1
|
Xu X, Song H, Wu H, Zhang L, Lin F, Chen C, Zhang X, Liu Y, Li C, Fu Q. Effects of Environmentally Friendly Aquaculture Chamber Coatings on Enzyme Activities, Histology, and Transcriptome in the Liver of Larimichthys crocea. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:78. [PMID: 40293578 DOI: 10.1007/s10126-025-10453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025]
Abstract
Aquaculture vessels have emerged as a sustainable alternative to traditional offshore aquaculture. However, the biological impacts of protective coatings used for vessel interiors are still poorly understood. This study assessed acute stress responses of Larimichthys crocea to epoxy-based aquaculture coatings using actual culture (1-fold) and high-exposure (80-fold) concentrations. Liver analyses included antioxidant enzymes, histopathology, and transcriptomics over 12-96 h. Firstly, the effect of the 80-fold concentration group on the activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) was more significant in the liver of L. crocea compared to the 1-fold concentration group. Similarly, histological observations revealed that the 80-fold concentration group produced more significant pathological changes in the liver than the 1-fold concentration group, including hepatocyte damage and vacuolization. Subsequently, through high-throughput sequencing, a total of 714.02 million clean reads were obtained, with 693.71 million of these reads successfully mapped onto the reference genome of L. crocea, identifying 13,709 differentially expressed genes (DEGs). KEGG pathway enrichment analysis showed that many DEGs following coating-treated were involved in protein processing in endoplasmic reticulum, oxidative phosphorylation, cytokine-cytokine receptor interaction, FoxO signaling pathway, and toll-like receptor signaling pathway. Finally, fifteen DEGs were selected for quantitative real-time PCR (qRT-PCR) analysis, and the results showed a significant correlation with RNA-seq results, verifying the reliability and accuracy of the high-throughput sequencing data. This study preliminarily revealed the stress responses induced by aquaculture vessel coatings in L. crocea and provided fundamental data into the scientific use of coatings on aquaculture vessels.
Collapse
Affiliation(s)
- Xuan Xu
- Qingdao Conson Oceantec Valley Development Co., Ltd, Qingdao, 266237, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huayu Song
- Qingdao Conson Oceantec Valley Development Co., Ltd, Qingdao, 266237, China.
| | - Huicai Wu
- Qingdao Conson Oceantec Valley Development Co., Ltd, Qingdao, 266237, China
| | - Lu Zhang
- Qingdao Conson Oceantec Valley Development Co., Ltd, Qingdao, 266237, China
| | - Fengjun Lin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chonghui Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoxu Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiying Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qiang Fu
- Qingdao Conson Oceantec Valley Development Co., Ltd, Qingdao, 266237, China.
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Wang Y, Li P, Wang H, Wang X. Recognition Mechanism of RNA by TLR13: Structural Insights and Implications for Immune Activation. J Mol Biol 2025; 437:168988. [PMID: 39938739 DOI: 10.1016/j.jmb.2025.168988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/20/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
RNA serves as a distinctive pathogen-associated molecular pattern (PAMP) that plays a critical role in innate immunity. However, the specific mechanisms of RNA recognition remain largely unexplored, especially given RNA's vulnerability to degradation and the absence of sequence specificity in most RNA recognition receptors. Notably, Toll-like receptor 13 (TLR13) is capable of detecting a conserved RNA sequence, RNA15 (2054-2068, ACG GAA AGA CCC CGU), within bacterial 23S rRNA, thereby triggering an immune response. To unravel the exact mechanism by which TLR13 recognizes RNA15, we combined experimental approaches with molecular dynamics simulations. Our results suggest that RNA15 adopts a stable hairpin structure in solution, protected from nuclease degradation by intramolecular interactions. TLR13 specifically recognizes this hairpin structure, leading to the dimerization of TLR13. This interaction further induces RNA15 to transition into a stem-loop-like conformation, thereby activating TLR13 downstream signaling. Additionally, our study indicates that TLR13 can form stable dimers in the membrane independently of ligand binding. Although the hairpin structure is the predominant form of RNA15 in solution, the temporary stem-loop-like structure can spontaneously bind to dimeric TLR13, initiating the immune response. These insights deepen our understanding of the complex recognition process of RNA15 by TLR13 and explore the complicated mechanisms governing innate immune system function.
Collapse
Affiliation(s)
- Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Penghui Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences & Oceanography, Shenzhen University, Shenzhen 518055, China; Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Soma GI, Oda M, Tjhin VT, Kohchi C, Inagawa H. Oral and transdermal administration of lipopolysaccharide safely enhances self-healing ability through the macrophage network. Front Immunol 2025; 16:1563484. [PMID: 40230835 PMCID: PMC11994614 DOI: 10.3389/fimmu.2025.1563484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Lipopolysaccharide (LPS), also known as an endotoxin, is derived from Gram-negative bacteria. The intravenous administration of LPS induces an inflammatory response and causes systemic inflammation, such as cytokine storm. Gram-negative bacteria that produce LPS are found in the environment and digestive tract. The mucous membrane, the primary barrier between the interior of the body and the external environment, is constantly exposed to LPS. Moreover, no toxicity is observed when administering LPS through the mucous membranes of the mouth or skin. The presence of LPS in the mucous membranes is necessary not only for maintaining health but also for inducing preventive and therapeutic effects against multiple diseases when administered orally or topically. LPS is an environmental substance that is useful when administered to mucous membranes. The general information emphasizes the role of LPS as an inflammatory substance that occurs when administered intravenously. Therefore, the valuable role of LPS is unknown. Thus, mucosal administration of LPS has received little attention, and the mechanism underlying the expression of its beneficial effects has not been fully elucidated. We proposed a comprehensive concept, the "macrophage network," which proposes a regulatory system in which the mucosa receives environmental information, membrane-bound cytokines are expressed in phagocytes (macrophages), and these macrophages migrate distally to exert effects, such as anti-inflammatory and tissue repair effects, on distal tissues through cell-to-cell communication (juxtacrine signaling) with tissue macrophages. This macrophage network is effective not only for preventing and treating diseases but also for increasing the efficacy of pharmaceuticals. This review aims to investigate the preventive and therapeutic effects of oral and transdermal administration of LPS on various diseases and present an introduction to the concept of the macrophage network and the latest findings.
Collapse
Affiliation(s)
- Gen-Ichiro Soma
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Masataka Oda
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
| | - Vindy Tjendana Tjhin
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
| | - Chie Kohchi
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
| | - Hiroyuki Inagawa
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
4
|
Li W, Wang R, Wang J, Chai D, Xie X, Young KH, Cao Y, Li Y, Yu X. Lasalocid A selectively induces the degradation of MYD88 in lymphomas harboring the MYD88 L265P mutation. Blood 2025; 145:1047-1060. [PMID: 39576960 DOI: 10.1182/blood.2024026781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
ABSTRACT Myeloid differentiation primary response protein 88 (MYD88) is a key adaptor molecule in the signaling pathways of toll-like receptor and interleukin-1 receptor. A somatic mutation resulting in a leucine-to-proline change at position 265 of the MYD88 protein (MYD88 L265P) is one of the most prevalent oncogenic mutations found in patients with hematological malignancies. In this study, we used high-throughput screening to identify lasalocid A as a potent small molecule that selectively inhibited the viability of lymphoma cells expressing MYD88 L265P and the associated activation of NF-κB. Further investigations using CRISPR-CRISPR-associated protein 9 genetic screening, proteomics, and biochemical assays revealed that lasalocid A directly binds to the MYD88 L265P protein, enhancing its interaction with the ubiquitin ligase RNF5. This interaction promotes MYD88 degradation through the ubiquitin-dependent proteasomal pathway, specifically in lymphomas with the MYD88 L265P mutation. Lasalocid A exhibited strong antitumor efficacy in xenograft mouse models, induced disease remission in ibrutinib-resistant lymphomas, and showed synergistic activity with the B-cell lymphoma 2 inhibitor venetoclax. This study highlights the potential of inducing MYD88 L265P degradation using small molecules, offering promising strategies for treating lymphomas that harbor the MYD88 L265P mutation.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Junhao Wang
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Dafei Chai
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Xiaohui Xie
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center, Durham, NC
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis of the National Health Commission, Cancer Research Institute and School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| | - Xinfang Yu
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
5
|
Jeon D, Hill E, McNeel DG. Toll-like receptor agonists as cancer vaccine adjuvants. Hum Vaccin Immunother 2024; 20:2297453. [PMID: 38155525 PMCID: PMC10760790 DOI: 10.1080/21645515.2023.2297453] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Cancer immunotherapy has emerged as a promising strategy to treat cancer patients. Among the wide range of immunological approaches, cancer vaccines have been investigated to activate and expand tumor-reactive T cells. However, most cancer vaccines have not shown significant clinical benefit as monotherapies. This is likely due to the antigen targets of vaccines, "self" proteins to which there is tolerance, as well as to the immunosuppressive tumor microenvironment. To help circumvent immune tolerance and generate effective immune responses, adjuvants for cancer vaccines are necessary. One representative adjuvant family is Toll-Like receptor (TLR) agonists, synthetic molecules that stimulate TLRs. TLRs are the largest family of pattern recognition receptors (PRRs) that serve as the sensors of pathogens or cellular damage. They recognize conserved foreign molecules from pathogens or internal molecules from cellular damage and propel innate immune responses. When used with vaccines, activation of TLRs signals an innate damage response that can facilitate the development of a strong adaptive immune response against the target antigen. The ability of TLR agonists to modulate innate immune responses has positioned them to serve as adjuvants for vaccines targeting infectious diseases and cancers. This review provides a summary of various TLRs, including their expression patterns, their functions in the immune system, as well as their ligands and synthetic molecules developed as TLR agonists. In addition, it presents a comprehensive overview of recent strategies employing different TLR agonists as adjuvants in cancer vaccine development, both in pre-clinical models and ongoing clinical trials.
Collapse
Affiliation(s)
- Donghwan Jeon
- Department of Oncology, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Ethan Hill
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - Douglas G. McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
6
|
Malgwi SA, Adeleke VT, Adeleke MA, Okpeku M. Multi-epitope Based Peptide Vaccine Candidate Against Babesia Infection From Rhoptry-Associated Protein 1 (RAP-1) Antigen Using Immuno-Informatics: An In Silico Approach. Bioinform Biol Insights 2024; 18:11779322241287114. [PMID: 39691583 PMCID: PMC11650595 DOI: 10.1177/11779322241287114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/05/2024] [Indexed: 12/19/2024] Open
Abstract
Objective Babesiosis is a significant haemoparasitic infection caused by apicomplexan parasites of the genus Babesia. This infection has continuously threatened cattle farmers owing to its devastating effects on productivity and severe economic implications. Failure to curb the increase of the infection has been attributed to largely ineffective vaccines. This study was designed to develop a potential vaccine candidate. Method Rhoptry-associated protein-1 (RAP-1) was used to identify and design a potential multi-epitope vaccine candidate due to its immunogenic properties through an immunoinformatics approach. Results and conclusions A multi-epitope vaccine comprising 11 CD8+, 17 CD4+, and 3 B-cell epitopes was constructed using the AAY, GPGPG, and KK linkers. Beta-defensin-3 was added as an adjuvant to potentiate the immune response using the EAAK linker. The designed vaccine was computationally predicted to be antigenic (antigenicity scores: 0.6), soluble (solubility index: 0.730), and non-allergenic. The vaccine construct comprises 595 amino acids with a molecular weight of 64 152 kDa, an instability and aliphatic index of 13.89 and 65.82, which confers stability with a Grand average of hydropathicity (GRAVY) value of 0.122, indicating the hydrophobicity of the construct. Europe has the highest combined class population coverage, with a percentage of 96.07%, while Central America has the lowest population coverage, with a value of 22.94%. The DNA sequence of the vaccine construct was optimized and successfully cloned into a pET-28a (+) plasmid vector. Analysis of binding interactions indicated the stability of the complex when docked with Toll-like receptor-2 (TLR-2). The subunit vaccine construct was predicted to induce and boost sufficient host cellular and humoral responses in silico. However, further experimental research and analysis is required to validate the findings. Limitation This study is purely computational, and further experimental validation of these findings through in vivo and in vitro conditions is required.
Collapse
Affiliation(s)
- Samson Anjikwi Malgwi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria T Adeleke
- Discipline of Chemical Engineering, Mangosuthu University of Technology, Durban, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Aravind L, Nicastro GG, Iyer LM, Burroughs AM. The Prokaryotic Roots of Eukaryotic Immune Systems. Annu Rev Genet 2024; 58:365-389. [PMID: 39265037 DOI: 10.1146/annurev-genet-111523-102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Over the past two decades, studies have revealed profound evolutionary connections between prokaryotic and eukaryotic immune systems, challenging the notion of their unrelatedness. Immune systems across the tree of life share an operational framework, shaping their biochemical logic and evolutionary trajectories. The diversification of immune genes in the prokaryotic superkingdoms, followed by lateral transfer to eukaryotes, was central to the emergence of innate immunity in the latter. These include protein domains related to nucleotide second messenger-dependent systems, NAD+/nucleotide degradation, and P-loop NTPase domains of the STAND and GTPase clades playing pivotal roles in eukaryotic immunity and inflammation. Moreover, several domains orchestrating programmed cell death, ultimately of prokaryotic provenance, suggest an intimate link between immunity and the emergence of multicellularity in eukaryotes such as animals. While eukaryotes directly adopted some proteins from bacterial immune systems, they repurposed others for new immune functions from bacterial interorganismal conflict systems. These emerging immune components hold substantial biotechnological potential.
Collapse
Affiliation(s)
- L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Gianlucca G Nicastro
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
8
|
Coste SC, Hilda Orășan O, Cozma A, Negrean V, Alexescu TG, Perne MG, Ciulei G, Hangan AC, Lucaciu RL, Iancu M, Procopciuc LM. Allelic, Genotypic, and Haplotypic Analysis of Cytokine IL17A, IL17F, and Toll-like Receptor TLR4 Gene Polymorphisms in Metabolic-Dysfunction-Associated Steatotic Liver Disease: Insights from an Exploratory Study. Life (Basel) 2024; 14:1327. [PMID: 39459627 PMCID: PMC11509161 DOI: 10.3390/life14101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Interleukin 17 (IL17) and toll-like receptor 4 (TLR4) elevate the risk of metabolic and liver diseases. (2) Methods: This study's objective was to explore the association of IL17 and TLR4 gene polymorphisms with MASLD susceptibility and test their effect on serum IL17 and TLR4 levels. A total of 43 patients with MASLD (MASH/MAFL) and 38 healthy individuals were genotyped for IL17F-A7488G, IL17A-G197A, TLR4-Asp299Gly, and TLR4-Thr399Ile polymorphisms using PCR-RFLP. ELISA methods determined IL17F, IL17A, and TLR4 serum levels. (3) Conclusions: Patients carrying the variant genotypes (A/G + G/G) of IL17-A7448G (OR = 5.25), (G/A + A/A) of IL17-G197A (OR = 10.57), (Asp/Gly + Gly/Gly) of TLR4-Asp299Gly (OR = 3.52), or (Thr/Ile + Ile/Ile) of TLR4-Thr399Ile (OR = 9.87) had significantly increased odds of MASH. Genotype (G/A + A/A) of IL17-G197A was significantly associated with the odds of MAFL (p = 0.0166). Allele A of the IL17-G197A polymorphism was significantly related to increased odds of MAFL (OR = 4.13, p = 0.0133). In contrast, allele A of IL17-G197A (OR = 5.41, p = 0.008), allele Gly of TLR4-Asp299Gly (OR = 3.19, p = 0.046), and allele Ile of TLR4-Thr399Ile (OR = 6.94, p = 0.008) polymorphisms were significantly related to an increased risk of MASH. Allele A of IL17A-G197A, allele Gly of TLR4-Asp299Gly, and allele Ile of TLR4-Thr399Ile gene polymorphisms were significantly associated with the increased odds of MASLD. In patients with MASLD, we found significant influence from the IL17A-G197A gene polymorphism on IL17F levels (p = 0.0343).
Collapse
Affiliation(s)
- Sorina-Cezara Coste
- 4th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.-C.C.); (O.H.O.); (A.C.); (V.N.); (T.G.A.); (M.G.P.); (G.C.)
| | - Olga Hilda Orășan
- 4th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.-C.C.); (O.H.O.); (A.C.); (V.N.); (T.G.A.); (M.G.P.); (G.C.)
| | - Angela Cozma
- 4th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.-C.C.); (O.H.O.); (A.C.); (V.N.); (T.G.A.); (M.G.P.); (G.C.)
| | - Vasile Negrean
- 4th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.-C.C.); (O.H.O.); (A.C.); (V.N.); (T.G.A.); (M.G.P.); (G.C.)
| | - Teodora Gabriela Alexescu
- 4th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.-C.C.); (O.H.O.); (A.C.); (V.N.); (T.G.A.); (M.G.P.); (G.C.)
| | - Mirela Georgiana Perne
- 4th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.-C.C.); (O.H.O.); (A.C.); (V.N.); (T.G.A.); (M.G.P.); (G.C.)
| | - George Ciulei
- 4th Department of Internal Medicine, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (S.-C.C.); (O.H.O.); (A.C.); (V.N.); (T.G.A.); (M.G.P.); (G.C.)
| | - Adriana Corina Hangan
- Department of Inorganic Chemistry, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Roxana Liana Lucaciu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Mihaela Iancu
- 11th Department of Medical Education, Medical Informatics and Biostatistics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Lucia-Maria Procopciuc
- Department of Molecular Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
9
|
Avila A, Paculis L, Tascon RG, Ramos B, Jia D. A large-scale in vivo screen to investigate the roles of human genes in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae188. [PMID: 39119785 PMCID: PMC11457089 DOI: 10.1093/g3journal/jkae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Understanding the signaling pathways in which genes participate is essential for discovering the etiology of diseases in humans. The model organism, Drosophila melanogaster, has been crucial in understanding the signaling pathways in humans, given the evolutionary conservation of a significant number of genes between the two species. Genetic screens using Drosophila are a useful way of testing large number of genes to study their function and roles within signaling pathways. We conducted a large-scale genetic screen to identify which human genes cause an alteration in the morphology of the Drosophila eye. The GMR-Gal4 was employed to activate a single UAS-human gene in the eye tissue. In total, we screened 802 UAS-human gene stocks, corresponding to 787 human protein-coding genes, for the ability to influence eye development. We found that overexpression of 64 human genes were capable of disrupting eye development, as determined by phenotypic changes in eye texture, size, shape, bristle morphology, and ommatidia organization. Subsequent analysis revealed that the fly genome encodes proteins that are homologous to a majority of the 64 human genes, raising the possibility that overexpression of these transgenes altered eye development by altering the activity of evolutionarily conserved developmental signaling pathways. Consistent with this hypothesis, a secondary screen demonstrated that overexpression of fly homologs produced phenotypes that mimicked those produced by overexpression of the human gene. Our screening has identified 64 human genes capable of inducing phenotypes in the fly, offering a foundation for ongoing research aimed at understanding functionally conserved pathways across species.
Collapse
Affiliation(s)
- Ashley Avila
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| | - Lily Paculis
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| | | | - Belen Ramos
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
| | - Dongyu Jia
- Department of Biology, Georgia Southern University, Statesboro, GA 30460, USA
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| |
Collapse
|
10
|
Lakshmaiah Narayana J, Mechesso AF, Rather IIG, Zarena D, Luo J, Xie J, Wang G. Origami of KR-12 Designed Antimicrobial Peptides and Their Potential Applications. Antibiotics (Basel) 2024; 13:816. [PMID: 39334990 PMCID: PMC11429261 DOI: 10.3390/antibiotics13090816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
This review describes the discovery, structure, activity, engineered constructs, and applications of KR-12, the smallest antibacterial peptide of human cathelicidin LL-37, the production of which can be induced under sunlight or by vitamin D. It is a moonlighting peptide that shows both antimicrobial and immune-regulatory effects. Compared to LL-37, KR-12 is extremely appealing due to its small size, lack of toxicity, and narrow-spectrum antimicrobial activity. Consequently, various KR-12 peptides have been engineered to tune peptide activity and stability via amino acid substitution, end capping, hybridization, conjugation, sidechain stapling, and backbone macrocyclization. We also mention recently discovered peptides KR-8 and RIK-10 that are shorter than KR-12. Nano-formulation provides an avenue to targeted delivery, controlled release, and increased bioavailability. In addition, KR-12 has been covalently immobilized on biomaterials/medical implants to prevent biofilm formation. These constructs with enhanced potency and stability are demonstrated to eradicate drug-resistant pathogens, disrupt preformed biofilms, neutralize endotoxins, and regulate host immune responses. Also highlighted are the safety and efficacy of these peptides in various topical and systemic animal models. Finaly, we summarize the achievements and discuss future developments of KR-12 peptides as cosmetic preservatives, novel antibiotics, anti-inflammatory peptides, and microbiota-restoring agents.
Collapse
Affiliation(s)
- Jayaram Lakshmaiah Narayana
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore 560078, India
| | - Abraham Fikru Mechesso
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Imran Ibni Gani Rather
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| | - D Zarena
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
- College of Engineering, Jawaharlal Nehru Technological University, Anantapur 515002, India
| | - Jinghui Luo
- Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guangshun Wang
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
11
|
Joosten SC, Wiersinga WJ, Poll TVD. Dysregulation of Host-Pathogen Interactions in Sepsis: Host-Related Factors. Semin Respir Crit Care Med 2024; 45:469-478. [PMID: 38950605 PMCID: PMC11663080 DOI: 10.1055/s-0044-1787554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Sepsis stands as a prominent contributor to sickness and death on a global scale. The most current consensus definition characterizes sepsis as a life-threatening organ dysfunction stemming from an imbalanced host response to infection. This definition does not capture the intricate array of immune processes at play in sepsis, marked by simultaneous states of heightened inflammation and immune suppression. This overview delves into the immune-related processes of sepsis, elaborating about mechanisms involved in hyperinflammation and immune suppression. Moreover, we discuss stratification of patients with sepsis based on their immune profiles and how this could impact future sepsis management.
Collapse
Affiliation(s)
- Sebastiaan C.M. Joosten
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Willem J. Wiersinga
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Tom van der Poll
- Centre for Experimental and Molecular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Xu X, Hong Y, Fan H, Guo Z. Nucleic Acid Materials-Mediated Innate Immune Activation for Cancer Immunotherapy. ChemMedChem 2024; 19:e202400111. [PMID: 38622787 DOI: 10.1002/cmdc.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Abnormally localized nucleic acids (NAs) are considered as pathogen associated molecular patterns (PAMPs) in innate immunity. They are recognized by NAs-specific pattern recognition receptors (PRRs), leading to the activation of associated signaling pathways and subsequent production of type I interferons (IFNs) and pro-inflammatory cytokines, which further trigger the adaptive immunity. Notably, NAs-mediated innate immune activation is highly dependent on the conformation changes, especially the aggregation of PRRs. Evidence indicates that the characteristics of NAs including their length, concentration and even spatial structure play essential roles in inducing the aggregation of PRRs. Therefore, nucleic acid materials (NAMs) with high valency of NAs and high-order structures hold great potential for activating innate and adaptive immunity, making them promising candidates for cancer immunotherapy. In recent years, a variety of NAMs have been developed and have demonstrated significant efficacy in achieving satisfactory anti-tumor immunity in multiple mouse models, exhibiting huge potential for clinical application in cancer treatment. This review aims to discuss the mechanisms of NAMs-mediated innate immune response, and summarize their applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Xinyu Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yuxuan Hong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Huanhuan Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
13
|
Idowu M, Taiwo G, Sidney T, Treon E, Leal Y, Ologunagba D, Eichie F, Pech-Cervantes A, Ogunade IM. Effects of rumen-bypass protein supplement on growth performance, hepatic mitochondrial protein complexes, and hepatic immune gene expression of beef steers with divergent residual feed intake. PLoS One 2024; 19:e0293718. [PMID: 38959213 PMCID: PMC11221652 DOI: 10.1371/journal.pone.0293718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/21/2024] [Indexed: 07/05/2024] Open
Abstract
We investigated the impact of a rumen-bypass protein (RBP) supplement on growth performance, plasma and urinary N (UN) concentration, hepatic mitochondrial protein complexes, and hepatic mRNA expression of immune genes of beef steers with negative or positive residual feed intake (RFI) phenotype. Forty crossbred beef steers with an average body weight (BW) of 492 ± 36 kg were subjected to a generalized randomized block design over a 42-day experimental period. This study followed a 2 × 2 factorial arrangement of treatments. The factors evaluated were: 1) RFI classification (low-RFI (-2.12 kg/d) vs. high-RFI (2.02 kg/d), and 2) rumen-bypass protein supplement: RBP supplement (RBP; 227 g/steer/d) vs. control diet (CON; 0 g/d), resulting in four distinct treatments: LRFI-CON (n = 10), LRFI-RBP (n = 10), HRFI-CON (n = 10), and HRFI-RBP (n = 10). The RBP supplement (84% crude protein) is a mixture of hydrolyzed feather meal, porcine blood meal, and DL-methionine hydroxy analogue. The beef steers were stratified by BW, randomly assigned to treatments, and housed in four pens (1 treatment/pen) equipped with two GrowSafe feed bunks each to measure individual dry mater intake (DMI). Body weight was measured every 7 d. Liver tissue samples were collected on d 42 from all the beef steers. These samples were used for mRNA expression analysis of 16 immune-related genes and for evaluating the mitochondrial protein complexes I - V. No significant effects due to RBP supplementation or RFI × RBP interactions (P > 0.05) were observed for average daily gain (ADG) and DMI. However, compared to high-RFI steers, low-RFI steers showed a trend towards reduced DMI (12.9 vs. 13.6 kg/d; P = 0.07) but ADG was similar for the two RFI groups. Regardless of RFI status, supplemental RBP increased blood urea nitrogen (BUN) (P = 0.01), with a lower BUN concentration in low-RFI steers compared to high-RFI ones. A tendency for interaction (P = 0.07) between RFI and RBP was detected for the UN concentrations; feeding the dietary RBP increased the UN concentration in high-RFI beef steers (209 vs. 124 mM), whereas the concentration was lower than that of the CON group for low-RFI beef steers (86 vs. 131 mM). Interactions of RBP and RFI were observed (P ≤ 0.05) for mitochondrial activities of complexes IV, V, and mRNA expressions of some immune genes such as TLR2, TLR3, and IL23A. In conclusion, while RBP supplementation did not alter growth performance, its observed effects on hepatic immune gene expression, mitochondrial protein complexes, BUN, and UN depended on the beef steers' RFI phenotype. Therefore, the RFI status of beef steers should be considered in future studies evaluating the effects of dietary protein supplements.
Collapse
Affiliation(s)
- Modoluwamu Idowu
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Godstime Taiwo
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Taylor Sidney
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Emily Treon
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Yarahy Leal
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Deborah Ologunagba
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Francisca Eichie
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| | - Andres Pech-Cervantes
- Division of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, Maryland, United States of America
| | - Ibukun M. Ogunade
- Division of Animal Science, West Virginia University, Morgantown, West Virginia, United States of America
| |
Collapse
|
14
|
An W, Lakhina S, Leong J, Rawat K, Husain M. Host Innate Antiviral Response to Influenza A Virus Infection: From Viral Sensing to Antagonism and Escape. Pathogens 2024; 13:561. [PMID: 39057788 PMCID: PMC11280125 DOI: 10.3390/pathogens13070561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Influenza virus possesses an RNA genome of single-stranded, negative-sensed, and segmented configuration. Influenza virus causes an acute respiratory disease, commonly known as the "flu" in humans. In some individuals, flu can lead to pneumonia and acute respiratory distress syndrome. Influenza A virus (IAV) is the most significant because it causes recurring seasonal epidemics, occasional pandemics, and zoonotic outbreaks in human populations, globally. The host innate immune response to IAV infection plays a critical role in sensing, preventing, and clearing the infection as well as in flu disease pathology. Host cells sense IAV infection through multiple receptors and mechanisms, which culminate in the induction of a concerted innate antiviral response and the creation of an antiviral state, which inhibits and clears the infection from host cells. However, IAV antagonizes and escapes many steps of the innate antiviral response by different mechanisms. Herein, we review those host and viral mechanisms. This review covers most aspects of the host innate immune response, i.e., (1) the sensing of incoming virus particles, (2) the activation of downstream innate antiviral signaling pathways, (3) the expression of interferon-stimulated genes, (4) and viral antagonism and escape.
Collapse
Affiliation(s)
| | | | | | | | - Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (W.A.); (S.L.); (J.L.); (K.R.)
| |
Collapse
|
15
|
Khan KN, Guo SW, Ogawa K, Fujishita A, Mori T. The role of innate and adaptive immunity in endometriosis. J Reprod Immunol 2024; 163:104242. [PMID: 38503076 DOI: 10.1016/j.jri.2024.104242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
The innate and adaptive immune systems are the two key branches that determine host protection at all mucosal surfaces in human body, including the female reproductive tract. The pattern recognition receptors within the host that recognize pathogen-associated molecular patterns are expressed on the cells of the innate immune system. Rapidly reactive, theinnate immune system, responds immediately to the presence of infectious or other non-self agents, thereby launching an inflammatory response to protect the host until the activation of slower adaptive immune system. Macrophages, dendritic cells, and toll-like receptors are integral components of the innate immune system. In contrast, T-helper (Th1/Th2/Th17) cells and regulatory T (Treg) cells are the primary components of adaptive immune system. Studies showed that the growth and progression of endometriosis continue even in unilateral ovariectomized animal suggesting that besides ovarian steroid hormones, the growth of endometriosis could be regulated by innate/adaptive immune systems in pelvic environment. Recent reports demonstrated a potential role of Th1/Th2/Th17/Treg cells either individually or collectively in the initiation, maintenance, and progression of endometriosis. Herewe review the fundamental knowledge of innate and adaptive immunity and elaborate the role of innate and adaptive immunity in endometriosis based on both human and experimental data.
Collapse
Affiliation(s)
- Khaleque N Khan
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan.
| | - Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Shanghai 200011, China.
| | - Kanae Ogawa
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Akira Fujishita
- Department of Gynecology, Saiseikai Nagasaki Hospital, Nagasaki 850-0003, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
16
|
Chakraborty A, Kamat SS. Lysophosphatidylserine: A Signaling Lipid with Implications in Human Diseases. Chem Rev 2024; 124:5470-5504. [PMID: 38607675 DOI: 10.1021/acs.chemrev.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Lysophosphatidylserine (lyso-PS) has emerged as yet another important signaling lysophospholipid in mammals, and deregulation in its metabolism has been directly linked to an array of human autoimmune and neurological disorders. It has an indispensable role in several biological processes in humans, and therefore, cellular concentrations of lyso-PS are tightly regulated to ensure optimal signaling and functioning in physiological settings. Given its biological importance, the past two decades have seen an explosion in the available literature toward our understanding of diverse aspects of lyso-PS metabolism and signaling and its association with human diseases. In this Review, we aim to comprehensively summarize different aspects of lyso-PS, such as its structure, biodistribution, chemical synthesis, and SAR studies with some synthetic analogs. From a biochemical perspective, we provide an exhaustive coverage of the diverse biological activities modulated by lyso-PSs, such as its metabolism and the receptors that respond to them in humans. We also briefly discuss the human diseases associated with aberrant lyso-PS metabolism and signaling and posit some future directions that may advance our understanding of lyso-PS-mediated mammalian physiology.
Collapse
Affiliation(s)
- Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
17
|
Wei L, Liu L, Meng Z, Qi K, Gao X, Feng J, Luo J. Recognition of Mycobacterium tuberculosis by macrophage Toll-like receptor and its role in autophagy. Inflamm Res 2024; 73:753-770. [PMID: 38563966 DOI: 10.1007/s00011-024-01864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/25/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The pathogen responsible for tuberculosis is called Mycobacterium tuberculosis. Its interaction with macrophages has a significant impact on the onset and progression of the disease. METHODS The respiratory pathway allows Mycobacterium tuberculosis to enter the body's lungs where it battles immune cells before being infected latently or actively. In the progress of tuberculosis, Mycobacterium tuberculosis activates the body's immune system and creates inflammatory factors, which cause tissue inflammation to infiltrate and the creation of granulomas, which seriously harms the body. Toll-like receptors of macrophage can mediate host recognition of Mycobacterium tuberculosis, initiate immune responses, and participate in macrophage autophagy. New host-directed therapeutic approaches targeting autophagy for drug-resistant Mycobacterium tuberculosis have emerged, providing new ideas for the effective treatment of tuberculosis. CONCLUSIONS In-depth understanding of the mechanisms by which macrophage autophagy interacts with intracellular Mycobacterium tuberculosis, as well as the study of potent and specific autophagy-regulating molecules, will lead to much-needed advances in drug discovery and vaccine design, which will improve the prevention and treatment of human tuberculosis.
Collapse
Affiliation(s)
- Linna Wei
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Liping Liu
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Zudi Meng
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Kai Qi
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Xuehan Gao
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Jihong Feng
- Department of Oncology, Lishui People's Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Junmin Luo
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
18
|
Saleki K, Alijanizadeh P, Javanmehr N, Rezaei N. The role of Toll-like receptors in neuropsychiatric disorders: Immunopathology, treatment, and management. Med Res Rev 2024; 44:1267-1325. [PMID: 38226452 DOI: 10.1002/med.22012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.
Collapse
Affiliation(s)
- Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of e-Learning, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Parsa Alijanizadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
19
|
Toshchakov VY. Peptide-Based Inhibitors of the Induced Signaling Protein Interactions: Current State and Prospects. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:784-798. [PMID: 38880642 DOI: 10.1134/s000629792405002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 06/18/2024]
Abstract
Formation of the transient protein complexes in response to activation of cellular receptors is a common mechanism by which cells respond to external stimuli. This article presents the concept of blocking interactions of signaling proteins by the peptide inhibitors, and describes the progress achieved to date in the development of signaling inhibitors that act by blocking the signal-dependent protein interactions.
Collapse
Affiliation(s)
- Vladimir Y Toshchakov
- Sirius University of Science and Technology, Sirius Federal Territory, Krasnodar Region, 354340, Russia.
| |
Collapse
|
20
|
Garb J, Amitai G, Lu A, Ofir G, Brandis A, Mehlman T, Kranzusch PJ, Sorek R. The SARM1 TIR domain produces glycocyclic ADPR molecules as minor products. PLoS One 2024; 19:e0302251. [PMID: 38635746 PMCID: PMC11025887 DOI: 10.1371/journal.pone.0302251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Sterile alpha and TIR motif-containing 1 (SARM1) is a protein involved in programmed death of injured axons. Following axon injury or a drug-induced insult, the TIR domain of SARM1 degrades the essential molecule nicotinamide adenine dinucleotide (NAD+), leading to a form of axonal death called Wallerian degeneration. Degradation of NAD+ by SARM1 is essential for the Wallerian degeneration process, but accumulating evidence suggest that other activities of SARM1, beyond the mere degradation of NAD+, may be necessary for programmed axonal death. In this study we show that the TIR domains of both human and fruit fly SARM1 produce 1''-2' and 1''-3' glycocyclic ADP-ribose (gcADPR) molecules as minor products. As previously reported, we observed that SARM1 TIR domains mostly convert NAD+ to ADPR (for human SARM1) or cADPR (in the case of SARM1 from Drosophila melanogaster). However, we now show that human and Drosophila SARM1 additionally convert ~0.1-0.5% of NAD+ into gcADPR molecules. We find that SARM1 TIR domains produce gcADPR molecules both when purified in vitro and when expressed in bacterial cells. Given that gcADPR is a second messenger involved in programmed cell death in bacteria and likely in plants, we propose that gcADPR may play a role in SARM1-induced programmed axonal death in animals.
Collapse
Affiliation(s)
- Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Allen Lu
- Department of Microbiology, Harvard Medical School, Boston, MA, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Gal Ofir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA, United States of America
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States of America
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, United States of America
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
21
|
Holbrook BC, Clemens EA, Alexander-Miller MA. Sex-Dependent Effects on Influenza-Specific Antibody Quantity and Neutralizing Activity following Vaccination of Newborn Non-Human Primates Is Determined by Adjuvants. Vaccines (Basel) 2024; 12:415. [PMID: 38675797 PMCID: PMC11054256 DOI: 10.3390/vaccines12040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
A number of studies have demonstrated the role of sex in regulating immune responses to vaccination. However, these findings have been limited to adults for both human and animal models. As a result, our understanding of the impact of sex on vaccine responses in the newborn is highly limited. Here, we probe this important question using a newborn non-human primate model. We leveraged our prior analysis of two cohorts of newborns, with one being mother-reared and one nursery-reared. This provided adequate numbers of males and females to interrogate the impact of sex on the response to inactivated influenza vaccines alone or adjuvanted with R848, flagellin, or both. We found that, in contrast to what has been reported in adults, the non-adjuvanted inactivated influenza virus vaccine induced similar levels of virus-specific IgG in male and female newborns. However, the inclusion of R848, either alone or in combination with flagellin, resulted in higher antibody titers in females compared to males. Sex-specific increases in the neutralizing antibody were only observed when both R848 and flagellin were present. These data, generated in the highly translational NHP newborn model, provide novel insights into the role of sex in the immune response of newborns.
Collapse
Affiliation(s)
| | | | - Martha A. Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Rm 2E-018 Biotech Place, 575 North Patterson Ave., Winston-Salem, NC 27101, USA; (B.C.H.); elene.a.- (E.A.C.)
| |
Collapse
|
22
|
Kawai T, Ikegawa M, Ori D, Akira S. Decoding Toll-like receptors: Recent insights and perspectives in innate immunity. Immunity 2024; 57:649-673. [PMID: 38599164 DOI: 10.1016/j.immuni.2024.03.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved family in the innate immune system and are the first line of host defense against microbial pathogens by recognizing pathogen-associated molecular patterns (PAMPs). TLRs, categorized into cell surface and endosomal subfamilies, recognize diverse PAMPs, and structural elucidation of TLRs and PAMP complexes has revealed their intricate mechanisms. TLRs activate common and specific signaling pathways to shape immune responses. Recent studies have shown the importance of post-transcriptional regulation in TLR-mediated inflammatory responses. Despite their protective functions, aberrant responses of TLRs contribute to inflammatory and autoimmune disorders. Understanding the delicate balance between TLR activation and regulatory mechanisms is crucial for deciphering their dual role in immune defense and disease pathogenesis. This review provides an overview of recent insights into the history of TLR discovery, elucidation of TLR ligands and signaling pathways, and their relevance to various diseases.
Collapse
Affiliation(s)
- Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan; Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan.
| | - Moe Ikegawa
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara 630-0192, Japan
| | - Shizuo Akira
- Center for Advanced Modalities and DSS (CAMaD), Osaka University, Osaka 565-0871, Japan; Laboratory of Host Defense, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
23
|
Jiang C, Huang Y, Gui H, Liu X, Li H, Han M, Huang S. TLR4 TIR domain and nucleolin GAR domain synergistically mediate RSV infection and induce neuronal inflammatory damage in SH-SY5Y cells. J Med Virol 2024; 96:e29570. [PMID: 38558098 DOI: 10.1002/jmv.29570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Previous research results of our group showed that Toll-like receptor 4 (TLR4) and nucleolin synergistically mediate respiratory syncytial virus (RSV) infection in human central neuron cells, but the specific mechanism remains unclear. Here we designed and synthesized lentiviruses with TIR (674-815 aa), TLR4 (del 674-815 aa), GAR (645-707 aa), and NCL (del 645-707 aa) domains, and obtained stable overexpression cell lines by drug screening, and subsequently infected RSV at different time points. Laser confocal microscopy and coimmunoprecipitation were used for the observation of co-localization and interaction of TIR/GAR domains. Western blot analysis was used for the detection of p-NF-κB and LC3 protein expression. Real-time PCR was used for the detection of TLR4/NCL mRNA expression. ELISA assay was used to measure IL-6, IL-1β, and TNF-α concentrations and flow cytometric analysis was used for the study of apoptosis. Our results suggest that overexpression of TIR and GAR domains can exacerbate apoptosis and autophagy, and that TIR and GAR domains can synergistically mediate RSV infection and activate the NF-κB signaling pathway, which regulates the secretion of downstream inflammatory factors, such as IL-6, IL-1β, and TNF-α, and ultimately leads to neuronal inflammatory injury.
Collapse
Affiliation(s)
- Chengcheng Jiang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Yixuan Huang
- Department of Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongya Gui
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Xiaojie Liu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Haiwen Li
- Department of Gastroenterology, the Third Affiliated Hospital of Anhui Medical University, Hefei First People's Hospital, Hefei, Anhui, China
| | - Maozhen Han
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Shenghai Huang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
24
|
Ratcliffe NA, Mello CB, Castro HC, Dyson P, Figueiredo M. Immune Reactions of Vector Insects to Parasites and Pathogens. Microorganisms 2024; 12:568. [PMID: 38543619 PMCID: PMC10974449 DOI: 10.3390/microorganisms12030568] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 11/12/2024] Open
Abstract
This overview initially describes insect immune reactions and then brings together present knowledge of the interactions of vector insects with their invading parasites and pathogens. It is a way of introducing this Special Issue with subsequent papers presenting the latest details of these interactions in each particular group of vectors. Hopefully, this paper will fill a void in the literature since brief descriptions of vector immunity have now been brought together in one publication and could form a starting point for those interested and new to this important area. Descriptions are given on the immune reactions of mosquitoes, blackflies, sandflies, tsetse flies, lice, fleas and triatomine bugs. Cellular and humoral defences are described separately but emphasis is made on the co-operation of these processes in the completed immune response. The paper also emphasises the need for great care in extracting haemocytes for subsequent study as appreciation of their fragile nature is often overlooked with the non-sterile media, smearing techniques and excessive centrifugation sometimes used. The potential vital role of eicosanoids in the instigation of many of the immune reactions described is also discussed. Finally, the priming of the immune system, mainly in mosquitoes, is considered and one possible mechanism is presented.
Collapse
Affiliation(s)
- Norman Arthur Ratcliffe
- Department of Biosciences, Swansea University, Singleton Park, Swansea SA28PP, UK
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Cicero Brasileiro Mello
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Helena Carla Castro
- Biology Institute, Universidade Federal Fluminense, Niterói 24210-130, RJ, Brazil; (C.B.M.); (H.C.C.)
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| | - Marcela Figueiredo
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea SA28PP, UK; (P.D.); (M.F.)
| |
Collapse
|
25
|
Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, Azadfallah A, Mahdizade Ari M, Hemmati M, Darban M, Alavi Toosi P, Banihashemian SZ. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm 2024; 2024:5830491. [PMID: 38445291 PMCID: PMC10914434 DOI: 10.1155/2024/5830491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Atherosclerosis is a leading cause of death in the world. A significant body of evidence suggests that inflammation and various players are implicated and have pivotal roles in the formation of atherosclerotic plaques. Toll-like receptor 4 (TLR4) is linked with different stages of atherosclerosis. This receptor is highly expressed in the endothelial cells (ECs) and atherosclerotic plaques. TLR4 activation can lead to the production of inflammatory cytokines and related responses. Lectin-like oxidized low-density lipoprotein-1 (LOX-1), an integral membrane glycoprotein with widespread expression on the ECs, is involved in atherosclerosis and has some common pathways with TLR4 in atherosclerotic lesions. In addition, proprotein convertase subtilisin/kexin type9 (PCSK9), which is a regulatory enzyme with different roles in cholesterol uptake, is implicated in atherosclerosis. At present, TLR4, PCSK9, and LOX-1 are increasingly acknowledged as key players in the pathogenesis of atherosclerotic cardiovascular diseases. Herein, we presented the current evidence on the structure, functions, and roles of TLR4, PCSK9, and LOX-1 in atherosclerosis.
Collapse
Affiliation(s)
- Bahador Bagheri
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Ahmad Nouri
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Azadfallah
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahyar Mahdizade Ari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maral Hemmati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Darban
- Department of Internal Medicine, Kowsar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Alavi Toosi
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
26
|
Rodrigues CR, Balachandran Y, Aulakh GK, Singh B. TLR10: An Intriguing Toll-Like Receptor with Many Unanswered Questions. J Innate Immun 2024; 16:96-104. [PMID: 38246135 PMCID: PMC10861218 DOI: 10.1159/000535523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are one of the first pattern recognition receptors found in the innate immune system. The TLR family has 12 members (TLR1-TLR9, TLR11-TLR13) in mice and 10 members (TLR1-TLR10) in humans, with TLR10 being the latest identified. SUMMARY Considerable research has been performed on TLRs; however, TLR10 is known as an orphan receptor for the lack of information on its signalling, role, and ligands. Even though there are recent studies pointing towards the potential TLR10 ligands, their function and signalling pathway are yet to be determined. KEY MESSAGES This review gives an insight into recent findings on TLR10's pro- and anti-inflammatory properties, with the goal of outlining existing results and indicating future research topics on this receptor.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| | - Yadu Balachandran
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Gurpreet Kaur Aulakh
- Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Baljit Singh
- Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
27
|
Raghibi M, Raghibi M, Morovvati A, Shakib P, Aflatoonian R, Dirbaiyan A. Expression of mRNA-TLR-5 Gene in Patients with Endometriosis using Real-time PCR in Tehran, Iran. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2024; 19:300-306. [PMID: 38213148 DOI: 10.2174/0127724344251369231212061409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Endometriosis is one of the common diseases of women, especially in reproductive age, and it is one of the most important causes of infertility in women. The aim of this study was to investigate the level of mRNA-TLR-5 expression in women with endometriosis. METHODS The present study was performed in Nikan Hospital, Tehran, Iran, in 2021. The samples of endometrial mucosa for the eutopic group and an ovarian endometriotic cyst for the ectopic group were obtained from the patients who underwent laparoscopic surgery at the Fetal Infertility Center and were diagnosed with endometriosis. Normal endometrial samples were also obtained from patients who had no history of infertility and underwent laparoscopic TL surgery for reasons other than endometriosis such as ovarian cysts (control group). After RNA extraction and cDNA synthesis, TLR-5 gene expression was evaluated by the Real-Time PCR method. RESULTS Based on the results of the comparison of TLR-5 gene expression in all three ectopic, eutopic endometrium, and control groups by Real-Time PCR, it was found that the TLR-5 gene expression is significantly higher in ectopic samples than in the other two groups, but there is a significant difference between two utopic and control groups. CONCLUSION The increase in TLR-5 expression in the ectopic group can probably be a reason for reducing the apoptosis of cells entered into the peritoneal cavity and creating an environment for the survival and proliferation of these cells.
Collapse
Affiliation(s)
- Maryam Raghibi
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Maliheh Raghibi
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Abbas Morovvati
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ashkan Dirbaiyan
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| |
Collapse
|
28
|
Yang Y, Jin C, Yeo A, Jin B. Multiple Factors Determine the Oncolytic or Carcinogenic Effects of TLRs Activation in Cancer. J Immunol Res 2024; 2024. [DOI: 10.1155/2024/1111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2025] Open
Abstract
Toll‐like receptors (TLRs) belong to a germline‐encoded protein family. These are pattern recognition receptors. They sense pathogen‐associated molecular patterns (PAMPs). When this occurs, activation of the NF‐ĸB pathway follows. This triggers the innate immune response of the host. The consequent inflammatory cytokine response usually contributes to the elimination of the pathogen. Activation of TLRs also induces an adaptive immune response by a cross‐prime mechanism. This mechanism is employed in cancer immunotherapy. Using TLR ligands as adjuvants induces upregulation of costimulatory signals which in turn activates a cytotoxic leukocyte response against cancer cells. However, TLRs are also overexpressed in human cancer cells resulting in increased cell proliferation, migration, invasion, and angiogenesis. An intracellular adaptor, myeloid differentiation factor 88 (MyD88) probably mediates this process. MyD88 is intimately involved with all TLRs except TLR3. One consequence of the interaction between a TLR and MyD88 is activation of NF‐ĸB. In this context of a variety of proinflammtory cytokines being produced, chronic inflammation may result. Inflammation is an important protective mechanism. However, chronic inflammation is also involved in carcinogenesis. Activation of NF‐ĸB inhibits apoptosis and under certain circumstances, tumor cell survival. In this review, the potential therapeutic value of TLRs in immunotherapy and its role in oncogenesis are explored. The emerging use of artificial intelligence is mentioned.
Collapse
|
29
|
Mahapatra S, Ganguly B, Pani S, Saha A, Samanta M. A comprehensive review on the dynamic role of toll-like receptors (TLRs) in frontier aquaculture research and as a promising avenue for fish disease management. Int J Biol Macromol 2023; 253:126541. [PMID: 37648127 DOI: 10.1016/j.ijbiomac.2023.126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Toll-like receptors (TLRs) represent a conserved group of germline-encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and play a crucial role in inducing the broadly acting innate immune response against pathogens. In recent years, the detection of 21 different TLR types in various fish species has sparked interest in exploring the potential of TLRs as targets for boosting immunity and disease resistance in fish. This comprehensive review offers the latest insights into the diverse facets of fish TLRs, highlighting their history, classification, architectural insights through 3D modelling, ligands recognition, signalling pathways, crosstalk, and expression patterns at various developmental stages. It provides an exhaustive account of the distinct TLRs induced during the invasion of specific pathogens in various fish species and delves into the disparities between fish TLRs and their mammalian counterparts, highlighting the specific contribution of TLRs to the immune response in fish. Although various facets of TLRs in some fish, shellfish, and molluscs have been described, the role of TLRs in several other aquatic organisms still remained as potential gaps. Overall, this article outlines frontier aquaculture research in advancing the knowledge of fish immune systems for the proper management of piscine maladies.
Collapse
Affiliation(s)
- Smruti Mahapatra
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Bristy Ganguly
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Saswati Pani
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Ashis Saha
- Reproductive Biology and Endocrinology Laboratory, Fish Nutrition and Physiology Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India.
| |
Collapse
|
30
|
Temchura V, Wagner JT, Damm D. Immunogenicity of Recombinant Lipid-Based Nanoparticle Vaccines: Danger Signal vs. Helping Hand. Pharmaceutics 2023; 16:24. [PMID: 38258035 PMCID: PMC10818441 DOI: 10.3390/pharmaceutics16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Infectious diseases are a predominant problem in human health. While the incidence of many pathogenic infections is controlled by vaccines, some pathogens still pose a challenging task for vaccine researchers. In order to face these challenges, the field of vaccine development has changed tremendously over the last few years. For non-replicating recombinant antigens, novel vaccine delivery systems that attempt to increase the immunogenicity by mimicking structural properties of pathogens are already approved for clinical applications. Lipid-based nanoparticles (LbNPs) of different natures are vesicles made of lipid layers with aqueous cavities, which may carry antigens and other biomolecules either displayed on the surface or encapsulated in the cavity. However, the efficacy profile of recombinant LbNP vaccines is not as high as that of live-attenuated ones. This review gives a compendious picture of two approaches that affect the immunogenicity of recombinant LbNP vaccines: (i) the incorporation of immunostimulatory agents and (ii) the utilization of pre-existing or promiscuous cellular immunity, which might be beneficial for the development of tailored prophylactic and therapeutic LbNP vaccine candidates.
Collapse
Affiliation(s)
- Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | | | - Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| |
Collapse
|
31
|
Zhang X, Zhang K, Yan L, Wang P, Zhao F, Hu S. The role of toll-like receptors in immune tolerance induced by Helicobacter pylori infection. Helicobacter 2023; 28:e13020. [PMID: 37691007 DOI: 10.1111/hel.13020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023]
Abstract
Helicobacter pylori (H. pylori) is a gram-negative, microaerobic bacterium that colonizes the gastric mucosa in about half of the world's population. H. pylori infection can lead to various diseases. Chronic infection by H. pylori exposes the gastric mucosa to bacterial components such as lipopolysaccharide (LPS), outer membrane vesicles (OMVs), and several toxic proteins. Infected with H. pylori activates the release of pro-inflammatory factors and triggers inflammatory responses that damage the gastric mucosa. As the only microorganism that permanently colonizes the human stomach, H. pylori can suppress host immunity to achieve long-term colonization. Toll-like receptors (TLRs) play a crucial role in T-cell activation, promoting innate immune responses and immune tolerance during H. pylori infection. Among the 10 TLRs found in humans, TLR2, TLR4, TLR5, and TLR9 have been thoroughly investigated in relation to H. pylori-linked immune regulation. In the present review, we provide a comprehensive analysis of the various mechanisms employed by different TLRs in the induction of immune tolerance upon H. pylori infection, which will contribute to the research of pathogenic mechanism of H. pylori.
Collapse
Affiliation(s)
- Xiulin Zhang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Ke Zhang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Linlin Yan
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Pengfei Wang
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Fan Zhao
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| | - Shoukui Hu
- Department of Clinical Laboratory, Peking University Shougang Hospital, Beijing, China
| |
Collapse
|
32
|
Abstract
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tingting Wan
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yalong Wang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Kaixin He
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu Zhu
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
33
|
Klontz E, Obi JO, Wang Y, Glendening G, Carr J, Tsibouris C, Buddula S, Nallar S, Soares AS, Beckett D, Redzic JS, Eisenmesser E, Palm C, Schmidt K, Scudder AH, Obiorah T, Essuman K, Milbrandt J, Diantonio A, Ray K, Snyder MLD, Deredge D, Snyder GA. The structure of NAD + consuming protein Acinetobacter baumannii TIR domain shows unique kinetics and conformations. J Biol Chem 2023; 299:105290. [PMID: 37758001 PMCID: PMC10641520 DOI: 10.1016/j.jbc.2023.105290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Toll-like and interleukin-1/18 receptor/resistance (TIR) domain-containing proteins function as important signaling and immune regulatory molecules. TIR domain-containing proteins identified in eukaryotic and prokaryotic species also exhibit NAD+ hydrolase activity in select bacteria, plants, and mammalian cells. We report the crystal structure of the Acinetobacter baumannii TIR domain protein (AbTir-TIR) with confirmed NAD+ hydrolysis and map the conformational effects of its interaction with NAD+ using hydrogen-deuterium exchange-mass spectrometry. NAD+ results in mild decreases in deuterium uptake at the dimeric interface. In addition, AbTir-TIR exhibits EX1 kinetics indicative of large cooperative conformational changes, which are slowed down upon substrate binding. Additionally, we have developed label-free imaging using the minimally invasive spectroscopic method 2-photon excitation with fluorescence lifetime imaging, which shows differences in bacteria expressing native and mutant NAD+ hydrolase-inactivated AbTir-TIRE208A protein. Our observations are consistent with substrate-induced conformational changes reported in other TIR model systems with NAD+ hydrolase activity. These studies provide further insight into bacterial TIR protein mechanisms and their varying roles in biology.
Collapse
Affiliation(s)
- Erik Klontz
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Juliet O Obi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Yajing Wang
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Physiology, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Gabrielle Glendening
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Jahid Carr
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Constantine Tsibouris
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Sahthi Buddula
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Shreeram Nallar
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Alexei S Soares
- Brookhaven National Laboratory, National Synchrotron Light Source II, Structural Biology Program, Upton, New York, USA
| | - Dorothy Beckett
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, Colorado, USA
| | - Cheyenne Palm
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Katrina Schmidt
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Alexis H Scudder
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Trinity Obiorah
- Department of Biological Sciences, Towson University, Towson, Maryland, USA
| | - Kow Essuman
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jeffrey Milbrandt
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Aaron Diantonio
- Department of Developmental Biology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Krishanu Ray
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Biochemistry and Molecular Biology at the University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | | | - Daniel Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Greg A Snyder
- Division of Vaccine Research, Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, Maryland, USA; Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
34
|
Liu R, Sun B. Lactic Acid Bacteria and Aging: Unraveling the Interplay for Healthy Longevity. Aging Dis 2023; 15:AD.2023.0926. [PMID: 37962461 PMCID: PMC11272207 DOI: 10.14336/ad.2023.0926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023] Open
Abstract
Lactic Acid Bacteria (LAB) are beneficial microorganisms widely utilized in food fermentation processes and as probiotic supplements. They offer multifarious health benefits, including enhancing digestion, strengthening immune mechanisms, and mitigating inflammation. Recent studies suggest that LAB might be instrumental in the anti-aging domain, modulating key molecular pathways involved in the aging continuum, such as IL-13, TNF-α, mTOR, IFN-γ, TGF-β, AMPK, and GABA. The TLR family, particularly TLR2, appears pivotal during the primary cellular interactions with bacteria and their byproducts. Concurrently, the Sirtuin family, predominantly Sirtuin-1, plays diverse roles upon cellular stimuli by bacterial components. The potential anti-aging benefits postulated include restoring gut balance, enhancing antioxidant potential, and fortifying cognitive and mental faculties. However, the current body of evidence is still embryonic and calls for expansive human trials and deeper mechanistic analyses. The safety and optimal consumption metrics for LAB also warrant rigorous evaluation. Future research trajectories should identify specific LAB strains with potent anti-aging properties and unravel the underlying biological pathways. Given the promising implications, LAB strains stand as potential dietary contenders to foster healthy aging and enrich the quality of life among the elderly population.
Collapse
Affiliation(s)
- Rui Liu
- School of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Bo Sun
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
35
|
Abstract
RNA modification is manifested as chemically altered nucleotides, widely exists in diverse natural RNAs, and is closely related to RNA structure and function. Currently, mRNA-based vaccines have received great attention and rapid development as novel and mighty fighters against various diseases including cancer. The achievement of RNA vaccines in clinical application is largely attributed to some methodological innovations including the incorporation of modified nucleotides into the synthetic RNA. The selection of optimal RNA modifications aimed at reducing the instability and immunogenicity of RNA molecules is a very critical task to improve the efficacy and safety of mRNA vaccines. This review summarizes the functions of RNA modifications and their application in mRNA vaccines, highlights recent advances of mRNA vaccines in cancer immunotherapy, and provides perspectives for future development of mRNA vaccines in the context of personalized tumor therapy.
Collapse
Affiliation(s)
- Yingxue Mei
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
36
|
Li Y, Hu J, Zhang Y, Yan K, Zhang M, Li Y, Huang X, Tang J, Yao T, Wang D, Xu S, Wang X, Zhou S, Yan X, Wang Y. Identification and characterization of toll-like receptor genes in silver pomfret (Pampus argenteus) and their involvement in the host immune response to Photobacterium damselae subsp. Damselae and Nocardia seriolae infection. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109071. [PMID: 37703936 DOI: 10.1016/j.fsi.2023.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/26/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Toll-like receptors (TLRs) are vital pattern recognition receptors that play a critical role in the innate immune response against pathogenic attack. Among the bacteria commonly found in the culture process of silver pomfret, Photobacterium damselae subsp. Damselae (PDD, gram-negative) and Nocardia seriolae (NS, gram-positive), can cause large-scale mortality in this fish species. However, there is currently no research on the role of TLRs in mediating the immune response of silver pomfret to these two bacterial infections. Therefore, in this study, we identified nine PaTLRs family members, including several fish-specific TLRs (TLR14 and TLR21). Phylogenetic analysis revealed that these PaTLRs genes could be classified into five subfamilies, namely TLR1, TLR3, TLR5, TLR7, and TLR11, indicating their evolutionary conservation. To further explore the interactions of TLR genes with immune-related mediators, protein and protein interaction network (PPI) results were generated to explain the association of TLR genes with TNF receptor-associated factor 6 (TRAF6) and other relevant genes in the MyD88-dependent pathway and NF-κb signaling pathway. Subsequently, RT-qPCR was conducted to verify the expression patterns of the nine TLR genes in the gills, skin, kidney, liver, and spleen of healthy fish, with most of the TLRs showing high expression levels in the spleen. Following infection with PDD and NS, these PaTLRs exhibited different expression patterns in the spleen, with PaTLR2, PaTLR3, PaTLR5, PaTLR7, PaTLR9, and PaTLR14 being significantly up-regulated. Furthermore, when spleen cells were treated with bacterial compositions, the majority of PaTLRs expression was up-regulated in response to Lipopolysaccharide (LPS) and lipophosphorylcholic acid (LTA) treatment, except for PaTLR21. Finally, changes in the expression levels of TLR-interacting genes were also observed under the stimulation of bacteria and bacterial compositions. The results of this study provide a preliminary reference for further understanding the mechanism of the innate immune response of the TLR gene family in silver pomfret and offer theoretical support for addressing the disease problems encountered during large-scale fish breeding.
Collapse
Affiliation(s)
- Yuanbo Li
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jiabao Hu
- College of Marine Sciences, Ningbo University, Ningbo, China; School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Youyi Zhang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Kaiheng Yan
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Man Zhang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yaya Li
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xiang Huang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jie Tang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Tingyan Yao
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Danli Wang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Shanliang Xu
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xubo Wang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Suming Zhou
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Xiaojun Yan
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yajun Wang
- College of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
37
|
Fox AR, Fingert JH. Familial normal tension glaucoma genetics. Prog Retin Eye Res 2023; 96:101191. [PMID: 37353142 DOI: 10.1016/j.preteyeres.2023.101191] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Glaucoma is defined by characteristic optic nerve damage and corresponding visual field defects and is the leading cause of irreversible blindness in the world. Elevated intraocular pressure (IOP) is a strong risk factor for developing glaucoma. However, glaucoma can occur at any IOP. Normal tension glaucoma (NTG) arises with IOPs that are within what has been defined as a normal range, i.e., 21 mm Hg or less, which may present challenges in its diagnosis and management. Identifying inheritance patterns and genetic mutations in families with NTG has helped elucidate mechanisms of NTG, however the pathophysiology is complex and not fully understood. Approximately 2% of NTG cases are caused primarily by mutations in single genes, optineurin (OPTN), TANK binding kinase 1 (TKB1), or myocilin (MYOC). Herein, we review pedigree studies of NTG and autosomal dominant NTG caused by OPTN, TBK1, and MYOC mutations. We review identified mutations and resulting clinical features of OPTN-associated and TBK1-associated NTG, including long-term follow up of these patients with NTG. In addition, we report a new four-generation pedigree of NTG caused by a Glu50Lys OPTN mutation, including six family members with a mean follow up of 17 years. Common features of OPTN -associated NTG due to Glu50Lys mutation included early onset of disease with an IOP <21 mm Hg, marked optic disc cupping, and progressive visual field loss which appeared to stabilize once an IOP of less than 10 mm Hg was achieved. Lastly, we review risk factor genes which have been identified to contribute to the complex inheritance of NTG.
Collapse
Affiliation(s)
- Austin R Fox
- Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - John H Fingert
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
38
|
Patlola SR, Donohoe G, McKernan DP. Counting the Toll of Inflammation on Schizophrenia-A Potential Role for Toll-like Receptors. Biomolecules 2023; 13:1188. [PMID: 37627253 PMCID: PMC10452856 DOI: 10.3390/biom13081188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) that are ubiquitously expressed in the human body. They protect the brain and central nervous system from self and foreign antigens/pathogens. The immune response elicited by these receptors culminates in the release of cytokines, chemokines, and interferons causing an inflammatory response, which can be both beneficial and harmful to neurodevelopment. In addition, the detrimental effects of TLR activation have been implicated in multiple neurodegenerative diseases such as Alzheimer's, multiple sclerosis, etc. Many studies also support the theory that cytokine imbalance may be involved in schizophrenia, and a vast amount of literature showcases the deleterious effects of this imbalance on cognitive performance in the human population. In this review, we examine the current literature on TLRs, their potential role in the pathogenesis of schizophrenia, factors affecting TLR activity that contribute towards the risk of schizophrenia, and lastly, the role of TLRs and their impact on cognitive performance in schizophrenia.
Collapse
Affiliation(s)
- Saahithh Redddi Patlola
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| | - Gary Donohoe
- School of Psychology, University of Galway, H91 TK33 Galway, Ireland;
| | - Declan P. McKernan
- Department of Pharmacology & Therapeutics, School of Medicine, University of Galway, H91 TK33 Galway, Ireland;
| |
Collapse
|
39
|
Zhang J, Huang J, Zhao H. Molecular Cloning of Toll-like Receptor 2 and 4 ( SpTLR2, 4) and Expression of TLR-Related Genes from Schizothorax prenanti after Poly (I:C) Stimulation. Genes (Basel) 2023; 14:1388. [PMID: 37510293 PMCID: PMC10379648 DOI: 10.3390/genes14071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Toll-like receptor (TLR) signaling is conserved between fish and mammals, except for TLR4, which is absent in most fish. In the present study, we aimed to evaluate whether TLR4 is expressed in Schizothorax prenanti (SpTLR4). The SpTLR2 and SpTLR4 were cloned and identified, and their tissue distribution was examined. The cDNA encoding SpTLR4 and SpTLR2 complete coding sequences (CDS) were identified and cloned. Additionally, we examined the expression levels of seven SpTLRs (SpTLR2, 3, 4, 18, 22-1, 22-2, and 22-3), as well as SpMyD88 and SpIRF3 in the liver, head kidney, hindgut, and spleen of S. prenanti, after intraperitoneal injection of polyinosinic-polycytidylic acid (poly (I:C)). The SpTLR2 and SpTLR4 shared amino acid sequence identity of 42.15-96.21% and 36.21-93.58%, respectively, with sequences from other vertebrates. SpTLR2 and SpTLR4 were expressed in all S. prenanti tissues examined, particularly in immune-related tissues. Poly (I:C) significantly upregulated most of the genes evaluated in the four immune organs compared with the PBS-control (p < 0.05); expression of these different genes was tissue-specific. Our findings demonstrate that TLR2 and TLR4 are expressed in S. prenanti and that poly (I:C) affects the expression of nine TLR-related genes, which are potentially involved in S. prenanti antiviral immunity or mediating pathological processes with differential kinetics. This will contribute to a better understanding of the roles of these TLR-related genes in antiviral immunity.
Collapse
Affiliation(s)
- Jianlu Zhang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
- College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Jiqin Huang
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Haitao Zhao
- Shaanxi Key Laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| |
Collapse
|
40
|
Shakir N, Sharif A, Ali S, Akhtar B, Akhtar MF, Muhammad F, Saleem A, Akhtar K, Tariq I, Khan MI. Pirarubicin loaded biodegradable nanoparticles downregulate IL-6, COX-II and TNF-α along with oxidative stress markers in comparison to conventional pirarubicin in healthy albino rats. J Drug Deliv Sci Technol 2023; 84:104498. [DOI: 10.1016/j.jddst.2023.104498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
|
41
|
Hou X, Chen D, Wang Y, Cui B, Xu H, Wang Y, Chen H, Wang D, Chen Y, Cheng T, Dai X. Network analysis to explore the pharmacological mechanism of Shenmai injection in treating granulocytopenia and evidence-based medicine approach validation. Medicine (Baltimore) 2023; 102:e33825. [PMID: 37335746 PMCID: PMC10194581 DOI: 10.1097/md.0000000000033825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/01/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Shenmai injection is frequently utilized in China to clinically treat granulocytopenia in oncology patients following chemotherapy. Despite this, the drug's therapeutic benefits remain a topic of contention, and its active components and potential treatment targets have yet to be established. The present study utilizes a network pharmacology approach to investigate the drug's active ingredients and possible therapeutic targets, and to evaluate the effectiveness of Shenmai injection in treating granulocytopenia through meta-analysis. METHODS In our subject paper, we utilized the TCMID database to investigate the active ingredients present in red ginseng and ophiopogon japonicus. To further identify molecular targets, we employed SuperPred, as well as OMIM, Genecards, and DisGeNET databases. Our focus was on targets associated with granulocytopenia. The DAVID 6.8 database was utilized to perform gene ontology functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Additionally, a protein-protein interaction network was established. The resulting "drug-key component-potential target-core pathway" network was used to predict the mechanism of action of Shenmai injection in the treatment of granulocytopenia. In order to evaluate the quality of the studies included in our analysis, we utilized the Cochrane Reviewers' Handbook. We then conducted a meta-analysis of the clinical curative effect of Shenmai injection for granulocytopenia, utilizing the Cochrane Collaboration's RevMan 5.3 software. RESULTS After conducting a thorough screening, the study identified 5 primary ingredients of Shenmai injection - ophiopogonoside a, β-patchoulene, ginsenoside rf, ginsenoside re, and ginsenoside rg1-that can potentially target 5 essential proteins: STAT3, TLR4, PIK3CA, PIK3R1, and GRB2. Additionally, Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that Shenmai injection can be beneficial in treating granulocytopenia by interacting with pathways such as HIF-1 signaling, T-cell receptor signaling, PI3K-Akt signaling, chemokine signaling, and FoxO signaling. The results of meta-analysis indicate that the treatment group exhibited superior performance in terms of both efficiency and post-treatment leukocyte count when compared to the control group. CONCLUSION In summary, studies in network pharmacology demonstrate that Shenmai injection exerts an impact on granulocytopenia via various components, targets, and mechanisms. Additionally, evidence-based studies provide strong support for the effectiveness of Shenmai injection in preventing and treating granulocytopenia.
Collapse
Affiliation(s)
- Xianbing Hou
- Department of Oncology, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Dandan Chen
- Department of Rehabilitation, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Yao Wang
- Department of Oncology, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Bixian Cui
- Department of Oncology, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Hui Xu
- Department of Oncology, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Yuanyuan Wang
- Department of Oncology, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Hongzhou Chen
- Department of Oncology, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Dan Wang
- Department of Nursing, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Ying Chen
- Department of Nursing, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Tongfei Cheng
- Department of Nursing, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| | - Xiaojun Dai
- Department of Nursing, Fenghua Hospital of Traditional Chinese Medicine, Ningbo, China
| |
Collapse
|
42
|
Essam RM, Saadawy MA, Gamal M, Abdelsalam RM, El-Sahar AE. Lactoferrin averts neurological and behavioral impairments of thioacetamide-induced hepatic encephalopathy in rats via modulating HGMB1/TLR-4/MyD88/Nrf2 pathway. Neuropharmacology 2023; 236:109575. [PMID: 37201650 DOI: 10.1016/j.neuropharm.2023.109575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Hepatic encephalopathy (HE) is a life-threatening disease caused by acute or chronic liver failure manifested by aberrant CNS changes. In the present study, we aimed to explore the neuroprotective effect of lactoferrin (LF) against thioacetamide (TAA)-induced HE in rats. Animals were divided into four groups, control, LF control, TAA-induced HE, and LF treatment, where LF was administered (300 mg/kg, p.o.) for 15 days in groups 2 and 4 meanwhile, TAA (200 mg/kg, i.p.) was given as two injections on days 13 and 15 for the 3rd and 4th groups. Pretreatment with LF significantly improved liver function observed as a marked decline in serum AST, ALT, and ammonia, together with lowering brain ammonia and enhancing motor coordination as well as cognitive performance. Restoration of brain oxidative status was also noted in the LF-treated group, where lipid peroxidation was hampered, and antioxidant parameters, Nrf2, HO-1, and GSH, were increased. Additionally, LF downregulated HMGB1, TLR-4, MyD88, and NF-κB signaling pathways, together with reducing inflammatory cytokine, TNF-α, and enhancing brain BDNF levels. Moreover, the histopathology of brain and liver tissues revealed that LF alleviated TAA-induced liver and brain deficits. In conclusion, the promising results of LF in attenuating HMGB1/TLR-4/MyD88 signaling highlight its neuroprotective role against HE associated with acute liver injury via ameliorating neuroinflammation, oxidative stress, and stimulating neurogenesis.
Collapse
Affiliation(s)
- Reham M Essam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mariam A Saadawy
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Mahitab Gamal
- Clinical Pharmacy Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Rania M Abdelsalam
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ayman E El-Sahar
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
43
|
Guo S, Gao W, Zeng M, Liu F, Yang Q, Chen L, Wang Z, Jin Y, Xiang P, Chen H, Wen Z, Shi Q, Song Z. Characterization of TLR1 and expression profiling of TLR signaling pathway related genes in response to Aeromonas hydrophila challenge in hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂). Front Immunol 2023; 14:1163781. [PMID: 37056759 PMCID: PMC10086376 DOI: 10.3389/fimmu.2023.1163781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Toll‐like receptor 1 (TLR1) mediates the innate immune response to a variety of microbes through recognizing cell wall components (such as bacterial lipoproteins) in mammals. However, the detailed molecular mechanism of TLR1 involved in pathogen immunity in the representative hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂) has not been well studied. In the present study, we identified the TLR1 gene from the hybrid yellow catfish, and further comparative synteny data from multiple species confirmed that the TLR1 gene is highly conserved in teleosts. Phylogenetic analysis revealed distinguishable TLR1s in diverse taxa, suggesting consistence in evolution of the TLR1 proteins with various species. Structural prediction indicated that the three-dimensional structures of TLR1 proteins are relatively conserved among different taxa. Positive selection analysis showed that purifying selection dominated the evolutionary process of TLR1s and TLR1-TIR domain in both vertebrates and invertebrates. Expression pattern analysis based on the tissue distribution showed that TLR1 mainly transcribed in the gonad, gallbladder and kidney, and the mRNA levels of TLR1 in kidney were remarkably up-regulated after Aeromonas hydrophila stimulation, indicating that TLR1 participates in the inflammatory responses to exogenous pathogen infection in hybrid yellow catfish. Homologous sequence alignment and chromosomal location indicated that the TLR signaling pathway is very conserved in the hybrid yellow catfish. The expression patterns of TLR signaling pathway related genes (TLR1- TLR2 - MyD88 - FADD - Caspase 8) were consistent after pathogen stimulation, revealing that the TLR signaling pathway is triggered and activated after A. hydrophila infection. Our findings will lay a solid foundation for better understanding the immune roles of TLR1 in teleosts, as well as provide basic data for developing strategies to control disease outbreak in hybrid yellow catfish.
Collapse
Affiliation(s)
- Shengtao Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenxue Gao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengsha Zeng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fenglin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qingzhuoma Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lei Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zesong Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanjun Jin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Peng Xiang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hanxi Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhengyong Wen
- Key Laboratory of Sichuan for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- *Correspondence: Zhengyong Wen, ; Qiong Shi, ; Zhaobin Song,
| | - Qiong Shi
- Key Laboratory of Sichuan for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- *Correspondence: Zhengyong Wen, ; Qiong Shi, ; Zhaobin Song,
| | - Zhaobin Song
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Zhengyong Wen, ; Qiong Shi, ; Zhaobin Song,
| |
Collapse
|
44
|
Feng JX, Liu L, Wang HY, Zhang J, Li XP. A soluble TLR5 is involved in PBLs activation and antibacterial immunity via TLR5M-MyD88-signaling pathway in tongue sole Cynoglossus semilaevis. Int J Biol Macromol 2023; 230:123208. [PMID: 36634796 DOI: 10.1016/j.ijbiomac.2023.123208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
In higher vertebrates, there is only a membranal TLR5 (TLR5M), which is crucial for host defense against microbes via MyD88 signaling pathway. In teleost, both TLR5M and soluble TLR5 (TLR5S) are identified, whereas the antibacterial mechanism of TLR5S is largely unknown. In this study, we studied the immune antibacterial mechanism of Cynoglossus semilaevis TLR5S homologue (named CsTLR5S). CsTLR5S, a 71.1 kDa protein, consists of 649 amino acid residues and shares 41.7 %-57.8 % overall sequence identities with teleost TLR5S homologues. CsTLR5S contains a single extracellular domain (ECD) composed of 12 leucine-rich repeats. CsTLR5S expression was constitutively identified and upregulated by bacterial infection in tissues. In vitro recombinant CsTLR5S (rCsTLR5S) could interact with bacteria and tongue sole rTLR5M (rCsTLR5M). Furthermore, rCsTLR5S could bind to the membranal CsTLR5M of peripheral blood leukocytes (PBLs), which led to enhancing the activity and the antibacterial role of PBLs via Myd88-NF-κB pathway. In vivo rCsTLR5S could activate the Myd88-NF-κB pathway, facilitate the release of proinflammatory cytokines, and enhance the host antibacterial response against Vibrio harveyi. Moreover, the knockdown of CsTLR5M or the Myd88 inhibitor could significantly suppress the antibacterial effect of rCsTLR5S. Collectively, our findings added important insights into the TLR5S immune antibacterial property in a TLR5M-MyD88-dependent manner.
Collapse
Affiliation(s)
- Ji-Xing Feng
- School of Ocean, Yantai University, Yantai, China
| | - Ling Liu
- School of Ocean, Yantai University, Yantai, China
| | - Hong-Ye Wang
- School of Ocean, Yantai University, Yantai, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China.
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
45
|
Mamilos A, Winter L, Schmitt VH, Barsch F, Grevenstein D, Wagner W, Babel M, Keller K, Schmitt C, Gürtler F, Schreml S, Niedermair T, Rupp M, Alt V, Brochhausen C. Macrophages: From Simple Phagocyte to an Integrative Regulatory Cell for Inflammation and Tissue Regeneration-A Review of the Literature. Cells 2023; 12:276. [PMID: 36672212 PMCID: PMC9856654 DOI: 10.3390/cells12020276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The understanding of macrophages and their pathophysiological role has dramatically changed within the last decades. Macrophages represent a very interesting cell type with regard to biomaterial-based tissue engineering and regeneration. In this context, macrophages play a crucial role in the biocompatibility and degradation of implanted biomaterials. Furthermore, a better understanding of the functionality of macrophages opens perspectives for potential guidance and modulation to turn inflammation into regeneration. Such knowledge may help to improve not only the biocompatibility of scaffold materials but also the integration, maturation, and preservation of scaffold-cell constructs or induce regeneration. Nowadays, macrophages are classified into two subpopulations, the classically activated macrophages (M1 macrophages) with pro-inflammatory properties and the alternatively activated macrophages (M2 macrophages) with anti-inflammatory properties. The present narrative review gives an overview of the different functions of macrophages and summarizes the recent state of knowledge regarding different types of macrophages and their functions, with special emphasis on tissue engineering and tissue regeneration.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lina Winter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Medical Center, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - David Grevenstein
- Clinic and Polyclinic for Orthopedics and Trauma Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Willi Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), 69120 Heidelberg, Germany
| | - Maximilian Babel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Karsten Keller
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christine Schmitt
- Department of Internal Medicine, St. Vincenz and Elisabeth Hospital of Mainz (KKM), 55131 Mainz, Germany
| | - Florian Gürtler
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
46
|
Zeng F, Zheng J, Shen L, Herrera-Balandrano DD, Huang W, Sui Z. Physiological mechanisms of TLR4 in glucolipid metabolism regulation: Potential use in metabolic syndrome prevention. Nutr Metab Cardiovasc Dis 2023; 33:38-46. [PMID: 36428186 DOI: 10.1016/j.numecd.2022.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Over-nourishment or an unbalanced diet has been linked to an increase in the prevalence of metabolic syndrome. An imbalance in glucolipid metabolism is a major cause of metabolic syndrome, which has consequences for human health. Toll-like receptor 4 (TLR4), a member of the innate immune pattern recognition receptor family, is involved in inflammation-related disorders, autoimmune diseases, and tumors. Recent research has shown that TLR4 plays a key role in glucolipid metabolism, which is linked to insulin resistance, intestinal flora, and the development of chronic inflammation. TLR4 activation regulates glucolipid metabolism and contributes to the dynamic relationship between innate immunity and nutrition-related disorders. Further, TLR4 regulates glucolipid metabolism by controlling glycolysis and pyruvate oxidative decarboxylation, interfering with insulin signaling, regulating adipogenic gene expression levels, influencing preadipocyte differentiation and lipid accumulation, and altering the intestinal microbiota and permeability. TLR4 functions may provide new therapeutic applications for the prevention and treatment of metabolic syndrome. The purpose of this review is to enrich mechanistic research of diabetes, atherosclerosis, and other nutrition-related disorders by summarizing the role of TLR4 in the regulation of glucolipid metabolism as well as its physiological mechanisms.
Collapse
Affiliation(s)
- Feng Zeng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Medical College, Yangzhou University, Yangzhou 225000, PR China; Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jiawei Zheng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food & Bioengineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Li Shen
- Medical College, Yangzhou University, Yangzhou 225000, PR China
| | | | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food & Bioengineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
47
|
Martins YC, Ribeiro-Gomes FL, Daniel-Ribeiro CT. A short history of innate immunity. Mem Inst Oswaldo Cruz 2023; 118:e230023. [PMID: 37162063 PMCID: PMC10168657 DOI: 10.1590/0074-02760230023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/03/2023] [Indexed: 05/11/2023] Open
Abstract
Innate immunity refers to the mechanisms responsible for the first line of defense against pathogens, cancer cells and toxins. The innate immune system is also responsible for the initial activation of the body's specific immune response (adaptive immunity). Innate immunity was studied and further developed in parallel with adaptive immunity beginning in the first half of the 19th century and has been gaining increasing importance to our understanding of health and disease. In the present overview, we describe the main findings and ideas that contributed to the development of innate immunity as a continually expanding branch of modern immunology. We start with the toxicological studies by Von Haller and Magendie, in the late 18th and early 19th centuries, and continue with the discoveries in invertebrate immunity that supported the discovery and characterization of lipopolysaccharide (LPS) and pattern recognition receptors that led to the development of the pattern recognition and danger theory.
Collapse
Affiliation(s)
- Yuri Chaves Martins
- Saint Louis University School of Medicine, Department of Anesthesiology, Saint Louis, MO, USA
| | - Flávia Lima Ribeiro-Gomes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Cláudio Tadeu Daniel-Ribeiro
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
48
|
Tian X, Nanding K, Dai X, Wang Q, Wang J, Morigen, Fan L. Pattern recognition receptor mediated innate immune response requires a Rif-dependent pathway. J Autoimmun 2023; 134:102975. [PMID: 36527784 DOI: 10.1016/j.jaut.2022.102975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Small GTPases play critical roles in cell morphology, movement, and adhesion by dynamic regulation of actin cytoskeleton. The small Rho GTPase Rif/RhoF (Rho in filopodia) regulates the formation of filopodia and stress fibers in cells. Rif is highly expressed in a number of cell types in the immune system; however, it's role in immune system function is unclear. In this research, we found that Rif expression is necessary for NF-κB activation in primary immune cells, and mature dendritic cell (mature DCs) induced from Bone Marrow-Derived Dendritic Cells (BMDCs) isolated from Rif knock out (Rif KO) mice displayed impaired degradation of I-κBα, as well as reduced TNF-α secretion and p38 MAPK phosphorylation under LPS stimulation. Interestingly, we revealed that TLR agonists, such as LPS and poly (I:C), as well as bacterial virulence factor SopE could induce a transient increase in Rif activation in monocytes THP-1 cells. Furthermore, Rif was found to be an integral part of the TLR4, TLR3 and nodosome signaling complex. We further identified Src tyrosine kinases as upstream activator of Rif in both bacterial and viral induced immune responses. Moreover, activated Rif induces activation of transcription factors, such as NF-κB, AP-1 and IRF-3, and mediates inflammation through secretion of IL-6, IL-8 or TNFα. Rif activation by PRRs contributes in a variety of ways to protective host responses against invading microbes. Taken together, this study reveals that Rif is indispensable for both extracellular and intracellular pattern-recognition receptor-mediated innate immune responses. Rif possess broad anti-pathogenic effect and understanding of the molecular mechanisms by which this small Rho GTPase interferes with innate immune system will be beneficial to develop therapies against infectious agents.
Collapse
Affiliation(s)
- Xiaoxia Tian
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China; The Laboratory for Tumor Molecular Diagnosis, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Kathleen Nanding
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China
| | - Xueyao Dai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China
| | - Qian Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China
| | - Junyu Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China
| | - Morigen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010020, PR China.
| |
Collapse
|
49
|
Sarkar A, Kumari N, Mukherjee P. The curious case of SARM1: Dr. Jekyll and Mr. Hyde in cell death and immunity? FEBS J 2023; 290:340-358. [PMID: 34710262 DOI: 10.1111/febs.16256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/21/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
Sterile alpha and toll/interleukin-1 receptor motif-containing protein 1 (SARM1) was first identified as a novel ortholog of Drosophila protein CG7915 and was subsequently placed as the fifth member of the human TIR-containing adaptor protein. SARM1 holds a unique position in this family where, unlike other members, it downregulates NFκB activity in response to immunogenic stimulation, interacts with another member of the family, TRIF, to negatively regulate its function, and it also mediates cell death responses. Over the past decade, SARM1 has emerged as one of the primary mediators of programmed axonal degeneration and this robust regulation of axonal degeneration-especially in models of peripheral neuropathy and traumatic injury-makes it an attractive target for therapeutic intervention. The TIR domain of SARM1 possesses an intrinsic NADase activity resulting in cellular energy deficits within the axons, a striking deviation from its other family members of human TLR adaptors. Interestingly, the TIR NADase activity, as seen in SARM1, is also observed in several prokaryotic TIR-containing proteins where they are involved in immune evasion once within the host. Although the immune function of SARM1 is yet to be conclusively discerned, this closeness in function with the prokaryotic TIR-domain containing proteins, places it at an interesting juncture of evolution raising questions about its origin and function in cell death and immunity. In this review, we discuss how a conserved immune adaptor protein like SARM1 switches to a pro-neurodegenerative function and the evolutionarily significance of the process.
Collapse
Affiliation(s)
- Ankita Sarkar
- School of Biotechnology, Presidency University, Kolkata, West Bengal, India
| | - Nripa Kumari
- School of Biotechnology, Presidency University, Kolkata, West Bengal, India
| | - Piyali Mukherjee
- School of Biotechnology, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
50
|
Bandow K, Smith A, Garlick J. Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) positively regulates lipopolysaccharide-induced expression of CXC chemokine ligand 10 and 11 in mouse macrophages. Biochem Biophys Res Commun 2022; 635:227-235. [DOI: 10.1016/j.bbrc.2022.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
|