currently unavailable. In this study, we identified two virucidal and entomopathogenic effectors with lipase activity, CbAE-1 and CbAE-2, from a mosquito midgut derived bacterium Chromobacterium sp. Beijing. Both CbAEs showed potent virucidal activity against a variety of mosquito-borne viruses, including DENV, ZIKV, JEV, YFV, and SINV, as well as other enveloped viruses. Since CbAEs inactivate viruses through their lipase activity by directly disrupting the viral envelope structure, they may provide a novel option for genetically engineering microbiota symbiotic with mosquitoes for arboviral control. Overall, the anti-arboviral and entomopathogenic properties of Csp_BJ and CbAEs render them particularly interesting candidates for the development of novel transmission control strategies against vector-borne diseases.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Liangqin Tong
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Liming Zhang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yun Yang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Xiaoping Xiao
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
- * E-mail:
| |
Collapse
|
20
|
Zhang X, Feng H, He J, Liang X, Zhang N, Shao Y, Zhang F, Lu X. The gut commensal bacterium Enterococcus faecalis LX10 contributes to defending against Nosema bombycis infection in Bombyx mori. PEST MANAGEMENT SCIENCE 2022; 78:2215-2227. [PMID: 35192238 PMCID: PMC9314687 DOI: 10.1002/ps.6846] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Microsporidia, a group of obligate intracellular fungal-related parasites, have been used as efficient biocontrol agents for agriculture and forestry pests due to their host specificity and transovarial transmission. They mainly infect insect pests through the intestinal tract, but the interactions between microsporidia and the gut microbiota of the host have not been well demonstrated. RESULTS Based on the microsporidia-Bombyx mori model, we report that the susceptibility of silkworms to exposure to the microsporidium Nosema bombycis was both dose and time dependent. Comparative analyses of the silkworm gut microbiome revealed substantially increased abundance of Enterococcus belonging to Firmicutes after N. bombycis infection. Furthermore, a bacterial strain (LX10) was obtained from the gut of B. mori and identified as Enterococcus faecalis based on 16S rRNA sequence analysis. E. faecalis LX10 reduced the N. bombycis spore germination rate and the infection efficiency in vitro and in vivo, as confirmed by bioassay tests and histopathological analyses. In addition, after simultaneous oral feeding with E. faecalis LX10 and N. bombycis, gene (Akirin, Cecropin A, Mesh, Ssk, DUOX and NOS) expression, hydrogen peroxide and nitric oxide levels, and glutathione S-transferase (GST) activity showed different degrees of recovery and correction compared with those under N. bombycis infection alone. Finally, the enterococcin LX protein was identified from sterile LX10 fermentation liquid based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. CONCLUSION Altogether, the results revealed that E. faecalis LX10 with anti-N. bombycis activity might play an important role in protecting silkworms from microsporidia. Removal of these specific commensal bacteria with antibiotics and utilization of transgenic symbiotic systems may effectively improve the biocontrol value of microsporidia. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiancui Zhang
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Huihui Feng
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Jintao He
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Xili Liang
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Nan Zhang
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| | - Fan Zhang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life ScienceShandong Normal UniversityJinanChina
| | - Xingmeng Lu
- Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
21
|
Metabolic interactions between disease-transmitting vectors and their microbiota. Trends Parasitol 2022; 38:697-708. [DOI: 10.1016/j.pt.2022.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022]
|
22
|
Huang W, Cha S, Jacobs‐Lorena M. New weapons to fight malaria transmission: A historical view. ENTOMOLOGICAL RESEARCH 2022; 52:235-240. [PMID: 35846163 PMCID: PMC9272416 DOI: 10.1111/1748-5967.12585] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 05/31/2023]
Abstract
The stagnation of our fight against malaria in recent years, mainly due to the development of mosquito insecticide resistance, argues for the urgent development of new weapons. The dramatic evolution of molecular tools in the last few decades led to a better understanding of parasite-mosquito interactions and coalesced in the development of novel tools namely, mosquito transgenesis and paratransgenesis. Here we provide a historical view of the development of these new tools and point to some remaining challenges for their implementation in the field.
Collapse
Affiliation(s)
- Wei Huang
- Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Sung‐Jae Cha
- Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | | |
Collapse
|
23
|
Darrington M, Leftwich PT, Holmes NA, Friend LA, Clarke NVE, Worsley SF, Margaritopolous JT, Hogenhout SA, Hutchings MI, Chapman T. Characterisation of the symbionts in the Mediterranean fruit fly gut. Microb Genom 2022; 8. [PMID: 35446250 PMCID: PMC9453069 DOI: 10.1099/mgen.0.000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Symbioses between bacteria and their insect hosts can range from loose associations through to obligate interdependence. While fundamental evolutionary insights have been gained from the in-depth study of obligate mutualisms, there is increasing interest in the evolutionary potential of flexible symbiotic associations between hosts and their gut microbiomes. Understanding relationships between microbes and hosts also offers the potential for exploitation for insect control. Here, we investigate the gut microbiome of a global agricultural pest, the Mediterranean fruit fly (Ceratitis capitata). We used 16S rRNA profiling to compare the gut microbiomes of laboratory and wild strains raised on different diets and from flies collected from various natural plant hosts. The results showed that medfly guts harbour a simple microbiome that is primarily determined by the larval diet. However, regardless of the laboratory diet or natural plant host on which flies were raised, Klebsiella spp. dominated medfly microbiomes and were resistant to removal by antibiotic treatment. We sequenced the genome of the dominant putative Klebsiella spp. (‘Medkleb’) isolated from the gut of the Toliman wild-type strain. Genome-wide ANI analysis placed Medkleb within the K. oxytoca / michiganensis group. Species level taxonomy for Medkleb was resolved using a mutli-locus phylogenetic approach - and molecular, sequence and phenotypic analyses all supported its identity as K. michiganensis. Medkleb has a genome size (5825435 bp) which is 1.6 standard deviations smaller than the mean genome size of free-living Klebsiella spp. Medkleb also lacks some genes involved in environmental sensing. Moreover, the Medkleb genome contains at least two recently acquired unique genomic islands as well as genes that encode pectinolytic enzymes capable of degrading plant cell walls. This may be advantageous given that the medfly diet includes unripe fruits containing high proportions of pectin. The results suggest that the medfly harbours a commensal gut bacterium that may have developed a mutualistic association with its host and provide nutritional benefits.
Collapse
Affiliation(s)
- Mike Darrington
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Neil A Holmes
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Lucy A Friend
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Naomi V E Clarke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - John T Margaritopolous
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
24
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
25
|
De Vooght L, De Ridder K, Hussain S, Stijlemans B, De Baetselier P, Caljon G, Van Den Abbeele J. Targeting the tsetse-trypanosome interplay using genetically engineered Sodalis glossinidius. PLoS Pathog 2022; 18:e1010376. [PMID: 35271685 PMCID: PMC8939806 DOI: 10.1371/journal.ppat.1010376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/22/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Sodalis glossinidius, a secondary bacterial symbiont of the tsetse fly, is currently considered as a potential delivery system for anti-trypanosomal components interfering with African trypanosome transmission (i.e. paratransgenesis). Nanobodies (Nbs) have been proposed as potential candidates to target the parasite during development in the tsetse fly. In this study, we have generated an immune Nb-library and developed a panning strategy to select Nbs against the Trypanosoma brucei brucei procyclic developmental stage present in the tsetse fly midgut. Selected Nbs were expressed, purified, assessed for binding and tested for their impact on the survival and growth of in vitro cultured procyclic T. b. brucei parasites. Next, we engineered S. glossinidius to express the selected Nbs and validated their ability to block T. brucei development in the tsetse fly midgut. Genetically engineered S. glossinidius expressing Nb_88 significantly compromised parasite development in the tsetse fly midgut both at the level of infection rate and parasite load. Interestingly, expression of Nb_19 by S. glossinidius resulted in a significantly enhanced midgut establishment. These data are the first to show in situ delivery by S. glossinidius of effector molecules that can target the trypanosome-tsetse fly crosstalk, interfering with parasite development in the fly. These proof-of-principle data represent a major step forward in the development of a control strategy based on paratransgenic tsetse flies. Finally, S. glossinidius-based Nb delivery can also be applied as a powerful laboratory tool to unravel the molecular determinants of the parasite-vector association.
Collapse
Affiliation(s)
- Linda De Vooght
- Department of Biomedical Sciences, Trypanosoma Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
- * E-mail: (LDV); (JVDA)
| | - Karin De Ridder
- Department of Biomedical Sciences, Trypanosoma Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Shahid Hussain
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Benoît Stijlemans
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium
| | - Patrick De Baetselier
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Trypanosoma Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- * E-mail: (LDV); (JVDA)
| |
Collapse
|
26
|
Dehghan H, Mosa-Kazemi SH, Yakhchali B, Maleki-Ravasan N, Vatandoost H, Oshaghi MA. Evaluation of anti-malaria potency of wild and genetically modified Enterobacter cloacae expressing effector proteins in Anopheles stephensi. Parasit Vectors 2022; 15:63. [PMID: 35183231 PMCID: PMC8858508 DOI: 10.1186/s13071-022-05183-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Malaria is one of the most lethal infectious diseases in tropical and subtropical areas of the world. Paratransgenesis using symbiotic bacteria offers a sustainable and environmentally friendly strategy to combat this disease. In the study reported here, we evaluated the disruption of malaria transmission in the Anopheles stephensi-Plasmodium berghei assemblage using the wild-type (WT) and three modified strains of the insect gut bacterium, Enterobacter cloacae. METHODS The assay was carried out using the E. cloacae dissolvens WT and three engineered strains (expressing green fluorescent protein-defensin (GFP-D), scorpine-HasA (S-HasA) and HasA only, respectively). Cotton wool soaked in a solution of 5% (wt/vol) fructose + red dye (1/50 ml) laced with one of the bacterial strains (1 × 109cells/ml) was placed overnight in cages containing female An. stephensi mosquitoes (age: 3-5 days). Each group of sugar-fed mosquitoes was then starved for 4-6 h, following which time they were allowed to blood-feed on P. berghei-infected mice for 20 min in the dark at 17-20 °C. The blood-fed mosquitoes were kept at 19 ± 1 °C and 80 ± 5% relative humidity, and parasite infection was measured by midgut dissection and oocyst counting 10 days post-infection (dpi). RESULTS Exposure to both WT and genetically modified E. cloacae dissolvens strains significantly (P < 0.0001) disrupted P. berghei development in the midgut of An. stephensi, in comparison with the control group. The mean parasite inhibition of E. cloacaeWT, E. cloacaeHasA, E. cloacaeS-HasA and E. cloacaeGFP-D was measured as 72, 86, 92.5 and 92.8 respectively. CONCLUSIONS The WT and modified strains of E. cloacae have the potential to abolish oocyst development by providing a physical barrier or through the excretion of intrinsic effector molecules. These findings reinforce the case for the use of either WT or genetically modified strains of E. cloacae bacteria as a powerful tool to combat malaria.
Collapse
Affiliation(s)
- Hossein Dehghan
- Department of Public Health, School of Public Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Seyed Hassan Mosa-Kazemi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Yakhchali
- Department Industrial and of Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Naseh Maleki-Ravasan
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
do Nascimento RM, Campolina TB, Chaves BA, Delgado JLF, Godoy RSM, Pimenta PFP, Secundino NFC. The influence of culture-dependent native microbiota in Zika virus infection in Aedes aegypti. Parasit Vectors 2022; 15:57. [PMID: 35177110 PMCID: PMC8851793 DOI: 10.1186/s13071-022-05160-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/10/2022] [Indexed: 01/26/2023] Open
Abstract
Background Emerging and re-emerging vector-borne diseases (VBDs) pose a recurring threat to tropical countries, mainly due to the abundance and distribution of the Aedes aegypti mosquito, which is a vector of the Zika, dengue, chikungunya, and yellow fever arboviruses. Methods Female 3–5 day-old Ae. aegypti were distributed into two experimental groups: group I—survey of cultivable bacteria; sucrose group: fed only on sucrose, i.e., non-blood-fed (UF); blood-fed group: (i) fed with non-infected blood (BF); (ii) fed with blood infected with the Zika virus (BZIKV); (iii) pretreated with penicillin/streptomycin (pen/strep), and fed with non-infected blood (TBF); (iv) pretreated with pen/strep and fed blood infected with ZIKV, i.e., gravid with developed ovaries, (TGZIKV); group II—experimental co-infections: bacteria genera isolated from the group fed on sucrose, i.e., non-blood-fed (UF). Results Using the cultivable method and the same mosquito colony and ZIKV strain described by in a previous work, our results reveled 11 isolates (Acinetobacter, Aeromonas, Cedecea, Cellulosimicrobium, Elizabethkingia, Enterobacter, Lysinibacillus, Pantoea, Pseudomonas, Serratia, and Staphylococcus). Enterobacter was present in all evaluated groups (i.e., UF, BF, BZIKV, TBF, and TGZIKV), whereas Elizabethkingia was present in the UF, BZIKV, and TBF groups. Pseudomonas was present in the BZIKV and TBF groups, whereas Staphylococcus was present in the TBF and TGZIKV groups. The only genera of bacteria that were found to be present in only one group were Aeromonas, Lysinibacillus, and Serratia (UF); Cedacea, Pantoea and Acinetobacter (BF); and Cellulosimicrobium (BZIKV). The mosquitoes co-infected with ZIKV plus the isolates group fed on sucrose (UF) showed interference in the outcome of infection. Conclusions We demonstrate that the distinct feeding aspects assessed herein influence the composition of bacterial diversity. In the co-infection, among ZIKV, Ae. aegypti and the bacterial isolates, the ZIKV/Lysinibacillus–Ae. aegypti had the lowest number of viral copies in the head-SG, which means that it negatively affects vector competence. However, when the saliva was analyzed after forced feeding, no virus was detected in the mosquito groups ZIKV/Lysinibacillus–Lu. longipalpis and Ae. aegypti; the combination of ZIKV/Serratia may interfere in salivation. This indicates that the combinations do not produce viable viruses and may have great potential as a method of biological control. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05160-7.
Collapse
Affiliation(s)
- Rêgila Mello do Nascimento
- Laboratorio de Entomologia Médica, Instituto René Rachou-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.,Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Thais Bonifácio Campolina
- Laboratorio de Entomologia Médica, Instituto René Rachou-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, IRR-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara Aparecida Chaves
- Instituto de Pesquisas Clínicas Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, Brazil
| | | | - Raquel Soares Maia Godoy
- Laboratorio de Entomologia Médica, Instituto René Rachou-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Laboratorio de Entomologia Médica, Instituto René Rachou-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Programa de Pós-Graduação em Ciências da Saúde, IRR-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Nagila Francinete Costa Secundino
- Laboratorio de Entomologia Médica, Instituto René Rachou-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil. .,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil. .,Programa de Pós-Graduação em Ciências da Saúde, IRR-FIOCRUZ-Minas, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
28
|
Wang XR, Cull B. Apoptosis and Autophagy: Current Understanding in Tick–Pathogen Interactions. Front Cell Infect Microbiol 2022; 12:784430. [PMID: 35155277 PMCID: PMC8829008 DOI: 10.3389/fcimb.2022.784430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tick-borne diseases are a significant threat to human and animal health throughout the world. How tick-borne pathogens successfully infect and disseminate in both their vertebrate and invertebrate hosts is only partially understood. Pathogens have evolved several mechanisms to combat host defense systems, and to avoid and modulate host immunity during infection, therefore benefitting their survival and replication. In the host, pathogens trigger responses from innate and adaptive immune systems that recognize and eliminate invaders. Two important innate defenses against pathogens are the programmed cell death pathways of apoptosis and autophagy. This Mini Review surveys the current knowledge of apoptosis and autophagy pathways in tick-pathogen interactions, as well as the strategies evolved by pathogens for their benefit. We then assess the limitations to studying both pathways and discuss their participation in the network of the tick immune system, before highlighting future perspectives in this field. The knowledge gained would significantly enhance our understanding of the defense responses in vector ticks that regulate pathogen infection and burden, and form the foundation for future research to identify novel approaches to the control of tick-borne diseases.
Collapse
Affiliation(s)
- Xin-Ru Wang
- *Correspondence: Xin-Ru Wang, ; Benjamin Cull,
| | | |
Collapse
|
29
|
Maire J, Blackall LL, van Oppen MJH. Intracellular Bacterial Symbionts in Corals: Challenges and Future Directions. Microorganisms 2021; 9:2209. [PMID: 34835335 PMCID: PMC8619543 DOI: 10.3390/microorganisms9112209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Corals are the main primary producers of coral reefs and build the three-dimensional reef structure that provides habitat to more than 25% of all marine eukaryotes. They harbor a complex consortium of microorganisms, including bacteria, archaea, fungi, viruses, and protists, which they rely on for their survival. The symbiosis between corals and bacteria is poorly studied, and their symbiotic relationships with intracellular bacteria are only just beginning to be acknowledged. In this review, we emphasize the importance of characterizing intracellular bacteria associated with corals and explore how successful approaches used to study such microorganisms in other systems could be adapted for research on corals. We propose a framework for the description, identification, and functional characterization of coral-associated intracellular bacterial symbionts. Finally, we highlight the possible value of intracellular bacteria in microbiome manipulation and mitigating coral bleaching.
Collapse
Affiliation(s)
- Justin Maire
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
| | - Linda L. Blackall
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
| | - Madeleine J. H. van Oppen
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
30
|
Elston KM, Leonard SP, Geng P, Bialik SB, Robinson E, Barrick JE. Engineering insects from the endosymbiont out. Trends Microbiol 2021; 30:79-96. [PMID: 34103228 DOI: 10.1016/j.tim.2021.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/19/2021] [Accepted: 05/11/2021] [Indexed: 01/28/2023]
Abstract
Insects are an incredibly diverse group of animals with species that benefit and harm natural ecosystems, agriculture, and human health. Many insects have consequential associations with microbes: bacterial symbionts may be embedded in different insect tissues and cell types, inherited across insect generations, and required for insect survival and reproduction. Genetically engineering insect symbionts is key to understanding and harnessing these associations. We summarize different types of insect-bacteria relationships and review methods used to genetically modify endosymbiont and gut symbiont species. Finally, we discuss recent studies that use this approach to study symbioses, manipulate insect-microbe interactions, and influence insect biology. Further progress in insect symbiont engineering promises to solve societal challenges, ranging from controlling pests to protecting pollinator health.
Collapse
Affiliation(s)
- Katherine M Elston
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sean P Leonard
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Peng Geng
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sarah B Bialik
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Elizabeth Robinson
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
31
|
Medina Munoz M, Brenner C, Richmond D, Spencer N, Rio RVM. The holobiont transcriptome of teneral tsetse fly species of varying vector competence. BMC Genomics 2021; 22:400. [PMID: 34058984 PMCID: PMC8166097 DOI: 10.1186/s12864-021-07729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tsetse flies are the obligate vectors of African trypanosomes, which cause Human and Animal African Trypanosomiasis. Teneral flies (newly eclosed adults) are especially susceptible to parasite establishment and development, yet our understanding of why remains fragmentary. The tsetse gut microbiome is dominated by two Gammaproteobacteria, an essential and ancient mutualist Wigglesworthia glossinidia and a commensal Sodalis glossinidius. Here, we characterize and compare the metatranscriptome of teneral Glossina morsitans to that of G. brevipalpis and describe unique immunological, physiological, and metabolic landscapes that may impact vector competence differences between these two species. Results An active expression profile was observed for Wigglesworthia immediately following host adult metamorphosis. Specifically, ‘translation, ribosomal structure and biogenesis’ followed by ‘coenzyme transport and metabolism’ were the most enriched clusters of orthologous genes (COGs), highlighting the importance of nutrient transport and metabolism even following host species diversification. Despite the significantly smaller Wigglesworthia genome more differentially expressed genes (DEGs) were identified between interspecific isolates (n = 326, ~ 55% of protein coding genes) than between the corresponding Sodalis isolates (n = 235, ~ 5% of protein coding genes) likely reflecting distinctions in host co-evolution and adaptation. DEGs between Sodalis isolates included genes involved in chitin degradation that may contribute towards trypanosome susceptibility by compromising the immunological protection provided by the peritrophic matrix. Lastly, G. brevipalpis tenerals demonstrate a more immunologically robust background with significant upregulation of IMD and melanization pathways. Conclusions These transcriptomic differences may collectively contribute to vector competence differences between tsetse species and offers translational relevance towards the design of novel vector control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07729-5.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Caitlyn Brenner
- Department of Biology, Washington and Jefferson College, Washington, PA, 15301, USA
| | - Dylan Richmond
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Noah Spencer
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
32
|
Abstract
In nature, insects face a constant threat of infection by numerous exogeneous viruses, and their intestinal tracts are the predominant ports of entry. Insects can acquire these viruses orally during either blood feeding by hematophagous insects or sap sucking and foliage feeding by insect herbivores. However, the insect intestinal tract forms several physical and immunological barriers to defend against viral invasion, including cell intrinsic antiviral immunity, the peritrophic matrix and the mucin layer, and local symbiotic microorganisms. Whether an infection can be successfully established in the intestinal tract depends on the complex interactions between viruses and those barriers. In this review, we summarize recent progress on virus-intestinal tract interplay in insects, in which various underlying mechanisms derived from nutritional status, dynamics of symbiotic microorganisms, and virus-encoded components play intricate roles in the regulation of virus invasion in the intestinal tract, either directly or indirectly. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; .,Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Ziwen Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Taiyun Wei
- Vector-Borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; .,Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| |
Collapse
|
33
|
Gabrieli P, Caccia S, Varotto-Boccazzi I, Arnoldi I, Barbieri G, Comandatore F, Epis S. Mosquito Trilogy: Microbiota, Immunity and Pathogens, and Their Implications for the Control of Disease Transmission. Front Microbiol 2021; 12:630438. [PMID: 33889137 PMCID: PMC8056039 DOI: 10.3389/fmicb.2021.630438] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
In mosquitoes, the interaction between the gut microbiota, the immune system, and the pathogens that these insects transmit to humans and animals is regarded as a key component toward the development of control strategies, aimed at reducing the burden of severe diseases, such as malaria and dengue fever. Indeed, different microorganisms from the mosquito microbiota have been investigated for their ability to affect important traits of the biology of the host insect, related with its survival, development and reproduction. Furthermore, some microorganisms have been shown to modulate the immune response of mosquito females, significantly shaping their vector competence. Here, we will review current knowledge in this field, focusing on i) the complex interaction between the intestinal microbiota and mosquito females defenses, both in the gut and at humoral level; ii) how knowledge on these issues contributes to the development of novel and targeted strategies for the control of mosquito-borne diseases such as the use of paratransgenesis or taking advantage of the relationship between Wolbachia and mosquito hosts. We conclude by providing a brief overview of available knowledge on microbiota-immune system interplay in major insect vectors.
Collapse
Affiliation(s)
- Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Silvia Caccia
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy.,Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Irene Arnoldi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesco Comandatore
- "L. Sacco" Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
34
|
Elston KM, Perreau J, Maeda GP, Moran NA, Barrick JE. Engineering a Culturable Serratia symbiotica Strain for Aphid Paratransgenesis. Appl Environ Microbiol 2021; 87:AEM.02245-20. [PMID: 33277267 PMCID: PMC7851701 DOI: 10.1128/aem.02245-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
Aphids are global agricultural pests and important models for bacterial symbiosis. To date, none of the native symbionts of aphids have been genetically manipulated, which limits our understanding of how they interact with their hosts. Serratia symbiotica CWBI-2.3T is a culturable, gut-associated bacterium isolated from the black bean aphid. Closely related Serratia symbiotica strains are facultative aphid endosymbionts that are vertically transmitted from mother to offspring during embryogenesis. We demonstrate that CWBI-2.3T can be genetically engineered using a variety of techniques, plasmids, and gene expression parts. Then, we use fluorescent protein expression to track the dynamics with which CWBI-2.3T colonizes the guts of multiple aphid species, and we measure how this bacterium affects aphid fitness. Finally, we show that we can induce heterologous gene expression from engineered CWBI-2.3T in living aphids. These results inform the development of CWBI-2.3T for aphid paratransgenesis, which could be used to study aphid biology and enable future agricultural technologies.IMPORTANCE Insects have remarkably diverse and integral roles in global ecosystems. Many harbor symbiotic bacteria, but very few of these bacteria have been genetically engineered. Aphids are major agricultural pests and an important model system for the study of symbiosis. This work describes methods for engineering a culturable aphid symbiont, Serratia symbiotica CWBI-2.3T These approaches and genetic tools could be used in the future to implement new paradigms for the biological study and control of aphids.
Collapse
Affiliation(s)
- Katherine M Elston
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| | - Julie Perreau
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA 78712, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| | - Gerald P Maeda
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA 78712, USA
| |
Collapse
|
35
|
Masson F, Lemaitre B. Growing Ungrowable Bacteria: Overview and Perspectives on Insect Symbiont Culturability. Microbiol Mol Biol Rev 2020; 84:e00089-20. [PMID: 33177190 PMCID: PMC7667007 DOI: 10.1128/mmbr.00089-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Insects are often involved in endosymbiosis, that is, the housing of symbiotic microbes within their tissues or within their cells. Endosymbionts are a major driving force in insects' evolution, because they dramatically affect their host physiology and allow them to adapt to new niches, for example, by complementing their diet or by protecting them against pathogens. Endosymbiotic bacteria are, however, fastidious and therefore difficult to manipulate outside of their hosts, especially intracellular species. The coevolution between hosts and endosymbionts leads to alterations in the genomes of endosymbionts, limiting their ability to cope with changing environments. Consequently, few insect endosymbionts are culturable in vitro and genetically tractable, making functional genetics studies impracticable on most endosymbiotic bacteria. However, recently, major progress has been made in manipulating several intracellular endosymbiont species in vitro, leading to astonishing discoveries on their physiology and the way they interact with their host. This review establishes a comprehensive picture of the in vitro tractability of insect endosymbiotic bacteria and addresses the reason why most species are not culturable. By compiling and discussing the latest developments in the design of custom media and genetic manipulation protocols, it aims at providing new leads to expand the range of tractable endosymbionts and foster genetic research on these models.
Collapse
Affiliation(s)
- Florent Masson
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
36
|
Möhlmann TWR, Vogels CBF, Göertz GP, Pijlman GP, Ter Braak CJF, Te Beest DE, Hendriks M, Nijhuis EH, Warris S, Drolet BS, van Overbeek L, Koenraadt CJM. Impact of Gut Bacteria on the Infection and Transmission of Pathogenic Arboviruses by Biting Midges and Mosquitoes. MICROBIAL ECOLOGY 2020; 80:703-717. [PMID: 32462391 PMCID: PMC7476999 DOI: 10.1007/s00248-020-01517-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/23/2020] [Indexed: 05/10/2023]
Abstract
Tripartite interactions among insect vectors, midgut bacteria, and viruses may determine the ability of insects to transmit pathogenic arboviruses. Here, we investigated the impact of gut bacteria on the susceptibility of Culicoides nubeculosus and Culicoides sonorensis biting midges for Schmallenberg virus, and of Aedes aegypti mosquitoes for Zika and chikungunya viruses. Gut bacteria were manipulated by treating the adult insects with antibiotics. The gut bacterial communities were investigated using Illumina MiSeq sequencing of 16S rRNA, and susceptibility to arbovirus infection was tested by feeding insects with an infectious blood meal. Antibiotic treatment led to changes in gut bacteria for all insects. Interestingly, the gut bacterial composition of untreated Ae. aegypti and C. nubeculosus showed Asaia as the dominant genus, which was drastically reduced after antibiotic treatment. Furthermore, antibiotic treatment resulted in relatively more Delftia bacteria in both biting midge species, but not in mosquitoes. Antibiotic treatment and subsequent changes in gut bacterial communities were associated with a significant, 1.8-fold increased infection rate of C. nubeculosus with Schmallenberg virus, but not for C. sonorensis. We did not find any changes in infection rates for Ae. aegypti mosquitoes with Zika or chikungunya virus. We conclude that resident gut bacteria may dampen arbovirus transmission in biting midges, but not so in mosquitoes. Use of antimicrobial compounds at livestock farms might therefore have an unexpected contradictory effect on the health of animals, by increasing the transmission of viral pathogens by biting midges.
Collapse
Affiliation(s)
- Tim W R Möhlmann
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Chantal B F Vogels
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Giel P Göertz
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Cajo J F Ter Braak
- Biometris, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Dennis E Te Beest
- Biometris, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Marc Hendriks
- Biointeractions and Plant Health, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Els H Nijhuis
- Biointeractions and Plant Health, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Sven Warris
- Bioscience, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, USDA, Agricultural Research Service, 1515 College Ave, Manhattan, KS, USA
| | - Leo van Overbeek
- Biointeractions and Plant Health, Wageningen University & Research, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Constantianus J M Koenraadt
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
37
|
Dumonteil E, Pronovost H, Bierman EF, Sanford A, Majeau A, Moore R, Herrera C. Interactions among Triatoma sanguisuga blood feeding sources, gut microbiota and Trypanosoma cruzi diversity in southern Louisiana. Mol Ecol 2020; 29:3747-3761. [PMID: 32749727 DOI: 10.1111/mec.15582] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Integrating how biodiversity and infectious disease dynamics are linked at multiple levels and scales is highly challenging. Chagas disease is a vector-borne disease, with specificities of the triatomine vectors and Trypanosoma cruzi parasite life histories resulting in a complex multihost and multistrain life cycle. Here, we tested the hypothesis that T. cruzi transmission cycles are shaped by triatomine host communities and gut microbiota composition by comparing the integrated interactions of Triatoma sanguisuga in southern Louisiana with feeding hosts, T. cruzi parasite and bacterial microbiota in two habitats. Bugs were collected from resident's houses and animal shelters and analysed for genetic structure, blood feeding sources, T. cruzi parasites, and bacterial diversity by PCR amplification of specific DNA markers followed by next-generation sequencing, in an integrative metabarcoding approach. T. sanguisuga feeding host communities appeared opportunistic and defined by host abundance in each habitat, yielding distinct parasite transmission networks among hosts. The circulation of a large diversity of T. cruzi DTUs was also detected, with TcII and TcV detected for the first time in triatomines in the US. The bacterial microbiota was highly diverse and varied significantly according to the DTU infecting the bugs, indicating specific interactions among them in the gut. Expanding such studies to multiple habitats and additional triatomine species would be key to further refine our understanding of the complex life cycles of multihost, multistrain parasites such as T. cruzi, and may lead to improved disease control strategies.
Collapse
Affiliation(s)
- Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Henry Pronovost
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Eli F Bierman
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Anna Sanford
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Alicia Majeau
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Ryan Moore
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| |
Collapse
|
38
|
The Diversity of Midgut Bacteria among Wild-Caught Phlebotomus argentipes (Psychodidae: Phlebotominae), the Vector of Leishmaniasis in Sri Lanka. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5458063. [PMID: 32923482 PMCID: PMC7453272 DOI: 10.1155/2020/5458063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022]
Abstract
Phlebotomus argentipes is the main suspected vector for leishmaniasis in Sri Lanka. Investigations on the presence of aerobic bacteria in the gut of sand flies which evidence a potential approach to control leishmaniasis transmission through a paratransgenic strategy are still not available for the local sand fly populations. Field-caught unfed female sand flies collected from three selected Medical Officer of Health (MOH) areas (Polpithigama, Maho, and Galgamuwa) in Kurunegala District, Sri Lanka from August to December 2018 were used. Prokaryotic 16S ribosomal RNA partial gene was amplified and sequenced. Morphological identification revealed the presence of only one sand fly species, P. argentipes (n = 1,969). A total of 20 organisms belonging to two phyla (Proteobactericea and Furmicutes) were detected within the gut microbial community of the studied sand fly specimens. This study documents the first-ever observation of Rhizobium sp. in the midgut of P. argentipes. The presence of Bacillus megaterium, which is considered as a nonpathogenic bacterium with potential use for paratransgenic manipulation of P. argentipes suggest that it may be used as a delivery vehicle to block the vectorial transmission of Leishmania parasites. In addition, Serratia marcescens may be used as a potential candidate to block the parasite development in sand fly vectors since it has evidenced antileishmanial activities in previous investigations. Hence, further studies are required to gain full insight into the potential use of this bacterium in the control of Leishmania parasites through paratransgenesis.
Collapse
|
39
|
Qasim M, Xiao H, He K, Omar MAA, Liu F, Ahmed S, Li F. Genetic engineering and bacterial pathogenesis against the vectorial capacity of mosquitoes. Microb Pathog 2020; 147:104391. [PMID: 32679245 DOI: 10.1016/j.micpath.2020.104391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
Abstract
Mosquitoes are the main vector of multiple diseases worldwide and transmit viral (malaria, chikungunya, encephalitis, yellow fever, as well as dengue fever), as well as bacterial diseases (tularemia). To manage the outbreak of mosquito populations, various management programs include the application of chemicals, followed by biological and genetic control. Here we aimed to focus on the role of bacterial pathogenesis and molecular tactics for the management of mosquitoes and their vectorial capacity. Bacterial pathogenesis and molecular manipulations have a substantial impact on the biology of mosquitoes, and both strategies change the gene expression and regulation of disease vectors. The strategy for genetic modification is also proved to be excellent for the management of mosquitoes, which halt the development of population via incompatibility of different sex. Therefore, the purpose of the present discussion is to illustrate the impact of both approaches against the vectorial capacity of mosquitoes. Moreover, it could be helpful to understand the relationship of insect-pathogen and to manage various insect vectors as well as diseases.
Collapse
Affiliation(s)
- Muhammad Qasim
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Huamei Xiao
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China; College of Life Sciences and Resource Environment, Key Laboratory of Crop Growth and Development Regulation of Jiangxi Province, Yichun University, Yichun, 336000, China
| | - Kang He
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mohamed A A Omar
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Feiling Liu
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Sohail Ahmed
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Fei Li
- Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
40
|
From Nucleotides to Satellite Imagery: Approaches to Identify and Manage the Invasive Pathogen Xylella fastidiosa and Its Insect Vectors in Europe. SUSTAINABILITY 2020. [DOI: 10.3390/su12114508] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological invasions represent some of the most severe threats to local communities and ecosystems. Among invasive species, the vector-borne pathogen Xylella fastidiosa is responsible for a wide variety of plant diseases and has profound environmental, social and economic impacts. Once restricted to the Americas, it has recently invaded Europe, where multiple dramatic outbreaks have highlighted critical challenges for its management. Here, we review the most recent advances on the identification, distribution and management of X. fastidiosa and its insect vectors in Europe through genetic and spatial ecology methodologies. We underline the most important theoretical and technological gaps that remain to be bridged. Challenges and future research directions are discussed in the light of improving our understanding of this invasive species, its vectors and host–pathogen interactions. We highlight the need of including different, complimentary outlooks in integrated frameworks to substantially improve our knowledge on invasive processes and optimize resources allocation. We provide an overview of genetic, spatial ecology and integrated approaches that will aid successful and sustainable management of one of the most dangerous threats to European agriculture and ecosystems.
Collapse
|
41
|
Yin C, Sun P, Yu X, Wang P, Cheng G. Roles of Symbiotic Microorganisms in Arboviral Infection of Arthropod Vectors. Trends Parasitol 2020; 36:607-615. [PMID: 32386795 DOI: 10.1016/j.pt.2020.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
Arthropod vectors serve as native reservoirs and transmitters of hundreds of arboviruses. In arthropod vectors, symbiotic microorganisms residing in the gut lumen and/or hemocoelic tissues maintain complicated relationships with their host and influence multiple aspects of vector physiology. Recently, accumulating evidence has established an important role for symbiotic microorganisms in vector-virus interactions which could potentially be used to control viral transmission. Herein, we review recent progress on symbiotic microbe-arbovirus interactions and summarize the molecular mechanisms by which commensal microbes act on hosts and arboviruses. Understanding the sophisticated interactions among arthropod vectors, microbiota, and arboviruses may offer new strategies for the prevention of arboviral diseases in the future.
Collapse
Affiliation(s)
- Chunhong Yin
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China, 100084; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China, 518055
| | - Peng Sun
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China, 100084; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China, 518055
| | - Xi Yu
- School of Life Sciences, Tsinghua University, Beijing, China, 100084
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, CT, USA, 06030
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China, 100084; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China, 518055.
| |
Collapse
|
42
|
Huang W, Wang S, Jacobs-Lorena M. Use of Microbiota to Fight Mosquito-Borne Disease. Front Genet 2020; 11:196. [PMID: 32211030 PMCID: PMC7076131 DOI: 10.3389/fgene.2020.00196] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
Mosquito-borne diseases cause more than 700 million people infected and one million people die (Caraballo and King, 2014). With the limitations of progress toward elimination imposed by insecticide- and drug-resistance, combined with the lack of vaccines, innovative strategies to fight mosquito-borne disease are urgently needed. In recent years, the use of mosquito microbiota has shown great potential for cutting down transmission of mosquito-borne pathogens. Here we review what is known about the mosquito microbiota and how this knowledge is being used to develop new ways to control mosquito-borne disease. We also discuss the challenges for the eventual release of genetically modified (GM) symbionts in the field.
Collapse
Affiliation(s)
- Wei Huang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
43
|
Gao H, Cui C, Wang L, Jacobs-Lorena M, Wang S. Mosquito Microbiota and Implications for Disease Control. Trends Parasitol 2020; 36:98-111. [PMID: 31866183 PMCID: PMC9827750 DOI: 10.1016/j.pt.2019.12.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023]
Abstract
Mosquito-transmitted diseases account for about 500 000 deaths every year. Blocking these pathogens in the mosquito vector before they are transmitted to humans is an effective strategy to prevent mosquito-borne diseases. Like most higher organisms, mosquitoes harbor a highly diverse and dynamic microbial flora that can be explored for prevention of pathogen transmission. Here we review the structure and function of the mosquito microbiota, including bacteria, fungi, and viruses, and discuss the potential of using components of the microbiota to thwart pathogen transmission.
Collapse
Affiliation(s)
- Han Gao
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,These authors contributed equally to this work
| | - Chunlai Cui
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,These authors contributed equally to this work
| | - Lili Wang
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,These authors contributed equally to this work
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA,Correspondence: ,
| | - Sibao Wang
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,Correspondence: ,
| |
Collapse
|
44
|
Chauhan G, McClure J, Hekman J, Marsh PW, Bailey JA, Daniels RF, Genereux DP, Karlsson EK. Combining Citizen Science and Genomics to Investigate Tick, Pathogen, and Commensal Microbiome at Single-Tick Resolution. Front Genet 2020; 10:1322. [PMID: 32038704 PMCID: PMC6985576 DOI: 10.3389/fgene.2019.01322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022] Open
Abstract
The prevalence of tickborne diseases worldwide is increasing virtually unchecked due to the lack of effective control strategies. The transmission dynamics of tickborne pathogens are influenced by the tick microbiome, tick co-infection with other pathogens, and environmental features. Understanding this complex system could lead to new strategies for pathogen control, but will require large-scale, high-resolution data. Here, we introduce Project Acari, a citizen science-based project to assay, at single-tick resolution, species, pathogen infection status, microbiome profile, and environmental conditions of tens of thousands of ticks collected from numerous sites across the United States. In the first phase of the project, we collected more than 2,400 ticks wild-caught by citizen scientists and developed high-throughput methods to process and sequence them individually. Applying these methods to 192 Ixodes scapularis ticks collected in a region with a high incidence of Lyme disease, we found that 62% were colonized by Borrelia burgdorferi, the Lyme disease pathogen. In contrast to previous reports, we did not find an association between the microbiome diversity of a tick and its probability of carrying B. burgdorferi. However, we did find undescribed associations between B. burgdorferi carriage and the presence of specific microbial taxa within individual ticks. Our findings underscore the power of coupling citizen science with high-throughput processing to reveal pathogen dynamics. Our approach can be extended for massively parallel screening of individual ticks, offering a powerful tool to elucidate the ecology of tickborne disease and to guide pathogen-control initiatives.
Collapse
Affiliation(s)
- Gaurav Chauhan
- Bioinformatics and Integrative Biology Program, University of Massachusetts Medical School, Worcester, MA, United States.,Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Jesse McClure
- Bioinformatics and Integrative Biology Program, University of Massachusetts Medical School, Worcester, MA, United States.,Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Jessica Hekman
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Patrick W Marsh
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Rachel F Daniels
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Diane P Genereux
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology Program, University of Massachusetts Medical School, Worcester, MA, United States.,Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
45
|
Sáenz-Garcia JL, Yamanaka IB, Pacheco-Lugo LA, Miranda JS, Córneo ES, Machado-de-Ávila RA, De Moura JF, DaRocha WD. Targeting epimastigotes of Trypanosoma cruzi with a peptide isolated from a phage display random library. Exp Parasitol 2020; 210:107830. [PMID: 31917970 DOI: 10.1016/j.exppara.2020.107830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/06/2019] [Accepted: 01/04/2020] [Indexed: 12/01/2022]
Abstract
Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi, which is transmitted by insects of the family Reduviidae. Since conventional treatments with nitroheterocyclic drugs show serious adverse reactions and have questionable efficiency, different research groups have investigated polypeptide-based approaches to interfere with the parasite cell cycle in other Trypanosomatids. These strategies are supported by the fact that surface players are candidates to develop surface ligands that impair function since they may act as virulence factors. In this study, we used a phage display approach to identify peptides from one library-LX8CX8 (17 aa) (where X corresponds to any amino acid). After testing different biopanning conditions using live or fixed epimastigotes, 10 clones were sequenced that encoded the same peptide, named here as EPI18. The bacteriophage expressing EPI18 binds to epimastigotes from distinct strains of T. cruzi. To confirm these results, this peptide was synthetized, biotinylated, and assayed using flow cytometry and confocal microscopy analyses. These assays confirmed the specificity of the binding capacity of EPI18 toward epimastigote surfaces. Our findings suggest that EPI18 may have potential biotechnological applications that include peptide-based strategies to control parasite transmission.
Collapse
Affiliation(s)
- José L Sáenz-Garcia
- Laboratório de Genômica Funcional de Parasitos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Curitiba, Brazil; Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, UNAN-Managua, Managua, Nicaragua
| | - Isabel B Yamanaka
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Lisandro A Pacheco-Lugo
- Laboratório de Genômica Funcional de Parasitos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Curitiba, Brazil; Universidad Simón Bolívar. Barranquilla, Colombia
| | - Juliana S Miranda
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal Do Paraná, Curitiba, Brazil
| | - Emily S Córneo
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade Do Extremo Sul Catarinense, CEP, 88806-000. Criciúma, Brazil
| | - Ricardo A Machado-de-Ávila
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação Em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade Do Extremo Sul Catarinense, CEP, 88806-000. Criciúma, Brazil
| | - Juliana F De Moura
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal Do Paraná, Curitiba, Brazil.
| | - Wanderson D DaRocha
- Laboratório de Genômica Funcional de Parasitos, Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Curitiba, Brazil.
| |
Collapse
|
46
|
Díaz-Sánchez S, Estrada-Peña A, Cabezas-Cruz A, de la Fuente J. Evolutionary Insights into the Tick Hologenome. Trends Parasitol 2019; 35:725-737. [PMID: 31331734 DOI: 10.1016/j.pt.2019.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/25/2022]
Abstract
Recently, our knowledge of the composition and complexity of tick microbial communities has increased and supports microbial impact on tick biology. Results support a phylogenetic association between ticks and their microbiota across evolution; this is known as phylosymbiosis. Herein, using published datasets, we confirm the existence of phylosymbiosis between Ixodes ticks and their microbial communities. The strong phylosymbiotic signal and the phylogenetic structure of microbial communities associated with Ixodid ticks revealed that phylosymbiosis may be a widespread phenomenon in tick-microbiota evolution. This finding supports the existence of a species-specific tick hologenome with a largely unexplored influence on tick biology and pathogen transmission. These results may provide potential targets for the construction of paratransgenic ticks to control tick infestations and tick-borne diseases.
Collapse
Affiliation(s)
- Sandra Díaz-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | | | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort, 94700, France
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
47
|
Koosha M, Vatandoost H, Karimian F, Choubdar N, Oshaghi MA. Delivery of a Genetically Marked Serratia AS1 to Medically Important Arthropods for Use in RNAi and Paratransgenic Control Strategies. MICROBIAL ECOLOGY 2019; 78:185-194. [PMID: 30460544 DOI: 10.1007/s00248-018-1289-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Understanding how arthropod vectors acquire their bacteria is essential for implementation of paratransgenic and RNAi strategies using genetically modified bacteria to control vector-borne diseases. In this study, a genetically marked Serratia AS1 strain expressing the mCherry fluorescent protein (mCherry-Serratia) was used to test various acquisition routes in six arthropod vectors including Anopheles stephensi, Culex pipiens, Cx. quinquefaciatus, Cx. theileri, Phlebotomus papatasi, and Hyalomma dromedarii. Depending on the species, the bacteria were delivered to (i) mosquito larval breeding water, (ii) host skin, (iii) sugar bait, and (iv) males (paratransgenic). The arthropods were screened for the bacteria in their guts or other tissues. All the hematophagous arthropods were able to take the bacteria from the skin of their hosts while taking blood meal. The mosquitoes were able to take up the bacteria from the water at larval stages and to transfer them transstadially to adults and finally to transfer them to the water they laid eggs in. The mosquitoes were also able to acquire the bacteria from male sperm. The level of bacterial acquisition was influenced by blood feeding time and strategies (pool or vessel feeding), dipping in water and resting time of newly emerged adult mosquitoes, and the disseminated tissue/organ. Transstadial, vertical, and venereal bacterial acquisition would increase the sustainability of the modified bacteria in vector populations and decrease the need for supplementary release experiments whereas release of paratransgenic males that do not bite has fewer ethical issues. Furthermore, this study is required to determine if the modified bacteria can be introduced to arthropods in the same routes in nature.
Collapse
Affiliation(s)
- Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran
| | - Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran
| | - Nayyereh Choubdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, P.O.Box: 14155-6446, Tehran, Iran.
| |
Collapse
|
48
|
Koosha M, Vatandoost H, Karimian F, Choubdar N, Abai MR, Oshaghi MA. Effect of Serratia AS1 (Enterobacteriaceae: Enterobacteriales) on the Fitness of Culex pipiens (Diptera: Culicidae) for Paratransgenic and RNAi Approaches. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:553-559. [PMID: 30388221 DOI: 10.1093/jme/tjy183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 05/25/2023]
Abstract
The mosquito Culex pipiens is the primary vector of Rift Valley fever, West Nile, encephalitis, and Zika viruses, and periodic lymphatic filariasis. Developing insecticide resistance in mosquitoes demands the development of new approaches to fight these diseases. Paratransgenesis and RNAi approaches by using engineered bacteria have been shown to reduce mosquito vector competence. Serratia-AS1 is a bacterium found in mosquitoes and was genetically modified for expression of antimalaria effector molecules that repress development of malaria parasites in mosquitoes. The aim of this study was to determine how a genetically marked Serratia strain expressing the mCherry fluorescent protein (mCherry-Serratia) affects the colonization potential, life span, blood feeding behavior, fecundity, and fertility of Cx. pipiens. mCherry-Serratia bacteria disseminated into larvae, pupae, and newly emerged adults and dramatically increased in numbers following a blood meal. The bacterium was transmitted to progeny, showing that it can extend horizontally, transstadially, and vertically through the mosquito population. The presence of mCherry-Serratia did not affect blood feeding behavior, survival rate, fecundity, and fertility of Culex mosquitoes. This is the first study to evaluate the effects of an engineered bacteria on the fitness of Cx. pipiens. Although challenges remain, such as producing engineered bacteria to secrete anti-pathogens associated with Cx. pipiens, introducing such bacteria into mosquito populations, our findings of minimal fitness cost caused by Serratia-AS1 bode well for the development of paratransgenesis and RNAi approaches.
Collapse
Affiliation(s)
- Mona Koosha
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Vatandoost
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateh Karimian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nayyereh Choubdar
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Abai
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
da Mota FF, Castro DP, Vieira CS, Gumiel M, de Albuquerque JP, Carels N, Azambuja P. In vitro Trypanocidal Activity, Genomic Analysis of Isolates, and in vivo Transcription of Type VI Secretion System of Serratia marcescens Belonging to the Microbiota of Rhodnius prolixus Digestive Tract. Front Microbiol 2019; 9:3205. [PMID: 30733713 PMCID: PMC6353840 DOI: 10.3389/fmicb.2018.03205] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
Serratia marcescens is a bacterium with the ability to colonize several niches, including some eukaryotic hosts. S. marcescens have been recently found in the gut of hematophagous insects that act as parasite vectors, such as Anopheles, Rhodnius, and Triatoma. While some S. marcescens strains have been reported as symbiotic or pathogenic to other insects, the role of S. marcescens populations from the gut microbiota of Rhodnius prolixus, a vector of Chagas’ disease, remains unknown. Bacterial colonies from R. prolixus gut were isolated on BHI agar. After BOX-PCR fingerprinting, the genomic sequences of two isolates RPA1 and RPH1 were compared to others S. marcescens from the NCBI database in other to estimate their evolutionary divergence. The in vitro trypanolytic activity of these two bacterial isolates against Trypanosoma cruzi (DM28c clone and Y strain) was assessed by microscopy. In addition, the gene expression of type VI secretion system (T6SS) was detected in vivo by RT-PCR. Comparative genomics of RPA1 and RPH1 revealed, besides plasmid presence and genomic islands, genes related to motility, attachment, and quorum sensing in both genomes while genes for urea hydrolysis and type II secretion system (T2SS) were found only in the RPA1 genome. The in vitro trypanolytic activity of both S. marcescens strains was stronger in their stationary phases of growth than in their exponential ones, with 65–70 and 85–90% of epimastigotes (Dm28c clone and Y strain, respectively) being lysed after incubation with RPA1 or RPH1 in stationary phase. Although T6SS transcripts were detected in guts up to 40 days after feeding (DAF), R. prolixus morbidity or mortality did not appear to be affected. In this report, we made available two trypanolytic S. marcescens strains from R. prolixus gut to the scientific community together with their genomic sequences. Here, we describe their genomic features with the purpose of bringing new insights into the S. marcescens adaptations for colonization of the specific niche of triatomine guts. This study provides the basis for a better understanding of the role of S. marcescens in the microbiota of R. prolixus gut as a potential antagonist of T. cruzi in this complex system.
Collapse
Affiliation(s)
- Fabio Faria da Mota
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Daniele Pereira Castro
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil.,Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Cecilia Stahl Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Marcia Gumiel
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Julia Peixoto de Albuquerque
- Laboratório de Enteropatógenos, Microbiologia Veterinária e de Alimentos, Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense (MIP/UFF), Rio de Janeiro, Brazil
| | - Nicolas Carels
- Laboratório de Modelagem de Sistemas Biológicos, National Institute for Science and Technology on Innovation in Neglected Diseases (INCT-IDN), Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz (CDTS/FIOCRUZ), Rio de Janeiro, Brazil
| | - Patricia Azambuja
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil.,Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
50
|
da Silva Gonçalves D, Iturbe-Ormaetxe I, Martins-da-Silva A, Telleria EL, Rocha MN, Traub-Csekö YM, O'Neill SL, Sant'Anna MRV, Moreira LA. Wolbachia introduction into Lutzomyia longipalpis (Diptera: Psychodidae) cell lines and its effects on immune-related gene expression and interaction with Leishmania infantum. Parasit Vectors 2019; 12:33. [PMID: 30646951 PMCID: PMC6332621 DOI: 10.1186/s13071-018-3227-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The leishmaniases are important neglected diseases caused by Leishmania spp. which are transmitted by sand flies, Lutzomyia longipalpis being the main vector of visceral leishmaniasis in the Americas. The methodologies for leishmaniasis control are not efficient, causing 1.5 million reported cases annually worldwide, therefore showing the need for development of novel strategies and interventions to control transmission of the disease. The bacterium Wolbachia pipientis is being used to control viruses transmitted by mosquitoes, such as dengue and Zika, and its introduction in disease vectors has been effective against parasites such as Plasmodium. Here we show the first successful establishment of Wolbachia into two different embryonic cell lines from L. longipalpis, LL-5 and Lulo, and analysed its effects on the sand fly innate immune system, followed by in vitro Leishmania infantum interaction. RESULTS Our results show that LL-5 cells respond to wMel and wMelPop-CLA strains within the first 72 h post-infection, through the expression of antimicrobial peptides and inducible nitric oxide synthase resulting in a decrease of Wolbachia detection in the early stages of infection. In subsequent passages, the wMel strain was not able to infect any of the sand fly cell lines while the wMelPop-CLA strain was able to stably infect Lulo cells and LL-5 at lower levels. In Wolbachia stably infected cells, the expression of immune-related genes involved with downregulation of the IMD, Toll and Jak-Stat innate immune pathways was significantly decreased, in comparison with the uninfected control, suggesting immune activation upon Wolbachia transinfection. Furthermore, Wolbachia transinfection did not promote a negative effect on parasite load in those cells. CONCLUSIONS Initial strong immune responses of LL5 cells might explain the inefficiency of stable infections in these cells while we found that Lulo cells are more permissive to infection with Wolbachia causing an effect on the cell immune system, but not against in vitro L. infantum interaction. This establishes Lulo cells as a good system for the adaptation of Wolbachia in L. longipalpis.
Collapse
Affiliation(s)
- Daniela da Silva Gonçalves
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, 30190-002. Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Iñaki Iturbe-Ormaetxe
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, 12 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Andrea Martins-da-Silva
- Laboratório de Biologia Molecular de Parasitos e Vetores, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Erich Loza Telleria
- Laboratório de Biologia Molecular de Parasitos e Vetores, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Marcele Neves Rocha
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, 30190-002. Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Yara M Traub-Csekö
- Laboratório de Biologia Molecular de Parasitos e Vetores, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Scott L O'Neill
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, 12 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Maurício Roberto Viana Sant'Anna
- Laboratório de Insetos Hematófagos, Departamento de Parasitologia, Instituto de Ciências Biológicas/UFMG, Av. Antônio Carlos, 6627, 31270-901. Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Luciano Andrade Moreira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fundação Oswaldo Cruz, Av. Augusto de Lima 1715, 30190-002. Belo Horizonte, Belo Horizonte, MG, Brazil.
| |
Collapse
|