1
|
Wang CE, Ogden SK. G Protein-Coupled Receptor Signal Intersection at the Primary Cilium. Bioessays 2025:e70015. [PMID: 40277275 DOI: 10.1002/bies.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
Primary cilia are singular projections that extend from the surface of most vertebrate cell types. The surface area of the primary cilium (PC) is estimated to represent only 1/100th of the total membrane surface of an average cell. Despite this, the PC provides essential contributions to inter- and intracellular communication by housing receptors and downstream effectors for myriad cell-signaling cascades. G protein-coupled receptors (GPCRs) commonly enrich along ciliary membranes to control a diverse range of cellular behaviors by signaling through a shared pool of downstream effectors. This suggests the hypothesis that the PC provides an environment that is conducive to complementary or competitive GPCR Signal Crosstalk. In this Hypothesis Bio Essay, we use the Sonic Hedgehog (SHH) pathway as a case study to inform models of how GPCR signals could intersect in primary cilia and suggest general strategies to test each model.
Collapse
Affiliation(s)
- Christina E Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
2
|
Walker MF, Zhang J, Steiner W, Ku PI, Zhu JF, Michaelson Z, Yen YC, Lee A, Long AB, Casey MJ, Poddar A, Nelson IB, Arveseth CD, Nagel F, Clough R, LaPotin S, Kwan KM, Schulz S, Stewart RA, Tesmer JJG, Caspary T, Subramanian R, Ge X, Myers BR. GRK2 kinases in the primary cilium initiate SMOOTHENED-PKA signaling in the Hedgehog cascade. PLoS Biol 2024; 22:e3002685. [PMID: 39138140 PMCID: PMC11322411 DOI: 10.1371/journal.pbio.3002685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 05/21/2024] [Indexed: 08/15/2024] Open
Abstract
During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here, we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous mouse and zebrafish Hh pathway activation in the primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO and the ensuing PKA-C binding and inactivation are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.
Collapse
Affiliation(s)
- Madison F. Walker
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jingyi Zhang
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, United States of America
| | - William Steiner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Pei-I Ku
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ju-Fen Zhu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Zachary Michaelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Yu-Chen Yen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Annabel Lee
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Alyssa B. Long
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mattie J. Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Abhishek Poddar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Isaac B. Nelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Corvin D. Arveseth
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | | | - Ryan Clough
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sarah LaPotin
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kristen M. Kwan
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Stefan Schulz
- 7TM Antibodies GmbH, Jena, Germany
- Institute of Pharmacology and Toxicology, University Hospital Jena, Jena, Germany
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - John J. G. Tesmer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xuecai Ge
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, United States of America
| | - Benjamin R. Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
3
|
Wang Z, Hulikova A, Swietach P. Innovating cancer drug discovery with refined phenotypic screens. Trends Pharmacol Sci 2024; 45:723-738. [PMID: 39013672 DOI: 10.1016/j.tips.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024]
Abstract
Before molecular pathways in cancer were known to a depth that could predict targets, drug development relied on phenotypic screening, where the effectiveness of candidate chemicals is judged from functional readouts without considering the mechanisms of action. The unraveling of tumor-specific pathways has brought targets for molecularly driven drug discovery, but precedents in the field have shown that awareness of pathways does not necessarily predict therapeutic efficacy, and many cancers still lack druggable targets. Phenotypic screening therefore retains a niche in drug development where a targeted approach is not informative. We analyze the unique advantages of phenotypic screens, and how technological advances have improved their discovery power. Notable advances include the use of larger biological panels and refined protocols that address the disease-relevance and increase data content with imaging and omic approaches.
Collapse
Affiliation(s)
- Zhenyi Wang
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Alzbeta Hulikova
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| | - Pawel Swietach
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK.
| |
Collapse
|
4
|
Walker MF, Zhang J, Steiner W, Ku PI, Zhu JF, Michaelson Z, Yen YC, Lee A, Long AB, Casey MJ, Poddar A, Nelson IB, Arveseth CD, Nagel F, Clough R, LaPotin S, Kwan KM, Schulz S, Stewart RA, Tesmer JJG, Caspary T, Subramanian R, Ge X, Myers BR. GRK2 Kinases in the Primary Cilium Initiate SMOOTHENED-PKA Signaling in the Hedgehog Cascade. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.10.540226. [PMID: 37214942 PMCID: PMC10197709 DOI: 10.1101/2023.05.10.540226] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous Hh pathway activation in the vertebrate primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO, and the ensuing PKA-C binding and inactivation, are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.
Collapse
|
5
|
Oxman E, Li H, Wang HY, Zohn IE. Identification and functional analysis of rare HECTD1 missense variants in human neural tube defects. Hum Genet 2024; 143:263-277. [PMID: 38451291 PMCID: PMC11043113 DOI: 10.1007/s00439-024-02647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/20/2024] [Indexed: 03/08/2024]
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased extracellular heat shock protein 90 (eHSP90) secretion to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with NTDs in humans.
Collapse
Affiliation(s)
- Elias Oxman
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Research and Innovation Campus, Children's National Hospital, Washington, DC, 20012, USA
| | - Huili Li
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Hong-Yan Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, State Key Laboratory of Genetic, Engineering at School of Life Sciences, Fudan University, Shanghai, 200011, China
| | - Irene E Zohn
- Center for Genetic Medicine Research, Children's Research Institute, Children's National Research and Innovation Campus, Children's National Hospital, Washington, DC, 20012, USA.
| |
Collapse
|
6
|
Oxman E, Li H, Wang HY, Zohn I. Identification and Functional Analysis of Rare HECTD1 Missense Variants in Human Neural Tube Defects. RESEARCH SQUARE 2024:rs.3.rs-3794712. [PMID: 38260607 PMCID: PMC10802691 DOI: 10.21203/rs.3.rs-3794712/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neural tube defects (NTDs) are severe malformations of the central nervous system that arise from failure of neural tube closure. HECTD1 is an E3 ubiquitin ligase required for cranial neural tube closure in mouse models. NTDs in the Hectd1 mutant mouse model are due to the failure of cranial mesenchyme morphogenesis during neural fold elevation. Our earlier research has linked increased secretion of extracellular heat shock protein 90 (eHSP90) to aberrant cranial mesenchyme morphogenesis in the Hectd1 model. Furthermore, overexpression of HECTD1 suppresses stress-induced eHSP90 secretion in cell lines. In this study, we report the identification of five rare HECTD1 missense sequence variants in NTD cases. The variants were found through targeted next-generation sequencing in a Chinese cohort of 352 NTD cases and 224 ethnically matched controls. We present data showing that HECTD1 is a highly conserved gene, extremely intolerant to loss-of-function mutations and missense changes. To evaluate the functional consequences of NTD-associated missense variants, functional assays in HEK293T cells were performed to examine protein expression and the ability of HECTD1 sequence variants to suppress eHSP90 secretion. One NTD-associated variant (A1084T) had significantly reduced expression in HEK293T cells. All five NTD-associated variants (p.M392V, p.T801I, p.I906V, p.A1084T, and p.P1835L) reduced regulation of eHSP90 secretion by HECTD1, while a putative benign variant (p.P2474L) did not. These findings are the first association of HECTD1 sequence variation with human disease and suggest that sequence variation in HECTD1 may play a role in the etiology of human NTDs.
Collapse
Affiliation(s)
| | - Huili Li
- University of Colorado at Boulder
| | | | | |
Collapse
|
7
|
Hasan MR, Koskenranta A, Alakurtti K, Takatalo M, Rice DP. RAB23 regulates musculoskeletal development and patterning. Front Cell Dev Biol 2023; 11:1049131. [PMID: 36910145 PMCID: PMC9995984 DOI: 10.3389/fcell.2023.1049131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
RAB23 is a small GTPase which functions at the plasma membrane to regulate growth factor signaling. Mutations in RAB23 cause Carpenter syndrome, a condition that affects normal organogenesis and patterning. In this study, we investigate the role of RAB23 in musculoskeletal development and show that it is required for patella bone formation and for the maintenance of tendon progenitors. The patella is the largest sesamoid bone in mammals and plays a critical role during movement by providing structural and mechanical support to the knee. Rab23 -/- mice fail to form a patella and normal knee joint. The patella is formed from Sox9 and scleraxis (Scx) double-positive chondroprogenitor cells. We show that RAB23 is required for the specification of SOX9 and scleraxis double-positive patella chondroprogenitors during the formation of patella anlagen and the subsequent establishment of patellofemoral joint. We find that scleraxis and SOX9 expression are disrupted in Rab23 -/- mice, and as a result, development of the quadriceps tendons, cruciate ligaments, patella tendons, and entheses is either abnormal or lost. TGFβ-BMP signaling is known to regulate patella initiation and patella progenitor differentiation and growth. We find that the expression of TGFβR2, BMPR1, BMP4, and pSmad are barely detectable in the future patella site and in the rudimentary tendons and ligaments around the patellofemoral joint in Rab23 -/- mice. Also, we show that GLI1, SOX9, and scleraxis, which regulate entheses establishment and maturation, are weakly expressed in Rab23 -/- mice. Further analysis of the skeletal phenotype of Rab23 -/- mice showed a close resemblance to that of Tgfβ2 -/- mice, highlighting a possible role for RAB23 in regulating TGFβ superfamily signaling.
Collapse
Affiliation(s)
- Md Rakibul Hasan
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Anna Koskenranta
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Kirsi Alakurtti
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - David P Rice
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
8
|
Shilton CA, Kahler A, Roach JM, Raudsepp T, de Mestre AM. Lethal variants of equine pregnancy: is it the placenta or foetus leading the conceptus in the wrong direction? Reprod Fertil Dev 2022; 35:51-69. [PMID: 36592981 DOI: 10.1071/rd22239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Embryonic and foetal loss remain one of the greatest challenges in equine reproductive health with 5-10% of established day 15 pregnancies and a further 5-10% of day 70 pregnancies failing to produce a viable foal. The underlying reason for these losses is variable but ultimately most cases will be attributed to pathologies of the environment of the developing embryo and later foetus, or a defect intrinsic to the embryo itself that leads to lethality at any stage of gestation right up to birth. Historically, much research has focused on the maternal endometrium, endocrine and immune responses in pregnancy and pregnancy loss, as well as infectious agents such as pathogens, and until recently very little was known about the both small and large genetic variants associated with reduced foetal viability in the horse. In this review, we first introduce key aspects of equine placental and foetal development. We then discuss incidence, risk factors and causes of pregnancy loss, with the latter focusing on genetic variants described to date that can impact equine foetal viability.
Collapse
Affiliation(s)
- Charlotte A Shilton
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Anne Kahler
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Jessica M Roach
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hawkshead Lane, Herts, AL9 7TA, UK
| |
Collapse
|
9
|
Genuth NR, Shi Z, Kunimoto K, Hung V, Xu AF, Kerr CH, Tiu GC, Oses-Prieto JA, Salomon-Shulman REA, Axelrod JD, Burlingame AL, Loh KM, Barna M. A stem cell roadmap of ribosome heterogeneity reveals a function for RPL10A in mesoderm production. Nat Commun 2022; 13:5491. [PMID: 36123354 PMCID: PMC9485161 DOI: 10.1038/s41467-022-33263-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023] Open
Abstract
Recent findings suggest that the ribosome itself modulates gene expression. However, whether ribosomes change composition across cell types or control cell fate remains unknown. Here, employing quantitative mass spectrometry during human embryonic stem cell differentiation, we identify dozens of ribosome composition changes underlying cell fate specification. We observe upregulation of RPL10A/uL1-containing ribosomes in the primitive streak followed by progressive decreases during mesoderm differentiation. An Rpl10a loss-of-function allele in mice causes striking early mesodermal phenotypes, including posterior trunk truncations, and inhibits paraxial mesoderm production in culture. Ribosome profiling in Rpl10a loss-of-function mice reveals decreased translation of mesoderm regulators, including Wnt pathway mRNAs, which are also enriched on RPL10A/uL1-containing ribosomes. We further show that RPL10A/uL1 regulates canonical and non-canonical Wnt signaling during stem cell differentiation and in the developing embryo. These findings reveal unexpected ribosome composition modularity that controls differentiation and development through the specialized translation of key signaling networks.
Collapse
Affiliation(s)
- Naomi R Genuth
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Zhen Shi
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
- Genentech Inc, South San Francisco, CA, 94080, USA
| | - Koshi Kunimoto
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Victoria Hung
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Adele F Xu
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Craig H Kerr
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Gerald C Tiu
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | | | - Jeffrey D Axelrod
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kyle M Loh
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA
| | - Maria Barna
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Zhu Q, Zhou Y, Ding J, Chen L, Liu J, Zhou T, Bian W, Ding G, Li G. Screening of Candidate Pathogenic Genes for Spontaneous Abortion using Whole Exome Sequencing. Comb Chem High Throughput Screen 2021; 25:1462-1473. [PMID: 34225611 DOI: 10.2174/1386207324666210628115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Spontaneous abortion is a common disease in obstetrics and reproduction. OBJECTIVE This study aimed to screen candidate pathogenic genes for spontaneous abortion using whole-exome sequencing. METHODS Genomic DNA was extracted from abortion tissues of spontaneous abortion patients and sequenced using the Illumina HiSeq2500 high-throughput sequencing platform. Whole exome sequencing was performed to select harmful mutations, including SNP and insertion and deletion sites, associated with spontaneous abortion. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and gene fusion analyses were performed. MUC3A and PDE4DIP were two novel mutation genes that were screened and verified by PCR in abortion tissues of patients. RESULTS A total of 83,633 SNPs and 13,635 Indel mutations were detected, of which 29172 SNPs and 3093 Indels were screened as harmful mutations. The 7 GO-BP, 4 GO-CC, 9 GO-MF progress, and 3 KEGG pathways were enriched in GO and KEGG pathway analyses. A total of 746 gene fusion mutations were obtained, involving 492 genes. MUC3A and PDE4DIP were used for PCR verification because of their high number of mutation sites in all samples. CONCLUSION There are extensive SNPs and Indel mutations in the genome of spontaneous abortion tissues, and the effect of these gene mutations on spontaneous abortion needs further experimental verification.
Collapse
Affiliation(s)
- Qingwen Zhu
- Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Yiwen Zhou
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Jiayi Ding
- Reproductive Medicine Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Li Chen
- Reproductive Medicine Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Jia Liu
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Tao Zhou
- Reproductive Medicine Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Wenjun Bian
- Prenatal Screening and Diagnosis Center, Nantong Municipal Maternal and Child Health Hospital, Nantong, 226010, China
| | - Guohui Ding
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| | - Guang Li
- Shanghai Biological Information Research Center, Zhangjiang Hi-tech Park, Shanghai, 201203, China
| |
Collapse
|
11
|
Kathryn Anderson, grand dame of developmental biology. Proc Natl Acad Sci U S A 2021; 118:2101148118. [PMID: 33597255 DOI: 10.1073/pnas.2101148118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Mokshagundam D, Kowalski W, Garcia-Pak I, Klaunberg B, Nam J, Mukouyama YS, Leatherbury L. Ultrahigh-Frequency Echocardiography of Autonomic Devoid Phox2B Homozygous Embryos Does Not Reveal a Significant Cardiac Phenotype before Embryo Death. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:751-758. [PMID: 33293111 PMCID: PMC8520219 DOI: 10.1016/j.ultrasmedbio.2020.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
In vivo micro-imaging of mice is useful in studying the genetic basis of cardiac development in mutant embryos. We examined Phox2b-/- mutant mice, which lack autonomic innervation to the heart and die in utero, and investigated whether this lack of innervation causes cardiac dysfunction during embryogenesis. A VisualSonics Vevo 2100 ultrahigh-frequency linear array ultrasound machine with 30- and 40-MHz probes was used to analyze embryo size, gross characteristics, ventricular contractility and rhythm. Phox2b-/- mutant embryos underwent cessation of heartbeat and death at a greater rate than wild-type controls. We did not observe a hydrops phenotype or congenital heart defects in Phox2b-/- mutants. Analysis of heart rhythm revealed no significant correlation with genotype. Absent these signs of a progressive pathology, we suggest that Phox2b-/- mutant embryos likely die of sudden death secondary to acute arrhythmia. These data provide insight into the role of cardiac autonomic innervation during development.
Collapse
Affiliation(s)
- Deepa Mokshagundam
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute
- Division of Pediatric Cardiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010
| | - William Kowalski
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute
| | - Iris Garcia-Pak
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute
| | - Brenda Klaunberg
- NIH Mouse Imaging Facility, National Institutes of Health, 10 Center Drive, Bethesda, MD20892
| | - Joseph Nam
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute
| | - Yoh-suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute
| | - Linda Leatherbury
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute
- Division of Pediatric Cardiology, Children's National Hospital, 111 Michigan Ave NW, Washington, DC 20010
| |
Collapse
|
13
|
Bao Z, Baylies MK, Hadjantonakis AK, Huangfu D, Jasin M, Joyner AL, Lacy E, Lai EC, Studer L, Vierbuchen T, Zallen JA. Kathryn Anderson (1952-2020). Cell 2021; 184:1123-1126. [PMID: 33667364 DOI: 10.1016/j.cell.2021.01.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Mary K Baylies
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | | | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Elizabeth Lacy
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Lorenz Studer
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Jennifer A Zallen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
14
|
Huangfu D, García-García MJ, Eggenschwiler J. Kathryn Anderson (1952-2020). Dev Cell 2021; 56:257-259. [PMID: 33561421 DOI: 10.1016/j.devcel.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| | - María J García-García
- Center for Structural Systems Biology - Deutsches Elektronen Synchrotron, Notkestraße 85, D-22607 Hamburg, Germany
| | | |
Collapse
|
15
|
Abstract
The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
16
|
Kahler A, McGonnell IM, Smart H, Kowalski AA, Smith KC, Wathes DC, de Mestre AM. Fetal morphological features and abnormalities associated with equine early pregnancy loss. Equine Vet J 2020; 53:530-541. [PMID: 32869365 DOI: 10.1111/evj.13340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/15/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Early pregnancy loss (EPL) occurs in approximately 8% of equine pregnancies, although the aetiology is mostly unknown and embryonic/fetal morphological abnormalities associated with EPL are not defined. OBJECTIVES To compare the morphology of EPL to clinically normal embryos/fetuses and previously described embryonic/fetal developmental milestones. To identify morphological abnormalities associated with equine EPL. STUDY DESIGN Observational case-control study. METHODS Embryos/fetuses were obtained from clinically normal Thoroughbred and pony pregnancies (n = 11) and following EPL from Thoroughbred mares (n = 27). The crown-rump length (CRL) of embryos/fetuses was measured and macroscopic morphology and developmental age were determined independently by three blinded examiners. Sagittal sections of EPL (n = 13) and control (n = 6) embryos/fetuses were assessed microscopically. Fisher's exact test was used to determine significance (P < .05) and correlations were expressed by Pearson coefficient. RESULTS Age and CRL were strongly positively correlated in clinically normal Thoroughbred and reference (n = 15, R = .9 (95% CI: 0.8-1.0), R2 = .9, P < .0001) but not EPL embryos/fetuses (n = 19, R = .1 (95% CI: -0.4 to 0.5), R2 = .01, P = .75). Relative to controls, the CRL of EPL embryos/fetuses was smaller, with evidence of intrauterine growth retardation (IUGR) in 3/8 fetuses assessed. In 9/13 EPL embryos/fetuses, nonspecific neural tissue alterations were identified including disruption of developing pros-, mes- and rhombencephalon and the presence of haemosiderin, indicating premortem haemorrhage. Failed neural tube closure was identified in 1/13 EPL embryos/fetuses. Subcutaneous haemorrhage was present in 14/27 EPL embryos/fetuses. MAIN LIMITATIONS Autolysis significantly affected 15/27 EPL embryos/fetuses, excluding them from complete assessment. The IUGR reference cut-off values were based on a small number of controls. CONCLUSIONS Morphological features associated with equine EPL were a mismatch between embryonic/fetal size and age, and alterations of the developing neural tissue and localised subcutaneous haemorrhage. Failed neural tube closure was confirmed as a rare specific abnormality.
Collapse
Affiliation(s)
- Anne Kahler
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Imelda M McGonnell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Harriette Smart
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Alycia A Kowalski
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK.,Veterinary Care, University of Wisconsin, Madison, USA
| | - Ken C Smith
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - D Claire Wathes
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| |
Collapse
|
17
|
Hasan MR, Takatalo M, Ma H, Rice R, Mustonen T, Rice DP. RAB23 coordinates early osteogenesis by repressing FGF10-pERK1/2 and GLI1. eLife 2020; 9:55829. [PMID: 32662771 PMCID: PMC7423339 DOI: 10.7554/elife.55829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Mutations in the gene encoding Ras-associated binding protein 23 (RAB23) cause Carpenter Syndrome, which is characterized by multiple developmental abnormalities including polysyndactyly and defects in skull morphogenesis. To understand how RAB23 regulates skull development, we generated Rab23-deficient mice that survive to an age where skeletal development can be studied. Along with polysyndactyly, these mice exhibit premature fusion of multiple sutures resultant from aberrant osteoprogenitor proliferation and elevated osteogenesis in the suture. FGF10-driven FGFR1 signaling is elevated in Rab23-/-sutures with a consequent imbalance in MAPK, Hedgehog signaling and RUNX2 expression. Inhibition of elevated pERK1/2 signaling results in the normalization of osteoprogenitor proliferation with a concomitant reduction of osteogenic gene expression, and prevention of craniosynostosis. Our results suggest a novel role for RAB23 as an upstream negative regulator of both FGFR and canonical Hh-GLI1 signaling, and additionally in the non-canonical regulation of GLI1 through pERK1/2.
Collapse
Affiliation(s)
- Md Rakibul Hasan
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Hongqiang Ma
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Ritva Rice
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - David Pc Rice
- Craniofacial Development and Malformations research group, Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
18
|
Abstract
Gastrulation is a critical early morphogenetic process of animal development, during which the three germ layers; mesoderm, endoderm and ectoderm, are rearranged by internalization movements. Concurrent epiboly movements spread and thin the germ layers while convergence and extension movements shape them into an anteroposteriorly elongated body with head, trunk, tail and organ rudiments. In zebrafish, gastrulation follows the proliferative and inductive events that establish the embryonic and extraembryonic tissues and the embryonic axis. Specification of these tissues and embryonic axes are controlled by the maternal gene products deposited in the egg. These early maternally controlled processes need to generate sufficient cell numbers and establish the embryonic polarity to ensure normal gastrulation. Subsequently, after activation of the zygotic genome, the zygotic gene products govern mesoderm and endoderm induction and germ layer patterning. Gastrulation is initiated during the maternal-to-zygotic transition, a process that entails both activation of the zygotic genome and downregulation of the maternal transcripts. Genomic studies indicate that gastrulation is largely controlled by the zygotic genome. Nonetheless, genetic studies that investigate the relative contributions of maternal and zygotic gene function by comparing zygotic, maternal and maternal zygotic mutant phenotypes, reveal significant contribution of maternal gene products, transcripts and/or proteins, that persist through gastrulation, to the control of gastrulation movements. Therefore, in zebrafish, the maternally expressed gene products not only set the stage for, but they also actively participate in gastrulation morphogenesis.
Collapse
Affiliation(s)
- Lilianna Solnica-Krezel
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
19
|
Wasserman AH, Venkatesan M, Aguirre A. Bioactive Lipid Signaling in Cardiovascular Disease, Development, and Regeneration. Cells 2020; 9:E1391. [PMID: 32503253 PMCID: PMC7349721 DOI: 10.3390/cells9061391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/23/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) remains a leading cause of death globally. Understanding and characterizing the biochemical context of the cardiovascular system in health and disease is a necessary preliminary step for developing novel therapeutic strategies aimed at restoring cardiovascular function. Bioactive lipids are a class of dietary-dependent, chemically heterogeneous lipids with potent biological signaling functions. They have been intensively studied for their roles in immunity, inflammation, and reproduction, among others. Recent advances in liquid chromatography-mass spectrometry techniques have revealed a staggering number of novel bioactive lipids, most of them unknown or very poorly characterized in a biological context. Some of these new bioactive lipids play important roles in cardiovascular biology, including development, inflammation, regeneration, stem cell differentiation, and regulation of cell proliferation. Identifying the lipid signaling pathways underlying these effects and uncovering their novel biological functions could pave the way for new therapeutic strategies aimed at CVD and cardiovascular regeneration.
Collapse
Affiliation(s)
- Aaron H. Wasserman
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Manigandan Venkatesan
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Aitor Aguirre
- Regenerative Biology and Cell Reprogramming Laboratory, Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI 48824, USA; (A.H.W.); (M.V.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
20
|
Gigante ED, Caspary T. Signaling in the primary cilium through the lens of the Hedgehog pathway. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e377. [PMID: 32084300 DOI: 10.1002/wdev.377] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 12/14/2022]
Abstract
Cilia are microtubule-based, cell-surface projections whose machinery is evolutionarily conserved. In vertebrates, cilia are observed on almost every cell type and are either motile or immotile. Immotile sensory, or primary cilia, are responsive to extracellular ligands and signals. Cilia can be thought of as compartments, functionally distinct from the cell that provides an environment for signaling cascades. Hedgehog is a critical developmental signaling pathway which is functionally linked to primary cilia in vertebrates. The major components of the vertebrate Hedgehog signaling pathway dynamically localize to the ciliary compartment and ciliary membrane. Critically, G-protein coupled receptor (GPCR) Smoothened, the obligate transducer of the pathway, is enriched and activated in the cilium. While Smoothened is the most intensely studied ciliary receptor, many GPCRs localize within cilia. Understanding the link between Smoothened and cilia defines common features, and distinctions, of GPCR signaling within the primary cilium. This article is categorized under: Signaling Pathways > Global Signaling Mechanisms Signaling Pathways > Cell Fate Signaling.
Collapse
Affiliation(s)
- Eduardo D Gigante
- Graduate Program in Neuroscience, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Constable S, Long AB, Floyd KA, Schurmans S, Caspary T. The ciliary phosphatidylinositol phosphatase Inpp5e plays positive and negative regulatory roles in Shh signaling. Development 2020; 147:dev.183301. [PMID: 31964774 DOI: 10.1242/dev.183301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/02/2020] [Indexed: 01/04/2023]
Abstract
Sonic hedgehog (Shh) signal transduction specifies ventral cell fates in the neural tube and is mediated by the Gli transcription factors that play both activator (GliA) and repressor (GliR) roles. Cilia are essential for Shh signal transduction and the ciliary phosphatidylinositol phosphatase Inpp5e is linked to Shh regulation. In the course of a forward genetic screen for recessive mouse mutants, we identified a functional null allele of inositol polyphosphate-5-phosphatase E (Inpp5e), ridge top (rdg), with expanded ventral neural cell fates at E10.5. By E12.5, Inpp5erdg/rdg embryos displayed normal neural patterning and this correction over time required Gli3, the predominant repressor in neural patterning. Inpp5erdg function largely depended on the presence of cilia and on smoothened, the obligate transducer of Shh signaling, indicating that Inpp5e functions within the cilium to regulate the pathway. These data indicate that Inpp5e plays a more complicated role in Shh signaling than previously appreciated. We propose that Inpp5e attenuates Shh signaling in the neural tube through regulation of the relative timing of GliA and GliR production, which is important in understanding how the duration of Shh signaling regulates neural tube patterning.
Collapse
Affiliation(s)
- Sandii Constable
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alyssa B Long
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Katharine A Floyd
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stéphane Schurmans
- Laboratory of Functional Genetics, GIGA-R Centre, Université de Liège, Liège 4000, Belgium
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
22
|
García-García MJ. A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:1-38. [PMID: 32304067 DOI: 10.1007/978-981-15-2389-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The laboratory mouse has become the model organism of choice in numerous areas of biological and biomedical research, including the study of congenital birth defects. The appeal of mice for these experimental studies stems from the similarities between the physiology, anatomy, and reproduction of these small mammals with our own, but it is also based on a number of practical reasons: mice are easy to maintain in a laboratory environment, are incredibly prolific, and have a relatively short reproductive cycle. Another compelling reason for choosing mice as research subjects is the number of tools and resources that have been developed after more than a century of working with these small rodents in laboratory environments. As will become obvious from the reading of the different chapters in this book, research in mice has already helped uncover many of the genes and processes responsible for congenital birth malformations and human diseases. In this chapter, we will provide an overview of the methods, scientific advances, and serendipitous circumstances that have made these discoveries possible, with a special emphasis on how the use of genetics has propelled scientific progress in mouse research and paved the way for future discoveries.
Collapse
|
23
|
Abe Y, Tamura S, Honsho M, Fujiki Y. A Mouse Model System to Study Peroxisomal Roles in Neurodegeneration of Peroxisome Biogenesis Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:119-143. [PMID: 33417212 DOI: 10.1007/978-3-030-60204-8_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fourteen PEX genes are currently identified as genes responsible for peroxisome biogenesis disorders (PBDs). Patients with PBDs manifest as neurodegenerative symptoms such as neuronal migration defect and malformation of the cerebellum. To address molecular mechanisms underlying the pathogenesis of PBDs, mouse models for the PBDs have been generated by targeted disruption of Pex genes. Pathological phenotypes and metabolic abnormalities in Pex-knockout mice well resemble those of the patients with PBDs. The mice with tissue- or cell type-specific inactivation of Pex genes have also been established by using a Cre-loxP system. The genetically modified mice reveal that pathological phenotypes of PBDs are mediated by interorgan and intercellular communications. Despite the illustrations of detailed pathological phenotypes in the mutant mice, mechanistic insights into pathogenesis of PBDs are still underway. In this chapter, we overview the phenotypes of Pex-inactivated mice and the current understanding of the pathogenesis underlying PBDs.
Collapse
Affiliation(s)
- Yuichi Abe
- Faculty of Arts and Science, Kyushu University, Fukuoka, Japan
| | | | | | - Yukio Fujiki
- Institute of Rheological Functions of Food, Fukuoka, Japan. .,Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
24
|
D'Alonzo D, Emch FH, Shen X, Bruder E, De Geyter C, Zhang H. Hectd1 is essential for embryogenesis in mice. Gene Expr Patterns 2019; 34:119064. [PMID: 31301385 DOI: 10.1016/j.gep.2019.119064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Many aspects of the functional role of the E3 ubiquitin ligase Hectd1 in embryogenesis and in cell biology still remain to be elucidated. In order to contribute to this task we now report the generation of a new transgenic mouse model for Hectd1 using the gene trap strategy. The HECT domain deletion mutant mouse was created by inserting a β-geo cassette into the Hectd1 locus. Mice homozygous for Hectd1-mutant showed early embryonic lethality with abnormal placental development and defective of neural tube closure resulting in exencephaly. The thickness of the placenta of both Hectd1-mutant homozygous and heterozygous mice was distinctly thinner than that of wildtype mice, the difference being most pronounced in the labyrinth layer of the placenta. We also addressed the temporal and spatial expression profiles of Hectd1 in adult tissues by X-gal staining. Hectd1 expression was detected in specific cell populations of most but not all tissues of the adult organism. Furthermore, the expression of Hectd1 was regulated by insulin and by both heat and hypoxia. Thus, our studies reveal that Hectd1 is indispensable for normal embryogenesis and fetal survival. The generation of this new Hectd1 mutant mouse model provides ample opportunities to study the function of Hectd1 in mammalian cells in detail.
Collapse
Affiliation(s)
- Donato D'Alonzo
- Department of Biomedicine, University Hospital, University of Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland
| | - Fabienne Hélène Emch
- Clinic of Gynecological Endocrinology and Reproductive Medicine, University Hospital, University of Basel, Spitalstrasse 21, CH-4031, Basel, Switzerland
| | - Xiaoli Shen
- Clinic of Gynecological Endocrinology and Reproductive Medicine, University Hospital, University of Basel, Spitalstrasse 21, CH-4031, Basel, Switzerland; Chongqing Reproductive and Genetics Institute, 64 Jing Tang ST, Yu Zhong District, Chongqing, 400013, PR China
| | - Elisabeth Bruder
- Institute of Pathology, University Hospital, University of Basel, Schönbeinstrasse 40, CH-4031, Basel, Switzerland
| | - Christian De Geyter
- Department of Biomedicine, University Hospital, University of Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland; Clinic of Gynecological Endocrinology and Reproductive Medicine, University Hospital, University of Basel, Spitalstrasse 21, CH-4031, Basel, Switzerland
| | - Hong Zhang
- Department of Biomedicine, University Hospital, University of Basel, Hebelstrasse 20, CH-4031, Basel, Switzerland.
| |
Collapse
|
25
|
Sugrue KF, Sarkar AA, Leatherbury L, Zohn IE. The ubiquitin ligase HECTD1 promotes retinoic acid signaling required for development of the aortic arch. Dis Model Mech 2019; 12:dmm.036491. [PMID: 30578278 PMCID: PMC6361158 DOI: 10.1242/dmm.036491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
The development of the aortic arch is a complex process that involves remodeling of the bilaterally symmetrical pharyngeal arch arteries (PAAs) into the mature asymmetric aortic arch. Retinoic acid signaling is a key regulator of this process by directing patterning of the second heart field (SHF), formation of the caudal PAAs and subsequent remodeling of the PAAs to form the aortic arch. Here, we identify the HECTD1 ubiquitin ligase as a novel modulator of retinoic acid signaling during this process. Hectd1opm/opm homozygous mutant embryos show a spectrum of aortic arch abnormalities that occur following loss of 4th PAAs and increased SHF marker expression. This sequence of defects is similar to phenotypes observed in mutant mouse models with reduced retinoic acid signaling. Importantly, HECTD1 binds to and influences ubiquitination of the retinoic acid receptor, alpha (RARA). Furthermore, reduced activation of a retinoic acid response element (RARE) reporter is detected in Hectd1 mutant cells and embryos. Interestingly, Hectd1opm/+ heterozygous embryos exhibit reduced retinoic acid signaling, along with intermediate increased expression of SHF markers; however, heterozygotes show normal development of the aortic arch. Decreasing retinoic acid synthesis by reducing Raldh2 (also known as Aldh1a2) gene dosage in Hectd1opm/+ heterozygous embryos reveals a genetic interaction. Double heterozygous embryos show hypoplasia of the 4th PAA and increased incidence of a benign aortic arch variant, in which the transverse arch between the brachiocephalic and left common carotid arteries is shortened. Together, our data establish that HECTD1 is a novel regulator of retinoic acid signaling required for proper aortic arch development. Editor's choice: The HECTD1 ubiquitin ligase is a novel modulator of retinoic acid signaling during aortic arch development and provides a model for complex interactions underlying variations in aortic arch development.
Collapse
Affiliation(s)
- Kelsey F Sugrue
- Institute for Biomedical Sciences, The George Washington University, Washington, DC 20037, USA.,Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Anjali A Sarkar
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| | - Linda Leatherbury
- Children's National Heart Institute, Children's National Health System, George Washington University School of Medicine, Washington, DC 20010, USA
| | - Irene E Zohn
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20010, USA
| |
Collapse
|
26
|
Hor CH, Tang BL, Goh EL. Rab23 and developmental disorders. Rev Neurosci 2018; 29:849-860. [DOI: 10.1515/revneuro-2017-0110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/03/2018] [Indexed: 02/07/2023]
Abstract
Abstract
Rab23 is a conserved member of the Rab family of small GTPases that regulates membrane trafficking in eukaryotes. It is unique amongst the Rabs in terms of its implicated role in mammalian development, as originally illustrated by the embryonic lethality and open neural tube phenotype of a spontaneous mouse mutant that carries homozygous mutation of open brain, a gene encoding Rab23. Rab23 was initially identified to act as an antagonist of Sonic hedgehog (Shh) signaling, and has since been implicated in a number of physiological and pathological roles, including oncogenesis. Interestingly, RAB23 null allele homozygosity in humans is not lethal, but instead causes the developmental disorder Carpenter’s syndrome (CS), which is characterized by craniofacial malformations, polysyndactyly, obesity and intellectual disability. CS bears some phenotypic resemblance to a spectrum of hereditary defects associated with the primary cilium, or the ciliopathies. Recent findings have in fact implicated Rab23 in protein traffic to the primary cilium, thus linking it with the primary cellular locale of Shh signaling. Rab23 also has Shh and cilia-independent functions. It is known to mediate the expression of Nodal at the mouse left lateral plate mesoderm and Kupffer’s vesicle, the zebrafish equivalent of the mouse node. It is thus important for the left-right patterning of vertebrate embryos. In this review, we discuss the developmental disorders associated with Rab23 and attempt to relate its cellular activities to its roles in development.
Collapse
Affiliation(s)
- Catherine H.H. Hor
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School , 8 College Road , Singapore 169857 , Singapore
- Department of Research , National Neuroscience Institute , Singapore 308433 , Singapore
| | - Bor Luen Tang
- Department of Biochemistry , Yong Loo Lin School of Medicine , National University of Singapore , Singapore 117597 , Singapore
- NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore, Medical Drive , Singapore 117456 , Singapore
| | - Eyleen L.K. Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School , 8 College Road , Singapore 169857 , Singapore
- Department of Research , National Neuroscience Institute , Singapore 308433 , Singapore
- Department of Physiology , Yong Loo Lin School of Medicine , National University of Singapore , 8 Medical Drive , Singapore 117597 , Singapore
- KK Research Center, KK Women’s and Children’s Hospital , Singapore 229899 , Singapore
| |
Collapse
|
27
|
Gigante ED, Long AB, Ben-Ami J, Caspary T. Hypomorphic Smo mutant with inefficient ciliary enrichment disrupts the highest level of vertebrate Hedgehog response. Dev Biol 2018; 437:152-162. [PMID: 29571613 DOI: 10.1016/j.ydbio.2018.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/04/2018] [Accepted: 03/20/2018] [Indexed: 12/31/2022]
Abstract
Smoothened (Smo) is the essential transducer of Sonic hedgehog (Shh) signaling, which regulates cell fate and proliferation during embryogenesis. We identified a novel mouse mutant, cabbie (cbb), and found that its cause is a missense mutation in Smo. We showed the Smocbb mutation is insensitive to the Shh agonist SAG, perhaps due to the disruption of SAG binding. We characterized Smocbb for defects in craniofacial and skeletal development, as well as neural tube patterning, and revealed Smocbb affected processes that require the highest levels of Shh activity. Smo is normally enriched in cilia upon Shh stimulation; however, we detected inefficient enrichment of Smo in Smocbb mutants whether we stimulated with Shh or SAG. Taken together, our data suggest that the highest levels of vertebrate Hedgehog signaling activity require efficient Smo ciliary enrichment.
Collapse
Affiliation(s)
- Eduardo D Gigante
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, USA.
| | | | - Johanna Ben-Ami
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA; Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA.
| | - Tamara Caspary
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
28
|
Housden BE, Muhar M, Gemberling M, Gersbach CA, Stainier DYR, Seydoux G, Mohr SE, Zuber J, Perrimon N. Loss-of-function genetic tools for animal models: cross-species and cross-platform differences. Nat Rev Genet 2016; 18:24-40. [PMID: 27795562 DOI: 10.1038/nrg.2016.118] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our understanding of the genetic mechanisms that underlie biological processes has relied extensively on loss-of-function (LOF) analyses. LOF methods target DNA, RNA or protein to reduce or to ablate gene function. By analysing the phenotypes that are caused by these perturbations the wild-type function of genes can be elucidated. Although all LOF methods reduce gene activity, the choice of approach (for example, mutagenesis, CRISPR-based gene editing, RNA interference, morpholinos or pharmacological inhibition) can have a major effect on phenotypic outcomes. Interpretation of the LOF phenotype must take into account the biological process that is targeted by each method. The practicality and efficiency of LOF methods also vary considerably between model systems. We describe parameters for choosing the optimal combination of method and system, and for interpreting phenotypes within the constraints of each method.
Collapse
Affiliation(s)
- Benjamin E Housden
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Matthias Muhar
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Matthew Gemberling
- Department of Biomedical Engineering and the Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering and the Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 43 Ludwigstrasse, Bad Nauheim 61231, Germany
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21218, USA.,Howard Hughes Medical Institute, 725 North Wolfe Street, Baltimore, Maryland 21218, USA
| | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| |
Collapse
|
29
|
Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, Meehan TF, Weninger WJ, Westerberg H, Adissu H, Baker CN, Bower L, Brown JM, Caddle LB, Chiani F, Clary D, Cleak J, Daly MJ, Denegre JM, Doe B, Dolan ME, Edie SM, Fuchs H, Gailus-Durner V, Galli A, Gambadoro A, Gallegos J, Guo S, Horner NR, Hsu CW, Johnson SJ, Kalaga S, Keith LC, Lanoue L, Lawson TN, Lek M, Mark M, Marschall S, Mason J, McElwee ML, Newbigging S, Nutter LM, Peterson KA, Ramirez-Solis R, Rowland DJ, Ryder E, Samocha KE, Seavitt JR, Selloum M, Szoke-Kovacs Z, Tamura M, Trainor AG, Tudose I, Wakana S, Warren J, Wendling O, West DB, Wong L, Yoshiki A, The International Mouse Phenotyping Consortium, MacArthur DG, Tocchini-Valentini GP, Gao X, Flicek P, Bradley A, Skarnes WC, Justice MJ, Parkinson HE, Moore M, Wells S, Braun RE, Svenson KL, de Angelis MH, Herault Y, Mohun T, Mallon AM, Henkelman RM, Brown SD, Adams DJ, Lloyd KK, McKerlie C, Beaudet AL, Bucan M, Murray SA. High-throughput discovery of novel developmental phenotypes. Nature 2016; 537:508-514. [PMID: 27626380 PMCID: PMC5295821 DOI: 10.1038/nature19356] [Citation(s) in RCA: 874] [Impact Index Per Article: 97.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 08/10/2016] [Indexed: 12/29/2022]
Abstract
Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.
Collapse
Affiliation(s)
- Mary E. Dickinson
- Department of Molecular Physiology and Biophysics, Houston, Texas, USA
| | - Ann M. Flenniken
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Xiao Ji
- Genomics and Computational Biology Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | - Lydia Teboul
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - Michael D. Wong
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacqueline K. White
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Terrence F. Meehan
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Wolfgang J. Weninger
- Centre for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Henrik Westerberg
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - Hibret Adissu
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Lynette Bower
- Mouse Biology Program, University of California, Davis
| | - James M. Brown
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | | | - Francesco Chiani
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Monterotondo Scalo, Itally
| | - Dave Clary
- Mouse Biology Program, University of California, Davis
| | - James Cleak
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - Mark J. Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA
- Program in Medical and Population Genetics, Broad Institute MIT and Harvard, Cambridge, MA, USA
| | | | - Brendan Doe
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | - Helmut Fuchs
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
| | - Antonella Galli
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Alessia Gambadoro
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Monterotondo Scalo, Itally
| | - Juan Gallegos
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Shiying Guo
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Neil R. Horner
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - Chih-wei Hsu
- Department of Molecular Physiology and Biophysics, Houston, Texas, USA
| | - Sara J. Johnson
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - Sowmya Kalaga
- Department of Molecular Physiology and Biophysics, Houston, Texas, USA
| | - Lance C. Keith
- Department of Molecular Physiology and Biophysics, Houston, Texas, USA
| | - Louise Lanoue
- Mouse Biology Program, University of California, Davis
| | - Thomas N. Lawson
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - Monkol Lek
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA
- Program in Medical and Population Genetics, Broad Institute MIT and Harvard, Cambridge, MA, USA
| | - Manuel Mark
- Infrastructure Nationale PHENOMIN, Institut Clinique de la Souris (ICS), et Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC) CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Susan Marschall
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
| | - Jeremy Mason
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Susan Newbigging
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lauryl M.J. Nutter
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Ramiro Ramirez-Solis
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Edward Ryder
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Kaitlin E. Samocha
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA
- Program in Medical and Population Genetics, Broad Institute MIT and Harvard, Cambridge, MA, USA
| | - John R. Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Mohammed Selloum
- Infrastructure Nationale PHENOMIN, Institut Clinique de la Souris (ICS), et Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC) CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Zsombor Szoke-Kovacs
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | | | | | - Ilinca Tudose
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Jonathan Warren
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Olivia Wendling
- Infrastructure Nationale PHENOMIN, Institut Clinique de la Souris (ICS), et Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC) CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
| | - David B. West
- Children’s Hospital Oakland Research Institute, Oakland, CA 94609
| | - Leeyean Wong
- Department of Molecular Physiology and Biophysics, Houston, Texas, USA
| | | | | | - Daniel G. MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA, USA
- Program in Medical and Population Genetics, Broad Institute MIT and Harvard, Cambridge, MA, USA
| | - Glauco P. Tocchini-Valentini
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Monterotondo Scalo, Itally
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, China
| | - Paul Flicek
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - William C. Skarnes
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Helen E. Parkinson
- European Molecular Biology Laboratory- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Sara Wells
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | | | | | - Martin Hrabe de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics and German Mouse Clinic, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Yann Herault
- Infrastructure Nationale PHENOMIN, Institut Clinique de la Souris (ICS), et Institut de Génétique Biologie Moléculaire et Cellulaire (IGBMC) CNRS, INSERM, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Tim Mohun
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Ann-Marie Mallon
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - R. Mark Henkelman
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Steve D.M. Brown
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire, UK
| | - David J. Adams
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, Ontario, Canada
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arthur L. Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Maja Bucan
- Departments of Genetics and Psychiatry, Perlman School of Medicine, University of Pennsylvania, Philadelphia PA 19104
| | | |
Collapse
|
30
|
Mutations in Dnaaf1 and Lrrc48 Cause Hydrocephalus, Laterality Defects, and Sinusitis in Mice. G3-GENES GENOMES GENETICS 2016; 6:2479-87. [PMID: 27261005 PMCID: PMC4978901 DOI: 10.1534/g3.116.030791] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have previously described a forward genetic screen in mice for abnormalities of brain development. Characterization of two hydrocephalus mutants by whole-exome sequencing after whole-genome SNP mapping revealed novel recessive mutations in Dnaaf1 and Lrrc48. Mouse mutants of these two genes have not been previously reported. The Dnaaf1 mutant carries a mutation at the splice donor site of exon 4, which results in abnormal transcripts. The Lrrc48 mutation is a missense mutation at a highly conserved leucine residue, which is also associated with a decrease in Lrrc48 transcription. Both Dnaaf1 and Lrrc48 belong to a leucine-rich repeat-containing protein family and are components of the ciliary axoneme. Their Chlamydomonas orthologs are known to be required for normal ciliary beat frequency or flagellar waveform, respectively. Some Dnaaf1 or Lrrc48 homozygote mutants displayed laterality defects, suggesting a motile cilia defect in the embryonic node. Mucus accumulation and neutrophil infiltration in the maxillary sinuses suggested sinusitis. Dnaaf1 mutants showed postnatal lethality, and none survived to weaning age. Lrrc48 mutants survive to adulthood, but had male infertility. ARL13B immunostaining showed the presence of motile cilia in the mutants, and the distal distribution of DNAH9 in the axoneme of upper airway motile cilia appeared normal. The phenotypic abnormalities suggest that mutations in Dnaaf1 and Lrrc48 cause defects in motile cilia function.
Collapse
|
31
|
Abstract
Published studies on the utility of toxicogenomic approaches (transcriptomics, proteomics and metabonomics) in screening for toxicological mechanisms and evaluation of dose response effects have been reviewed. The information supports the use of transcriptomics to screen for specific toxicological mechanisms for which there is an a priori hypothesis, although in some areas such as mutagenicity testing, toxicogenomics appear to have limited value for identifying mutagens. Data from such screening approaches cannot be used to exclude the possibility of toxicity. Targeted transcriptomics might be valuable for screening for specific mechanisms of toxicity considered to be irrelevant for assessing risk to humans, which would help to reduce the need for detailed testing of some chemicals. An integrated approach is suggested where data from more than one toxicogenomic approach could be used as an adjunct to conventional toxicology to assess dose-response in toxicological tests. An outline preliminary proposal for use by regulators is suggested although it is noted that more data are required before this could be formally used in a decision-making process.
Collapse
Affiliation(s)
- Jon M Battershill
- Department of Health, Skipton House, Elephant and Castle, London, UK.
| |
Collapse
|
32
|
Wu C, Sudheendran N, Singh M, Larina IV, Dickinson ME, Larin KV. Rotational imaging optical coherence tomography for full-body mouse embryonic imaging. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:26002. [PMID: 26848543 PMCID: PMC4748608 DOI: 10.1117/1.jbo.21.2.026002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/07/2016] [Indexed: 05/18/2023]
Abstract
Optical coherence tomography (OCT) has been widely used to study mammalian embryonic development with the advantages of high spatial and temporal resolutions and without the need for any contrast enhancement probes. However, the limited imaging depth of traditional OCT might prohibit visualization of the full embryonic body. To overcome this limitation, we have developed a new methodology to enhance the imaging range of OCT in embryonic day (E) 9.5 and 10.5 mouse embryos using rotational imaging. Rotational imaging OCT (RI-OCT) enables full-body imaging of mouse embryos by performing multiangle imaging. A series of postprocessing procedures was performed on each cross-section image, resulting in the final composited image. The results demonstrate that RI-OCT is able to improve the visualization of internal mouse embryo structures as compared to conventional OCT.
Collapse
Affiliation(s)
- Chen Wu
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Narendran Sudheendran
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
| | - Irina V. Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
| | - Mary E. Dickinson
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
| | - Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, 3605 Cullen Boulevard, Texas 77204, United States
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, One Baylor Plaza, Houston, Texas 77584, United States
- Tomsk State University, Interdisciplinary Laboratory of Biophotonics, 36 Lenin Avenue, Tomsk 634050, Russia
- Address all correspondence to: Kirill V. Larin, E-mail:
| |
Collapse
|
33
|
Van Otterloo E, Feng W, Jones KL, Hynes NE, Clouthier DE, Niswander L, Williams T. MEMO1 drives cranial endochondral ossification and palatogenesis. Dev Biol 2015; 415:278-295. [PMID: 26746790 DOI: 10.1016/j.ydbio.2015.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/02/2015] [Accepted: 12/21/2015] [Indexed: 02/01/2023]
Abstract
The cranial base is a component of the neurocranium and has a central role in the structural integration of the face, brain and vertebral column. Consequently, alteration in the shape of the human cranial base has been intimately linked with primate evolution and defective development is associated with numerous human facial abnormalities. Here we describe a novel recessive mutant mouse strain that presented with a domed head and fully penetrant cleft secondary palate coupled with defects in the formation of the underlying cranial base. Mapping and non-complementation studies revealed a specific mutation in Memo1 - a gene originally associated with cell migration. Expression analysis of Memo1 identified robust expression in the perichondrium and periosteum of the developing cranial base, but only modest expression in the palatal shelves. Fittingly, although the palatal shelves failed to elevate in Memo1 mutants, expression changes were modest within the shelves themselves. In contrast, the cranial base, which forms via endochondral ossification had major reductions in the expression of genes responsible for bone formation, notably matrix metalloproteinases and markers of the osteoblast lineage, mirrored by an increase in markers of cartilage and extracellular matrix development. Concomitant with these changes, mutant cranial bases showed an increased zone of hypertrophic chondrocytes accompanied by a reduction in both vascular invasion and mineralization. Finally, neural crest cell-specific deletion of Memo1 caused a failure of anterior cranial base ossification indicating a cell autonomous role for MEMO1 in the development of these neural crest cell derived structures. However, palate formation was largely normal in these conditional mutants, suggesting a non-autonomous role for MEMO1 in palatal closure. Overall, these findings assign a new function to MEMO1 in driving endochondral ossification in the cranium, and also link abnormal development of the cranial base with more widespread effects on craniofacial shape relevant to human craniofacial dysmorphology.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Weiguo Feng
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, CH-4002 Basel, Switzerland
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lee Niswander
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
34
|
Gartz Hanson M, Aiken J, Sietsema DV, Sept D, Bates EA, Niswander L, Moore JK. Novel α-tubulin mutation disrupts neural development and tubulin proteostasis. Dev Biol 2015; 409:406-19. [PMID: 26658218 DOI: 10.1016/j.ydbio.2015.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/10/2015] [Accepted: 11/27/2015] [Indexed: 10/22/2022]
Abstract
Mutations in the microtubule cytoskeleton are linked to cognitive and locomotor defects during development, and neurodegeneration in adults. How these mutations impact microtubules, and how this alters function at the level of neurons is an important area of investigation. Using a forward genetic screen in mice, we identified a missense mutation in Tuba1a α-tubulin that disrupts cortical and motor neuron development. Homozygous mutant mice exhibit cortical dysgenesis reminiscent of human tubulinopathies. Motor neurons fail to innervate target muscles in the limbs and show synapse defects at proximal targets. To directly examine effects on tubulin function, we created analogous mutations in the α-tubulin isotypes in budding yeast. These mutations sensitize yeast cells to microtubule stresses including depolymerizing drugs and low temperatures. Furthermore, we find that mutant α-tubulin is depleted from the cell lysate and from microtubules, thereby altering ratios of α-tubulin isotypes. Tubulin-binding cofactors suppress the effects of the mutation, indicating an important role for these cofactors in regulating the quality of the α-tubulin pool. Together, our results give new insights into the functions of Tuba1a, mechanisms for regulating tubulin proteostasis, and how compromising these may lead to neural defects.
Collapse
Affiliation(s)
- M Gartz Hanson
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jayne Aiken
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Daniel V Sietsema
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - David Sept
- Department of Biomedical Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Emily A Bates
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Lee Niswander
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jeffrey K Moore
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
35
|
Ramkumar N, Harvey BM, Lee JD, Alcorn HL, Silva-Gagliardi NF, McGlade CJ, Bestor TH, Wijnholds J, Haltiwanger RS, Anderson KV. Protein O-Glucosyltransferase 1 (POGLUT1) Promotes Mouse Gastrulation through Modification of the Apical Polarity Protein CRUMBS2. PLoS Genet 2015; 11:e1005551. [PMID: 26496195 PMCID: PMC4619674 DOI: 10.1371/journal.pgen.1005551] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/02/2015] [Indexed: 01/02/2023] Open
Abstract
Crumbs family proteins are apical transmembrane proteins with ancient roles in cell polarity. Mouse Crumbs2 mutants arrest at midgestation with abnormal neural plate morphology and a deficit of mesoderm caused by defects in gastrulation. We identified an ENU-induced mutation, wsnp, that phenocopies the Crumbs2 null phenotype. We show that wsnp is a null allele of Protein O-glucosyltransferase 1 (Poglut1), which encodes an enzyme previously shown to add O-glucose to EGF repeats in the extracellular domain of Drosophila and mammalian Notch, but the role of POGLUT1 in mammalian gastrulation has not been investigated. As predicted, we find that POGLUT1 is essential for Notch signaling in the early mouse embryo. However, the loss of mouse POGLUT1 causes an earlier and more dramatic phenotype than does the loss of activity of the Notch pathway, indicating that POGLUT1 has additional biologically relevant substrates. Using mass spectrometry, we show that POGLUT1 modifies EGF repeats in the extracellular domain of full-length mouse CRUMBS2. CRUMBS2 that lacks the O-glucose modification fails to be enriched on the apical plasma membrane and instead accumulates in the endoplasmic reticulum. The data demonstrate that CRUMBS2 is the target of POGLUT1 for the gastrulation epithelial-to-mesenchymal transitions (EMT) and that all activity of CRUMBS2 depends on modification by POGLUT1. Mutations in human POGLUT1 cause Dowling-Degos Disease, POGLUT1 is overexpressed in a variety of tumor cells, and mutations in the EGF repeats of human CRUMBS proteins are associated with human congenital nephrosis, retinitis pigmentosa and retinal degeneration, suggesting that O-glucosylation of CRUMBS proteins has broad roles in human health.
Collapse
Affiliation(s)
- Nitya Ramkumar
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Beth M. Harvey
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jeffrey D. Lee
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Heather L. Alcorn
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Nancy F. Silva-Gagliardi
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumor Research Center and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - C. Jane McGlade
- The Hospital for Sick Children, Arthur and Sonia Labatt Brain Tumor Research Center and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy H. Bestor
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York, United States of America
| | - Jan Wijnholds
- Department of Neuromedical Genetics, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Robert S. Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kathryn V. Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Gartz Hanson M, Niswander LA. Rectification of muscle and nerve deficits in paralyzed ryanodine receptor type 1 mutant embryos. Dev Biol 2015; 404:76-87. [PMID: 26025922 DOI: 10.1016/j.ydbio.2015.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 02/05/2023]
Abstract
Locomotion and respiration require motor axon connectivity and activation of the neuromuscular junction (NMJ). Through a forward genetic screen for muscle weakness, we recently reported an allele of ryanodine receptor type 1 (Ryr1(AG)). Here we reveal a role for functional RyR1 during acetylcholine receptor (AChR) cluster formation and embryonic synaptic transmission. Ryr1(AG) homozygous embryos are non-motile. Motor axons extend past AChR clusters and enlarged AChR clusters are found under fasciculated nerves. Using physiological and pharmacological methods, we show that contractility can be resumed through the masking of a potassium leak, and evoked vesicular release can be resumed via bypassing the defect in RyR1 induced calcium release. Moreover, we show the involvement of ryanodine receptors in presynaptic release at the NMJ. This data provides evidence of a role for RyR1 on both the pre- and postsynaptic sides of the NMJ.
Collapse
Affiliation(s)
- M Gartz Hanson
- Department of Pediatrics University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, United States.
| | - Lee A Niswander
- Department of Pediatrics University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO 80045, United States
| |
Collapse
|
37
|
Li Y, Klena NT, Gabriel GC, Liu X, Kim AJ, Lemke K, Chen Y, Chatterjee B, Devine W, Damerla RR, Chang C, Yagi H, San Agustin JT, Thahir M, Anderton S, Lawhead C, Vescovi A, Pratt H, Morgan J, Haynes L, Smith CL, Eppig JT, Reinholdt L, Francis R, Leatherbury L, Ganapathiraju MK, Tobita K, Pazour GJ, Lo CW. Global genetic analysis in mice unveils central role for cilia in congenital heart disease. Nature 2015; 521:520-4. [PMID: 25807483 DOI: 10.1038/nature14269] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/26/2015] [Indexed: 01/20/2023]
Abstract
Congenital heart disease (CHD) is the most prevalent birth defect, affecting nearly 1% of live births; the incidence of CHD is up to tenfold higher in human fetuses. A genetic contribution is strongly suggested by the association of CHD with chromosome abnormalities and high recurrence risk. Here we report findings from a recessive forward genetic screen in fetal mice, showing that cilia and cilia-transduced cell signalling have important roles in the pathogenesis of CHD. The cilium is an evolutionarily conserved organelle projecting from the cell surface with essential roles in diverse cellular processes. Using echocardiography, we ultrasound scanned 87,355 chemically mutagenized C57BL/6J fetal mice and recovered 218 CHD mouse models. Whole-exome sequencing identified 91 recessive CHD mutations in 61 genes. This included 34 cilia-related genes, 16 genes involved in cilia-transduced cell signalling, and 10 genes regulating vesicular trafficking, a pathway important for ciliogenesis and cell signalling. Surprisingly, many CHD genes encoded interacting proteins, suggesting that an interactome protein network may provide a larger genomic context for CHD pathogenesis. These findings provide novel insights into the potential Mendelian genetic contribution to CHD in the fetal population, a segment of the human population not well studied. We note that the pathways identified show overlap with CHD candidate genes recovered in CHD patients, suggesting that they may have relevance to the more complex genetics of CHD overall. These CHD mouse models and >8,000 incidental mutations have been sperm archived, creating a rich public resource for human disease modelling.
Collapse
Affiliation(s)
- You Li
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Nikolai T Klena
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Andrew J Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Kristi Lemke
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Yu Chen
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Bishwanath Chatterjee
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - William Devine
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Rama Rao Damerla
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Chienfu Chang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Jovenal T San Agustin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Mohamed Thahir
- 1] Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15206, USA [2] Intelligent Systems Program, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 16260, USA
| | - Shane Anderton
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Caroline Lawhead
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Anita Vescovi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Herbert Pratt
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Judy Morgan
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Leslie Haynes
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | - Janan T Eppig
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | - Richard Francis
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Linda Leatherbury
- The Heart Center, Children's National Medical Center, Washington DC 20010, USA
| | - Madhavi K Ganapathiraju
- 1] Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15206, USA [2] Intelligent Systems Program, School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 16260, USA
| | - Kimimasa Tobita
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15201, USA
| |
Collapse
|
38
|
Hanson MG, Wilde JJ, Moreno RL, Minic AD, Niswander L. Potassium dependent rescue of a myopathy with core-like structures in mouse. eLife 2015; 4. [PMID: 25564733 PMCID: PMC4309926 DOI: 10.7554/elife.02923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 01/07/2015] [Indexed: 01/24/2023] Open
Abstract
Myopathies decrease muscle functionality. Mutations in ryanodine receptor 1 (RyR1) are often associated with myopathies with microscopic core-like structures in the muscle fiber. In this study, we identify a mouse RyR1 model in which heterozygous animals display clinical and pathological hallmarks of myopathy with core-like structures. The RyR1 mutation decreases sensitivity to activated calcium release and myoplasmic calcium levels, subsequently affecting mitochondrial calcium and ATP production. Mutant muscle shows a persistent potassium leak and disrupted expression of regulators of potassium homeostasis. Inhibition of KATP channels or increasing interstitial potassium by diet or FDA-approved drugs can reverse the muscle weakness, fatigue-like physiology and pathology. We identify regulators of potassium homeostasis as biomarkers of disease that may reveal therapeutic targets in human patients with myopathy of central core disease (CCD). Altogether, our results suggest that amelioration of potassium leaks through potassium homeostasis mechanisms may minimize muscle damage of myopathies due to certain RyR1 mutations.
Collapse
Affiliation(s)
- M Gartz Hanson
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Jonathan J Wilde
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Rosa L Moreno
- Department of Physiology, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Angela D Minic
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, United States
| | - Lee Niswander
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
39
|
Levin TC, Greaney AJ, Wetzel L, King N. The Rosetteless gene controls development in the choanoflagellate S. rosetta. eLife 2014; 3:e04070. [PMID: 25299189 PMCID: PMC4381721 DOI: 10.7554/elife.04070] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/08/2014] [Indexed: 12/30/2022] Open
Abstract
The origin of animal multicellularity may be reconstructed by comparing animals with one of their closest living relatives, the choanoflagellate Salpingoeca rosetta. Just as animals develop from a single cell-the zygote-multicellular rosettes of S. rosetta develop from a founding cell. To investigate rosette development, we established forward genetics in S. rosetta. We find that the rosette defect of one mutant, named Rosetteless, maps to a predicted C-type lectin, a class of signaling and adhesion genes required for the development and innate immunity in animals. Rosetteless protein is essential for rosette development and forms an extracellular layer that coats and connects the basal poles of each cell in rosettes. This study provides the first link between genotype and phenotype in choanoflagellates and raises the possibility that a protein with C-type lectin-like domains regulated development in the last common ancestor of choanoflagellates and animals.
Collapse
Affiliation(s)
- Tera C Levin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Allison J Greaney
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Laura Wetzel
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Nicole King
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
40
|
Peripheral nervous system defects in a mouse model for peroxisomal biogenesis disorders. Dev Biol 2014; 395:84-95. [PMID: 25176044 DOI: 10.1016/j.ydbio.2014.08.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/19/2022]
Abstract
Peroxisome biogenesis disorders (PBD) are autosomal recessive disorders in humans characterized by skeletal, eye and brain abnormalities. Despite the fact that neurological deficits, including peripheral nervous system (PNS) defects, can be observed at birth in some PBD patients including those with PEX10 mutations, the embryological basis of the PNS defects is unclear. Using a forward genetic screen, we identified a mouse model for Pex10 deficiency that exhibits neurological abnormalities during fetal development. Homozygous Pex10 mutant mouse embryos display biochemical abnormalities related to a PBD deficiency. During late embryogenesis, Pex10 homozygous mutant mice experience progressive loss of movement and at birth they become cyanotic and die shortly thereafter. Homozygous Pex10 mutant fetuses display decreased integrity of axons and synapses, over-extension of axons in the diaphragm and decreased Schwann cell numbers. Our neuropathological, molecular and electrophysiological studies provide new insights into the embryological basis of the PNS deficits in a PBD model. Our findings identify PEX10 function, and likely other PEX proteins, as an essential component of the spinal locomotor circuit.
Collapse
|
41
|
Sarkar AA, Nuwayhid SJ, Maynard T, Ghandchi F, Hill JT, Lamantia AS, Zohn IE. Hectd1 is required for development of the junctional zone of the placenta. Dev Biol 2014; 392:368-80. [PMID: 24855001 PMCID: PMC4578812 DOI: 10.1016/j.ydbio.2014.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 01/17/2023]
Abstract
The placenta plays a critical role in the growth and survival of the fetus. Here we demonstrate that the Homologous to the E6-AP Carboxyl Terminus (HECT) domain E3 ubiquitin ligase, Hectd1, is essential for development of the mouse placenta. Hectd1 is widely expressed during placentation with enrichment in trophoblast giant cells (TGCs) and other trophoblast-derived cell subtypes in the junctional and labyrinth zones of the placenta. Disruption of Hectd1 results in mid-gestation lethality and intrauterine growth restriction (IUGR). Variable defects in the gross structure of the mutant placenta are found including alterations in diameter, thickness and lamination. The number and nuclear size of TGCs is reduced. Examination of subtype specific markers reveals altered TGC development with decreased expression of Placental lactogen-1 and -2 (Pl1 and Pl2) and increased expression of Proliferin (Plf). Reduced numbers of spongiotrophoblasts and glycogen trophoblasts were also found at the junctional zone of the Hectd1 mutant placenta. Finally, there was an increase in immature uterine natural killer (uNK) cells in the maternal decidua of the Hectd1 mutant placenta. Proliferation and apoptosis are differentially altered in the layers of the placenta with an increase in both apoptosis and proliferation in the maternal decidua, a decrease in proliferation and increase in apoptosis in the labyrinth layer and both unchanged in the junctional zone. Together these data demonstrate that Hectd1 is required for development of multiple cell types within the junctional zone of the placenta.
Collapse
Affiliation(s)
- Anjali A Sarkar
- Center for Neuroscience Research, Children׳s Research Institute, and Children׳s National Medical Center, Washington, DC 20010, USA
| | - Samer J Nuwayhid
- Center for Neuroscience Research, Children׳s Research Institute, and Children׳s National Medical Center, Washington, DC 20010, USA
| | - Thomas Maynard
- Department of Pharmacology and Physiology, The George Washington Institute for Neuroscience, George Washington University, Washington, DC 20052, USA; The George Washington Institute for Neuroscience, George Washington University, Washington, DC 20052, USA
| | - Frederick Ghandchi
- Center for Neuroscience Research, Children׳s Research Institute, and Children׳s National Medical Center, Washington, DC 20010, USA
| | | | - Anthony S Lamantia
- Department of Pharmacology and Physiology, The George Washington Institute for Neuroscience, George Washington University, Washington, DC 20052, USA; The George Washington Institute for Neuroscience, George Washington University, Washington, DC 20052, USA
| | - Irene E Zohn
- Center for Neuroscience Research, Children׳s Research Institute, and Children׳s National Medical Center, Washington, DC 20010, USA; Department of Pharmacology and Physiology, The George Washington Institute for Neuroscience, George Washington University, Washington, DC 20052, USA; The George Washington Institute for Neuroscience, George Washington University, Washington, DC 20052, USA.
| |
Collapse
|
42
|
Liu A, Eggenschwiler J. Identifying essential genes in mouse development via an ENU-based forward genetic approach. Methods Mol Biol 2014; 1092:95-118. [PMID: 24318816 DOI: 10.1007/978-1-60327-292-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The completion of the human and mouse genome projects at the beginning of the past decade represented a very important step forward in our pursuit of a comprehensive understanding of the genetic control of mammalian development. Nevertheless, genetic analyses of mutant phenotypes are still needed to understand the function of individual genes. The genotype-based approaches, including gene-trapping and gene-targeting, promise a mutant embryonic stem (ES) cell resource for all the genes in mouse genome; however, the phenotypic consequences of these mutations will not be addressed until mutant mice are derived from these ES cells, which is not trivial. An efficient and non-biased, N-ethyl-N-nitrosourea (ENU)-based forward genetic approach in mouse provides a unique tool for the identification of genes essential for development and adult physiology. We have had great success in identifying genes essential for morphogenesis and early patterning of mouse via this approach. Combined with complete genome information and numerous genetic resources available, ENU-based mutagenesis has become a powerful tool in deciphering gene functions.
Collapse
Affiliation(s)
- Aimin Liu
- Department of Biology, The Penn State University, University Park, PA, USA
| | | |
Collapse
|
43
|
Lee S, Kong Y, Weatherbee SD. Forward genetics identifies Kdf1/1810019J16Rik as an essential regulator of the proliferation-differentiation decision in epidermal progenitor cells. Dev Biol 2013; 383:201-13. [PMID: 24075906 DOI: 10.1016/j.ydbio.2013.09.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 10/26/2022]
Abstract
Cell fate decisions during embryogenesis and adult life govern tissue formation, homeostasis and repair. Two key decisions that must be tightly coordinated are proliferation and differentiation. Overproliferation can lead to hyperplasia or tumor formation while premature differentiation can result in a depletion of proliferating cells and organ failure. Maintaining this balance is especially important in tissues that undergo rapid turnover like skin however, despite recent advances, the genetic mechanisms that balance cell differentiation and proliferation are still unclear. In an unbiased genetic screen to identify genes affecting early development, we identified an essential regulator of the proliferation-differentiation balance in epidermal progenitor cells, the Keratinocyte differentiation factor 1 (Kdf1; 1810019J16Rik) gene. Kdf1 is expressed in epidermal cells from early stages of epidermis formation through adulthood. Specifically, Kdf1 is expressed both in epidermal progenitor cells where it acts to curb the rate of proliferation as well as in their progeny where it is required to block proliferation and promote differentiation. Consequently, Kdf1 mutants display both uncontrolled cell proliferation in the epidermis and failure to develop terminal fates. Our findings reveal a dual role for the novel gene Kdf1 both as a repressive signal for progenitor cell proliferation through its inhibition of p63 and a strong inductive signal for terminal differentiation through its interaction with the cell cycle regulator Stratifin.
Collapse
Affiliation(s)
- Sunjin Lee
- Department of Genetics, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
44
|
Apaf1 apoptotic function critically limits Sonic hedgehog signaling during craniofacial development. Cell Death Differ 2013; 20:1510-20. [PMID: 23892366 DOI: 10.1038/cdd.2013.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 01/18/2023] Open
Abstract
Apaf1 is an evolutionarily conserved component of the apoptosome. In mammals, the apoptosome assembles when cytochrome c is released from mitochondria, binding Apaf1 in an ATP-dependent manner and activating caspase 9 to execute apoptosis. Here we identify and characterize a novel mouse mutant, yautja, and find it results from a leucine-to-proline substitution in the winged-helix domain of Apaf1. We show that this allele of Apaf1 is unique, as the yautja mutant Apaf1 protein is stable, yet does not possess apoptotic function in cell culture or in vivo assays. Mutant embryos die perinatally with defects in craniofacial and nervous system development, as well as reduced levels of apoptosis. We further investigated the defects in craniofacial development in the yautja mutation and found altered Sonic hedgehog (Shh) signaling between the prechordal plate and the frontonasal ectoderm, leading to increased mesenchymal proliferation in the face and delayed or absent ossification of the skull base. Taken together, our data highlight the time-sensitive link between Shh signaling and the regulation of apoptosis function in craniofacial development to sculpt the face. We propose that decreased apoptosis in the developing nervous system allows Shh-producing cells to persist and direct a lateral outgrowth of the upper jaw, resulting in the craniofacial defects we see. Finally, the novel yautja Apaf1 allele offers the first in vivo understanding of a stable Apaf1 protein that lacks a function, which should make a useful tool with which to explore the regulation of programmed cell death in mammals.
Collapse
|
45
|
Genome-wide ENU mutagenesis in combination with high density SNP analysis and exome sequencing provides rapid identification of novel mouse models of developmental disease. PLoS One 2013; 8:e55429. [PMID: 23469164 PMCID: PMC3585849 DOI: 10.1371/journal.pone.0055429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/22/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mice harbouring gene mutations that cause phenotypic abnormalities during organogenesis are invaluable tools for linking gene function to normal development and human disorders. To generate mouse models harbouring novel alleles that are involved in organogenesis we conducted a phenotype-driven, genome-wide mutagenesis screen in mice using the mutagen N-ethyl-N-nitrosourea (ENU). METHODOLOGY/PRINCIPAL FINDINGS ENU was injected into male C57BL/6 mice and the mutations transmitted through the germ-line. ENU-induced mutations were bred to homozygosity and G3 embryos screened at embryonic day (E) 13.5 and E18.5 for abnormalities in limb and craniofacial structures, skin, blood, vasculature, lungs, gut, kidneys, ureters and gonads. From 52 pedigrees screened 15 were detected with anomalies in one or more of the structures/organs screened. Using single nucleotide polymorphism (SNP)-based linkage analysis in conjunction with candidate gene or next-generation sequencing (NGS) we identified novel recessive alleles for Fras1, Ift140 and Lig1. CONCLUSIONS/SIGNIFICANCE In this study we have generated mouse models in which the anomalies closely mimic those seen in human disorders. The association between novel mutant alleles and phenotypes will lead to a better understanding of gene function in normal development and establish how their dysfunction causes human anomalies and disease.
Collapse
|
46
|
Yamaguchi Y, Miura M. How to form and close the brain: insight into the mechanism of cranial neural tube closure in mammals. Cell Mol Life Sci 2012; 70:3171-86. [PMID: 23242429 PMCID: PMC3742426 DOI: 10.1007/s00018-012-1227-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 11/07/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022]
Abstract
The development of the embryonic brain critically depends on successfully completing cranial neural tube closure (NTC). Failure to properly close the neural tube results in significant and potentially lethal neural tube defects (NTDs). We believe these malformations are caused by disruptions in normal developmental programs such as those involved in neural plate morphogenesis and patterning, tissue fusion, and coordinated cell behaviors. Cranial NTDs include anencephaly and craniorachischisis, both lethal human birth defects. Newly emerging methods for molecular and cellular analysis offer a deeper understanding of not only the developmental NTC program itself but also mechanical and kinetic aspects of closure that may contribute to cranial NTDs. Clarifying the underlying mechanisms involved in NTC and how they relate to the onset of specific NTDs in various experimental models may help us develop novel intervention strategies to prevent NTDs.
Collapse
Affiliation(s)
- Yoshifumi Yamaguchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, and CREST, JST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
47
|
Schnatwinkel C, Niswander L. Nubp1 is required for lung branching morphogenesis and distal progenitor cell survival in mice. PLoS One 2012; 7:e44871. [PMID: 23028652 PMCID: PMC3444492 DOI: 10.1371/journal.pone.0044871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/08/2012] [Indexed: 01/08/2023] Open
Abstract
The lung is a complex system in biology and medicine alike. Whereas there is a good understanding of the anatomy and histology of the embryonic and adult lung, less is known about the molecular details and the cellular pathways that ultimately orchestrate lung formation and affect its health. From a forward genetic approach to identify novel genes involved in lung formation, we identified a mutated Nubp1 gene, which leads to syndactyly, eye cataract and lung hypoplasia. In the lung, Nubp1 is expressed in progenitor cells of the distal epithelium. Nubp1(m1Nisw) mutants show increased apoptosis accompanied by a loss of the distal progenitor markers Sftpc, Sox9 and Foxp2. In addition, Nubp1 mutation disrupts localization of the polarity protein Par3 and the mitosis relevant protein Numb. Using knock-down studies in lung epithelial cells, we also demonstrate a function of Nubp1 in regulating centrosome dynamics and microtubule organization. Together, Nubp1 represents an essential protein for lung progenitor survival by coordinating vital cellular processes including cell polarity and centrosomal dynamics.
Collapse
Affiliation(s)
- Carsten Schnatwinkel
- Howard Hughes Medical Institute, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, United States of America
| | - Lee Niswander
- Howard Hughes Medical Institute, Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
48
|
Zohn IE, Sarkar AA. Does the cranial mesenchyme contribute to neural fold elevation during neurulation? ACTA ACUST UNITED AC 2012; 94:841-8. [PMID: 22945385 DOI: 10.1002/bdra.23073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 07/23/2012] [Accepted: 07/17/2012] [Indexed: 11/06/2022]
Abstract
The central nervous system is derived from the neural plate, which undergoes a series of complex morphogenetic events resulting in formation of the neural tube in a process known as neurulation. The cellular behaviors driving neurulation in the cranial region involve forces generated by the neural tissue itself as well as the surrounding epithelium and mesenchyme. Of interest, the cranial mesenchyme underlying the neural plate undergoes stereotypical rearrangements hypothesized to drive elevation of the neural folds. As the neural folds rise, the hyaluronate-rich extracellular matrix greatly expands resulting in increased space between individual cranial mesenchyme cells. Based on inhibitor studies, expansion of the extracellular matrix has been implicated in driving neural fold elevation; however, because the surrounding neural and epidermal ectoderm were also affected by inhibitor exposure, these studies are inconclusive. Similarly, treatment of neurulating embryos with teratogenic doses of retinoic acid results in altered organization of the cranial mesenchyme, but alterations in surrounding tissues are also observed. The strongest evidence for a critical role for the cranial mesenchyme in neural fold elevation comes from studies of genes expressed exclusively in the cranial mesenchyme that when mutated result in exencephaly associated with abnormal organization of the cranial mesenchyme. Twist is the best studied of these and is expressed in both the paraxial mesoderm and neural crest derived cranial mesenchyme. In this article, we review the evidence implicating the cranial mesenchyme in providing a driving force for neural fold elevation to evaluate whether there are sufficient data to support this hypothesis.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | |
Collapse
|
49
|
The role of vertebrate models in understanding craniosynostosis. Childs Nerv Syst 2012; 28:1471-81. [PMID: 22872264 DOI: 10.1007/s00381-012-1844-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND Craniosynostosis (CS), the premature fusion of cranial sutures, is a relatively common pediatric anomaly, occurring in isolation or as part of a syndrome. A growing number of genes with pathologic mutations have been identified for syndromic and nonsyndromic CS. The study of human sutural material obtained post-operatively is not sufficient to understand the etiology of CS, for which animal models are indispensable. DISCUSSION The similarity of the human and murine calvarial structure, our knowledge of mouse genetics and biology, and ability to manipulate the mouse genome make the mouse the most valuable model organism for CS research. A variety of mouse mutants are available that model specific human CS mutations or have CS phenotypes. These allow characterization of the biochemical and morphological events, often embryonic, which precede suture fusion. Other vertebrate organisms have less functional genetic utility than mice, but the rat, rabbit, chick, zebrafish, and frog provide alternative systems in which to validate or contrast molecular functions relevant to CS.
Collapse
|
50
|
Sarkar AA, Zohn IE. Hectd1 regulates intracellular localization and secretion of Hsp90 to control cellular behavior of the cranial mesenchyme. ACTA ACUST UNITED AC 2012; 196:789-800. [PMID: 22431752 PMCID: PMC3308699 DOI: 10.1083/jcb.201105101] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Hectd1 mutant mouse embryos exhibit the neural tube defect exencephaly associated with abnormal cranial mesenchyme. Cellular rearrangements in cranial mesenchyme are essential during neurulation for elevation of the neural folds. Here we investigate the molecular basis of the abnormal behavior of Hectd1 mutant cranial mesenchyme. We demonstrate that Hectd1 is a functional ubiquitin ligase and that one of its substrates is Hsp90, a chaperone protein with both intra- and extracellular clients. Extracellular Hsp90 enhances migration of multiple cell types. In mutant cranial mesenchyme cells, both secretion of Hsp90 and emigration of cells from cranial mesenchyme explants were enhanced. Importantly, we show that this enhanced emigration was highly dependent on the excess Hsp90 secreted from mutant cells. Together, our data set forth a model whereby increased secretion of Hsp90 in the cranial mesenchyme of Hectd1 mutants is responsible, at least in part, for the altered organization and behavior of these cells and provides a potential molecular mechanism underlying the neural tube defect.
Collapse
Affiliation(s)
- Anjali A Sarkar
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | |
Collapse
|