1
|
Parikh RY, Gangaraju VK. Hexavalent chromium-induced epigenetic instability and transposon activation lead to phenotypic variations and tumors in Drosophila. ENVIRONMENTAL EPIGENETICS 2022; 9:dvac030. [PMID: 36743586 PMCID: PMC9892686 DOI: 10.1093/eep/dvac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/22/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Developmental robustness represents the ability of an organism to resist phenotypic variations despite environmental insults and inherent genetic variations. Derailment of developmental robustness leads to phenotypic variations that can get fixed in a population for many generations. Environmental pollution is a significant worldwide problem with detrimental consequences of human development. Understanding the genetic basis for how pollutants affect human development is critical for developing interventional therapies. Here, we report that environmental stress induced by hexavalent chromium, Cr(VI), a potent industrial pollutant, compromises developmental robustness, leading to phenotypic variations in the progeny. These phenotypic variations arise due to epigenetic instability and transposon activation in the somatic tissues of the progeny rather than novel genetic mutations and can be reduced by increasing the dosage of Piwi - a Piwi-interacting RNA-binding protein, in the ovary of the exposed mother. Significantly, the derailment of developmental robustness by Cr(VI) exposure leads to tumors in the progeny, and the predisposition to develop tumors is fixed in the population for at least three generations. Thus, we show for the first time that environmental pollution can derail developmental robustness and predispose the progeny of the exposed population to develop phenotypic variations and tumors.
Collapse
Affiliation(s)
- Rasesh Y Parikh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Vamsi K Gangaraju
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Barish S, Senturk M, Schoch K, Minogue AL, Lopergolo D, Fallerini C, Harland J, Seemann JH, Stong N, Kranz PG, Kansagra S, Mikati MA, Jasien J, El-Dairi M, Galluzzi P, Ariani F, Renieri A, Mari F, Wangler MF, Arur S, Jiang YH, Yamamoto S, Shashi V, Bellen HJ. The microRNA processor DROSHA is a candidate gene for a severe progressive neurological disorder. Hum Mol Genet 2022; 31:2934-2950. [PMID: 35405010 PMCID: PMC9433733 DOI: 10.1093/hmg/ddac085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 11/15/2022] Open
Abstract
DROSHA encodes a ribonuclease that is a subunit of the Microprocessor complex and is involved in the first step of microRNA (miRNA) biogenesis. To date, DROSHA has not yet been associated with a Mendelian disease. Here, we describe two individuals with profound intellectual disability, epilepsy, white matter atrophy, microcephaly and dysmorphic features, who carry damaging de novo heterozygous variants in DROSHA. DROSHA is constrained for missense variants and moderately intolerant to loss-of-function (o/e = 0.24). The loss of the fruit fly ortholog drosha causes developmental arrest and death in third instar larvae, a severe reduction in brain size and loss of imaginal discs in the larva. Loss of drosha in eye clones causes small and rough eyes in adult flies. One of the identified DROSHA variants (p.Asp1219Gly) behaves as a strong loss-of-function allele in flies, while another variant (p.Arg1342Trp) is less damaging in our assays. In worms, a knock-in that mimics the p.Asp1219Gly variant at a worm equivalent residue causes loss of miRNA expression and heterochronicity, a phenotype characteristic of the loss of miRNA. Together, our data show that the DROSHA variants found in the individuals presented here are damaging based on functional studies in model organisms and likely underlie the severe phenotype involving the nervous system.
Collapse
Affiliation(s)
- Scott Barish
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Mumine Senturk
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kelly Schoch
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Amanda L Minogue
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Diego Lopergolo
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
| | - Jake Harland
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jacob H Seemann
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Peter G Kranz
- Division of Neuroradiology, Department of Radiology, Duke Health, Durham, NC 27710, USA
| | - Sujay Kansagra
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Mohamad A Mikati
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Joan Jasien
- Division of Pediatric Neurology, Department of Pediatrics, Duke Health, Durham, NC 27710, USA
| | - Mays El-Dairi
- Department of Ophthalmology, Duke Health, Durham, NC 27710, USA
| | - Paolo Galluzzi
- Department of Medical Genetics, NeuroImaging and NeuroInterventional Unit, Azienda Ospedaliera e Universitaria, Senese, Siena 53100, Italy
| | - Francesca Ariani
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Francesca Mari
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
- Medical Genetics, University of Siena, Siena 53100, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Swathi Arur
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yong-Hui Jiang
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
- Yale School of Medicine, New Haven, CT 06510, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Yahara I. A role for epigenetic adaption in evolution. Genes Cells 2019; 24:524-533. [PMID: 31273901 PMCID: PMC6852114 DOI: 10.1111/gtc.12709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/23/2019] [Accepted: 06/16/2019] [Indexed: 11/27/2022]
Abstract
The outcome of epigenetic responses to stress depends strictly on genetic background, suggesting that altered phenotypes, when induced, are created by a combination of induced epigenetic factors and pre-existing allelic ones. When individuals with altered phenotypes are selected and subjected to successive breeding, alleles that potentiate epigenetic responses could accumulate in offspring populations. It is reasonable to suppose that many, if not all, of these allelic genes could also be involved in creating new phenotypes under nonstressful conditions. In this review, I discuss the possibility that the accumulation of such alleles in selected individuals with an epigenetic phenotype could give rise to individuals that exhibit the same phenotype even in the absence of stress.
Collapse
Affiliation(s)
- Ichiro Yahara
- Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| |
Collapse
|
4
|
Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster. G3-GENES GENOMES GENETICS 2016; 6:1427-37. [PMID: 26994292 PMCID: PMC4856093 DOI: 10.1534/g3.116.027060] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net), to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions.
Collapse
|
5
|
Ruden DM, Cingolani PE, Sen A, Qu W, Wang L, Senut MC, Garfinkel MD, Sollars VE, Lu X. Epigenetics as an answer to Darwin's "special difficulty," Part 2: natural selection of metastable epialleles in honeybee castes. Front Genet 2015; 6:60. [PMID: 25759717 PMCID: PMC4338822 DOI: 10.3389/fgene.2015.00060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/08/2015] [Indexed: 11/15/2022] Open
Abstract
In a recent perspective in this journal, Herb (2014) discussed how epigenetics is a possible mechanism to circumvent Charles Darwin's "special difficulty" in using natural selection to explain the existence of the sterile-fertile dimorphism in eusocial insects. Darwin's classic book "On the Origin of Species by Means of Natural Selection" explains how natural selection of the fittest individuals in a population can allow a species to adapt to a novel or changing environment. However, in bees and other eusocial insects, such as ants and termites, there exist two or more castes of genetically similar females, from fertile queens to multiple sub-castes of sterile workers, with vastly different phenotypes, lifespans, and behaviors. This necessitates the selection of groups (or kin) rather than individuals in the evolution of honeybee hives, but group and kin selection theories of evolution are controversial and mechanistically uncertain. Also, group selection would seem to be prohibitively inefficient because the effective population size of a colony is reduced from thousands to a single breeding queen. In this follow-up perspective, we elaborate on possible mechanisms for how a combination of both epigenetics, specifically, the selection of metastable epialleles, and genetics, the selection of mutations generated by the selected metastable epialleles, allows for a combined means for selection amongst the fertile members of a species to increase colony fitness. This "intra-caste evolution" hypothesis is a variation of the epigenetic directed genetic error hypothesis, which proposes that selected metastable epialleles increase genetic variability by directing mutations specifically to the epialleles. Natural selection of random metastable epialleles followed by a second round of natural selection of random mutations generated by the metastable epialleles would allow a way around the small effective population size of eusocial insects.
Collapse
Affiliation(s)
- Douglas M. Ruden
- Department of Obstetrics and Gynecology, C. S. Mott Center for Human Growth and Development and Center for Urban Responses to Environmental Stressors, Institute of Environmental Health Sciences, Wayne State UniversityDetroit, MI, USA
| | - Pablo E. Cingolani
- School of Computer Science and Genome Quebec Innovation Centre, McGill UniversityMontreal, QC, Canada
| | - Arko Sen
- Department of Pharmacology, Wayne State UniversityDetroit, MI, USA
| | - Wen Qu
- Department of Pharmacology, Wayne State UniversityDetroit, MI, USA
| | - Luan Wang
- Institute of Environmental Health Sciences, Wayne State UniversityDetroit, MI, USA
| | - Marie-Claude Senut
- Institute of Environmental Health Sciences, Wayne State UniversityDetroit, MI, USA
| | - Mark D. Garfinkel
- Department of Biological Sciences, University of Alabama in HuntsvilleHuntsville, AL, USA
| | - Vincent E. Sollars
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall UniversityHuntington, WV, USA
| | - Xiangyi Lu
- Institute of Environmental Health Sciences, Wayne State UniversityDetroit, MI, USA
| |
Collapse
|
6
|
Luna, a Drosophila KLF6/KLF7, is maternally required for synchronized nuclear and centrosome cycles in the preblastoderm embryo. PLoS One 2014; 9:e96933. [PMID: 24915236 PMCID: PMC4051582 DOI: 10.1371/journal.pone.0096933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 04/11/2014] [Indexed: 11/20/2022] Open
Abstract
Krüppel like factors (KLFs) are conserved transcription factors that have been implicated in many developmental processes including differentiation, organ patterning, or regulation of stem cell pluripotency. We report the generation and analysis of loss-of-function mutants of Drosophila Klf6/7, the luna gene. We demonstrate that luna mutants are associated with very early embryonic defects prior to cellularization at the syncytial stage and cause DNA separation defects during the rapid mitotic cycles resulting in un-coupled DNA and centrosome cycles. These defects manifest themselves, both in animals that are maternally homozygous and heterozygous mutant. Surprisingly, luna is only required during the syncytial stages and not later in development, suggesting that the DNA segregation defect is linked to centrosomes, since centrosomes are dispensable for later cell divisions.
Collapse
|
7
|
Ruden DM, Lu X. Hsp90 affecting chromatin remodeling might explain transgenerational epigenetic inheritance in Drosophila. Curr Genomics 2011; 9:500-8. [PMID: 19506739 PMCID: PMC2691676 DOI: 10.2174/138920208786241207] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/08/2008] [Accepted: 08/14/2008] [Indexed: 01/01/2023] Open
Abstract
Transgenerational epigenetic inheritance, while poorly understood, is of great interest because it might help explain the increase in the incidence of diseases with an environmental contribution in humans, such as cancer, diabetes, and heart disease. Here, we review five Drosophila examples of transgenerational epigenetic inheritance and propose a unified mechanism that involves Polycomb Response Element/Trithorax Response Element (PRE/TRE) occupancy by either Polycomb Group (PcG) protein complexes or Trithorax group (TrxG) complexes. Among their other activities, PcG complexes cause histone 3 lysine 27 tri-methylation associated with repressed chromatin, whereas Trithorax group (TrxG) complexes induce histone 3 lysine 4 tri-methylation associated with actively transcribed chromatin. In this model, Hsp90 is an environmentally sensitive chromatin remodeling regulator that causes a switch in the chromatin from a permissive state to a non-permissive state for transcription. Consistent with this model, Hsp90 has recently been shown to be a chaperone for Tah1p (TPR-containing protein associated with Hsp90) and Pih1p (protein interacting with Hsp90), which connect to the chromatin remodelling factor Rvb1p (RuvB-like protein 1)/Rvb2p in yeast [1]. Also, Hsp90 is required for optimal activity of the histone H3 lysine-4 methyltransferase SMYD3 in mammals [2, 3]. Since PcG and TrxG complexes are involved in the post-translational modifications of histones, and since such modifications have been shown to be required to maintain imprinted marks, this unified mechanism might also help to explain transgenerational epigenetic inheritance in humans.
Collapse
Affiliation(s)
- Douglas M Ruden
- Wayne State University, Institute for Environmental Health Sciences, 2727 2 Ave, Room 4000, Detroit, MI 48201, USA
| | | |
Collapse
|
8
|
Gangaraju VK, Yin H, Weiner MM, Wang J, Huang XA, Lin H. Drosophila Piwi functions in Hsp90-mediated suppression of phenotypic variation. Nat Genet 2010; 43:153-8. [PMID: 21186352 PMCID: PMC3443399 DOI: 10.1038/ng.743] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/22/2010] [Indexed: 01/01/2023]
Affiliation(s)
- Vamsi K Gangaraju
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | |
Collapse
|
9
|
Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. PLoS One 2010; 5:e14051. [PMID: 21124962 PMCID: PMC2988793 DOI: 10.1371/journal.pone.0014051] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 10/26/2010] [Indexed: 11/19/2022] Open
Abstract
Leukocyte-like cells called hemocytes have key functions in Drosophila innate immunity. Three hemocyte types occur: plasmatocytes, crystal cells, and lamellocytes. In the absence of qimmune challenge, plasmatocytes are the predominant hemocyte type detected, while crystal cells and lamellocytes are rare. However, upon infestation by parasitic wasps, or in melanotic mutant strains, large numbers of lamellocytes differentiate and encapsulate material recognized as "non-self". Current models speculate that lamellocytes, plasmatocytes and crystal cells are distinct lineages that arise from a common prohemocyte progenitor. We show here that over-expression of the CoREST-interacting transcription factor Chn in plasmatocytes induces lamellocyte differentiation, both in circulation and in lymph glands. Lamellocyte increases are accompanied by the extinction of plasmatocyte markers suggesting that plasmatocytes are transformed into lamellocytes. Consistent with this, timed induction of Chn over-expression induces rapid lamellocyte differentiation within 18 hours. We detect double-positive intermediates between plasmatocytes and lamellocytes, and show that isolated plasmatocytes can be triggered to differentiate into lamellocytes in vitro, either in response to Chn over-expression, or following activation of the JAK/STAT pathway. Finally, we have marked plasmatocytes and show by lineage tracing that these differentiate into lamellocytes in response to the Drosophila parasite model Leptopilina boulardi. Taken together, our data suggest that lamellocytes arise from plasmatocytes and that plasmatocytes may be inherently plastic, possessing the ability to differentiate further into lamellocytes upon appropriate challenge.
Collapse
|
10
|
Ma L, Johns LA, Allen MJ. A modifier screen in the Drosophila eye reveals that aPKC interacts with Glued during central synapse formation. BMC Genet 2009; 10:77. [PMID: 19948010 PMCID: PMC2789099 DOI: 10.1186/1471-2156-10-77] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 11/30/2009] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The Glued gene of Drosophila melanogaster encodes the homologue of the vertebrate p150Glued subunit of dynactin. The Glued1 mutation compromises the dynein-dynactin retrograde motor complex and causes disruptions to the adult eye and the CNS, including sensory neurons and the formation of the giant fiber system neural circuit. RESULTS We performed a 2-stage genetic screen to identify mutations that modified phenotypes caused by over-expression of a dominant-negative Glued protein. We screened over 34,000 flies and isolated 41 mutations that enhanced or suppressed an eye phenotype. Of these, 12 were assayed for interactions in the giant fiber system by which they altered a giant fiber morphological phenotype and/or altered synaptic function between the giant fiber and the tergotrochanteral muscle motorneuron. Six showed interactions including a new allele of atypical protein kinase C (aPKC). We show that this cell polarity regulator interacts with Glued during central synapse formation. We have mapped the five other interacting mutations to discrete chromosomal regions. CONCLUSION Our results show that an efficient way to screen for genes involved in central synapse formation is to use a two-step strategy in which a screen for altered eye morphology precedes the analysis of central synaptogenesis. This has highlighted a role for aPKC in the formation of an identified central synapse.
Collapse
Affiliation(s)
- Lisha Ma
- Cell and Developmental Biology Group, School of Biosciences, University of Kent, Canterbury, UK.
| | | | | |
Collapse
|
11
|
Abstract
The cohesin complex, discovered through its role in sister chromatid cohesion, also plays roles in gene expression and development in organisms from yeast to human. This review highlights what has been learned about the gene control and developmental functions of cohesin and the Nipped-B (NIPBL/Scc2) cohesin loading factor in Drosophila. The Drosophila studies have provided unique insights into the aetiology of Cornelia de Lange syndrome (CdLS), which is caused by mutations affecting sister chromatid cohesion proteins in humans. In vivo experiments with Drosophila show that cohesin and Nipped-B have dosage-sensitive effects on the functions of many evolutionarily conserved genes and developmental pathways. Genome-wide studies with Drosophila cultured cells show that Nipped-B and cohesin co-localize on chromosomes, and bind preferentially, but not exclusively, to many actively transcribed genes and their regulatory sequences, including many of the proposed in vivo target genes. In contrast, the cohesion factors are largely excluded from genes silenced by Polycomb group (PcG) proteins. Combined, the in vivo genetic data and the binding patterns of cohesin and Nipped-B in cultured cells are consistent with the hypothesis that they control the action of gene regulatory sequences, including transcriptional enhancers and insulators, and suggest that they might also help define active chromatin domains and influence transcriptional elongation.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 South Grand Boulevard, Saint Louis, MO 63104, USA.
| |
Collapse
|
12
|
Stofanko M, Kwon SY, Badenhorst P. A misexpression screen to identify regulators of Drosophila larval hemocyte development. Genetics 2008; 180:253-67. [PMID: 18757933 PMCID: PMC2535679 DOI: 10.1534/genetics.108.089094] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 07/14/2008] [Indexed: 12/19/2022] Open
Abstract
In Drosophila, defense against foreign pathogens is mediated by an effective innate immune system, the cellular arm of which is composed of circulating hemocytes that engulf bacteria and encapsulate larger foreign particles. Three hemocyte types occur: plasmatocytes, crystal cells, and lamellocytes. The most abundant larval hemocyte type is the plasmatocyte, which is responsible for phagocytosis and is present either in circulation or in adherent sessile domains under the larval cuticle. The mechanisms controlling differentiation of plasmatocytes and their migration toward these sessile compartments are unclear. To address these questions we have conducted a misexpression screen using the plasmatocyte-expressed GAL4 driver Peroxidasin-GAL4 (Pxn-GAL4) and existing enhancer-promoter (EP) and EP yellow (EY) transposon libraries to systematically misexpress approximately 20% of Drosophila genes in larval hemocytes. The Pxn-GAL4 strain also contains a UAS-GFP reporter enabling hemocyte phenotypes to be visualized in the semitransparent larvae. Among 3412 insertions screened we uncovered 101 candidate hemocyte regulators. Some of these are known to control hemocyte development, but the majority either have no characterized function or are proteins of known function not previously implicated in hemocyte development. We have further analyzed three candidate genes for changes in hemocyte morphology, cell-cell adhesion properties, phagocytosis activity, and melanotic tumor formation.
Collapse
Affiliation(s)
- Martin Stofanko
- Institute of Biomedical Research, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | | | | |
Collapse
|
13
|
Mohan S, Baylink DJ, Srivastava AK. A chemical mutagenesis screen to identify modifier genes that interact with growth hormone and TGF-beta signaling pathways. Bone 2008; 42:388-95. [PMID: 18063435 DOI: 10.1016/j.bone.2007.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 10/01/2007] [Accepted: 10/12/2007] [Indexed: 11/23/2022]
Abstract
We describe a phenotype-driven mutagenesis screen in which mice carrying a targeted mutation are bred with ENU-treated males in order to provide a sensitized system for detecting dominant modifier mutations. The presence of initial mutation renders the screening system more responsive to subtle changes in modifier genes that would not be penetrant in an otherwise wild type background. We utilized two mutant mouse models: 1) mice carrying a mutation in growth hormone releasing hormone receptor (Ghrhr) (denoted 'lit' allele, Ghrhr(lit)), which results in GH deficiency; and 2) mice lacking Smad2 gene, a signal transducer for TGF-beta, an important bone growth factor. The Smad2(-/-) mice are lethal and Ghrhr(lit/lit) mice are dwarf, but both Smad2(+/-) and Ghrhr(lit/)(+) mice exhibit normal growth. We injected 6-7 weeks old C57BL/6J male mice with ENU (100 mg/kg dose) and bred them with Ghrhr(lit/)(+) and Smad2(+/-) mice. The F1 mice with Ghrhr(lit/)(+) or Smad2(+/-) genotype were screened for growth and skeletal phenotypes. An outlier was identified as >3 SD units different from wild type control (n=20-30). We screened about 100 F1 mice with Ghrhr(lit/)(+) and Smad2(+/-) genotypes and identified nine outliers. A backcross established heritability of three mutant lines in multiple generations. Among the phenotypic deviants, we have identified a mutant mouse with 30-40% reduced bone size. The magnitude of the bone size phenotype was amplified by the presence of one copy of the disrupted Ghrhr gene as determined by the 2-way ANOVA (p<0.02 for interaction). Thus, a new mouse model has been established to identify a gene that interacts with GH signaling to regulate bone size. In addition, the sensitized screen also demonstrated higher recovery of skeletal phenotypes as compared to that obtained in the classical ENU screen in wild type mice. The discovery of mutants in a selected pathway will provide a valuable tool to not only to discover novel genes involved in a particular process but will also prove useful for the elucidation of the biology of that process.
Collapse
Affiliation(s)
- Subburaman Mohan
- Musculoskeletal Disease Center, Loma Linda VA Health Care Systems, Loma Linda, CA 92357, USA
| | | | | |
Collapse
|
14
|
Krause C, Wolf C, Hemphälä J, Samakovlis C, Schuh R. Distinct functions of the leucine-rich repeat transmembrane proteins capricious and tartan in the Drosophila tracheal morphogenesis. Dev Biol 2006; 296:253-64. [PMID: 16764850 DOI: 10.1016/j.ydbio.2006.04.462] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
A key step in organogenesis of the Drosophila tracheal system is the integration of isolated tracheal metameres into a connected tubular network. The interaction of tracheal cells with surrounding mesodermal cells is crucial in this process. In particular, single mesodermal cells called bridge-cells are essential for the guided outgrowth of dorsal trunk branches to direct formation of the main airway, the dorsal trunk. Here, we present evidence that the two leucine-rich repeat transmembrane proteins Capricious and Tartan contribute differently to the formation of branch interconnections during tracheal development. Capricious is specifically localized on the surface of bridge-cells and facilitates the outgrowing dorsal trunk cells of adjacent metameres toward each other. We show that Capricious requires both extracellular and intracellular domains during tracheal branch outgrowth. In contrast, Tartan is expressed broadly in mesodermal cells and exerts its role in tracheal branch outgrowth through its extracellular domain. We propose that Capricious contributes to the instructive role of bridge-cells whereas Tartan provides permissive substrate for the migrating tracheal cells during the network formation.
Collapse
Affiliation(s)
- Cindy Krause
- Abteilung Molekulare Entwicklungsbiologie, Max-Planck-Institut für biophysikalische Chemie, Am Fassberg, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
15
|
Ruden DM, Xiao L, Garfinkel MD, Lu X. Hsp90 and environmental impacts on epigenetic states: a model for the trans-generational effects of diethylstibesterol on uterine development and cancer. Hum Mol Genet 2005; 14 Spec No 1:R149-55. [PMID: 15809267 DOI: 10.1093/hmg/ddi103] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hsp90 is a chaperone for over 100 'client proteins' in the cell, most of which are involved in signaling pathways. For example, Hsp90 maintains several nuclear hormone receptors, such as the estrogen receptor (ER), as agonist-receptive monomers in the cytoplasm. In the presence of agonist, Hsp90 dissociates and the receptors dimerize, enter the nucleus and ultimately activate transcription of the target genes. Increasing evidence suggests that Hsp90 also has a role in modifying the chromatin conformation of many genes. For example, Hsp90 has recently been shown to increase the activity of the histone H3 lysine-4 methyltransferase SMYD3, which activates the chromatin of target genes. Further evidence for chromatin-remodeling functions is that Hsp90 acts as a capacitor for morphological evolution by masking epigenetic variation. Release of the capacitor function of Hsp90, such as by environmental stress or by drugs that inhibit the ATP-binding activity of Hsp90, exposes previously hidden morphological phenotypes in the next generation and for several generations thereafter. The chromatin-modifying phenotypes of Hsp90 have striking similarities to the trans-generational effects of the ER agonist diethylstilbesterol (DES). Prenatal and perinatal exposure to DES increases the predisposition to uterine developmental abnormalities and cancer in the daughters and granddaughters of exposed pregnant mice. In this review, we propose that trans-generational epigenetic phenomena involving Hsp90 and DES are related and that chromatin-mediated WNT signaling modifications are required. This model suggests that inhibitors of Hsp90, WNT signaling and chromatin-remodeling enzymes might function as anticancer agents by interfering with epigenetic reprogramming and canalization in cancer stem cells.
Collapse
Affiliation(s)
- Douglas M Ruden
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 35294-0022, USA.
| | | | | | | |
Collapse
|
16
|
Demakov S, Gortchakov A, Schwartz Y, Semeshin V, Campuzano S, Modolell J, Zhimulev I. Molecular and genetic organization of Drosophila melanogaster polytene chromosomes: evidence for two types of interband regions. Genetica 2005; 122:311-24. [PMID: 15609554 DOI: 10.1007/s10709-004-2839-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 3A and 60E regions of Drosophila melanogaster polytene chromosomes containing inserted copies of the P[1ArB] transposon have been subjected to an electron microscopic (EM) analysis. We show that both inserts led to formation of new bands within the interband regions 3A4/A6 and 60E8-9/E10. This allowed us to clone DNA of these interbands. Their sequences, as well as those of DNA from other four interbands described earlier, have been analyzed. We have found that, with the exception of 60E8-9/E10 interband, all other five regions under study corresponded to 5' or 3' ends of genes. We have further obtained the evidence for 60E8-9/E10 interband to harbor the 'housekeeping' RpL19 gene, which is transcribed in many tissues, including salivary glands. Based upon the genetic heterogeneity of the interbands observed a revised model of polytene chromosome organization is discussed.
Collapse
Affiliation(s)
- Sergei Demakov
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Our increased knowledge of epigenetic reprogramming supports the idea that epigenetic marks are not always completely cleared between generations. Incomplete erasure at genes associated with a measurable phenotype can result in unusual patterns of inheritance from one generation to the next. It is also becoming clear that the establishment of epigenetic marks during development can be influenced by environmental factors. In combination, these two processes could provide a mechanism for a rapid form of adaptive evolution.
Collapse
Affiliation(s)
- Suyinn Chong
- School of Molecular and Microbial Biosciences, Biochemistry Building-G08, University of Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
18
|
Matyash A, Chung HR, Jäckle H. Genome-wide mapping of in vivo targets of the Drosophila transcription factor Kruppel. J Biol Chem 2004; 279:30689-96. [PMID: 15131112 DOI: 10.1074/jbc.m403345200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Krüppel (Kr), a member of the gap class of Drosophila segmentation genes, encodes a DNA binding zinc finger-type transcription factor. In addition to its segmentation function at the blastoderm stage, Krüppel also plays a critical role in organ formation during later stages of embryogenesis. To systematically identify in vivo target genes of Krüppel, we isolated DNA fragments from the Krüppel-associated portion of chromatin and used them to find and map Krüppel-dependent cis-acting regulatory sites in the Drosophila genome. We show that Krüppel binding sites are not enriched in Krüppel-associated chromatin and that the clustering of Krüppel binding sites, as found in the cis-acting elements of Krüppel-dependent segmentation genes used for in silico searches of Krüppel target genes, is not a prerequisite for the in vivo binding of Krüppel to its regulatory elements. Results obtained with the newly identified target gene ken and barbie (ken) indicate that Krüppel represses transcription and thereby restricts the spatial expression pattern of ken during blastoderm and gastrulation.
Collapse
Affiliation(s)
- Alexey Matyash
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, D-37070 Göttingen, Germany
| | | | | |
Collapse
|
19
|
Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet 2003; 33:70-4. [PMID: 12483213 DOI: 10.1038/ng1067] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2002] [Accepted: 11/18/2002] [Indexed: 11/08/2022]
Abstract
Morphological alterations have been shown to occur in Drosophila melanogaster when function of Hsp90 (heat shock 90-kDa protein 1alpha, encoded by Hsp83) is compromised during development. Genetic selection maintains the altered phenotypes in subsequent generations. Recent experiments have shown, however, that phenotypic variation still occurs in nearly isogenic recombinant inbred strains of Arabidopsis thaliana. Using a sensitized isogenic D. melanogaster strain, iso-Kr(If-1), we confirm this finding and present evidence supporting an epigenetic mechanism for Hsp90's capacitor function, whereby reduced activity of Hsp90 induces a heritably altered chromatin state. The altered chromatin state is evidenced by ectopic expression of the morphogen wingless in eye imaginal discs and a corresponding abnormal eye phenotype, both of which are epigenetically heritable in subsequent generations, even when function of Hsp90 is restored. Mutations in nine different genes of the trithorax group that encode chromatin-remodeling proteins also induce the abnormal phenotype. These findings suggest that Hsp90 acts as a capacitor for morphological evolution through epigenetic and genetic mechanisms.
Collapse
Affiliation(s)
- Vincent Sollars
- Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Expression and functional analyses of Emc have demonstrated that it is a prototype for a protein required for multiple processes in development. Initially characterized as a negative regulator of sensory organ development, it was later found to regulate many other developmental processes and cell proliferation. Its ability to block the function of bHLH proteins by forming heterodimers, which are ineffective in DNA binding, accounts for the role of Emc in preventing the acquisition of several cell fates which are under the control of bHLH proteins. However, while maintaining this repressive molecular mechanism, emc also appears to act as a positive regulator of differentiation.
Collapse
Affiliation(s)
- S Campuzano
- Centro de Biología Molecular Severo Ochoa, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
21
|
Abrell S, Jäckle H. Axon guidance of Drosophila SNb motoneurons depends on the cooperative action of muscular Krüppel and neuronal capricious activities. Mech Dev 2001; 109:3-12. [PMID: 11677048 DOI: 10.1016/s0925-4773(01)00511-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The body wall musculature of the Drosophila larva consists of a stereotyped pattern of 30 muscles per abdominal hemisegment which are innervated by about 40 distinct motoneurons. Proper innervation by motoneurons is established during late embryogenesis. Guidance of motor axons to specific muscles requires appropriate pathfinding decisions as they follow their pathways within the central nervous system and on the surface of muscles. Once the appropriate targets are reached, stable synaptic contacts between motoneurons and muscles are formed. Recent studies revealed a number of molecular components required for proper motor axon pathfinding and demonstrated specific roles in fasciculation/defasciculation events, a key process in the formation of discrete motoneuron pathways. The gene capricious (caps), which encodes a cell-surface protein, functions as a recognition molecule in motor axon guidance, regulating the formation of the selective connections between the SNb-derived motoneuron RP5 and muscle 12. Here we show that Krüppel (Kr), best known as a segmentation gene of the gap class, functionally interacts with caps in establishing the proper axonal pathway of SNb including the RP5 axons. The results suggest that the transcription factor Krüppel participates in proper control of cell-surface molecules which are necessary for the SNb neurons to navigate in a caps-dependent manner within the array of the ventral longitudinal target muscles.
Collapse
Affiliation(s)
- S Abrell
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Molekulare Entwicklungsbiologie, D-37070, Göttingen, Germany.
| | | |
Collapse
|
22
|
Mozer BA. Dominant Drop mutants are gain-of-function alleles of the muscle segment homeobox gene (msh) whose overexpression leads to the arrest of eye development. Dev Biol 2001; 233:380-93. [PMID: 11336502 DOI: 10.1006/dbio.2001.0229] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dominant Drop (Dr) mutations are nearly eyeless and have additional recessive phenotypes including lethality and patterning defects in eye and sensory bristles due to cis-regulatory lesions in the cell cycle regulator string (stg). Genetic analysis demonstrates that the dominant small eye phenotype is the result of separate gain-of-function mutations in the closely linked muscle segment homeobox (msh) gene, encoding a homeodomain transcription factor required for patterning of muscle and nervous system. Reversion of the Dr(Mio) allele was coincident with the generation of lethal loss-of-function mutations in msh in cis, suggesting that the dominant eye phenotype is the result of ectopic expression. Molecular genetic analysis revealed that two dominant Dr alleles contain lesions upstream of the msh transcription start site. In the Dr(Mio) mutant, a 3S18 retrotransposon insertion is the target of second-site mutations (P-element insertions or deletions) which suppress the dominant eye phenotype following reversion. The pattern of 3S18 expression and the absence of msh in eye imaginal discs suggest that transcriptional activation of the msh promoter accounts for ectopic expression. Dr dominant mutations arrest eye development by blocking the progression of the morphogenetic furrow leading to photoreceptor cell loss via apoptosis. Gal4-mediated ubiquitous expression of msh in third-instar larvae was sufficient to arrest the morphogenetic furrow in the eye imaginal disc and resulted in lethality prior to eclosion. Dominant mutations in the human msx2 gene, one of the vertebrate homologs of msh, are associated with craniosynostosis, a disease affecting cranial development. The Dr mutations are the first example of gain-of-function mutations in the msh/msx gene family identified in a genetically tractible model organism and may serve as a useful tool to identify additional genes that regulate this class of homeodomain proteins.
Collapse
Affiliation(s)
- B A Mozer
- Laboratory of Molecular Biology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
23
|
Chanut F, Luk A, Heberlein U. A screen for dominant modifiers of ro(Dom), a mutation that disrupts morphogenetic furrow progression in Drosophila, identifies groucho and hairless as regulators of atonal expression. Genetics 2000; 156:1203-17. [PMID: 11063695 PMCID: PMC1461342 DOI: 10.1093/genetics/156.3.1203] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ro(Dom) is a dominant allele of rough (ro) that results in reduced eye size due to premature arrest in morphogenetic furrow (MF) progression. We found that the ro(Dom) stop-furrow phenotype was sensitive to the dosage of genes known to affect retinal differentiation, in particular members of the hedgehog (hh) signaling cascade. We demonstrate that ro(Dom) interferes with Hh's ability to induce the retina-specific proneural gene atonal (ato) in the MF and that normal eye size can be restored by providing excess Ato protein. We used ro(Dom) as a sensitive genetic background in which to identify mutations that affect hh signal transduction or regulation of ato expression. In addition to mutations in several unknown loci, we recovered multiple alleles of groucho (gro) and Hairless (H). Analysis of their phenotypes in somatic clones suggests that both normally act to restrict neuronal cell fate in the retina, although they control different aspects of ato's complex expression pattern.
Collapse
Affiliation(s)
- F Chanut
- Department of Anatomy, University of California, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
24
|
Tanenbaum SB, Gorski SM, Rusconi JC, Cagan RL. A screen for dominant modifiers of the irreC-rst cell death phenotype in the developing Drosophila retina. Genetics 2000; 156:205-17. [PMID: 10978286 PMCID: PMC1461222 DOI: 10.1093/genetics/156.1.205] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death (PCD) in the Drosophila retina requires activity of the irregular chiasmC-roughest (irreC-rst) gene. Loss-of-function mutations in irreC-rst block PCD during retinal development and lead to a rough eye phenotype in the adult. To identify genes that interact with irreC-rst and may be involved in PCD, we conducted a genetic screen for dominant enhancers and suppressors of the adult rough eye phenotype. We screened 150,000 mutagenized flies and recovered 170 dominant modifiers that localized primarily to the second and third chromosomes. At least two allelic groups correspond to previously identified death regulators, Delta and dRas1. Examination of retinae from homozygous viable mutants indicated two major phenotypic classes. One class exhibited pleiotropic defects while the other class exhibited defects specific to the cell population that normally undergoes PCD.
Collapse
Affiliation(s)
- S B Tanenbaum
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
25
|
Wan S, Cato AM, Skaer H. Multiple signalling pathways establish cell fate and cell number in Drosophila malpighian tubules. Dev Biol 2000; 217:153-65. [PMID: 10625542 DOI: 10.1006/dbio.1999.9499] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A unique cell, the tip mother cell, arises in the primordium of each Drosophila Malpighian tubule by lateral inhibition within a cluster of achaete-expressing cells. This cell maintains achaete expression and divides to produce daughters of equivalent potential, of which only one, the tip cell, adopts the primary fate and continues to express achaete, while in the other, the sibling cell, achaete expression is lost (M. Hoch et al., 1994, Development 120, 3439-3450). In this paper we chart the mechanisms by which achaete expression is differentially maintained in the tip cell lineage to stabilise cell fate. First, wingless is required to maintain the expression of achaete in the tubule primordium so that wingless mutants lack tip cells. Conversely, increasing wingless expression results in the persistence of achaete expression in the cell cluster. Second, Notch signalling is restricted by the asymmetric segregation of Numb, as the tip mother cell divides, so that achaete expression is maintained only in the tip cell. In embryos mutant for Notch tip cells segregate at the expense of sibling cells, whereas in numb neither daughter cell adopts the tip cell fate resulting in tubules with two sibling cells. Conversely, when numb is overexpressed two tip cells segregate and tubules have no sibling cells. Analysis of cell proliferation in the developing tubules of embryos lacking Wingless after the critical period for tip cell allocation reveals an additional requirement for wingless for the promotion of cell division. In contrast, alteration in the expression of numb has no effect on the final tubule cell number.
Collapse
Affiliation(s)
- S Wan
- Developmental Genetics Programme, Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom
| | | | | |
Collapse
|
26
|
Abstract
Determining how genes function in developmentally complex multicellular organisms can be a formidable task. Obstacles arise from the fact that inactivation of most genes results in subtle or undetectable phenotypic alterations, and when phenotypes are observed they are often difficult to interpret because most genes play multiple roles in development. New techniques that have been applied to studying genes in the developing Drosophila eye promise to circumvent these obstacles. The advent of these techniques combined with the existing wealth of information about cellular pattern formation in the Drosophila eye make the eye a powerful model system for deciphering the function of genes in biological processes.
Collapse
Affiliation(s)
- B J Thomas
- Laboratory of Biochemistry, National Cancer Institute, Building 37, Room 4C17, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|