1
|
Jiang T, Wang C, Zhang M, Qiao Y, Kang Z, Huang L. The Valsa mali Effector VmSR1 Accelerates the Degradation of Tudor-SN2 to Suppress RNA Silencing and Plant Immunity. MOLECULAR PLANT PATHOLOGY 2025; 26:e70097. [PMID: 40432254 PMCID: PMC12116935 DOI: 10.1111/mpp.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/20/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
The apple Valsa canker caused by Valsa mali is one of the most destructive trunk diseases in apple production and disease management. Understanding the interaction between the pathogen and host is a critical foundation for developing durable disease control technologies. In this study, we showed that VmSR1 from V. mali can suppress the plant immune response and promote pathogen infection. VmSR1 associates with the Tudor staphylococcal nuclease 2 (TSN2) proteins in Malus domestica (apple), Arabidopsis thaliana and Nicotiana benthamiana, promotes degradation of TSN2 proteins, and suppresses the abundance of multiple miRNAs an Silencing of TSN2 significantly reduced the abundance of miRNAs and weakened the resistance of apple leaves to V. mali as well as N. benthamiana to Sclerotinia sclerotiorum. These findings expand the understanding of the function of effectors as RNA silencing suppressors during host-pathogen interactions and deepen the understanding of effectors regulating host immunity.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Chengli Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Mian Zhang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life SciencesShanghai Normal UniversityShanghaiChina
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
2
|
Jiang X, Dong L, Wan R, Zeng C, Yang T. Investigation of HCPro-Mediated Ethylene Synthesis Pathway Through RNA-Seq Approaches. Viruses 2025; 17:602. [PMID: 40431615 PMCID: PMC12115982 DOI: 10.3390/v17050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
Chilli veinal mottle virus (ChiVMV) severely compromises the quality and yield of solanaceous crops. The helper component protease (HCPro) of ChiVMV functions as a multifunctional RNA silencing suppressor that subverts host antiviral defenses through diverse strategies, However, the underlying mechanisms remain mechanistically unresolved. In this study, HCPro-overexpressing (HCPro-OX) and wild-type (WT) plants were inoculated with ChiVMV to monitor the physiological and molecular changes. Transcriptome analysis identified 11,815 differentially expressed genes (DEGs) under viral infection, among which 1115 genes were specifically regulated by HCPro. KEGG enrichment analysis revealed that the DEGs were significantly associated with plant hormone signal transduction pathways, indicating their crucial role in host-virus interactions. Furthermore, functional clustering of HCPro-regulated DEGs specifically identified key components in ethylene biosynthesis pathways. GO analysis of DEGs between virus-inoculated WT and HCPro-OX plants annotated ethylene biosynthesis-related genes NtACO and NtACS. qPCR validation confirmed that the expression of ethylene biosynthesis-related genes was suppressed by HCPro. Exogenous treatments with the ethylene precursor ACC demonstrated that ethylene suppressed viral accumulation, enhanced POD activity, and reduced the ROS accumulation induced by viral infection. In conclusion, our results demonstrate that HCPro promotes viral infection by suppressing ethylene biosynthesis, which in turn attenuates peroxidase activity, leading to ROS accumulation.
Collapse
Affiliation(s)
| | | | | | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China; (X.J.)
| | - Ting Yang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan 430056, China; (X.J.)
| |
Collapse
|
3
|
Pan ZJ, Wei WL, Tran PA, Fang RY, Pham TH, Bowman JL, Chung CT, Shen BN, Yang JT, Chang HH, Jane WN, Cheng CH, Wang CC, Wu HY, Hong SF, Shang QW, Hu SF, Lin PC, Wu FH, Lin CS, Hung YL, Shen TL, Lin SS. HC-Pro inhibits HEN1 methyltransferase activity, leading to autophagic degradation of AGO1. Nat Commun 2025; 16:2503. [PMID: 40082396 PMCID: PMC11906750 DOI: 10.1038/s41467-025-56320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/14/2025] [Indexed: 03/16/2025] Open
Abstract
Helper-component proteinase (HC-Pro), encoded by potyviruses, function as viral suppressors of RNA silencing (VSRs). Despite their conserved role, HC-Pros share approximately 40% similarity, implying potential differences in VSR efficiency, particularly in their ability to inhibit HEN1 methyltransferase activity. This study investigated the inhibitory potential of HC-Pros from different potyviruses in transgenic plants. P1/HC-Pro from turnip mosaic virus (P1/HC-ProTu) exhibited the most potent inhibition of HEN1, followed by P1/HC-Pro from zucchini yellow mosaic virus (P1/HC-ProZy), while P1/HC-Pro from tobacco etch virus (P1/HC-ProTe) showed the weakest inhibitory effect. These differential effectual effects corresponded to variations in unmethylated microRNAs (unMet-miRNAs) accumulation across the transgenic lines. Fluorescence resonance energy transfer (FRET) analysis indicated that HC-ProTu recruits HEN1 and ATG8a to HC-Pro bodies (H-bodies) and indirectly associates with AGO1, potentially influencing the assembly of the RNA-induced silencing complex (RISC) and leading to the accumulation of free-form miRNA duplexes. The ability of HC-ProTu to sequester HEN1 and AGO1 in H-bodies may, therefore, modulate miRNA loading. This observation aligns with the finding that P1/HC-ProTu plants harbored approximately 50% unMet-miRNAs and exhibited the lowest AGO1 levels, suggesting a positive correlation between HEN1 inhibition and autophagic degradation of AGO1. Interestingly, unMet-miRNAs are absent in the AGO1 of P1/HC-ProTu plants but reappeared in P1/HC-ProTu/hen1-8/heso1-1 plants, accompanied by signs of AGO1 recovery. These findings highlight the functional diversity of HC-Pro VSRs and provide new insights into their differential effects on miRNA methylation, RISC assembly, and the regulation of RNA silencing pathways.
Collapse
Affiliation(s)
- Zhao-Jun Pan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wei-Lun Wei
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Phuong-Anh Tran
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ru-Ying Fang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Thanh Ha Pham
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - John L Bowman
- School of Biological Science, Monash University, Melbourne, VIC, Australia
| | - Chao-Tzu Chung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Bing-Nan Shen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ju-Ting Yang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Han-Han Chang
- Joint Center for Instruments and Researches, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chiung-Hsiang Cheng
- Joint Center for Instruments and Researches, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chia-Chi Wang
- Joint Center for Instruments and Researches, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Qian-Wen Shang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Sin-Fen Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Pin-Chun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Fu-Hui Wu
- Agriculture Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Choun-Sea Lin
- Agriculture Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ling Hung
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Tang-Long Shen
- Center of Biotechnology, National Taiwan University, Taipei, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
- Joint Center for Instruments and Researches, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
- Instrumentation Center, National Taiwan University, Taipei, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, Taiwan.
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Varghese G, Dey P, Borah M. Non-transgenic RNAi strategies for sustainable plant viral disease control: a review. Mol Biol Rep 2025; 52:293. [PMID: 40056242 DOI: 10.1007/s11033-025-10376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Viruses are a major cause of plant disease with an estimated annual economic impact of over $30 billion. They account for nearly 50% of the pathogens responsible for emerging and re-emerging plant diseases worldwide. To confer resistance against these diseases RNA interference (RNAi) technology can be employed. Designing silencing molecules like dsRNA homologous to the viral genome has been the most common non-transgenic method to induce RNAi mediated resistance in plants. dsRNAs are carefully tailored and produced considering factors such as the type of virus, target genomic region, dsRNA size, and method of application to maximise their efficiency. With the advent of new technologies like nano-platforms, a sustainable carrier can be developed to deliver these molecules, enhancing their stability and its bioavailability. This innovative technology faces regulatory debates globally and lacks legislation for commercialisation. But this is an eco-friendly alternative to conventional pesticides that can revolutionize the future of plant viral disease management, providing a bio-safe and an evergreen solution.
Collapse
Affiliation(s)
- Greeshma Varghese
- Department of Plant Pathology, Assam Agricultural University, Jorhat, 785013, India.
| | - Puja Dey
- Department of Plant Pathology, Assam Agricultural University, Jorhat, 785013, India
| | - Munmi Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, 785013, India.
| |
Collapse
|
5
|
Angira A, Yadav S, Mathur P, Baranwal VK, Ranjan A, Choudhary N. In-silico prediction of coat protein structure of Indian citrus ringspot virus and their interactions with the Argonaut2/DCL4 proteins. Virusdisease 2025; 36:31-40. [PMID: 40290773 PMCID: PMC12022189 DOI: 10.1007/s13337-024-00904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/02/2024] [Indexed: 04/30/2025] Open
Abstract
The RNA silencing mechanism is a crucial regulatory system in plants, particularly in antiviral defense. However, most of the plant viruses encode a specific protein called RNA silencing suppressor protein that suppress the RNA silencing mechanism of host. This study employs the bioinformatics tools, including SWISS homology model and I-TASSER, to predict the coat protein (CP) tertiary structure of Indian citrus ringspot virus (ICRSV). Then, five protein-protein docking servers (GRAMM, pyDockWEB, HawkDock, ZDOCK and ClusPro) were utilized to investigate interactions of CP of ICRSV with Argonaut2/Dicer-Like (DCL4) protein 4 of RNA silencing pathway of host. In blind docking experiments, the CP consistently engaged in docking interactions with DCL4, while with AGO2, it interacted near the PIWI and MID domains. The AGO2-CP cluster demonstrated 4 salt bridges, 30 hydrogen bonds, and 328 non-bonded contacts, with interface areas spanning 2529 in AGO2 and 2424 in CP, involving 50 and 51 interface residues, respectively. Similarly, the DCL4-CP cluster showed 5 hydrogen bonds and 122 non-bonded contacts, with interface areas spanning 965 in DCL4 and 987 in CP, involving 16 and 19 interface residues, respectively. The established phenomenon of CP interaction with AGO2/DCL4, may resulting in the inhibition of the RNA silencing mechanism and shedding light on the suppression mechanisms of host defense responses. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-024-00904-8.
Collapse
Affiliation(s)
- Aniket Angira
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, 201313 India
| | - Siddharth Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313 India
| | - Puniti Mathur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313 India
| | - V. K. Baranwal
- Advanced Centre of Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| | - Aashish Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Nandlal Choudhary
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, 201313 India
| |
Collapse
|
6
|
Angira A, Baranwal VK, Ranjan A, Choudhary N. Identification of an RNA silencing suppressor encoded by an Indian citrus ringspot virus. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:93-104. [PMID: 39901955 PMCID: PMC11787110 DOI: 10.1007/s12298-024-01524-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 02/05/2025]
Abstract
Plant viruses encode RNA silencing suppressor (RSS) proteins to counter the induced antiviral defense, an RNAi silencing mechanism of the host. Indian citrus ringspot virus (ICRSV) causes the ringspot disease, which leads to significant yield loss of kinnow orange. The ICRSV genome contains six open reading frames (ORFs), however, the ORF encoding the potential RSS is not yet known. In this study, we have attempted to identify the RSS protein of ICRSV. To this end, ORF 2,3,4,5 and 6 were cloned into pCAMBIA1302 (35s-GFP) vector, followed by transformation of Agrobacterium tumefaciens and agro-infiltration into leaves of Nicotiana benthamiana 16c line. Only the leaves infiltrated with 35s-GFP/ORF5 showed a GFP fluorescence signal similar to 35s-GFP/P19, a well-studied positive RSS. Usually, the induced host RNAi silencing is supposed to cleave the expressed GFP-RNA. However, it is suspected that ORF5-encoded protein was able to suppress the host silencing mechanism, leading to the retention of the GFP fluorescence signal. This finding was further supported by beta-glucuronidase (GUS) histochemical assays by infiltrating the construct expressing ORF5-GUS under 35s promoter in the leaves of N. benthamiana. Leaves infiltrated with 35s-GUS/ORF5 formed diX-indigo precipitate similar to leaves infiltrated with, indicating the RSS activity of ICRSV. Later, semi-quantitative PCR and quantitative reverse transcription PCR (qRT-PCR) assays showed a higher expression of GFP and GUS in ORF5 agro-infiltrated leaves. Together, these results suggest that ORF5 encoded protein has the potential RSS function of ICRSV which successfully suppresses host RNAi silencing mechanism.
Collapse
Affiliation(s)
- Aniket Angira
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh 201313 India
| | - V. K. Baranwal
- Division of Plant Pathology, Advanced Centre of Plant Virology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| | - Aashish Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, Delhi 110067 India
| | - Nandlal Choudhary
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh 201313 India
| |
Collapse
|
7
|
Pinczés D, Sáray R, Nemes K, Palkovics L, Salánki K. Viral coat proteins decrease the gene silencing activity of cognate and heterologous viral suppressors. Sci Rep 2024; 14:31008. [PMID: 39730715 DOI: 10.1038/s41598-024-81998-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
Plant viruses have evolved different viral suppressors of RNA silencing (VSRs) to counteract RNA silencing which is a small RNA-mediated sequence-specific RNA degradation mechanism. Previous studies have already shown that the coat protein (CP) of cucumber mosaic virus (CMV) reduced RNA silencing suppression (RSS) activity of the VSR of CMV, the 2b protein. To demonstrate the universality of this CP-VSR interference, our study included three different viruses: CMV and peanut stunt virus (PSV) from the Bromoviridae, and plum pox virus (PPV) from the Potyviridae family. The RSS activity of the three VSRs (CMV 2b, PSV 2b, and PPV HC-Pro) was compared using Agrobacterium-mediated transient expression in Nicotiana benthamiana and the effect of CMV CP, PSV CP and PPV CP was validated on the RSS activity of their cognate and heterologous VSRs as well. Furthermore, the VSRs were also evaluated in PTGS suppressor-deficient CMV mutant (CMV NVE/10-12/AAA) virus-infected plants. The joint presence of CPs and VSRs resulted in decreased RSS activity in each combination, regardless of the origin of the two proteins, suggesting a universal role of the viral CPs in fine tuning of RSS. Interestingly the PSV CP elicited the strongest negative effect on the RSS activity of all three VSRs.
Collapse
Affiliation(s)
- Dóra Pinczés
- Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Budapest, Hungary
- Doctoral School of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Budapest, Hungary
| | - Réka Sáray
- Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Budapest, Hungary
| | - Katalin Nemes
- European Union Reference Laboratory for Foodborne Viruses, Swedish Food Agency, Uppsala, Sweden
| | - László Palkovics
- Department of Plant Sciences, Albert Kázmér Faculty of Mosonmagyaróvár, Széchenyi István University, Mosonmagyaróvár, Hungary
- HUN-REN-SZE PhatoPlant-Lab, Széchenyi Isván University, Mosonmagyaróvár, Hungary
| | - Katalin Salánki
- Department of Plant Pathology, Plant Protection Institute, Centre for Agricultural Research, HUN-REN, Budapest, Hungary.
| |
Collapse
|
8
|
Yang Y, Hu L, Chen T, Zhang L, Wang D, Chen Z. Chemical and Biological Investigations of Antiviral Agents Against Plant Viruses Conducted in China in the 21st Century. Genes (Basel) 2024; 15:1654. [PMID: 39766921 PMCID: PMC11728098 DOI: 10.3390/genes15121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Research into the biology of plant viruses, their mechanisms of pathogenicity, and the induction of host resistance has laid a solid foundation for the discovery of antiviral agents and their targets and the development of effective control technologies. Additionally, recent advancements in fields such as chemical biology, cheminformatics, bioinformatics, and synthetic biology have provided valuable methods and tools for the design of antiviral drugs, the synthesis of drug molecules, assessment of their activity, and investigation of their modes of action. Compared with drug development for human viral diseases, the control of plant viral diseases presents greater challenges, including the cost-benefit of agents, simplification of control technologies, and the effectiveness of treatments. Therefore, in the current context of complex outbreaks and severe damage caused by plant viral diseases, it is crucial to delve deeper into the research and development of antiviral agents. This review provides a detailed overview of the biological characteristics of current targets for antiviral agents, the mode of interaction between plant virus targets and antivirals, and insights for future drug development. We believe this review will not only facilitate the in-depth analysis of the development of antivirals for crops but also offer valuable perspectives for the development of antiviral agents for use in human and veterinary medicine.
Collapse
Affiliation(s)
- Yuanyou Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Lei Hu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Tongtong Chen
- College of Agriculture, Guizhou University, Guiyang 550025, China;
| | - Libo Zhang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Zhuo Chen
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China; (Y.Y.); (L.H.); (L.Z.)
| |
Collapse
|
9
|
Mardanova ES, Vasyagin EA, Ravin NV. Virus-like Particles Produced in Plants: A Promising Platform for Recombinant Vaccine Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:3564. [PMID: 39771262 PMCID: PMC11678810 DOI: 10.3390/plants13243564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
The capsid proteins of many viruses are capable of spontaneous self-assembly into virus-like particles (VLPs), which do not contain the viral genome and are therefore not infectious. VLPs are structurally similar to their parent viruses and are therefore effectively recognized by the immune system and can induce strong humoral and cellular immune responses. The structural features of VLPs make them an attractive platform for the development of potential vaccines and diagnostic tools. Chimeric VLPs can be obtained by attaching foreign peptides to capsid proteins. Chimeric VLPs present multiple copies of the antigen on their surface, thereby increasing the effectiveness of the immune response. Recombinant VLPs can be produced in different expression systems. Plants are promising biofactories for the production of recombinant proteins, including VLPs. The main advantages of plant expression systems are the overall low cost and safety of plant-produced products due to the absence of pathogens common to plants and animals. This review provides an overview of the VLP platform as an approach to developing plant-produced vaccines, focusing on the use of transient expression systems.
Collapse
Affiliation(s)
| | | | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
10
|
Hamo S, Izhaki-Tavor LS, Tatineni S, Dessau M. The RNA Silencing Suppressor P8 From High Plains Wheat Mosaic Virus is a Functional Tetramer. J Mol Biol 2024; 436:168870. [PMID: 39571786 DOI: 10.1016/j.jmb.2024.168870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024]
Abstract
In plants, RNA interference (RNAi) serves as a critical defense mechanism against viral infections by regulating gene expression. However, viruses have developed RNA silencing suppressor (RSS) proteins to evade this defense mechanism. The High Plains wheat mosaic virus (HPWMoV) is responsible for the High Plains disease in wheat and produces P7 and P8 proteins, which act as RNA silencing suppressors. P8, in particular, lacks sequence similarity to known suppressors, prompting inquiries into its structure and function. Here, we present a comprehensive analysis of P8, elucidating its structure and function. Using X-ray crystallography, we resolved the full-length P8 structure at 1.9 Å resolution, revealing a tetrameric arrangement formed by two identical dimers. Through structure-based mutagenesis, biochemical assays, and functional studies in plants, we demonstrate that HPWMoV P8's RNA silencing suppression activity relies on its oligomeric state. Contrary to previous report, our findings indicate that while a P8 fused to maltose-binding protein (MBP-P8) was hypothesized to bind short double-stranded RNA, the native P8 tetramer does not interact with small interfering RNA (siRNA). This suggests an alternative mechanism for its function, yet to be determined. Our study sheds light on the structural and functional characteristics of HPWMoV P8, providing valuable insights into the complex interplay between viral suppressors and host defense mechanisms. SIGNIFICANCE STATEMENT: Effective action to address malnutrition in all its forms requires an understanding of the mechanisms affecting it. Wheat, crucial for human and animal consumption, faces threats from biotic and abiotic stresses. RNA silencing is a key defense against viral infections in plants. Plant viruses employ various mechanisms, including encoding viral RNA silencing suppression (VRS) proteins, to evade host immune responses. Despite the conservation of RNA-silencing pathways, viral RSS proteins exhibit diverse sequences, structures, and mechanisms. Our study focuses on P8, an RSS protein from HPWMoV. Understanding its structure and assembly is a crucial step toward comprehending how these viruses counteract host defenses, aiding in combatting malnutrition.
Collapse
Affiliation(s)
- Sagi Hamo
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Satyanarayana Tatineni
- USDA-ARS and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Moshe Dessau
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
11
|
Adhab M, Schoelz JE. Influence of the P6 effector protein of Cauliflower mosaic virus (CaMV) on the sustained expression and subcellular localization of the CaMV movement protein. Virology 2024; 600:110240. [PMID: 39278104 DOI: 10.1016/j.virol.2024.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
The P6 protein of cauliflower mosaic virus (CaMV) is a multifunctional protein that forms the electron dense, amorphous inclusion bodies that accumulate in the cytoplasm and has been shown to physically interact with all other CaMV proteins, including the CaMV movement protein (P1). In this study, we have investigated the subcellular localization of the P6 and P1 proteins in transient expression assays in Nicotiana benthamiana, as well as the influence of P6 on the expression and subcellular localization of P1. A version of P6 tagged with RFP was shown to envelop the endoplasmic reticulum (ER), whereas P1 tagged with RFP was shown to induce the fragmentation of the ER. Co-expression of P6 with P1 led to an enhancement of the spatial and temporal expression of P1, with a shift from expression through the plasma membrane and interior of the cell to punctate spots associated with the cell wall.
Collapse
Affiliation(s)
- Mustafa Adhab
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - James E Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
12
|
Dutta P, Lõhmus A, Ahola T, Mäkinen K. The Replicase Protein of Potato Virus X Is Able to Recognize and Trans-Replicate Its RNA Component. Viruses 2024; 16:1611. [PMID: 39459944 PMCID: PMC11512358 DOI: 10.3390/v16101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The trans-replication system explores the concept of separating the viral RNA involved in the translation of the replicase protein from the replication of the viral genome and has been successfully used to study the replication mechanisms of alphaviruses. We tested the feasibility of this system with potato virus X (PVX), an alpha-like virus, in planta. A viral RNA template was designed which does not produce the replicase and prevents virion formation but remains recognizable by the replicase. The replicase construct encodes for the replicase protein, while lacking other virus-specific recognition sequences. Both the constructs were delivered into Nicotiana benthamiana leaves via Agrobacterium-mediated infiltration. Templates of various lengths were tested, with the longer templates not replicating at 4 and 6 days post inoculation, when the replicase protein was provided in trans. Co-expression of helper component proteinase with the short template led to its trans-replication. The cells where replication had been initiated were observed to be scattered across the leaf lamina. This study established that PVX is capable of trans-replicating and can likely be further optimized, and that the experimental freedom offered by the system can be utilized to delve deeper into understanding the replication mechanism of the virus.
Collapse
Affiliation(s)
- Pinky Dutta
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Andres Lõhmus
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| | - Kristiina Mäkinen
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland;
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland; (A.L.); (T.A.)
| |
Collapse
|
13
|
Jyotika RK, Harish S, Karthikeyan G, Kumar KK, Murugan M, Jayakanthan M, Chen TC. Molecular approaches for the management of papaya ringspot virus infecting papaya: a comprehensive review. Mol Biol Rep 2024; 51:981. [PMID: 39269576 DOI: 10.1007/s11033-024-09920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Papaya ringspot virus (PRSV) is a catastrophic disease that causes huge yield losses in papaya cultivation around the world. Yield losses in severely infected plants can be upto 100%. Because of this disease, papaya cultivation has been shifted to other crops in some areas of the world. Many conventional methods and breeding approaches are used against this disease, which turns out to be less effective. Considering the yield loss caused by PRSV in papaya, it is high time to focus on alternative control methods. To implement effective management strategies, molecular approaches such as Marker Assisted Breeding (MAS) or transgenic methods involving post-transcriptional gene silencing targeting the genome viz., coat protein, replicase gene, or HC Pro can be pursued. However, the public's reluctance to widely accept the transgenic approach due to health and environmental concerns necessitates a consideration of non-transgenic alternatives. Prioritizing safety and ensuring efficient virus control, non-transgenic approaches which encompass cross-protection, genome editing, and topical applications of dsRNA to induce gene silencing within the host, can be adopted. This review aims to provide comprehensive insights of various molecular tools used in managing PRSV which in turn will help in sustainable agriculture.
Collapse
Affiliation(s)
- R K Jyotika
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - S Harish
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - G Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - K K Kumar
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - M Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - M Jayakanthan
- Department of Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Tsung-Chi Chen
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung, Taiwan, 41354
| |
Collapse
|
14
|
Malinowski R, Singh D, Kasprzewska A, Blicharz S, Basińska-Barczak A. Vascular tissue - boon or bane? How pathogens usurp long-distance transport in plants and the defence mechanisms deployed to counteract them. THE NEW PHYTOLOGIST 2024; 243:2075-2092. [PMID: 39101283 DOI: 10.1111/nph.20030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/13/2024] [Indexed: 08/06/2024]
Abstract
Evolutionary emergence of specialised vascular tissues has enabled plants to coordinate their growth and adjust to unfavourable external conditions. Whilst holding a pivotal role in long-distance transport, both xylem and phloem can be encroached on by various biotic factors for systemic invasion and hijacking of nutrients. Therefore, a complete understanding of the strategies deployed by plants against such pathogens to restrict their entry and establishment within plant tissues, is of key importance for the future development of disease-tolerant crops. In this review, we aim to describe how microorganisms exploit the plant vascular system as a route for gaining access and control of different host tissues and metabolic pathways. Highlighting several biological examples, we detail the wide range of host responses triggered to prevent or hinder vascular colonisation and effectively minimise damage upon biotic invasions.
Collapse
Affiliation(s)
- Robert Malinowski
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Deeksha Singh
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Anna Kasprzewska
- Regulation of Gene Expression Team, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Sara Blicharz
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| | - Aneta Basińska-Barczak
- Department of Integrative Plant Biology, Institute of Plant Genetics of the Polish Academy of Sciences, ul. Strzeszynska 34, Poznań, 60-479, Poland
| |
Collapse
|
15
|
Prakash V, Sharma V, Devendran R, Prajapati R, Ahmad B, Kumar R. A transition from enemies to allies: how viruses improve drought resilience in plants. STRESS BIOLOGY 2024; 4:33. [PMID: 38981936 PMCID: PMC11233480 DOI: 10.1007/s44154-024-00172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/03/2024] [Indexed: 07/11/2024]
Abstract
Global crop production is severely affected by environmental factors such as drought, salinity, cold, flood etc. Among these stresses, drought is one of the major abiotic stresses reducing crop productivity. It is expected that drought conditions will further increase because of the increasing global temperature. In general, viruses are seen as a pathogen affecting the crop productivity. However, several researches are showing that viruses can induce drought tolerance in plants. This review explores the mechanisms underlying the interplay between viral infections and the drought response mechanisms in plants. We tried to address the molecular pathways and physiological changes induced by viruses that confer drought tolerance, including alterations in hormone signaling, antioxidant defenses, scavenging the reactive oxygen species, role of RNA silencing and miRNA pathway, change in the expression of several genes including heat shock proteins, cellulose synthase etc. Furthermore, we discuss various viruses implicated in providing drought tolerance and examine the range of plant species exhibiting this phenomenon. By applying current knowledge and identifying gaps in understanding, this review aims to provide valuable insights into the complex dynamics of virus-induced drought tolerance in plants, paving the way for future research directions and practical applications in sustainable agriculture.
Collapse
Affiliation(s)
- Ved Prakash
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.
| | - Veerendra Sharma
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | | | - Ramgopal Prajapati
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Bilal Ahmad
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
16
|
Szydło W, Wosula EN, Knoell E, Hein GL, Mondal S, Tatineni S. Helper Component-Proteinase of Triticum Mosaic Virus Is a Viral Determinant of Wheat Curl Mite Transmission. PHYTOPATHOLOGY 2024; 114:1672-1679. [PMID: 38579745 DOI: 10.1094/phyto-02-24-0073-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Triticum mosaic virus (TriMV; genus Poacevirus; family Potyviridae) is an economically important virus in the Great Plains region of the United States. TriMV is transmitted by the wheat curl mite (Aceria tosichella) Type 2 genotype but not by Type 1. Helper component-proteinase (HC-Pro) is a vector transmission determinant for several potyvirids, but the role of HC-Pro in TriMV transmission is unknown. In this study, we examined the requirement of the HC-Pro cistron of TriMV for wheat curl mite (Type 2) transmission through deletion and point mutations and constructing TriMV chimeras with heterologous HC-Pros from other potyvirids. TriMV with complete deletion of HC-Pro failed to be transmitted by wheat curl mites at detectable levels. Furthermore, TriMV chimeras with heterologous HC-Pros from aphid-transmitted turnip mosaic virus and tobacco etch virus, or wheat curl mite-transmitted wheat streak mosaic virus, failed to be transmitted by wheat curl mites. These data suggest that heterologous HC-Pros did not complement TriMV for wheat curl mite transmission. A decreasing series of progressive nested in-frame deletions at the N-terminal region of HC-Pro comprising amino acids 3 to 125, 3 to 50, 3 to 25, 3 to 15, 3 to 8, and 3 and 4 abolished TriMV transmission by wheat curl mites. Additionally, mutation of conserved His20, Cys49, or Cys52 to Ala in HC-Pro abolished TriMV transmissibility by wheat curl mites. These data suggest that the N-terminal region of HC-Pro is crucial for TriMV transmission by wheat curl mites. Collectively, these data demonstrate that the HC-Pro cistron of TriMV is a viral determinant for wheat curl mite transmission.
Collapse
Affiliation(s)
- Wiktoria Szydło
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
- Center for Advanced Technology and Population Ecology Lab, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Everlyne N Wosula
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Elliot Knoell
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Gary L Hein
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Shaonpius Mondal
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68503, U.S.A
| | - Satyanarayana Tatineni
- U.S. Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A
| |
Collapse
|
17
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
18
|
Lukhovitskaya N, Brown K, Hua L, Pate AE, Carr JP, Firth AE. A novel ilarvirus protein CP-RT is expressed via stop codon readthrough and suppresses RDR6-dependent RNA silencing. PLoS Pathog 2024; 20:e1012034. [PMID: 38814986 PMCID: PMC11166343 DOI: 10.1371/journal.ppat.1012034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Wang GD, Lin CC, Chen TC. Development of Attenuated Viruses for Effective Protection against Pepper Veinal Mottle Virus in Tomato Crops. Viruses 2024; 16:687. [PMID: 38793569 PMCID: PMC11125906 DOI: 10.3390/v16050687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Tomato (Solanum lycopersicum) is the most important vegetable and fruit crop in the family Solanaceae worldwide. Numerous pests and pathogens, especially viruses, severely affect tomato production, causing immeasurable market losses. In Taiwan, the cultivation of tomato crops is mainly threatened by insect-borne viruses, among which pepper veinal mottle virus (PVMV) is one of the most prevalent. PVMV is a member of the genus Potyvirus of the family Potyviridae and is non-persistently transmitted by aphids. Its infection significantly reduces tomato fruit yield and quality. So far, no PVMV-resistant tomato lines are available. In this study, we performed nitrite-induced mutagenesis of the PVMV tomato isolate Tn to generate attenuated PVMV mutants. PVMV Tn causes necrotic lesions in Chenopodium quinoa leaves and severe mosaic and wilting in Nicotiana benthamiana plants. After nitrite treatment, three attenuated PVMV mutants, m4-8, m10-1, and m10-11, were selected while inducing milder responses to C. quinoa and N. benthamiana with lower accumulation in tomato plants. In greenhouse tests, the three mutants showed different degrees of cross-protection against wild-type PVMV Tn. m4-8 showed the highest protective efficacy against PVMV Tn in N. benthamiana and tomato plants, 100% and 97.9%, respectively. A whole-genome sequence comparison of PVMV Tn and m4-8 revealed that 20 nucleotide substitutions occurred in the m4-8 genome, resulting in 18 amino acid changes. Our results suggest that m4-8 has excellent potential to protect tomato crops from PVMV. The application of m4-8 in protecting other Solanaceae crops, such as peppers, will be studied in the future.
Collapse
Affiliation(s)
| | | | - Tsung-Chi Chen
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 41354, Taiwan; (G.-D.W.); (C.-C.L.)
| |
Collapse
|
20
|
Karami O, Khadem A, Rahimi A, Zagari N, Aigner S, Offringa R. Transient efflux inhibition improves plant regeneration by natural auxins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:295-303. [PMID: 38361343 DOI: 10.1111/tpj.16682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Plant genome editing and propagation are important tools in crop breeding and production. Both rely heavily on the development of efficient in vitro plant regeneration systems. Two prominent regeneration systems that are widely employed in crop production are somatic embryogenesis (SE) and de novo shoot regeneration. In many of the protocols for SE or shoot regeneration, explants are treated with the synthetic auxin analog 2,4-dichlorophenoxyacetic acid (2,4-D), since natural auxins, such as indole-3-acetic acid (IAA) or 4-chloroindole-3-acetic acid (4-Cl-IAA), are less effective or even fail to induce regeneration. Based on previous reports that 2,4-D, compared to endogenous auxins, is not effectively exported from plant cells, we investigated whether efflux inhibition of endogenous auxins could convert these auxins into efficient inducers of SE in Arabidopsis immature zygotic embryos (IZEs). We show that natural auxins and synthetic analogs thereof become efficient inducers of SE when their efflux is transiently inhibited by co-application of the auxin transport inhibitor naphthylphthalamic acid (NPA). Moreover, IZEs of auxin efflux mutants pin2 or abcb1 abcb19 show enhanced SE efficiency when treated with IAA or efflux-inhibited IAA, confirming that auxin efflux reduces the efficiency of Arabidopsis SE. Importantly, in contrast to the 2,4-D system, where only 50-60% of the embryos converted to seedlings, all SEs induced by transport-inhibited natural auxins converted to seedlings. Efflux-inhibited IAA, like 2,4-D, also efficiently induced SE from carrot suspension cells, whereas IAA alone could not, and efflux-inhibited 4-Cl-IAA significantly improved de novo shoot regeneration in Brassica napus. Our data provides new insights into the action of 2,4-D as an efficient inducer of plant regeneration but also shows that replacing this synthetic auxin for efflux-inhibited natural auxin significantly improves different types of plant regeneration, leading to a more synchronized and homogenous development of the regenerated plants.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Azadeh Khadem
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Nicola Zagari
- ENZA Zaden, Haling 1-E, 1602 DB, Enkhuizen, The Netherlands
| | - Simon Aigner
- ENZA Zaden, Haling 1-E, 1602 DB, Enkhuizen, The Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| |
Collapse
|
21
|
Wang J, Zhang Q, Tung J, Zhang X, Liu D, Deng Y, Tian Z, Chen H, Wang T, Yin W, Li B, Lai Z, Dinesh-Kumar SP, Baker B, Li F. High-quality assembled and annotated genomes of Nicotiana tabacum and Nicotiana benthamiana reveal chromosome evolution and changes in defense arsenals. MOLECULAR PLANT 2024; 17:423-437. [PMID: 38273657 DOI: 10.1016/j.molp.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/08/2024] [Accepted: 01/21/2024] [Indexed: 01/27/2024]
Abstract
Nicotiana tabacum and Nicotiana benthamiana are widely used models in plant biology research. However, genomic studies of these species have lagged. Here we report the chromosome-level reference genome assemblies for N. benthamiana and N. tabacum with an estimated 99.5% and 99.8% completeness, respectively. Sensitive transcription start and termination site sequencing methods were developed and used for accurate gene annotation in N. tabacum. Comparative analyses revealed evidence for the parental origins and chromosome structural changes, leading to hybrid genome formation of each species. Interestingly, the antiviral silencing genes RDR1, RDR6, DCL2, DCL3, and AGO2 were lost from one or both subgenomes in N. benthamiana, while both homeologs were kept in N. tabacum. Furthermore, the N. benthamiana genome encodes fewer immune receptors and signaling components than that of N. tabacum. These findings uncover possible reasons underlying the hypersusceptible nature of N. benthamiana. We developed the user-friendly Nicomics (http://lifenglab.hzau.edu.cn/Nicomics/) web server to facilitate better use of Nicotiana genomic resources as well as gene structure and expression analyses.
Collapse
Affiliation(s)
- Jubin Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330299, China
| | - Qingling Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jeffrey Tung
- Plant Gene Expression Center, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94706, USA
| | - Xi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dan Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yingtian Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Huilan Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Taotao Wang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weixiao Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bo Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Zhibing Lai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Barbara Baker
- Plant Gene Expression Center, Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94706, USA.
| | - Feng Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
22
|
Qin L, Liu H, Liu P, Jiang L, Cheng X, Li F, Shen W, Qiu W, Dai Z, Cui H. Rubisco small subunit (RbCS) is co-opted by potyvirids as the scaffold protein in assembling a complex for viral intercellular movement. PLoS Pathog 2024; 20:e1012064. [PMID: 38437247 PMCID: PMC10939294 DOI: 10.1371/journal.ppat.1012064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.
Collapse
Affiliation(s)
- Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongjun Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peilan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lu Jiang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenping Qiu
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, United States of America
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
23
|
Tatineni S, Alexander J, Kovacs F. The HC-Pro cistron of Triticum mosaic virus is dispensable for systemic infection in wheat but is required for symptom phenotype and efficient genome amplification. Virus Res 2024; 339:199277. [PMID: 38008221 PMCID: PMC10730876 DOI: 10.1016/j.virusres.2023.199277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Triticum mosaic virus (TriMV), the type species of the genus Poacevirus in the family Potyviridae, is an economically important wheat curl mite-transmitted wheat-infecting virus in the Great Plains region of the USA. In this study, the functional genomics of helper component-proteinase (HC-Pro) encoded by TriMV was examined using a reverse genetics approach. TriMV with complete deletion of HC-Pro cistron elicited systemic infection in wheat, indicating that HC-Pro cistron is dispensable for TriMV systemic infection. However, TriMV lacking HC-Pro caused delayed systemic infection with mild symptoms that resulted in little or no stunting of plants with a significant reduction in the accumulation of genomic RNA copies and coat protein (CP). Sequential deletion mutagenesis from the 5' end of HC-Pro cistron in the TriMV genome revealed that deletions within amino acids 3 to 25, except for amino acids 3 and 4, elicited mild symptoms with reduced accumulation of genomic RNA and CP. Surprisingly, TriMV with deletion of amino acids 3 to 50 or 3 to 125 in HC-Pro elicited severe symptoms with a substantial increase in genomic RNA copies but a drastic reduction in CP accumulation. Additionally, TriMV with heterologous HC-Pro from other potyvirids produced symptom phenotype and genomic RNA accumulation similar to that of TriMV without HC-Pro, suggesting that HC-Pros of other potyvirids were not effective in complementing TriMV in wheat. Our data indicate that HC-Pro is expendable for replication of TriMV but is required for efficient viral genomic RNA amplification and symptom development. The availability of TriMV with various deletions in the HC-Pro cistron will facilitate the examination of the requirement of HC-Pro for wheat curl mite transmission.
Collapse
Affiliation(s)
- Satyanarayana Tatineni
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| | - Jeffrey Alexander
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Frank Kovacs
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE 68849, USA
| |
Collapse
|
24
|
Xue M, Arvy N, German‐Retana S. The mystery remains: How do potyviruses move within and between cells? MOLECULAR PLANT PATHOLOGY 2023; 24:1560-1574. [PMID: 37571979 PMCID: PMC10632792 DOI: 10.1111/mpp.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The genus Potyvirus is considered as the largest among plant single-stranded (positive-sense) RNA viruses, causing considerable economic damage to vegetable and fruit crops worldwide. Through the coordinated action of four viral proteins and a few identified host factors, potyviruses exploit the endomembrane system of infected cells for their replication and for their intra- and intercellular movement to and through plasmodesmata (PDs). Although a significant amount of data concerning potyvirus movement has been published, no synthetic review compiling and integrating all information relevant to our current understanding of potyvirus transport is available. In this review, we highlight the complexity of potyvirus movement pathways and present three potential nonexclusive mechanisms based on (1) the use of the host endomembrane system to produce membranous replication vesicles that are targeted to PDs and move from cell to cell, (2) the movement of extracellular viral vesicles in the apoplasm, and (3) the transport of virion particles or ribonucleoprotein complexes through PDs. We also present and discuss experimental data supporting these different models as well as the aspects that still remain mostly speculative.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Sylvie German‐Retana
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| |
Collapse
|
25
|
Karami O, de Jong H, Somovilla VJ, Villanueva Acosta B, Sugiarta AB, Ham M, Khadem A, Wennekes T, Offringa R. Structure-activity relationship of 2,4-D correlates auxinic activity with the induction of somatic embryogenesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1355-1369. [PMID: 37647363 DOI: 10.1111/tpj.16430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is a synthetic analogue of the plant hormone auxin that is commonly used in many in vitro plant regeneration systems, such as somatic embryogenesis (SE). Its effectiveness in inducing SE, compared to the natural auxin indole-3-acetic acid (IAA), has been attributed to the stress triggered by this compound rather than its auxinic activity. However, this hypothesis has never been thoroughly tested. Here we used a library of forty 2,4-D analogues to test the structure-activity relationship with respect to the capacity to induce SE and auxinic activity in Arabidopsis thaliana. Four analogues induced SE as effectively as 2,4-D and 13 analogues induced SE but were less effective. Based on root growth inhibition and auxin response reporter expression, the 2,4-D analogues were classified into different groups, ranging from very active to not active auxin analogues. A halogen at the 4-position of the aromatic ring was important for auxinic activity, whereas a halogen at the 3-position resulted in reduced activity. Moreover, a small substitution at the carboxylate chain was tolerated, as was extending the carboxylate chain with an even number of carbons. The auxinic activity of most 2,4-D analogues was consistent with their simulated TIR1-Aux/IAA coreceptor binding characteristics. A strong correlation was observed between SE induction efficiency and auxinic activity, which is in line with our observation that 2,4-D-induced SE and stress both require TIR1/AFB auxin co-receptor function. Our data indicate that the stress-related effects triggered by 2,4-D and considered important for SE induction are downstream of auxin signalling.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Victor J Somovilla
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Beatriz Villanueva Acosta
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Aldo Bryan Sugiarta
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Marvin Ham
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Azadeh Khadem
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| |
Collapse
|
26
|
Zhao Y, Yang S, Jiang L, Yang Q, Luo L, Jiang J, Malichan S, Zhao J, Xie X. Pitaya Virus X Coat Protein Acts as an RNA Silencing Suppressor and Can Be Used as a Specific Target for Detection Using RT-LAMP. PLANT DISEASE 2023; 107:3378-3382. [PMID: 37079007 DOI: 10.1094/pdis-11-22-2570-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Selenicereus undatus (Haworth) D.R. Hunt (pitaya) is a tropical fruit that has been commonly cultivated in Guizhou Province, China, in recent years due to its good taste and high nutritional value. This planting area currently ranks third in China. Viral diseases have increasingly emerged in pitaya cultivation because of the expansion of the pitaya planting area and the characteristics of asexual propagation. The spread of pitaya virus X (PiVX; a Potexvirus) is among the most severe viruses threatening the quality and yield of pitaya fruit. To investigate the occurrence of PiVX in pitaya cultivations in Guizhou Province, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method that can detect PiVX with high sensitivity and specificity at a low cost and produce a visualized result. Our best RT-LAMP system was significantly more sensitive than RT-PCR and was highly specific to PiVX. Furthermore, PiVX coat protein (CP) can form a homodimer, and PiVX may use its CP as a plant RNA silencing suppressor to enhance infection. To the best of our knowledge, this is the first report of fast detection of PiVX and functional exploration of CP in a Potexvirus. These findings will provide an opportunity for early diagnosis and prevention of viruses in pitaya.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Shutong Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Ling Jiang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Qian Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Liting Luo
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, P.R. China
| | - Srihunsa Malichan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok 10900, Thailand
| | - Jin Zhao
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, P.R. China
| |
Collapse
|
27
|
Berbati M, Kaldis A, Voloudakis A. Efficient artificial microRNA-mediated resistance against zucchini yellow mosaic virus in zucchini via agroinfiltration. J Virol Methods 2023; 321:114805. [PMID: 37673287 DOI: 10.1016/j.jviromet.2023.114805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) infects cucurbits causing yellow mosaic in leaves, malformations in fruits, and degradation of the product quality. RNA interference (RNAi) is a cellular mechanism in eukaryotes and it is exploited to protect them against viruses. The artificial micro RNA (amiRNA) mediated approach was employed to develop resistance against ZYMV. Four amiRNAs, amiZYMV_HC-115s and amiZYMV_HC-1162s (sense), amiZYMV_HC-182as and amiZYMV_HC-196as (antisense), were computationally designed and introduced into the AtMIR390a backbone. At four days post agroinfiltration (dpa) of zucchini cotyledons the corresponding pre- and the mature amiRNAs were identified in local tissue. Upon ZYMV inoculation of zucchini, ZYMV titer was significantly lower where amiZYMV_HCs were applied in relation to control starting at two days post inoculation (dpi). Control zucchini plants exhibited symptoms at 5-8 dpi, whereas the amiZYMV_HC-treated zucchini had symptoms at 14 dpi; at 21 dpi treated zucchini exhibited a 16 %, 19 %, 32 %, and 42.5 % protection, respectively. For luffa, we observed a lower protection (0 %, 17 %, 22.5 %, and 31 % at 21 dpi). Nicotiana benthamiana DCL4 knock-down mutants were infected by ZYMV, whereas when the amiZYMV_HC-196as was agroinfiltrated ZYMV was not detected by RT-PCR. These results indicate that amiRNA-mediated resistance could be applied against ZYMV in zucchini.
Collapse
Affiliation(s)
- Margarita Berbati
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Athens 11855, Greece
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Athens 11855, Greece
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Athens 11855, Greece.
| |
Collapse
|
28
|
López-Márquez D, Del-Espino Á, Ruiz-Albert J, Bejarano ER, Brodersen P, Beuzón CR. Regulation of plant immunity via small RNA-mediated control of NLR expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6052-6068. [PMID: 37449766 PMCID: PMC10575705 DOI: 10.1093/jxb/erad268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Plants use different receptors to detect potential pathogens: membrane-anchored pattern recognition receptors (PRRs) activated upon perception of pathogen-associated molecular patterns (PAMPs) that elicit pattern-triggered immunity (PTI); and intracellular nucleotide-binding leucine-rich repeat proteins (NLRs) activated by detection of pathogen-derived effectors, activating effector-triggered immunity (ETI). The interconnections between PTI and ETI responses have been increasingly reported. Elevated NLR levels may cause autoimmunity, with symptoms ranging from fitness cost to developmental arrest, sometimes combined with run-away cell death, making accurate control of NLR dosage key for plant survival. Small RNA-mediated gene regulation has emerged as a major mechanism of control of NLR dosage. Twenty-two nucleotide miRNAs with the unique ability to trigger secondary siRNA production from target transcripts are particularly prevalent in NLR regulation. They enhance repression of the primary NLR target, but also bring about repression of NLRs only complementary to secondary siRNAs. We summarize current knowledge on miRNAs and siRNAs in the regulation of NLR expression with an emphasis on 22 nt miRNAs and propose that miRNA and siRNA regulation of NLR levels provides additional links between PTI and NLR defense pathways to increase plant responsiveness against a broad spectrum of pathogens and control an efficient deployment of defenses.
Collapse
Affiliation(s)
- Diego López-Márquez
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Ángel Del-Espino
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| | - Peter Brodersen
- Department of Biology, University of Copenhagen, Copenhagen N, DK-2200, Denmark
| | - Carmen R Beuzón
- Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Depto. Biología Celular, Genética y Fisiología, Málaga, Spain
| |
Collapse
|
29
|
Zhang K, Gu T, Xu X, Gan H, Qin L, Feng C, He Z. Sugarcane streak mosaic virus P1 protein inhibits unfolded protein response through direct suppression of bZIP60U splicing. PLoS Pathog 2023; 19:e1011738. [PMID: 37883577 PMCID: PMC10697598 DOI: 10.1371/journal.ppat.1011738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/05/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
The unfolded protein response (UPR) is a cell-designated strategy that maintains the balance of protein folding in the endoplasmic reticulum (ER). UPR features a network of signal transduction pathways that reprogram the transcription, mRNA translation, and protein post-translational modification to relieve the ER stresses from unfolded/misfolded proteins. Infection with plant viruses can induce the UPR, and activated UPR often promotes plant viral infections in turn. However, the mechanism used by plant viruses to balance UPR and achieve robust infection remain largely unknown. In this study, P1SCSMV was identified as a virus-encoded RNA silencing suppressor (VSR). Heterologous overexpression of P1SCSMV via potato virus X (PVX) was found lead to programmed cell death (PCD) in Nicotiana benthamiana. Furthermore, P1SCSMV was also found to inhibit the PVX infection-triggered UPR by downregulating UPR-related genes and directly induced the distortion and collapse of the ER polygonal meshes on PVX-P1SCSMV infected N. benthamiana. Moreover, self-interaction, VSR activity, UPR inhibition, and cell death phenotype of P1SCSMV were also found to be dependent on its bipartite nuclear localization signal (NLS) (251RKRKLFPRIPLK262). P1SCSMV was found to directly bind to the stem-loop region of NbbZIP60U via its NLS and inhibit the UPR pathways, ultimately resulting in a PCD phenotype in PVX-P1SCSMV infected N. benthamiana leaves. This study also revealed the balancing role of potyviruses encoded P1SCSMV in the UPR pathway to achieve robust viral infection. This may represent a novel virulence strategy for plant viruses.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, P. R. China
| | - Tianxiao Gu
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Xiaowei Xu
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Haifeng Gan
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Lang Qin
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Chenwei Feng
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
| | - Zhen He
- Department of Plant Pathology, College of Plant protection, Yangzhou University, Yangzhou, Jiangsu Province, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P. R. China
| |
Collapse
|
30
|
Tran TNB, Cheng HW, Xie XY, Raja JAJ, Yeh SD. Concurrent Control of Two Aphid-Borne Potyviruses in Cucurbits by Two-in-One Vaccine. PHYTOPATHOLOGY 2023; 113:1583-1594. [PMID: 36935377 DOI: 10.1094/phyto-01-23-0019-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The application of attenuated viruses has been widely practiced for protecting crops from infection by related severe strains of the same species. Papaya ringspot virus W-type (PRSV W) and zucchini yellow mosaic virus (ZYMV) devastate cucurbits worldwide. However, the prevailing of these two viruses in cucurbits cannot be prevented by a single protective virus. In this study, we disclosed that co-infection of horn melon plants by two mild strains, PRSV P-type (PRSV P) HA5-1 and ZYMV-ZAC (a previously developed mild mutant of ZYMV) confers concurrent protection against PRSV P and ZYMV. Consequently, mild mutants of PRSV W were created by site-directed mutagenesis through modifications of the pathogenicity motifs FRNK and PD in helper component-protease (HC-Pro). A stable PRSV W mutant WAC (PRSV-WAC) with R181I and D397N mutations in HC-Pro was generated, inducing mild mottling, followed by symptomless recovery in cucurbits. Horn melon plants pre-infected by PRSV-WAC and ZYMV-ZAC showed no apparent interference on viral accumulation with no synergistic effects on symptoms. An agroinfiltration assay of mixed HC-Pros of WACHC-Pro + ZACHC-Pro revealed no additive effect of RNA silencing suppression. PRSV-WAC or ZYMV-ZAC alone only antagonized a severe strain of homologous virus, while co-infection with these two mild strains provided complete protection against both PRSV W and ZYMV. Similar results were reproduced in muskmelon and watermelon plants, indicating the feasibility of a two-in-one vaccine for concurrent control of PRSV W and ZYMV in cucurbits.
Collapse
Affiliation(s)
- Thi-Ngoc-Bich Tran
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Faculty of Agronomy, Nong Lam University-Ho Chi Minh City, Viet Nam
| | - Hao-Wen Cheng
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Xing-Yun Xie
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Joseph A J Raja
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Vietnam Overseas Agricultural Science and Technology Innovation Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| |
Collapse
|
31
|
Liu S, Han Y, Li WX, Ding SW. Infection Defects of RNA and DNA Viruses Induced by Antiviral RNA Interference. Microbiol Mol Biol Rev 2023; 87:e0003522. [PMID: 37052496 PMCID: PMC10304667 DOI: 10.1128/mmbr.00035-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Immune recognition of viral genome-derived double-stranded RNA (dsRNA) molecules and their subsequent processing into small interfering RNAs (siRNAs) in plants, invertebrates, and mammals trigger specific antiviral immunity known as antiviral RNA interference (RNAi). Immune sensing of viral dsRNA is sequence-independent, and most regions of viral RNAs are targeted by virus-derived siRNAs which extensively overlap in sequence. Thus, the high mutation rates of viruses do not drive immune escape from antiviral RNAi, in contrast to other mechanisms involving specific virus recognition by host immune proteins such as antibodies and resistance (R) proteins in mammals and plants, respectively. Instead, viruses actively suppress antiviral RNAi at various key steps with a group of proteins known as viral suppressors of RNAi (VSRs). Some VSRs are so effective in virus counter-defense that potent inhibition of virus infection by antiviral RNAi is undetectable unless the cognate VSR is rendered nonexpressing or nonfunctional. Since viral proteins are often multifunctional, resistance phenotypes of antiviral RNAi are accurately defined by those infection defects of VSR-deletion mutant viruses that are efficiently rescued by host deficiency in antiviral RNAi. Here, we review and discuss in vivo infection defects of VSR-deficient RNA and DNA viruses resulting from the actions of host antiviral RNAi in model systems.
Collapse
Affiliation(s)
- Si Liu
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Yanhong Han
- Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wan-Xiang Li
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Shou-Wei Ding
- Department of Microbiology & Plant Pathology, University of California, Riverside, California, USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| |
Collapse
|
32
|
Koeppe S, Kawchuk L, Kalischuk M. RNA Interference Past and Future Applications in Plants. Int J Mol Sci 2023; 24:ijms24119755. [PMID: 37298705 DOI: 10.3390/ijms24119755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Antisense RNA was observed to elicit plant disease resistance and post-translational gene silencing (PTGS). The universal mechanism of RNA interference (RNAi) was shown to be induced by double-stranded RNA (dsRNA), an intermediate produced during virus replication. Plant viruses with a single-stranded positive-sense RNA genome have been instrumental in the discovery and characterization of systemic RNA silencing and suppression. An increasing number of applications for RNA silencing have emerged involving the exogenous application of dsRNA through spray-induced gene silencing (SIGS) that provides specificity and environmentally friendly options for crop protection and improvement.
Collapse
Affiliation(s)
- Sarah Koeppe
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada
| | - Lawrence Kawchuk
- Research Centre, Agriculture and Agri-Food Canada, 5403 1 Ave S., Lethbridge, AB T1J 4B1, Canada
| | - Melanie Kalischuk
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada
| |
Collapse
|
33
|
Hu W, Dai Z, Liu P, Deng C, Shen W, Li Z, Cui H. The Single Distinct Leader Protease Encoded by Alpinia oxyphylla Mosaic Virus (Genus Macluravirus) Suppresses RNA Silencing Through Interfering with Double-Stranded RNA Synthesis. PHYTOPATHOLOGY 2023; 113:1103-1114. [PMID: 36576401 DOI: 10.1094/phyto-10-22-0371-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The genomic 5'-terminal regions of viruses in the family Potyviridae (potyvirids) encode two types of leader proteases: serine-protease (P1) and cysteine-protease (HCPro), which differ greatly in the arrangement and sequence composition among inter-genus viruses. Most potyvirids have the same tandemly arranged P1 and HCPro, whereas viruses in the genus Macluravirus encode a single distinct leader protease, a truncated version of HCPro with yet-unknown functions. We investigated the RNA silencing suppression (RSS) activity and its underpinning mechanism of the distinct HCPro from alpinia oxyphylla mosaic macluravirus (aHCPro). Sequence analysis revealed that macluraviral HCPros have obvious truncations in the N-terminal and middle regions when aligned to their counterparts in potyviruses (well-characterized viral suppressors of RNA silencing). Nearly all defined elements essential for the RSS activity of potyviral counterparts are not distinguished in macluraviral HCPros. Here, we demonstrated that aHCPro exhibits a similar anti-silencing activity with the potyviral counterpart. However, aHCPro fails to block both the local and systemic spreading of RNA silencing. In line, aHCPro interferes with the dsRNA synthesis, an upstream step in the RNA silencing pathway. Affinity-purification and NanoLC-MS/MS analysis revealed that aHCPro has no association with core components or their potential interactors involving in dsRNA synthesis from the protein layer. Instead, the ectopic expression of aHCPro significantly reduces the transcript abundance of RDR2, RDR6, SGS3, and SDE5. This study represents the first report on the anti-silencing function of Macluravirus-encoded HCPro and the underlying molecular mechanism.
Collapse
Affiliation(s)
- Weiyao Hu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Zhaoji Dai
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Peilan Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Changhui Deng
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Zengping Li
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| | - Hongguang Cui
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and College of Plant Protection, Hainan University, Haikou, Hainan, 570228, China
| |
Collapse
|
34
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
35
|
Chase O, Javed A, Byrne MJ, Thuenemann EC, Lomonossoff GP, Ranson NA, López-Moya JJ. CryoEM and stability analysis of virus-like particles of potyvirus and ipomovirus infecting a common host. Commun Biol 2023; 6:433. [PMID: 37076658 PMCID: PMC10115852 DOI: 10.1038/s42003-023-04799-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Sweet potato feathery mottle virus (SPFMV) and Sweet potato mild mottle virus (SPMMV) are members of the genera Potyvirus and Ipomovirus, family Potyviridae, sharing Ipomoea batatas as common host, but transmitted, respectively, by aphids and whiteflies. Virions of family members consist of flexuous rods with multiple copies of a single coat protein (CP) surrounding the RNA genome. Here we report the generation of virus-like particles (VLPs) by transient expression of the CPs of SPFMV and SPMMV in the presence of a replicating RNA in Nicotiana benthamiana. Analysis of the purified VLPs by cryo-electron microscopy, gave structures with resolutions of 2.6 and 3.0 Å, respectively, showing a similar left-handed helical arrangement of 8.8 CP subunits per turn with the C-terminus at the inner surface and a binding pocket for the encapsidated ssRNA. Despite their similar architecture, thermal stability studies reveal that SPMMV VLPs are more stable than those of SPFMV.
Collapse
Affiliation(s)
- Ornela Chase
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - Abid Javed
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Fermi Ave, Didcot, Oxfordshire, OX11 0DE, UK
| | - Eva C Thuenemann
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - George P Lomonossoff
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
36
|
Ding SW. Transgene Silencing, RNA Interference, and the Antiviral Defense Mechanism Directed by Small Interfering RNAs. PHYTOPATHOLOGY 2023; 113:616-625. [PMID: 36441873 DOI: 10.1094/phyto-10-22-0358-ia] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One important discovery in plant pathology over recent decades is the natural antiviral defense mechanism mediated by RNA interference (RNAi). In antiviral RNAi, virus infection triggers Dicer processing of virus-specific double-stranded RNA into small interfering RNAs (siRNAs). Frequently, further amplified by host enzyme and cofactors, these virus-derived siRNAs direct specific virus clearance in an Argonaute protein-containing effector complex. The siRNAs derived from viruses and viroids accumulate to very high levels during infection. Because they overlap extensively in nucleotide sequence, this allows for deep sequencing and bioinformatics assembly of total small RNAs for rapid discovery and identification of viruses and viroids. Antiviral RNAi acts as the primary defense mechanism against both RNA and DNA viruses in plants, yet viruses still successfully infect plants. They do so because all currently recognized plant viruses combat the RNAi response by encoding at least one protein as a viral suppressor of RNAi (VSR) required for infection, even though plant viruses have small genome sizes with a limited coding capacity. This review article will recapitulate the key findings that have revealed the genetic pathway for the biogenesis and antiviral activity of viral siRNAs and the specific role of VSRs in infection by antiviral RNAi suppression. Moreover, early pioneering studies on transgene silencing, RNAi, and virus-plant/virus-virus interactions paved the road to the discovery of antiviral RNAi.
Collapse
Affiliation(s)
- Shou-Wei Ding
- Department of Microbiology & Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA
| |
Collapse
|
37
|
Silencing suppressor protein PRT of rice tungro bacilliform virus interacts with the plant RNA silencing-related protein SGS3. Virology 2023; 581:71-80. [PMID: 36921478 DOI: 10.1016/j.virol.2023.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Rice tungro bacilliform virus (RTBV) is a double stranded DNA containing virus which causes the devastating tungro disease of rice in association with an RNA virus, rice tungro spherical virus. RNA silencing is an evolutionarily conserved antiviral defence pathway in plants as well as in several classes of higher organisms. Many viruses, in turn, encode proteins which are termed Viral Suppressor of RNA Silencing (VSR) because they downregulate or suppress RNA silencing. RESULTS Using an RNA silencing suppressor assay we show that RTBV protease (PRT) acts as a mild VSR. A truncated version of PRT gene abolished the silencing suppression activity. We also show in planta interaction of PRT with the SGS3 protein of Solanum tuberosum and Arabidopsis thaliana using bimolecular fluorescence complementation assay (BIFC). Transient expression of PRT in Nicotiana benthamiana caused an increased accumulation of the begomovirus Sri Lankan cassava mosaic virus (SLCMV) DNA-A, which indicated a virulence function imparted on an unrelated virus. CONCLUSION The finding supports the idea that PRT acts as suppressor of RNA silencing and this action may be mediated by its interaction with SGS3.
Collapse
|
38
|
Grapevine red blotch virus C2 and V2 are suppressors of post-transcriptional gene silencing. Heliyon 2023; 9:e14528. [PMID: 36967958 PMCID: PMC10033742 DOI: 10.1016/j.heliyon.2023.e14528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Grapevine red blotch virus (GRBV) is the causative agent of grapevine red blotch disease (GRBD) which is one of the major threats faced by grapevine industry in the United States. Since its initial identification in 2011, the disease has rapidly spread in the major US grape-growing regions of the Pacific Northwest, causing major economic impacts. Geminiviruses, the largest family of plant viruses, can induce and be targeted by host post-transcriptional gene-silencing (PTGS) anti-viral mechanisms. As a counter-defense mechanism, viruses have evolved viral silencing suppressor proteins to combat PTGS mechanisms and establish a successful infection in host plants. Here we provide characterization of two ORFs of GRBV, C2 and V2 as viral silencing suppressors. In Nicotiana benthamiana line 16c GFP marker plants, synergism or additive effects of C2 and V2 suppressors was observed at the mRNA level when they are expressed together transiently. Additionally, we showed there is no evidence by yeast two-hybrid of self-interaction (dimerization) of C2 or V2 proteins, and no evidence of physical interaction between these two suppressors.
Collapse
|
39
|
A Zinc Finger Motif in the P1 N Terminus, Highly Conserved in a Subset of Potyviruses, Is Associated with the Host Range and Fitness of Telosma Mosaic Virus. J Virol 2023; 97:e0144422. [PMID: 36688651 PMCID: PMC9972955 DOI: 10.1128/jvi.01444-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
P1 is the first protein translated from the genomes of most viruses in the family Potyviridae, and it contains a C-terminal serine-protease domain that cis-cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus Potyvirus) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif. Further analysis revealed that at least 14 different potyviruses, mostly belonging to the bean common mosaic virus subgroup, encode a domain equivalent to N1. Using the newly developed TelMV infectious cDNA clones from passion fruit, we demonstrated that N1, but not N2, is crucial for viral infection in both Nicotiana benthamiana and passion fruit. The regulatory effects of N1 domain on P1 cis cleavage, as well as the accumulation and RNA silencing suppression (RSS) activity of its cognate HCPro, were comprehensively investigated. We found that N1 deletion decreases HCPro abundance at the posttranslational level, likely by impairing P1 cis cleavage, thus reducing HCPro-mediated RSS activity. Remarkably, disruption of the Zn finger motif in N1 did not impair P1 cis cleavage and HCPro accumulation but severely debilitated TelMV fitness. Therefore, our results suggest that the Zn finger motif in P1s plays a critical role in viral infection that is independent of P1 protease activity and self-release, as well as HCPro accumulation and silencing suppression. IMPORTANCE Viruses belonging to the family Potyviridae represent the largest group of plant-infecting RNA viruses, including a variety of agriculturally and economically important viral pathogens. Like all picorna-like viruses, potyvirids employ polyprotein processing as the gene expression strategy. P1, the first protein translated from most potyvirid genomes, is the most variable viral factor and has attracted great scientific interest. Here, we defined a Zn finger motif-encompassing domain (N1) at the N terminus of P1 among diverse potyviruses phylogenetically related to bean common mosaic virus. Using TelMV as a model virus, we demonstrated that the N1 domain is key for viral infection, as it is involved both in regulating the abundance of its cognate HCPro and in an as-yet-undefined key function unrelated to protease processing and RNA silencing suppression. These results advance our knowledge of the hypervariable potyvirid P1s and highlight the importance for infection of a previously unstudied Zn finger domain at the P1 N terminus.
Collapse
|
40
|
Hong SF, Fang RY, Wei WL, Jirawitchalert S, Pan ZJ, Hung YL, Pham TH, Chiu YH, Shen TL, Huang CK, Lin SS. Development of an assay system for the analysis of host RISC activity in the presence of a potyvirus RNA silencing suppressor, HC-Pro. Virol J 2023; 20:10. [PMID: 36650505 PMCID: PMC9844029 DOI: 10.1186/s12985-022-01956-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/18/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND To investigate the mechanism of RNA silencing suppression, the genetic transformation of viral suppressors of RNA silencing (VSRs) in Arabidopsis integrates ectopic VSR expression at steady state, which overcomes the VSR variations caused by different virus infections or limitations of host range. Moreover, identifying the insertion of the transgenic VSR gene is necessary to establish a model transgenic plant for the functional study of VSR. METHODS Developing an endogenous AGO1-based in vitro RNA-inducing silencing complex (RISC) assay prompts further investigation into VSR-mediated suppression. Three P1/HC-Pro plants from turnip mosaic virus (TuMV) (P1/HC-ProTu), zucchini yellow mosaic virus (ZYMV) (P1/HC-ProZy), and tobacco etch virus (TEV) (P1/HC-ProTe) were identified by T-DNA Finder and used as materials for investigations of the RISC cleavage efficiency. RESULTS Our results indicated that the P1/HC-ProTu plant has slightly lower RISC activity than P1/HC-ProZy plants. In addition, the phenomena are consistent with those observed in TuMV-infected Arabidopsis plants, which implies that HC-ProTu could directly interfere with RISC activity. CONCLUSIONS In this study, we demonstrated the application of various plant materials in an in vitro RISC assay of VSR-mediated RNA silencing suppression.
Collapse
Affiliation(s)
- Syuan-Fei Hong
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Ru-Ying Fang
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Wei-Lun Wei
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Supidcha Jirawitchalert
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Zhao-Jun Pan
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Yu-Ling Hung
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Thanh Ha Pham
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Yen-Hsin Chiu
- grid.19188.390000 0004 0546 0241Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan ,grid.453140.70000 0001 1957 0060Seed Improvement and Propagation Station, Council of Agriculture, Taichung, 427 Taiwan
| | - Tang-Long Shen
- grid.19188.390000 0004 0546 0241Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106 Taiwan ,grid.19188.390000 0004 0546 0241Center of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Chien-Kang Huang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, 106, Taiwan.
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan. .,Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
41
|
Akbarimotlagh M, Azizi A, Shams-Bakhsh M, Jafari M, Ghasemzadeh A, Palukaitis P. Critical points for the design and application of RNA silencing constructs for plant virus resistance. Adv Virus Res 2023; 115:159-203. [PMID: 37173065 DOI: 10.1016/bs.aivir.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Control of plant virus diseases is a big challenge in agriculture as is resistance in plant lines to infection by viruses. Recent progress using advanced technologies has provided fast and durable alternatives. One of the most promising techniques against plant viruses that is cost-effective and environmentally safe is RNA silencing or RNA interference (RNAi), a technology that could be used alone or along with other control methods. To achieve the goals of fast and durable resistance, the expressed and target RNAs have been examined in many studies, with regard to the variability in silencing efficiency, which is regulated by various factors such as target sequences, target accessibility, RNA secondary structures, sequence variation in matching positions, and other intrinsic characteristics of various small RNAs. Developing a comprehensive and applicable toolbox for the prediction and construction of RNAi helps researchers to achieve the acceptable performance level of silencing elements. Although the attainment of complete prediction of RNAi robustness is not possible, as it also depends on the cellular genetic background and the nature of the target sequences, some important critical points have been discerned. Thus, the efficiency and robustness of RNA silencing against viruses can be improved by considering the various parameters of the target sequence and the construct design. In this review, we provide a comprehensive treatise regarding past, present and future prospective developments toward designing and applying RNAi constructs for resistance to plant viruses.
Collapse
Affiliation(s)
- Masoud Akbarimotlagh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Abdolbaset Azizi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Masoud Shams-Bakhsh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Majid Jafari
- Department of Plant Protection, Higher Education Complex of Saravan, Saravan, Iran
| | - Aysan Ghasemzadeh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Peter Palukaitis
- Department of Horticulture Sciences, Seoul Women's University, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Karami O, Philipsen C, Rahimi A, Nurillah AR, Boutilier K, Offringa R. Endogenous auxin maintains embryonic cell identity and promotes somatic embryo development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:7-22. [PMID: 36345646 PMCID: PMC10098609 DOI: 10.1111/tpj.16024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 06/12/2023]
Abstract
Somatic embryogenesis (SE), or embryo development from in vitro cultured vegetative explants, can be induced in Arabidopsis by the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) or by overexpression of specific transcription factors, such as AT-HOOK MOTIF NUCLEAR LOCALIZED 15 (AHL15). Here, we explored the role of endogenous auxin [indole-3-acetic acid (IAA)] during 2,4-D and AHL15-induced SE. Using the pWOX2:NLS-YFP reporter, we identified three distinct developmental stages for 2,4-D and AHL15-induced SE in Arabidopsis, with these being (i) acquisition of embryo identity; (ii) formation of pro-embryos; and (iii) somatic embryo patterning and development. The acquisition of embryo identity coincided with enhanced expression of the indole-3-pyruvic acid auxin biosynthesis YUCCA genes, resulting in an enhanced pDR5:GFP-reported auxin response in the embryo-forming tissues. Chemical inhibition of the indole-3-pyruvic acid pathway did not affect the acquisition of embryo identity, but significantly reduced or completely inhibited the formation of pro-embryos. Co-application of IAA with auxin biosynthesis inhibitors in the AHL15-induced SE system rescued differentiated somatic embryo formation, confirming that increased IAA levels are important during the last two stages of SE. Our analyses also showed that polar auxin transport, with AUXIN/LIKE-AUX influx and PIN-FORMED1 efflux carriers as important drivers, is required for the transition of embryonic cells to proembryos and, later, for correct cell fate specification and differentiation. Taken together, our results indicate that endogenous IAA biosynthesis and its polar transport are not required for the acquisition of embryo identity, but rather to maintain embryonic cell identity and for the formation of multicellular proembryos and their development into histodifferentiated embryos.
Collapse
Affiliation(s)
- Omid Karami
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
| | - Cheryl Philipsen
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
- Present address:
Plus ProjectsZwaardstraat 162584 TXThe HagueThe Netherlands
| | - Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
| | - Annisa Ratna Nurillah
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
- Present address:
BearingPoint CaribbeanKaya Flamboyan 7WillemstadCuraçao
| | - Kim Boutilier
- Bioscience, Wageningen University and ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenThe Netherlands
| |
Collapse
|
43
|
Bhoi TK, Samal I, Majhi PK, Komal J, Mahanta DK, Pradhan AK, Saini V, Nikhil Raj M, Ahmad MA, Behera PP, Ashwini M. Insight into aphid mediated Potato Virus Y transmission: A molecular to bioinformatics prospective. Front Microbiol 2022; 13:1001454. [PMID: 36504828 PMCID: PMC9729956 DOI: 10.3389/fmicb.2022.1001454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Potato, the world's most popular crop is reported to provide a food source for nearly a billion people. It is prone to a number of biotic stressors that affect yield and quality, out of which Potato Virus Y (PVY) occupies the top position. PVY can be transmitted mechanically and by sap-feeding aphid vectors. The application of insecticide causes an increase in the resistant vector population along with detrimental effects on the environment; genetic resistance and vector-virus control are the two core components for controlling the deadly PVY. Using transcriptomic tools together with differential gene expression and gene discovery, several loci and genes associated with PVY resistance have been widely identified. To combat this virus we must increase our understanding on the molecular response of the PVY-potato plant-aphid interaction and knowledge of genome organization, as well as the function of PVY encoded proteins, genetic diversity, the molecular aspects of PVY transmission by aphids, and transcriptome profiling of PVY infected potato cultivars. Techniques such as molecular and bioinformatics tools can identify and monitor virus transmission. Several studies have been conducted to understand the molecular basis of PVY resistance/susceptibility interactions and their impact on PVY epidemiology by studying the interrelationship between the virus, its vector, and the host plant. This review presents current knowledge of PVY transmission, epidemiology, genome organization, molecular to bioinformatics responses, and its effective management.
Collapse
Affiliation(s)
- Tanmaya Kumar Bhoi
- Forest Protection Division, ICFRE-Arid Forest Research Institute (AFRI), Jodhpur, Rajasthan, India
| | - Ipsita Samal
- Department of Entomology, Sri Sri University, Cuttack, Odisha, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India,J. Komal
| | - Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India,*Correspondence: Deepak Kumar Mahanta
| | - Asit Kumar Pradhan
- Social Science Division, ICAR-National Rice Research Institute (NRRI), Cuttack, Odisha, India
| | - Varun Saini
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - M. Nikhil Raj
- Division of Entomology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Mohammad Abbas Ahmad
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | | | - Mangali Ashwini
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| |
Collapse
|
44
|
Biswal AK, Alakonya AE, Mottaleb KA, Hearne SJ, Sonder K, Molnar TL, Jones AM, Pixley KV, Prasanna BM. Maize Lethal Necrosis disease: review of molecular and genetic resistance mechanisms, socio-economic impacts, and mitigation strategies in sub-Saharan Africa. BMC PLANT BIOLOGY 2022; 22:542. [PMID: 36418954 PMCID: PMC9686106 DOI: 10.1186/s12870-022-03932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Maize lethal necrosis (MLN) disease is a significant constraint for maize producers in sub-Saharan Africa (SSA). The disease decimates the maize crop, in some cases, causing total crop failure with far-reaching impacts on regional food security. RESULTS In this review, we analyze the impacts of MLN in Africa, finding that resource-poor farmers and consumers are the most vulnerable populations. We examine the molecular mechanism of MLN virus transmission, role of vectors and host plant resistance identifying a range of potential opportunities for genetic and phytosanitary interventions to control MLN. We discuss the likely exacerbating effects of climate change on the MLN menace and describe a sobering example of negative genetic association between tolerance to heat/drought and susceptibility to viral infection. We also review role of microRNAs in host plant response to MLN causing viruses as well as heat/drought stress that can be carefully engineered to develop resistant varieties using novel molecular techniques. CONCLUSIONS With the dual drivers of increased crop loss due to MLN and increased demand of maize for food, the development and deployment of simple and safe technologies, like resistant cultivars developed through accelerated breeding or emerging gene editing technologies, will have substantial positive impact on livelihoods in the region. We have summarized the available genetic resources and identified a few large-effect QTLs that can be further exploited to accelerate conversion of existing farmer-preferred varieties into resistant cultivars.
Collapse
Affiliation(s)
- Akshaya Kumar Biswal
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, C.P. 56237, Mexico.
| | - Amos Emitati Alakonya
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, C.P. 56237, Mexico
| | - Khondokar Abdul Mottaleb
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, C.P. 56237, Mexico
| | - Sarah J Hearne
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, C.P. 56237, Mexico
| | - Kai Sonder
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, C.P. 56237, Mexico
| | | | - Alan M Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kevin Vail Pixley
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico-Veracruz, El Batan, Texcoco, C.P. 56237, Mexico
| | | |
Collapse
|
45
|
Orchid fleck dichorhavirus movement protein shows RNA silencing suppressor activity. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To counteract RNA interference-mediated antiviral defence, virus genomes evolved to express proteins that inhibit this plant defence mechanism. Using six independent biological approaches, we show that orchid fleck dichorhavirus citrus strain (OFV-citrus) movement protein (MP) may act as a viral suppressor of RNA silencing (VSR). By using the alfalfa mosaic virus (AMV) RNA 3 expression vector, it was observed that the MP triggered necrosis response in transgenic tobacco leaves and increased the viral RNA (vRNA) accumulation. The use of the potato virus X (PVX) expression system revealed that the cis expression of MP increased both the severity of the PVX infection and the accumulation of PVX RNAs, further supporting that MP could act as an RNA silencing suppressor (RSS). From the analysis of the RSS-defective turnip crinkle virus (TCV), we do not find local RSS activity for MP, suggesting a link between MP suppressor activity and the prevention of systemic silencing. In the analysis of local suppressive activity using the GFP-based agroinfiltration assay in Nicotiana benthamiana (16 c line), we do not identify local RSS activity for the five OFV RNA1-encoded proteins. However, when evaluating the small interfering RNA (siRNA) accumulation, we find that the expression of MP significantly reduces the accumulation of GFP-derived siRNA. Finally, we examine whether the MP can prevent systemic silencing in 16c plants. Our findings show that MP inhibits the long-distance spread of RNA silencing, but does not affect the short-distance spread. Together, our findings indicate that MP is part of OFV’s counter-defence mechanism, acting mainly in the prevention of systemic long-distance silencing. This work presents the first report of a VSR for a member of the genus Dichorhavirus.
Collapse
|
46
|
Ecotype-specific blockage of tasiARF production by two different RNA viruses in Arabidopsis. PLoS One 2022; 17:e0275588. [PMID: 36197942 PMCID: PMC9534422 DOI: 10.1371/journal.pone.0275588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
Arabidopsis thaliana is one of the most studied model organisms of plant biology with hundreds of geographical variants called ecotypes. One might expect that this enormous genetic variety could result in differential response to pathogens. Indeed, we observed previously that the Bur ecotype develops much more severe symptoms (upward curling leaves and wavy leaf margins) upon infection with two positive-strand RNA viruses of different families (turnip vein-clearing virus, TVCV, and turnip mosaic virus, TuMV). To find the genes potentially responsible for the ecotype-specific response, we performed a differential expression analysis of the mRNA and sRNA pools of TVCV and TuMV-infected Bur and Col plants along with the corresponding mock controls. We focused on the genes and sRNAs that showed an induced or reduced expression selectively in the Bur virus samples in both virus series. We found that the two ecotypes respond to the viral infection differently, yet both viruses selectively block the production of the TAS3-derived small RNA specimen called tasiARF only in the virus-infected Bur plants. The tasiARF normally forms a gradient through the adaxial and abaxial parts of the leaf (being more abundant in the adaxial part) and post-transcriptionally regulates ARF4, a major leaf polarity determinant in plants. The lack of tasiARF-mediated silencing could lead to an ectopically expressed ARF4 in the adaxial part of the leaf where the misregulation of auxin-dependent signaling would result in an irregular growth of the leaf blade manifesting as upward curling leaf and wavy leaf margin. QTL mapping using Recombinant Inbred Lines (RILs) suggests that the observed symptoms are the result of a multigenic interaction that allows the symptoms to develop only in the Bur ecotype. The particular nature of genetic differences leading to the ecotype-specific symptoms remains obscure and needs further study.
Collapse
|
47
|
Abstract
Adaptive antiviral immunity in plants is an RNA-based mechanism in which small RNAs derived from both strands of the viral RNA are guides for an Argonaute (AGO) nuclease. The primed AGO specifically targets and silences the viral RNA. In plants this system has diversified to involve mobile small interfering RNAs (siRNAs), an amplification system involving secondary siRNAs and targeting mechanisms involving DNA methylation. Most, if not all, plant viruses encode multifunctional proteins that are suppressors of RNA silencing that may also influence the innate immune system and fine-tune the virus-host interaction. Animal viruses similarly trigger RNA silencing, although it may be masked in differentiated cells by the interferon system and by the action of the virus-encoded suppressor proteins. There is huge potential for RNA silencing to combat viral disease in crops, farm animals, and people, although there are complications associated with the various strategies for siRNA delivery including transgenesis. Alternative approaches could include using breeding or small molecule treatment to enhance the inherent antiviral capacity of infected cells.
Collapse
Affiliation(s)
- David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
48
|
Rahimi A, Karami O, Balazadeh S, Offringa R. miR156-independent repression of the ageing pathway by longevity-promoting AHL proteins in Arabidopsis. THE NEW PHYTOLOGIST 2022; 235:2424-2438. [PMID: 35642455 PMCID: PMC9540020 DOI: 10.1111/nph.18292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/25/2022] [Indexed: 05/27/2023]
Abstract
Plants age by developmental phase changes. In Arabidopsis, the juvenile to adult vegetative phase change (VPC) is marked by clear heteroblastic changes in leaves. VPC and the subsequent vegetative to reproductive phase change are promoted by SQUAMOSA PROMOTOR BINDING PROTEIN-LIKE (SPL) transcription factors and repressed by miR156/157 targeting SPL transcripts. By genetic, phenotypic, and gene expression analyses, we studied the role of the longevity-promoting AT-HOOK MOTIF NUCLEAR LOCALIZED 15 (AHL15) and family members in SPL-driven plant ageing. Arabidopsis ahl loss-of-function mutants showed accelerated VPC and flowering, whereas AHL15 overexpression delayed these phase changes. Expression analysis and tissue-specific AHL15 overexpression revealed that AHL15 affects VPC and flowering time directly through its expression in the shoot apical meristem and young leaves, and that AHL15 represses SPL2/9/13/15 gene expression in a miR156/157-independent manner. The juvenile traits of spl loss-of-function mutants appeared to depend on enhanced expression of the AHL15 gene, whereas SPL activity prevented vegetative growth from axillary meristem by repressing AHL15 expression. Our results place AHL15 and close family members together with SPLs in a reciprocal regulatory feedback loop that modulates VPC, flowering time, and axillary meristem development in response to both internal and external signals.
Collapse
Affiliation(s)
- Arezoo Rahimi
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
- Plant Molecular Stress Biology, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
| | - Omid Karami
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
| | - Salma Balazadeh
- Plant Molecular Stress Biology, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
| | - Remko Offringa
- Plant Developmental Genetics, Institute of Biology LeidenLeiden UniversitySylviusweg 722333 BELeidenthe Netherlands
| |
Collapse
|
49
|
Zheng L, Fu S, Xie Y, Han Y, Zhou X, Wu J. Discovery and Characterization of a Novel Umbravirus from Paederia scandens Plants Showing Leaf Chlorosis and Yellowing Symptoms. Viruses 2022; 14:1821. [PMID: 36016443 PMCID: PMC9414234 DOI: 10.3390/v14081821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Umbraviruses are a special class of plant viruses that do not encode any viral structural proteins. Here, a novel umbravirus that has been tentatively named Paederia scandens chlorosis yellow virus (PSCYV) was discovered through RNA-seq in Paederia scandens plants showing leaf chlorosis and yellowing symptoms. The PSCYV genome is a 4301 nt positive-sense, single strand RNA that contains four open reading frames (ORFs), i.e., ORF1-4, that encode P1-P4 proteins, respectively. Together, ORF1 and ORF2 are predicted to encode an additional protein, RdRp, through a -1 frameshift mechanism. The P3 protein encoded by ORF3 was predicted to be the viral long-distance movement protein. P4 was determined to function as the viral cell-to-cell movement protein (MP) and transcriptional gene silencing (TGS) suppressor. Both P1 and RdRp function as weak post-transcriptional gene silencing (PTGS) suppressors of PSCYV. The PVX-expression system indicated that all viral proteins may be symptom determinants of PSCYV. Phylogenetic analysis indicated that PSCYV is evolutionarily related to members of the genus Umbravirus in the family Tombusviridae. Furthermore, a cDNA infectious clone of PSCYV was successfully constructed and used to prove that PSCYV can infect both Paederia scandens and Nicotiana benthamiana plants through mechanical inoculation, causing leaf chlorosis and yellowing symptoms. These findings have broadened our understanding of umbraviruses and their host range.
Collapse
Affiliation(s)
- Lianshun Zheng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yi Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yang Han
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
50
|
The NS4A Protein of Classical Swine Fever Virus Suppresses RNA Silencing in Mammalian Cells. J Virol 2022; 96:e0187421. [PMID: 35867575 PMCID: PMC9364796 DOI: 10.1128/jvi.01874-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
RNA interference (RNAi) is a significant posttranscriptional gene silencing mechanism and can function as an antiviral immunity in eukaryotes. However, numerous viruses can evade this antiviral RNAi by encoding viral suppressors of RNA silencing (VSRs). Classical swine fever virus (CSFV), belonging to the genus Pestivirus, is the cause of classical swine fever (CSF), which has an enormous impact on animal health and the pig industry. Notably, little is known about how Pestivirus blocks RNAi in their host. In this paper, we uncovered that CSFV NS4A protein can antagonize RNAi efficiently in mammalian cells by binding to double-stranded RNA and small interfering RNA. In addition, the VSR activity of CSFV NS4A was conserved among Pestivirus. Furthermore, the replication of VSR-deficient CSFV was attenuated but could be restored by the deficiency of RNAi in mammalian cells. In conclusion, our studies uncovered that CSFV NS4A is a novel VSR that suppresses RNAi in mammalian cells and shed new light on knowledge about CSFV and other Pestivirus. IMPORTANCE It is well known that RNAi is an important posttranscriptional gene silencing mechanism that is also involved in the antiviral response in mammalian cells. While numerous viruses have evolved to block this antiviral immunity by encoding VSRs. Our data demonstrated that the NS4A protein of CSFV exhibited a potent VSR activity through binding to dsRNA and siRNA in the context of CSFV infection in mammalian cells, which are a conservative feature among Pestivirus. In addition, the replication of VSR-deficient CSFV was attenuated but could be restored by the deficiency of RNAi, providing a theoretical basis for the development of other important attenuated Pestivirus vaccines.
Collapse
|