1
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. mBio 2025; 16:e0351124. [PMID: 39727417 PMCID: PMC11796413 DOI: 10.1128/mbio.03511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well-known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to the formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point toward their having a joint role in controlling metabolism, cell division, and cell growth.IMPORTANCECell division is a fundamental biological process, and the mechanisms that control it in Escherichia coli have been the subject of intense research scrutiny for many decades. Similarly, both the (p)ppGpp-dependent stringent response and inorganic polyphosphate (polyP) synthesis are well-studied, evolutionarily ancient, and widely conserved pathways in diverse bacteria. Our results indicate that these systems, normally studied as stress-response mechanisms, play a coordinated and novel role in regulating cell division, morphology, and metabolism even under non-stress conditions.
Collapse
Affiliation(s)
- Christopher W. Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J. Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612536. [PMID: 39314361 PMCID: PMC11419118 DOI: 10.1101/2024.09.11.612536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point towards their having a joint role in controlling metabolism, cell division, and cell growth.
Collapse
Affiliation(s)
- Christopher W. Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J. Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Liu Z, Zhao Q, Xu C, Song H. Compensatory evolution of chromosomes and plasmids counteracts the plasmid fitness cost. Ecol Evol 2024; 14:e70121. [PMID: 39170056 PMCID: PMC11336059 DOI: 10.1002/ece3.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
Plasmids incur a fitness cost that has the potential to restrict the dissemination of resistance in bacterial pathogens. However, bacteria can overcome this disadvantage by compensatory evolution to maintain their resistance. Compensatory evolution can occur via both chromosomes and plasmids, but there are a few reviews regarding this topic, and most of them focus on plasmids. In this review, we provide a comprehensive overview of the currently reported mechanisms underlying compensatory evolution on chromosomes and plasmids, elucidate key targets regulating plasmid fitness cost, and discuss future challenges in this field. We found that compensatory evolution on chromosomes primarily arises from mutations in transcriptional regulatory factors, whereas compensatory evolution of plasmids predominantly involves three pathways: plasmid copy number regulation, conjugation transfer efficiency, and expression of antimicrobial resistance (AMR) genes. Furthermore, the importance of reasonable selection of research subjects and effective integration of diverse advanced research methods is also emphasized in our future study on compensatory mechanisms. Overall, this review establishes a theoretical framework that aims to provide innovative ideas for minimizing the emergence and spread of AMR genes.
Collapse
Affiliation(s)
- Ziyi Liu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Qiuyun Zhao
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Chenggang Xu
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| | - Houhui Song
- Key Laboratory of Applied Technology on Green‐Eco‐Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China‐Australia Joint Laboratory for Animal Health Big Data AnalyticsCollege of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F UniversityHangzhouChina
| |
Collapse
|
4
|
Wollman AJM, Syeda AH, Howard JAL, Payne-Dwyer A, Leech A, Warecka D, Guy C, McGlynn P, Hawkins M, Leake MC. Tetrameric UvrD Helicase Is Located at the E. Coli Replisome due to Frequent Replication Blocks. J Mol Biol 2024; 436:168369. [PMID: 37977299 DOI: 10.1016/j.jmb.2023.168369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
DNA replication in all organisms must overcome nucleoprotein blocks to complete genome duplication. Accessory replicative helicases in Escherichia coli, Rep and UvrD, help remove these blocks and aid the re-initiation of replication. Mechanistic details of Rep function have emerged from recent live cell studies; however, the division of UvrD functions between its activities in DNA repair and role as an accessory helicase remain unclear in live cells. By integrating super-resolved single-molecule fluorescence microscopy with biochemical analysis, we find that UvrD self-associates into tetrameric assemblies and, unlike Rep, is not recruited to a specific replisome protein despite being found at approximately 80% of replication forks. Instead, its colocation with forks is likely due to the very high frequency of replication blocks composed of DNA-bound proteins, including RNA polymerase and factors involved in repairing DNA damage. Deleting rep and DNA repair factor genes mutS and uvrA, and inhibiting transcription through RNA polymerase mutation and antibiotic inhibition, indicates that the level of UvrD at the fork is dependent on UvrD's function. Our findings show that UvrD is recruited to sites of nucleoprotein blocks via different mechanisms to Rep and plays a multi-faceted role in ensuring successful DNA replication.
Collapse
Affiliation(s)
- Adam J M Wollman
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Aisha H Syeda
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Jamieson A L Howard
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Andrew Leech
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Dominika Warecka
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Colin Guy
- Covance Laboratories Ltd., Otley Road, Harrogate HG3 1PY, United Kingdom
| | - Peter McGlynn
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Michelle Hawkins
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Mark C Leake
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom.
| |
Collapse
|
5
|
Choudhury A, Gachet B, Dixit Z, Faure R, Gill RT, Tenaillon O. Deep mutational scanning reveals the molecular determinants of RNA polymerase-mediated adaptation and tradeoffs. Nat Commun 2023; 14:6319. [PMID: 37813857 PMCID: PMC10562459 DOI: 10.1038/s41467-023-41882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
RNA polymerase (RNAP) is emblematic of complex biological systems that control multiple traits involving trade-offs such as growth versus maintenance. Laboratory evolution has revealed that mutations in RNAP subunits, including RpoB, are frequently selected. However, we lack a systems view of how mutations alter the RNAP molecular functions to promote adaptation. We, therefore, measured the fitness of thousands of mutations within a region of rpoB under multiple conditions and genetic backgrounds, to find that adaptive mutations cluster in two modules. Mutations in one module favor growth over maintenance through a partial loss of an interaction associated with faster elongation. Mutations in the other favor maintenance over growth through a destabilized RNAP-DNA complex. The two molecular handles capture the versatile RNAP-mediated adaptations. Combining both interaction losses simultaneously improved maintenance and growth, challenging the idea that growth-maintenance tradeoff resorts only from limited resources, and revealing how compensatory evolution operates within RNAP.
Collapse
Affiliation(s)
- Alaksh Choudhury
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France.
- Laboratoire Biophysique et Évolution (LBE), UMR Chimie Biologie Innovation 8231, ESPCI Paris, Université PSL, CNRS, 75005, Paris, France.
| | - Benoit Gachet
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France
| | - Zoya Dixit
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France
- Université de Paris Cité, INSERM, CNRS, Institut Cochin, UMR 1016, 75014, Paris, France
| | - Roland Faure
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France
- Université de Rennes, INRIA RBA, CNRS UMR 6074, Rennes, France
- Service Evolution Biologique et Ecologie, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado-Boulder, Boulder, CO, 80309-0027, USA
- Novo Nordisk Foundation, Denmark Technical University, 2800 Kgs, Lyngby, Denmark
| | - Olivier Tenaillon
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France.
- Université de Paris Cité, INSERM, CNRS, Institut Cochin, UMR 1016, 75014, Paris, France.
| |
Collapse
|
6
|
Yang KB, Cameranesi M, Gowder M, Martinez C, Shamovsky Y, Epshtein V, Hao Z, Nguyen T, Nirenstein E, Shamovsky I, Rasouly A, Nudler E. High-resolution landscape of an antibiotic binding site. Nature 2023; 622:180-187. [PMID: 37648864 PMCID: PMC10550828 DOI: 10.1038/s41586-023-06495-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Antibiotic binding sites are located in important domains of essential enzymes and have been extensively studied in the context of resistance mutations; however, their study is limited by positive selection. Using multiplex genome engineering1 to overcome this constraint, we generate and characterize a collection of 760 single-residue mutants encompassing the entire rifampicin binding site of Escherichia coli RNA polymerase (RNAP). By genetically mapping drug-enzyme interactions, we identify an alpha helix where mutations considerably enhance or disrupt rifampicin binding. We find mutations in this region that prolong antibiotic binding, converting rifampicin from a bacteriostatic to bactericidal drug by inducing lethal DNA breaks. The latter are replication dependent, indicating that rifampicin kills by causing detrimental transcription-replication conflicts at promoters. We also identify additional binding site mutations that greatly increase the speed of RNAP.Fast RNAP depletes the cell of nucleotides, alters cell sensitivity to different antibiotics and provides a cold growth advantage. Finally, by mapping natural rpoB sequence diversity, we discover that functional rifampicin binding site mutations that alter RNAP properties or confer drug resistance occur frequently in nature.
Collapse
Affiliation(s)
- Kevin B Yang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Maria Cameranesi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Manjunath Gowder
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Criseyda Martinez
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yosef Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Vitaliy Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Zhitai Hao
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Thao Nguyen
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eric Nirenstein
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Aviram Rasouly
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Tohda M, Oinuma KI, Sakiyama A, Tsubouchi T, Niki M, Namikawa H, Yamane K, Yamada K, Watanabe T, Asai K, Kakeya H, Kaneko Y, Kawaguchi T. Rifampicin exerts anti-mucoviscous activity against hypervirulent Klebsiella pneumoniae via binding to the RNA polymerase β subunit. J Glob Antimicrob Resist 2023; 32:21-28. [PMID: 36572148 DOI: 10.1016/j.jgar.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES In hypervirulent Klebsiella pneumoniae (hvKP), the hypermucoviscous capsule is known to be a major virulence determinant. We previously discovered that rifampicin (RFP), a bactericidal drug that binds to and inhibits the β subunit of RNA polymerase (RpoB), elicits anti-mucoviscous activity against hvKP by suppressing rmpA, a regulator of capsule production. Here, we aimed to determine whether RFP exerts this effect at sub-growth-inhibitory concentrations via its binding to RpoB. METHODS Five spontaneous RFP-resistant mutants (R1-R5) were prepared from an hvKP clinical isolate and subjected to whole genome sequencing and mucoviscosity analyses. Subsequently, a two-step allelic exchange procedure was used to create a rpoB mutant R6 and revertants with wild-type rpoB from R1-R5 (named R1'-R5'). Transcription levels of rmpA and the capsular polysaccharide polymerase gene magA and capsule thickness of R1-R5 and R1'-R5' grown without or with RFP were evaluated by quantitative reverse transcription polymerase chain reaction and microscopic observation using India ink staining. RESULTS R1-R5 all had non-synonymous point mutations in rpoB and were highly resistant to the bactericidal effects and anti-mucoviscous activity of RFP. While the properties of R6 were similar to those of R1-R5, the responses of R1'-R5' to RFP were identical to those of the wild type. rmpA and magA transcription levels and capsule thickness correlated well with the mucoviscosity levels. CONCLUSIONS RFP exerts anti-mucoviscous activity by binding to RpoB. The mechanism of how this causes rmpA suppression remains to be explored.
Collapse
Affiliation(s)
- Mitsunori Tohda
- Department of Respiratory Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ken-Ichi Oinuma
- Department of Bacteriology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan.
| | - Arata Sakiyama
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Taishi Tsubouchi
- Department of Bacteriology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Mamiko Niki
- Department of Bacteriology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroki Namikawa
- Department of Medical Education and General Practice, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kenshi Yamane
- Department of Respiratory Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koichi Yamada
- Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan; Department of Infection Control Science, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Kakeya
- Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan; Department of Infection Control Science, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yukihiro Kaneko
- Department of Bacteriology, Osaka Metropolitan University, Graduate School of Medicine, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tomoya Kawaguchi
- Department of Respiratory Medicine, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Fernández-Vázquez J, Cabrer-Panes JD, Åberg A, Juárez A, Madrid C, Gaviria-Cantin T, Fernández-Coll L, Vargas-Sinisterra AF, Jiménez CJ, Balsalobre C. ppGpp, the General Stress Response Alarmone, Is Required for the Expression of the α-Hemolysin Toxin in the Uropathogenic Escherichia coli Isolate, J96. Int J Mol Sci 2022; 23:ijms232012256. [PMID: 36293122 PMCID: PMC9602796 DOI: 10.3390/ijms232012256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022] Open
Abstract
ppGpp is an intracellular sensor that, in response to different types of stress, coordinates the rearrangement of the gene expression pattern of bacteria to promote adaptation and survival to new environmental conditions. First described to modulate metabolic adaptive responses, ppGpp modulates the expression of genes belonging to very diverse functional categories. In Escherichia coli, ppGpp regulates the expression of cellular factors that are important during urinary tract infections. Here, we characterize the role of this alarmone in the regulation of the hlyCABDII operon of the UPEC isolate J96, encoding the toxin α-hemolysin that induces cytotoxicity during infection of bladder epithelial cells. ppGpp is required for the expression of the α-hemolysin encoded in hlyCABDII by stimulating its transcriptional expression. Prototrophy suppressor mutations in a ppGpp-deficient strain restore the α-hemolysin expression from this operon to wild-type levels, confirming the requirement of ppGpp for its expression. ppGpp stimulates hlyCABDII expression independently of RpoS, RfaH, Zur, and H-NS. The expression of hlyCABDII is promoted at 37 °C and at low osmolarity. ppGpp is required for the thermoregulation but not for the osmoregulation of the hlyCABDII operon. Studies in both commensal and UPEC isolates demonstrate that no UPEC specific factor is strictly required for the ppGpp-mediated regulation described. Our data further support the role of ppGpp participating in the coordinated regulation of the expression of bacterial factors required during infection.
Collapse
Affiliation(s)
- Jorge Fernández-Vázquez
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Juan David Cabrer-Panes
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Anna Åberg
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Antonio Juárez
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Cristina Madrid
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Tania Gaviria-Cantin
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Llorenç Fernández-Coll
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | | | - Carlos Jonay Jiménez
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-034-622
| |
Collapse
|
9
|
Miropolskaya N, Petushkov I, Esyunina D, Kulbachinskiy A. Suppressor mutations in Escherichia coli RNA polymerase alter transcription initiation but do not affect translesion RNA synthesis in vitro. J Biol Chem 2022; 298:102099. [PMID: 35667439 PMCID: PMC9254596 DOI: 10.1016/j.jbc.2022.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Bacterial RNA polymerase (RNAP) coordinates transcription with DNA repair and replication. Many RNAP mutations have pleiotropic phenotypes with profound effects on transcription-coupled processes. One class of RNAP mutations (rpo*) has been shown to suppress mutations in regulatory factors responsible for changes in gene expression during stationary phase or starvation, as well as in factors involved in the restoration of replication forks after DNA damage. These mutations were suggested to affect the ability of RNAP to transcribe damaged DNA and to decrease the stability of transcription complexes, thus facilitating their dislodging during DNA replication and repair, although this was not explicitly demonstrated. Here, we obtained nine mutations of this class located around the DNA/RNA binding cleft of E. coli RNAP and analyzed their transcription properties in vitro. We found that these mutations decreased promoter complex stability to varying degrees and all decreased the activity of rRNA promoters. However, they did not have strong effects on elongation complex stability. Some mutations were shown to stimulate transcriptional pauses or decrease intrinsic RNA cleavage by RNAP, but none altered the ability of RNAP to transcribe DNA templates containing damaged nucleotides. Thus, we conclude that the suppressor phenotypes of the mutations are unlikely to result from direct effects on DNA lesion recognition by RNAP but may be primarily explained by changes in transcription initiation. Further analysis of the effects of these mutations on the genomic distribution of RNAP and its interactions with regulatory factors will be essential for understanding their diverse phenotypes in vivo.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, Russia.
| |
Collapse
|
10
|
Eisner SA, Velicer GJ, Yu YTN. Mutation of rpoB Shifts the Nutrient Threshold Triggering Myxococcus Multicellular Development. Front Microbiol 2022; 13:817080. [PMID: 35359737 PMCID: PMC8963815 DOI: 10.3389/fmicb.2022.817080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to perceive and respond to environmental change is essential to all organisms. In response to nutrient depletion, cells of the soil-dwelling δ-proteobacterium Myxococcus xanthus undergo collective morphogenesis into multicellular fruiting bodies and transform into stress-resistant spores. This process is strictly regulated by gene networks that incorporate both inter- and intracellular signals. While commonly studied M. xanthus reference strains and some natural isolates undergo development only in nutrient-poor conditions, some lab mutants and other natural isolates commit to development at much higher nutrient levels, but mechanisms enabling such rich medium development remain elusive. Here we investigate the genetic basis of rich medium development in one mutant and find that a single amino acid change (S534L) in RpoB, the β-subunit of RNA polymerase, is responsible for the phenotype. Ectopic expression of the mutant rpoB allele was sufficient to induce nutrient-rich development. These results suggest that the universal bacterial transcription machinery bearing the altered β-subunit can relax regulation of developmental genes that are normally strictly controlled by the bacterial stringent response. Moreover, the mutation also pleiotropically mediates a tradeoff in fitness during vegetative growth between high vs. low nutrient conditions and generates resistance to exploitation by a developmental cheater. Our findings reveal a previously unknown connection between the universal transcription machinery and one of the most behaviorally complex responses to environmental stress found among bacteria.
Collapse
|
11
|
Intracellular Transposition and Capture of Mobile Genetic Elements following Intercellular Conjugation of Multidrug Resistance Conjugative Plasmids from Clinical Enterobacteriaceae Isolates. Microbiol Spectr 2022; 10:e0214021. [PMID: 35044219 PMCID: PMC8768599 DOI: 10.1128/spectrum.02140-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mobile genetic elements (MGEs) are often associated with antimicrobial resistance genes (ARGs). They are responsible for intracellular transposition between different replicons and intercellular conjugation and are therefore important agents of ARG dissemination. Detection and characterization of functional MGEs, especially in clinical isolates, would increase our understanding of the underlying pathways of transposition and recombination and allow us to determine interventional strategies to interrupt this process. Entrapment vectors can be used to capture active MGEs, as they contain a positive selection genetic system conferring a selectable phenotype upon the insertion of an MGE within certain regions of that system. Previously, we developed the pBACpAK entrapment vector that results in a tetracycline-resistant phenotype when MGEs translocate and disrupt the cI repressor gene. We have previously used pBACpAK to capture MGEs in clinical Escherichia coli isolates following transformation with pBACpAK. In this study, we aimed to extend the utilization of pBACpAK to other bacterial taxa. We utilized an MGE-free recipient E. coli strain containing pBACpAK to capture MGEs on conjugative, ARG-containing plasmids following conjugation from clinical Enterobacteriaceae donors. Following the conjugative transfer of multiple conjugative plasmids and screening for tetracycline resistance in these transconjugants, we captured several insertion sequence (IS) elements and novel transposons (Tn7350 and Tn7351) and detected the de novo formation of novel putative composite transposons where the pBACpAK-located tet(A) is flanked by ISKpn25 from the transferred conjugative plasmid, as well as the ISKpn14-mediated integration of an entire 119-kb, blaNDM-1-containing conjugative plasmid from Klebsiella pneumoniae. IMPORTANCE By analyzing transposition activity within our MGE-free recipient, we can gain insights into the interaction and evolution of multidrug resistance-conferring MGEs following conjugation, including the movement of multiple ISs, the formation of composite transposons, and cointegration and/or recombination between different replicons in the same cell. This combination of recipient and entrapment vector will allow fine-scale experimental studies of factors affecting intracellular transposition and MGE formation in and from ARG-encoding MGEs from multiple species of clinically relevant Enterobacteriaceae.
Collapse
|
12
|
Rodríguez-Beltrán É, López GD, Anzola JM, Rodríguez-Castillo JG, Carazzone C, Murcia MI. Heterogeneous fitness landscape cues, pknG low expression, and phthiocerol dimycocerosate low production of Mycobacterium tuberculosis ATCC25618 rpoB S450L in enriched broth. Tuberculosis (Edinb) 2021; 132:102156. [PMID: 34891037 DOI: 10.1016/j.tube.2021.102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Multidrug-resistant tuberculosis (isoniazid/rifampin[RIF]-resistant TB) ravages developing countries. Fitness is critical in clinical outcomes. Previous studies on RIF-resistant TB (RR-TB) showed competitive fitness gains and losses, with rpoB-S450L as the most isolated/fit mutation. This study measured virulence/resistance genes, phthiocerol dimycocerosate (PDIM) levels and their relationship with rpoB S450L ATCC25618 RR-TB strain fitness. After obtaining 10 different RR-TB GenoType MTBDRplus 2.0-genotyped isolates (with nontyped, S441, H445 and S450 positions), only one S450L isolate (R9, rpoB-S450L ATCC 25618, RR 1 μg/mL) was observed, with H445Y being the most common. A competitive fitness in vitro assay with wild-type (wt) ATCC 25618: R9 1:1 in 50 mL Middlebrook 7H9/OADC was performed, and generation time (G) in vitro and relative fitness were obtained. mRNA and PDIM were extracted on log and stationary phases. Fitness decreased in rpoB S450L and H445Y strains, with heterogeneous fitness cues in three biological replicas of rpoB-S450L: one high and two low fitness replicas. S450L strain had significant pknG increase. Compared with S450L, wt-rpoB showed increased polyketide synthase ppsA expression and high PDIM peak measured by HPLC-MS in log phase compared to S450L. This contrasts with previously increased PDIM in other RR-TB isolates.
Collapse
Affiliation(s)
- Édgar Rodríguez-Beltrán
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia
| | - Gerson-Dirceu López
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, CR 1 18A-12, Bogotá, D.C, 111711, Colombia
| | - Juan Manuel Anzola
- Corpogen, CR 4 20-41, Bogotá, D.C, 110311, Colombia; Universidad Central, CR 5 21-38, Bogotá, D.C, 110311, Colombia
| | - Juan Germán Rodríguez-Castillo
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, CR 1 18A-12, Bogotá, D.C, 111711, Colombia
| | - Martha I Murcia
- MicobacUN Group, Microbiology Department, The National University of Colombia (NUC) School of Medicine, AV CR 30 45-03, Bogotá, D.C, 111321, Colombia.
| |
Collapse
|
13
|
Analysing the fitness cost of antibiotic resistance to identify targets for combination antimicrobials. Nat Microbiol 2021; 6:1410-1423. [PMID: 34697460 DOI: 10.1038/s41564-021-00973-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/03/2021] [Indexed: 11/09/2022]
Abstract
Mutations in the rifampicin (Rif)-binding site of RNA polymerase (RNAP) confer antibiotic resistance and often have global effects on transcription that compromise fitness and stress tolerance of resistant mutants. We suggested that the non-essential genome, through its impact on the bacterial transcription cycle, may represent an untapped source of targets for combination antimicrobial therapies. Using transposon sequencing, we carried out a genome-wide analysis of fitness cost in a clinically common rpoB H526Y mutant. We find that genes whose products enable increased transcription elongation rates compound the fitness costs of resistance whereas genes whose products function in cell wall synthesis and division mitigate it. We validate our findings by showing that the cell wall synthesis and division defects of rpoB H526Y result from an increased transcription elongation rate that is further exacerbated by the activity of the uracil salvage pathway and unresponsiveness of the mutant RNAP to the alarmone ppGpp. We applied our findings to identify drugs that inhibit more readily rpoB H526Y and other RifR alleles from the same phenotypic class. Thus, genome-wide analysis of fitness cost of antibiotic-resistant mutants should expedite the discovery of new combination therapies and delineate cellular pathways that underlie the molecular mechanisms of cost.
Collapse
|
14
|
Identification and Characterization of Pleiotropic High-Persistence Mutations in the Beta Subunit of the Bacterial RNA Polymerase. Antimicrob Agents Chemother 2021; 65:e0052221. [PMID: 34424038 DOI: 10.1128/aac.00522-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations conferring resistance to bactericidal antibiotics reduce the average susceptibility of mutant populations. It is unknown, however, how those mutations affect the survival of individual bacteria. Since surviving bacteria can be a reservoir for recurring infections, it is important to know how survival rates may be affected by resistance mutations and by the choice of antibiotics. Here, we present evidence that (i) Escherichia coli mutants with 100 to 1,000 times increased frequency of survival in ciprofloxacin, an archetypal fluoroquinolone antibiotic, can be readily obtained in a stepwise selection; (ii) the high survival frequency is conferred by mutations in the switch region of the beta subunit of the RNA polymerase; (iii) the switch-region mutations are (p)ppGpp mimics, partially analogous to rpoB stringent mutations; (iv) the stringent and switch region rpoB mutations frequently occur in clinical isolates of E. coli, Acinetobacter baumannii, Mycobacterium tuberculosis, and Staphylococcus aureus, and at least one of them, RpoB S488L, which is a common rifampicin resistance mutations, dramatically increases the survival of a clinical methicillin-resistant S. aureus (MRSA) strain in ampicillin; and (v) the RpoB-associated high-survival phenotype can be reversed by subinhibitory concentrations of chloramphenicol.
Collapse
|
15
|
Yubero P, Poyatos JF. Dissecting the Fitness Costs of Complex Mutations. Mol Biol Evol 2021; 38:4520-4531. [PMID: 34175930 PMCID: PMC8476139 DOI: 10.1093/molbev/msab193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fitness cost of complex pleiotropic mutations is generally difficult to assess. On the one hand, it is necessary to identify which molecular properties are directly altered by the mutation. On the other, this alteration modifies the activity of many genetic targets with uncertain consequences. Here, we examine the possibility of addressing these challenges by identifying unique predictors of these costs. To this aim, we consider mutations in the RNA polymerase (RNAP) in Escherichia coli as a model of complex mutations. Changes in RNAP modify the global program of transcriptional regulation, with many consequences. Among others is the difficulty to decouple the direct effect of the mutation from the response of the whole system to such mutation. A problem that we solve quantitatively with data of a set of constitutive genes, those on which the global program acts most directly. We provide a statistical framework that incorporates the direct effects and other molecular variables linked to this program as predictors, which leads to the identification that some genes are more suitable to determine costs than others. Therefore, we not only identified which molecular properties best anticipate fitness, but we also present the paradoxical result that, despite pleiotropy, specific genes serve as more solid predictors. These results have connotations for the understanding of the architecture of robustness in biological systems.
Collapse
Affiliation(s)
- Pablo Yubero
- Logic of Genomic Systems Laboratory, CNB-CSIC, Madrid, Spain
| | - Juan F Poyatos
- Logic of Genomic Systems Laboratory, CNB-CSIC, Madrid, Spain
| |
Collapse
|
16
|
Muskhelishvili G, Sobetzko P, Mehandziska S, Travers A. Composition of Transcription Machinery and Its Crosstalk with Nucleoid-Associated Proteins and Global Transcription Factors. Biomolecules 2021; 11:biom11070924. [PMID: 34206477 PMCID: PMC8301835 DOI: 10.3390/biom11070924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
The coordination of bacterial genomic transcription involves an intricate network of interdependent genes encoding nucleoid-associated proteins (NAPs), DNA topoisomerases, RNA polymerase subunits and modulators of transcription machinery. The central element of this homeostatic regulatory system, integrating the information on cellular physiological state and producing a corresponding transcriptional response, is the multi-subunit RNA polymerase (RNAP) holoenzyme. In this review article, we argue that recent observations revealing DNA topoisomerases and metabolic enzymes associated with RNAP supramolecular complex support the notion of structural coupling between transcription machinery, DNA topology and cellular metabolism as a fundamental device coordinating the spatiotemporal genomic transcription. We analyse the impacts of various combinations of RNAP holoenzymes and global transcriptional regulators such as abundant NAPs, on genomic transcription from this viewpoint, monitoring the spatiotemporal patterns of couplons—overlapping subsets of the regulons of NAPs and RNAP sigma factors. We show that the temporal expression of regulons is by and large, correlated with that of cognate regulatory genes, whereas both the spatial organization and temporal expression of couplons is distinctly impacted by the regulons of NAPs and sigma factors. We propose that the coordination of the growth phase-dependent concentration gradients of global regulators with chromosome configurational dynamics determines the spatiotemporal patterns of genomic expression.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences, Agricultural University of Georgia, David Aghmashenebeli Alley 24, Tbilisi 0159, Georgia
- Correspondence:
| | - Patrick Sobetzko
- Department of Chromosome Biology, Philipps-Universität Marburg, LOEWE-Zentrum für Synthetische Mikrobiologie, Hans-Meerwein-Straße, 35043 Marburg, Germany;
| | - Sanja Mehandziska
- School of Engineering and Science, Campus Ring 1, Jacobs University Bremen, 28759 Bremen, Germany;
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
17
|
Mutational Activation of Antibiotic-Resistant Mechanisms in the Absence of Major Drug Efflux Systems of Escherichia coli. J Bacteriol 2021; 203:e0010921. [PMID: 33972351 DOI: 10.1128/jb.00109-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations are one of the common means by which bacteria acquire resistance to antibiotics. In an Escherichia coli mutant lacking major antibiotic efflux pumps AcrAB and AcrEF, mutations can activate alternative pathways that lead to increased antibiotic resistance. In this work, we isolated and characterized compensatory mutations of this nature mapping in four different regulatory genes, baeS, crp, hns, and rpoB. The gain-of-function mutations in baeS constitutively activated the BaeSR two-component regulatory system to increase the expression of the MdtABC efflux pump. Missense or insertion mutations in crp and hns caused derepression of an operon coding for the MdtEF efflux pump. Interestingly, despite the dependence of rpoB missense mutations on MdtABC for their antibiotic resistance phenotype, neither the expression of the mdtABCD-baeSR operon nor that of other known antibiotic efflux pumps went up. Instead, the transcriptome sequencing (RNA-seq) data revealed a gene expression profile resembling that of a "stringent" RNA polymerase where protein and DNA biosynthesis pathways were downregulated but pathways to combat various stresses were upregulated. Some of these activated stress pathways are also controlled by the general stress sigma factor RpoS. The data presented here also show that compensatory mutations can act synergistically to further increase antibiotic resistance to a level similar to the efflux pump-proficient parental strain. Together, the findings highlight a remarkable genetic ability of bacteria to circumvent antibiotic assault, even in the absence of a major intrinsic antibiotic resistance mechanism. IMPORTANCE Antibiotic resistance among bacterial pathogens is a chronic health concern. Bacteria possess or acquire various mechanisms of antibiotic resistance, and chief among them is the ability to accumulate beneficial mutations that often alter antibiotic targets. Here, we explored E. coli's ability to amass mutations in a background devoid of a major constitutively expressed efflux pump and identified mutations in several regulatory genes that confer resistance by activating specific or pleiotropic mechanisms.
Collapse
|
18
|
Shiver AL, Osadnik H, Peters JM, Mooney RA, Wu PI, Henry KK, Braberg H, Krogan NJ, Hu JC, Landick R, Huang KC, Gross CA. Chemical-genetic interrogation of RNA polymerase mutants reveals structure-function relationships and physiological tradeoffs. Mol Cell 2021; 81:2201-2215.e9. [PMID: 34019789 PMCID: PMC8484514 DOI: 10.1016/j.molcel.2021.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
The multi-subunit bacterial RNA polymerase (RNAP) and its associated regulators carry out transcription and integrate myriad regulatory signals. Numerous studies have interrogated RNAP mechanism, and RNAP mutations drive Escherichia coli adaptation to many health- and industry-relevant environments, yet a paucity of systematic analyses hampers our understanding of the fitness trade-offs from altering RNAP function. Here, we conduct a chemical-genetic analysis of a library of RNAP mutants. We discover phenotypes for non-essential insertions, show that clustering mutant phenotypes increases their predictive power for drawing functional inferences, and demonstrate that some RNA polymerase mutants both decrease average cell length and prevent killing by cell-wall targeting antibiotics. Our findings demonstrate that RNAP chemical-genetic interactions provide a general platform for interrogating structure-function relationships in vivo and for identifying physiological trade-offs of mutations, including those relevant for disease and biotechnology. This strategy should have broad utility for illuminating the role of other important protein complexes.
Collapse
Affiliation(s)
- Anthony L Shiver
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hendrik Osadnik
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jason M Peters
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rachel A Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter I Wu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kemardo K Henry
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C Hu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94158, USA; California Institute of Quantitative Biology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
19
|
Chau NYE, Ahmad S, Whitney JC, Coombes BK. Emerging and divergent roles of pyrophosphorylated nucleotides in bacterial physiology and pathogenesis. PLoS Pathog 2021; 17:e1009532. [PMID: 33984072 PMCID: PMC8118318 DOI: 10.1371/journal.ppat.1009532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria inhabit diverse environmental niches and consequently must modulate their metabolism to adapt to stress. The nucleotide second messengers guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) (collectively referred to as (p)ppGpp) are essential for survival during nutrient starvation. (p)ppGpp is synthesized by the RelA-SpoT homologue (RSH) protein family and coordinates the control of cellular metabolism through its combined effect on over 50 proteins. While the role of (p)ppGpp has largely been associated with nutrient limitation, recent studies have shown that (p)ppGpp and related nucleotides have a previously underappreciated effect on different aspects of bacterial physiology, such as maintaining cellular homeostasis and regulating bacterial interactions with a host, other bacteria, or phages. (p)ppGpp produced by pathogenic bacteria facilitates the evasion of host defenses such as reactive nitrogen intermediates, acidic pH, and the complement system. Additionally, (p)ppGpp and pyrophosphorylated derivatives of canonical adenosine nucleotides called (p)ppApp are emerging as effectors of bacterial toxin proteins. Here, we review the RSH protein family with a focus on its unconventional roles during host infection and bacterial competition.
Collapse
Affiliation(s)
- N. Y Elizabeth Chau
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Shehryar Ahmad
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - John C. Whitney
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
20
|
Balbontín R, Frazão N, Gordo I. DNA Breaks-Mediated Fitness Cost Reveals RNase HI as a New Target for Selectively Eliminating Antibiotic-Resistant Bacteria. Mol Biol Evol 2021; 38:3220-3234. [PMID: 33830249 PMCID: PMC8321526 DOI: 10.1093/molbev/msab093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance often generates defects in bacterial growth called fitness cost. Understanding the causes of this cost is of paramount importance, as it is one of the main determinants of the prevalence of resistances upon reducing antibiotics use. Here we show that the fitness costs of antibiotic resistance mutations that affect transcription and translation in Escherichia coli strongly correlate with DNA breaks, which are generated via transcription–translation uncoupling, increased formation of RNA–DNA hybrids (R-loops), and elevated replication–transcription conflicts. We also demonstrated that the mechanisms generating DNA breaks are repeatedly targeted by compensatory evolution, and that DNA breaks and the cost of resistance can be increased by targeting the RNase HI, which specifically degrades R-loops. We further show that the DNA damage and thus the fitness cost caused by lack of RNase HI function drive resistant clones to extinction in populations with high initial frequency of resistance, both in laboratory conditions and in a mouse model of gut colonization. Thus, RNase HI provides a target specific against resistant bacteria, which we validate using a repurposed drug. In summary, we revealed key mechanisms underlying the fitness cost of antibiotic resistance mutations that can be exploited to specifically eliminate resistant bacteria.
Collapse
Affiliation(s)
| | | | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
21
|
The Role of Replication Clamp-Loader Protein HolC of Escherichia coli in Overcoming Replication/Transcription Conflicts. mBio 2021; 12:mBio.00184-21. [PMID: 33688004 PMCID: PMC8092217 DOI: 10.1128/mbio.00184-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, DNA replication is catalyzed by an assembly of proteins, the DNA polymerase III holoenzyme. This complex includes the polymerase and proofreading subunits, the processivity clamp, and clamp loader complex. The holC gene encodes an accessory protein (known as χ) to the core clamp loader complex and is the only protein of the holoenzyme that binds to single-strand DNA binding protein, SSB. HolC is not essential for viability, although mutants show growth impairment, genetic instability, and sensitivity to DNA damaging agents. In this study, we isolate spontaneous suppressor mutants in a ΔholC strain and identify these by whole-genome sequencing. Some suppressors are alleles of RNA polymerase, suggesting that transcription is problematic for holC mutant strains, or alleles of sspA, encoding stringent starvation protein. Using a conditional holC plasmid, we examine factors affecting transcription elongation and termination for synergistic or suppressive effects on holC mutant phenotypes. Alleles of RpoA (α), RpoB (β), and RpoC (β') RNA polymerase holoenzyme can partially suppress loss of HolC. In contrast, mutations in transcription factors DksA and NusA enhanced the inviability of holC mutants. HolC mutants showed enhanced sensitivity to bicyclomycin, a specific inhibitor of Rho-dependent termination. Bicyclomycin also reverses suppression of holC by rpoA, rpoC, and sspA An inversion of the highly expressed rrnA operon exacerbates the growth defects of holC mutants. We propose that transcription complexes block replication in holC mutants and that Rho-dependent transcriptional termination and DksA function are particularly important to sustain viability and chromosome integrity.IMPORTANCE Transcription elongation complexes present an impediment to DNA replication. We provide evidence that one component of the replication clamp loader complex, HolC, of Escherichia coli is required to overcome these blocks. This genetic study of transcription factor effects on holC growth defects implicates Rho-dependent transcriptional termination and DksA function as critical. It also implicates, for the first time, a role of SspA, stringent starvation protein, in avoidance or tolerance of replication/replication conflicts. We speculate that HolC helps avoid or resolve collisions between replication and transcription complexes, which become toxic in HolC's absence.
Collapse
|
22
|
Sinha AK, Løbner-Olesen A, Riber L. Bacterial Chromosome Replication and DNA Repair During the Stringent Response. Front Microbiol 2020; 11:582113. [PMID: 32983079 PMCID: PMC7483579 DOI: 10.3389/fmicb.2020.582113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/13/2020] [Indexed: 01/23/2023] Open
Abstract
The stringent response regulates bacterial growth rate and is important for cell survival under changing environmental conditions. The effect of the stringent response is pleiotropic, affecting almost all biological processes in the cell including transcriptional downregulation of genes involved in stable RNA synthesis, DNA replication, and metabolic pathways, as well as the upregulation of stress-related genes. In this Review, we discuss how the stringent response affects chromosome replication and DNA repair activities in bacteria. Importantly, we address how accumulation of (p)ppGpp during the stringent response shuts down chromosome replication using highly different strategies in the evolutionary distant Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. Interestingly, (p)ppGpp-mediated replication inhibition occurs downstream of the origin in B. subtilis, whereas replication inhibition in E. coli takes place at the initiation level, suggesting that stringent cell cycle arrest acts at different phases of the replication cycle between E. coli and B. subtilis. Furthermore, we address the role of (p)ppGpp in facilitating DNA repair activities and cell survival during exposure to UV and other DNA damaging agents. In particular, (p)ppGpp seems to stimulate the efficiency of nucleotide excision repair (NER)-dependent repair of DNA lesions. Finally, we discuss whether (p)ppGpp-mediated cell survival during DNA damage is related to the ability of (p)ppGpp accumulation to inhibit chromosome replication.
Collapse
|
23
|
Interactions between DksA and Stress-Responsive Alternative Sigma Factors Control Inorganic Polyphosphate Accumulation in Escherichia coli. J Bacteriol 2020; 202:JB.00133-20. [PMID: 32341074 DOI: 10.1128/jb.00133-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/21/2020] [Indexed: 01/24/2023] Open
Abstract
Bacteria synthesize inorganic polyphosphate (polyP) in response to a variety of different stress conditions. polyP protects bacteria by acting as a protein-stabilizing chaperone, metal chelator, or regulator of protein function, among other mechanisms. However, little is known about how stress signals are transmitted in the cell to lead to increased polyP accumulation. Previous work in the model enterobacterium Escherichia coli has indicated that the RNA polymerase-binding regulatory protein DksA is required for polyP synthesis in response to nutrient limitation stress. In this work, I set out to characterize the role of DksA in polyP regulation in more detail. I found that overexpression of DksA increases cellular polyP content (explaining the long-mysterious phenotype of dksA overexpression rescuing growth of a dnaK mutant at high temperatures) and characterized the roles of known functional residues of DksA in this process, finding that binding to RNA polymerase is required but that none of the other functions of DksA appear to be necessary. Transcriptomics revealed genome-wide transcriptional changes upon nutrient limitation, many of which were affected by DksA, and follow-up experiments identified complex interactions between DksA and the stress-sensing alternative sigma factors FliA, RpoN, and RpoE that impact polyP production, indicating that regulation of polyP synthesis is deeply entwined in the multifactorial stress response network of E. coli IMPORTANCE Inorganic polyphosphate (polyP) is an evolutionarily ancient, widely conserved biopolymer required for stress resistance and pathogenesis in diverse bacteria, but we do not understand how its synthesis is regulated. In this work, I gained new insights into this process by characterizing the role of the transcriptional regulator DksA in polyP regulation in Escherichia coli and identifying previously unknown links between polyP synthesis and the stress-responsive alternative sigma factors FliA, RpoN, and RpoE.
Collapse
|
24
|
The Absence of (p)ppGpp Renders Initiation of Escherichia coli Chromosomal DNA Synthesis Independent of Growth Rates. mBio 2020; 11:mBio.03223-19. [PMID: 32156825 PMCID: PMC7064777 DOI: 10.1128/mbio.03223-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The initiation of Escherichia coli chromosomal DNA replication starts with the oligomerization of the DnaA protein at repeat sequences within the origin (ori) region. The amount of ori DNA per cell directly correlates with the growth rate. During fast growth, the cell generation time is shorter than the time required for complete DNA replication; therefore, overlapping rounds of chromosome replication are required. Under these circumstances, the ori region DNA abundance exceeds the DNA abundance in the termination (ter) region. Here, high ori/ter ratios are found to persist in (p)ppGpp-deficient [(p)ppGpp0] cells over a wide range of balanced exponential growth rates determined by medium composition. Evidently, (p)ppGpp is necessary to maintain the usual correlation of slow DNA replication initiation with a low growth rate. Conversely, ori/ter ratios are lowered when cell growth is slowed by incrementally increasing even low constitutive basal levels of (p)ppGpp without stress, as if (p)ppGpp alone is sufficient for this response. There are several previous reports of (p)ppGpp inhibition of chromosomal DNA synthesis initiation that occurs with very high levels of (p)ppGpp that stop growth, as during the stringent starvation response or during serine hydroxamate treatment. This work suggests that low physiological levels of (p)ppGpp have significant functions in growing cells without stress through a mechanism involving negative supercoiling, which is likely mediated by (p)ppGpp regulation of DNA gyrase.IMPORTANCE Bacterial cells regulate their own chromosomal DNA synthesis and cell division depending on the growth conditions, producing more DNA when growing in nutritionally rich media than in poor media (i.e., human gut versus water reservoir). The accumulation of the nucleotide analog (p)ppGpp is usually viewed as serving to warn cells of impending peril due to otherwise lethal sources of stress, which stops growth and inhibits DNA, RNA, and protein synthesis. This work importantly finds that small physiological changes in (p)ppGpp basal levels associated with slow balanced exponential growth incrementally inhibit the intricate process of initiation of chromosomal DNA synthesis. Without (p)ppGpp, initiations mimic the high rates present during fast growth. Here, we report that the effect of (p)ppGpp may be due to the regulation of the expression of gyrase, an important enzyme for the replication of DNA that is a current target of several antibiotics.
Collapse
|
25
|
Osaka N, Kanesaki Y, Watanabe M, Watanabe S, Chibazakura T, Takada H, Yoshikawa H, Asai K. Novel (p)ppGpp 0 suppressor mutations reveal an unexpected link between methionine catabolism and GTP synthesis in Bacillus subtilis. Mol Microbiol 2020; 113:1155-1169. [PMID: 32052499 DOI: 10.1111/mmi.14484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 11/29/2022]
Abstract
In bacteria, guanosine (penta)tetra-phosphate ([p]ppGpp) is essential for controlling intracellular metabolism that is needed to adapt to environmental changes, such as amino acid starvation. The (p)ppGpp0 strain of Bacillus subtilis, which lacks (p)ppGpp synthetase, is unable to form colonies on minimal medium. Here, we found suppressor mutations in the (p)ppGpp0 strain, in the purine nucleotide biosynthesis genes, prs, purF and rpoB/C, which encode RNA polymerase core enzymes. In comparing our work with prior studies of ppGpp0 suppressors, we discovered that methionine addition masks the suppression on minimal medium, especially of rpoB/C mutations. Furthermore, methionine addition increases intracellular GTP in rpoB suppressor and this effect is decreased by inhibiting GTP biosynthesis, indicating that methionine addition activated GTP biosynthesis and inhibited growth under amino acid starvation conditions in (p)ppGpp0 backgrounds. Furthermore, we propose that the increase in intracellular GTP levels induced by methionine is due to methionine derivatives that increase the activity of the de novo GTP biosynthesis enzyme, GuaB. Our study sheds light on the potential relationship between GTP homeostasis and methionine metabolism, which may be the key to adapting to environmental changes.
Collapse
Affiliation(s)
- Natsuki Osaka
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Megumi Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Taku Chibazakura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | | | - Kei Asai
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
26
|
A Novel Gene Contributing to the Initiation of Fatty Acid Biosynthesis in Escherichia coli. J Bacteriol 2019; 201:JB.00354-19. [PMID: 31331975 DOI: 10.1128/jb.00354-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/08/2019] [Indexed: 11/20/2022] Open
Abstract
Type II fatty acid biosynthesis in bacteria can be broadly classified into the initiation and elongation phases. The biochemical functions defining each step in the two phases have been studied in vitro Among the β-ketoacyl-acyl carrier protein (ACP) synthases, FabH catalyzes the initiation reaction, while FabB and FabF, which primarily catalyze the elongation reaction, can also drive initiation as side reactions. A role for FabB and FabF in the initiation of fatty acid biosynthesis would be supported by the viability of the ΔfabH mutant. In this study, we show that the ΔfabH and ΔyiiD mutations were synthetically lethal and that ΔfabH ΔrelA ΔspoT and ΔfabH ΔdksA synthetic lethality was rescued by the heterologous expression of yiiD In the ΔfabH mutant, the expression of yiiD was positively regulated by (p)ppGpp. The growth defect, reduced cell size, and altered fatty acid profile of the ΔfabH mutant and the growth defect of the ΔfabH ΔfabF fabB15(Ts) mutant in oleate- and palmitate-supplemented medium at 42°C were rescued by the expression of yiiD from a multicopy plasmid. Together, these results indicate that the yiiD-encoded function supported initiation of fatty acid biosynthesis in the absence of FabH. We have renamed yiiD as fabY IMPORTANCE Fatty acid biosynthesis is an essential process conserved across life forms. β-Ketoacyl-ACP synthases are essential for fatty acid biosynthesis. FabH is a β-ketoacyl-ACP synthase that contributes to the initiation of fatty acid biosynthesis in Escherichia coli In this study, we present genetic and biochemical evidence that the yiiD (renamed fabY)-encoded function contributes to the biosynthesis of fatty acid in the absence of FabH activity and that under these conditions, the expression of FabY was regulated by the stringent response factors (p)ppGpp and DksA. Combined inactivation of FabH and FabY resulted in growth arrest, possibly due to the loss of fatty acid biosynthesis. A molecule(s) that inhibits the two activities can be an effective microbicide.
Collapse
|
27
|
Svenningsen MS, Veress A, Harms A, Mitarai N, Semsey S. Birth and Resuscitation of (p)ppGpp Induced Antibiotic Tolerant Persister Cells. Sci Rep 2019; 9:6056. [PMID: 30988388 PMCID: PMC6465370 DOI: 10.1038/s41598-019-42403-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/25/2019] [Indexed: 12/22/2022] Open
Abstract
Transient antibiotic treatment typically eradicates most sensitive bacteria except a few survivors called persisters. The second messenger (p)ppGpp plays a key role in persister formation in Escherichia coli populations but the underlying mechanisms have remained elusive. In this study we induced (p)ppGpp synthesis by modulating tRNA charging and then directly observed the stochastic appearance, antibiotic tolerance, and resuscitation of persister cells using live microscopy. Different physiological parameters of persister cells as well as their regularly growing ancestors and sisters were continuously monitored using fluorescent reporters. Our results confirmed previous findings that high (p)ppGpp levels are critical for persister formation, but the phenomenon remained strikingly stochastic without any correlation between (p)ppGpp levels and antibiotic tolerance on the single-cell level. We could not confirm previous notions that persisters exhibit markedly low concentrations of intracellular ATP or were linked to post-transcriptional effects of (p)ppGpp through the activation of small genetic elements known as toxin-antitoxin (TA) modules. Instead, we suggest that persister cell formation under regular conditions is driven by the transcriptional response to increased (p)ppGpp levels.
Collapse
Affiliation(s)
| | - Alexandra Veress
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Ole Maaløesvej 5, 2200 København N, København, Denmark
| | - Alexander Harms
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Ole Maaløesvej 5, 2200 København N, København, Denmark
| | - Namiko Mitarai
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, København, Denmark.
| | - Szabolcs Semsey
- Centre for Bacterial Stress Response and Persistence, Department of Biology, University of Copenhagen, Ole Maaløesvej 5, 2200 København N, København, Denmark.
| |
Collapse
|
28
|
Genome-wide effects on Escherichia coli transcription from ppGpp binding to its two sites on RNA polymerase. Proc Natl Acad Sci U S A 2019; 116:8310-8319. [PMID: 30971496 DOI: 10.1073/pnas.1819682116] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The second messenger nucleotide ppGpp dramatically alters gene expression in bacteria to adjust cellular metabolism to nutrient availability. ppGpp binds to two sites on RNA polymerase (RNAP) in Escherichia coli, but it has also been reported to bind to many other proteins. To determine the role of the RNAP binding sites in the genome-wide effects of ppGpp on transcription, we used RNA-seq to analyze transcripts produced in response to elevated ppGpp levels in strains with/without the ppGpp binding sites on RNAP. We examined RNAs rapidly after ppGpp production without an accompanying nutrient starvation. This procedure enriched for direct effects of ppGpp on RNAP rather than for indirect effects on transcription resulting from starvation-induced changes in metabolism or on secondary events from the initial effects on RNAP. The transcriptional responses of all 757 genes identified after 5 minutes of ppGpp induction depended on ppGpp binding to RNAP. Most (>75%) were not reported in earlier studies. The regulated transcripts encode products involved not only in translation but also in many other cellular processes. In vitro transcription analysis of more than 100 promoters from the in vivo dataset identified a large collection of directly regulated promoters, unambiguously demonstrated that most effects of ppGpp on transcription in vivo were direct, and allowed comparison of DNA sequences from inhibited, activated, and unaffected promoter classes. Our analysis greatly expands our understanding of the breadth of the stringent response and suggests promoter sequence features that contribute to the specific effects of ppGpp.
Collapse
|
29
|
Inorganic Polyphosphate Accumulation in Escherichia coli Is Regulated by DksA but Not by (p)ppGpp. J Bacteriol 2019; 201:JB.00664-18. [PMID: 30745375 DOI: 10.1128/jb.00664-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
Production of inorganic polyphosphate (polyP) by bacteria is triggered by a variety of different stress conditions. polyP is required for stress survival and virulence in diverse pathogenic microbes. Previous studies have hypothesized a model for regulation of polyP synthesis in which production of the stringent-response second messenger (p)ppGpp directly stimulates polyP accumulation. In this work, I have now shown that this model is incorrect, and (p)ppGpp is not required for polyP synthesis in Escherichia coli However, stringent mutations of RNA polymerase that frequently arise spontaneously in strains defective in (p)ppGpp synthesis and null mutations of the stringent-response-associated transcription factor DksA both strongly inhibit polyP accumulation. The loss of polyP synthesis in a mutant lacking DksA was reversed by deletion of the transcription elongation factor GreA, suggesting that competition between these proteins for binding to the secondary channel of RNA polymerase plays an important role in controlling polyP activation. These results provide new insights into the poorly understood regulation of polyP synthesis in bacteria and indicate that the relationship between polyP and the stringent response is more complex than previously suspected.IMPORTANCE Production of polyP in bacteria is required for virulence and stress response, but little is known about how bacteria regulate polyP levels in response to changes in their environments. Understanding this regulation is important for understanding how pathogenic microbes resist killing by disinfectants, antibiotics, and the immune system. In this work, I have clarified the connections between polyP regulation and the stringent response to starvation stress in Escherichia coli and demonstrated an important and previously unknown role for the transcription factor DksA in controlling polyP levels.
Collapse
|
30
|
Eremina NS, Slivinskaya EA, Yampolskaya TA, Rybak KV, Altman IB, Ptitsyn LR, Stoynova NV. Adaptive Evolution of Escherichia coli K-12 MG1655 Grown on Ethanol and Glycerol. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818080033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Adaptation Through Lifestyle Switching Sculpts the Fitness Landscape of Evolving Populations: Implications for the Selection of Drug-Resistant Bacteria at Low Drug Pressures. Genetics 2019; 211:1029-1044. [PMID: 30670539 DOI: 10.1534/genetics.119.301834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
Novel genotypes evolve under selection through mutations in pre-existing genes. However, mutations have pleiotropic phenotypic effects that influence the fitness of emerging genotypes in complex ways. The evolution of antimicrobial resistance is mediated by selection of mutations in genes coding for antibiotic-target proteins. Drug-resistance is commonly associated with a fitness cost due to the impact of resistance-conferring mutations on protein function and/or stability. These costs are expected to prohibit the selection of drug-resistant mutations at low drug pressures. Using laboratory evolution of rifampicin resistance in Escherichia coli, we show that when exposed intermittently to low concentration (0.1 × minimal inhibitory concentration) of rifampicin, the evolution of canonical drug resistance was indeed unfavorable. Instead, these bacterial populations adapted by evolving into small-colony variants that displayed enhanced pellicle-forming ability. This shift in lifestyle from planktonic to pellicle-like was necessary for enhanced fitness at low drug pressures, and was mediated by the genetic activation of the fim operon promoter, which allowed expression of type I fimbriae. Upon continued low drug exposure, these bacteria evolved exclusively into high-level drug-resistant strains through mutations at a limited set of loci within the rifampicin-resistance determining region of the rpoB gene. We show that our results are explained by mutation-specific epistasis, resulting in differential impact of lifestyle switching on the competitive fitness of different rpoB mutations. Thus, lifestyle-alterations that are selected at low selection pressures have the potential to modify the fitness effects of mutations, change the genetic structure, and affect the ultimate fate of evolving populations.
Collapse
|
32
|
Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Nature 2019; 565:382-385. [PMID: 30626968 DOI: 10.1038/s41586-018-0840-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/28/2018] [Indexed: 01/25/2023]
Abstract
A key regulated step of transcription is promoter melting by RNA polymerase (RNAP) to form the open promoter complex1-3. To generate the open complex, the conserved catalytic core of the RNAP combines with initiation factors to locate promoter DNA, unwind 12-14 base pairs of the DNA duplex and load the template-strand DNA into the RNAP active site. Formation of the open complex is a multi-step process during which transient intermediates of unknown structure are formed4-6. Here we present cryo-electron microscopy structures of bacterial RNAP-promoter DNA complexes, including structures of partially melted intermediates. The structures show that late steps of promoter melting occur within the RNAP cleft, delineate key roles for fork-loop 2 and switch 2-universal structural features of RNAP-in restricting access of DNA to the RNAP active site, and explain why clamp opening is required to allow entry of single-stranded template DNA into the active site. The key roles of fork-loop 2 and switch 2 suggest a common mechanism for late steps in promoter DNA opening to enable gene expression across all domains of life.
Collapse
|
33
|
Source of the Fitness Defect in Rifamycin-Resistant Mycobacterium tuberculosis RNA Polymerase and the Mechanism of Compensation by Mutations in the β' Subunit. Antimicrob Agents Chemother 2018; 62:AAC.00164-18. [PMID: 29661864 DOI: 10.1128/aac.00164-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis is a critical threat to human health due to the increased prevalence of rifampin resistance (RMPr). Fitness defects have been observed in RMPr mutants with amino acid substitutions in the β subunit of RNA polymerase (RNAP). In clinical isolates, this fitness defect can be ameliorated by the presence of secondary mutations in the double-psi β-barrel (DPBB) domain of the β' subunit of RNAP. To identify factors contributing to the fitness defects observed in vivo, several in vitro RNA transcription assays were utilized to probe initiation, elongation, termination, and 3'-RNA hydrolysis with the wild-type and RMPrM. tuberculosis RNAPs. We found that the less prevalent RMPr mutants exhibit significantly poorer termination efficiencies relative to the wild type, an important factor for proper gene expression. We also found that several mechanistic aspects of transcription of the RMPr mutant RNAPs are impacted relative to the wild type. For the clinically most prevalent mutant, the βS450L mutant, these defects are mitigated by the presence of secondary/compensatory mutations in the DPBB domain of the β' subunit.
Collapse
|
34
|
Liu R, Liang L, Garst AD, Choudhury A, Nogué VSI, Beckham GT, Gill RT. Directed combinatorial mutagenesis of Escherichia coli for complex phenotype engineering. Metab Eng 2018; 47:10-20. [DOI: 10.1016/j.ymben.2018.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/02/2017] [Accepted: 02/20/2018] [Indexed: 01/19/2023]
|
35
|
Evidence for up and down regulation of 450 genes by rpoB12 (rif) mutation and their implications in complexity of transcription modulation in Escherichia coli. Microbiol Res 2018; 212-213:80-93. [PMID: 29853171 DOI: 10.1016/j.micres.2018.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/20/2018] [Accepted: 04/28/2018] [Indexed: 11/22/2022]
Abstract
Analyses of mutations in rpoB subunit of Escherichia coli that lead to resistance to rifampicin have been invaluable in providing insight into events during transcription continue to be discovered. Earlier we reported that rpoB12 suppresses over-expression of cps genes in Δlon mutant of E. coli, by interfering with the transcription of rcsA. Here we report Microarray based Transcriptome profile of Δlon and Δlon rpoB12 strains. The data analyses clearly reveal that rpoB12 mutation results in the differential expression of ∼450 genes. The transcription profiles of some of the genes namely, rcsA, gadE, csgD, bolA, ypdI, dnaJ, clpP, csrA and hdeA are significantly altered, particularly the genes implicated in virulence. Some of the phenotypic traits namely, biofilm formation, motility, curli synthesis and ability to withstand acidic stress in a lon+rpoB12 strain were assessed. The results clearly indicate that rpoB12 up-regulates biofilm formation and curli synthesis while it makes the cells sensitive for growth in acidic medium and inhibits motility almost completely. Furthermore, rpoB12 modulates the expression profile of a significant number of genes involved in stress responses, genes encoding small RNAs. Thus, this study reveals the versatile role of the rpoB12 mutation, especially its impact on the regulation of genes related to virulence and highlights its medical importance.
Collapse
|
36
|
Mutations in the β-Subunit of the RNA Polymerase Impair the Surface-Associated Motility and Virulence of Acinetobacter baumannii. Infect Immun 2017; 85:IAI.00327-17. [PMID: 28507065 DOI: 10.1128/iai.00327-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/19/2022] Open
Abstract
Acinetobacter baumannii is a major cause of antibiotic-resistant nosocomial infections worldwide. In this study, several rifampin-resistant spontaneous mutants obtained from the A. baumannii ATCC 17978 strain that differed in their point mutations in the rpoB gene, encoding the β-subunit of the RNA polymerase, were isolated. All the mutants harboring amino acid substitutions in position 522 or 540 of the RpoB protein were impaired in surface-associated motility and had attenuated virulence in the fertility model of Caenorhabditis elegans The transcriptional profile of these mutants included six downregulated genes encoding proteins homologous to transporters and metabolic enzymes widespread among A. baumannii clinical isolates. The construction of knockout mutants in each of the six downregulated genes revealed a significant reduction in the surface-associated motility and virulence of four of them in the A. baumannii ATCC 17978 strain, as well as in the virulent clinical isolate MAR002. Taken together, our results provide strong evidence of the connection between motility and virulence in this multiresistant nosocomial pathogen.
Collapse
|
37
|
Decreased Expression of Stable RNA Can Alleviate the Lethality Associated with RNase E Deficiency in Escherichia coli. J Bacteriol 2017; 199:JB.00724-16. [PMID: 28167522 DOI: 10.1128/jb.00724-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/28/2017] [Indexed: 11/20/2022] Open
Abstract
The endoribonuclease RNase E participates in mRNA degradation, rRNA processing, and tRNA maturation in Escherichia coli, but the precise reasons for its essentiality are unclear and much debated. The enzyme is most active on RNA substrates with a 5'-terminal monophosphate, which is sensed by a domain in the enzyme that includes residue R169; E. coli also possesses a 5'-pyrophosphohydrolase, RppH, that catalyzes conversion of 5'-terminal triphosphate to 5'-terminal monophosphate on RNAs. Although the C-terminal half (CTH), beyond residue approximately 500, of RNase E is dispensable for viability, deletion of the CTH is lethal when combined with an R169Q mutation or with deletion of rppH In this work, we show that both these lethalities can be rescued in derivatives in which four or five of the seven rrn operons in the genome have been deleted. We hypothesize that the reduced stable RNA levels under these conditions minimize the need of RNase E to process them, thereby allowing for its diversion for mRNA degradation. In support of this hypothesis, we have found that other conditions that are known to reduce stable RNA levels also suppress one or both lethalities: (i) alterations in relA and spoT, which are expected to lead to increased basal ppGpp levels; (ii) stringent rpoB mutations, which mimic high intracellular ppGpp levels; and (iii) overexpression of DksA. Lethality suppression by these perturbations was RNase R dependent. Our work therefore suggests that its actions on the various substrates (mRNA, rRNA, and tRNA) jointly contribute to the essentiality of RNase E in E. coliIMPORTANCE The endoribonuclease RNase E is essential for viability in many Gram-negative bacteria, including Escherichia coli Different explanations have been offered for its essentiality, including its roles in global mRNA degradation or in the processing of several tRNA and rRNA species. Our work suggests that, rather than its role in the processing of any one particular substrate, its distributed functions on all the different substrates (mRNA, rRNA, and tRNA) are responsible for the essentiality of RNase E in E. coli.
Collapse
|
38
|
Cai XC, Xi H, Liang L, Liu JD, Liu CH, Xue YR, Yu XY. Rifampicin-Resistance Mutations in the rpoB Gene in Bacillus velezensis CC09 have Pleiotropic Effects. Front Microbiol 2017; 8:178. [PMID: 28243227 PMCID: PMC5303731 DOI: 10.3389/fmicb.2017.00178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Rifampicin resistance (Rifr) mutations in the RNA polymerase β subunit (rpoB) gene exhibit pleiotropic phenotypes as a result of their effects on the transcription machinery in prokaryotes. However, the differences in the effects of the mutations on the physiology and metabolism of the bacteria remain unknown. In this study, we isolated seven Rifr mutations in rpoB, including six single point mutations (H485Y, H485C, H485D, H485R, Q472R, and S490L) and one double point mutation (S490L/S617F) from vegetative cells of an endophytic strain, Bacillus velezensis CC09. Compared to the wild-type (WT) strain (CC09), the H485R and H485D mutants exhibited a higher degree of inhibition of Aspergillus niger spore germination, while the H485Y, S490L, Q472R, and S490L/S617F mutants exhibited a lower degree of inhibition due to their lower production of the antibiotic iturin A. These mutants all exhibited defective phenotypes in terms of pellicle formation, sporulation, and swarming motility. A hierarchical clustering analysis of the observed phenotypes indicated that the four mutations involving amino acid substitutions at H485 in RpoB belonged to the same cluster. In contrast, the S490L and Q472R mutations, as well as the WT strain, were in another cluster, indicating a functional connection between the mutations in B. velezensis and phenotypic changes. Our data suggest that Rifr mutations cannot only be used to study transcriptional regulation mechanisms, but can also serve as a tool to increase the production of bioactive metabolites in B. velezensis.
Collapse
Affiliation(s)
- Xun-Chao Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Huan Xi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Li Liang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Jia-Dong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Chang-Hong Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Ya-Rong Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Xiang-Yang Yu
- Institute of Food Safety and Inspection – Jiangsu Academy of Agricultural SciencesNanjing, China
| |
Collapse
|
39
|
Mangiameli SM, Merrikh CN, Wiggins PA, Merrikh H. Transcription leads to pervasive replisome instability in bacteria. eLife 2017; 6. [PMID: 28092263 PMCID: PMC5305214 DOI: 10.7554/elife.19848] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/15/2017] [Indexed: 12/19/2022] Open
Abstract
The canonical model of DNA replication describes a highly-processive and largely continuous process by which the genome is duplicated. This continuous model is based upon in vitro reconstitution and in vivo ensemble experiments. Here, we characterize the replisome-complex stoichiometry and dynamics with single-molecule resolution in bacterial cells. Strikingly, the stoichiometries of the replicative helicase, DNA polymerase, and clamp loader complexes are consistent with the presence of only one active replisome in a significant fraction of cells (>40%). Furthermore, many of the observed complexes have short lifetimes (<8 min), suggesting that replisome disassembly is quite prevalent, possibly occurring several times per cell cycle. The instability of the replisome complex is conflict-induced: transcription inhibition stabilizes these complexes, restoring the second replisome in many of the cells. Our results suggest that, in contrast to the canonical model, DNA replication is a largely discontinuous process in vivo due to pervasive replication-transcription conflicts. DOI:http://dx.doi.org/10.7554/eLife.19848.001
Collapse
Affiliation(s)
| | | | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, United States.,Department of Microbiology, University of Washington, Seattle, United States.,Department of Bioengineering, University of Washington, Seattle, United States
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, United States.,Department of Genome Sciences, University of Washington, Seattle, United States
| |
Collapse
|
40
|
Mangiameli SM, Merrikh CN, Wiggins PA, Merrikh H. Transcription leads to pervasive replisome instability in bacteria. eLife 2017; 6. [PMID: 28092263 DOI: 10.7554/elife.19848.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/15/2017] [Indexed: 05/21/2023] Open
Abstract
The canonical model of DNA replication describes a highly-processive and largely continuous process by which the genome is duplicated. This continuous model is based upon in vitro reconstitution and in vivo ensemble experiments. Here, we characterize the replisome-complex stoichiometry and dynamics with single-molecule resolution in bacterial cells. Strikingly, the stoichiometries of the replicative helicase, DNA polymerase, and clamp loader complexes are consistent with the presence of only one active replisome in a significant fraction of cells (>40%). Furthermore, many of the observed complexes have short lifetimes (<8 min), suggesting that replisome disassembly is quite prevalent, possibly occurring several times per cell cycle. The instability of the replisome complex is conflict-induced: transcription inhibition stabilizes these complexes, restoring the second replisome in many of the cells. Our results suggest that, in contrast to the canonical model, DNA replication is a largely discontinuous process in vivo due to pervasive replication-transcription conflicts.
Collapse
Affiliation(s)
| | | | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, United States
- Department of Microbiology, University of Washington, Seattle, United States
- Department of Bioengineering, University of Washington, Seattle, United States
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, United States
- Department of Genome Sciences, University of Washington, Seattle, United States
| |
Collapse
|
41
|
Gardner CL, Pagliai FA, Pan L, Bojilova L, Torino MI, Lorca GL, Gonzalez CF. Drug Repurposing: Tolfenamic Acid Inactivates PrbP, a Transcriptional Accessory Protein in Liberibacter asiaticus. Front Microbiol 2016; 7:1630. [PMID: 27803694 PMCID: PMC5067538 DOI: 10.3389/fmicb.2016.01630] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/30/2016] [Indexed: 01/11/2023] Open
Abstract
CLIBASIA_01510, PrbP, is a predicted RNA polymerase binding protein in Liberibacter asiaticus. PrbP was found to regulate expression of a small subset of ribosomal genes through interactions with the β-subunit of the RNA polymerase and a short, specific sequence on the promoter region. Molecular screening assays were performed to identify small molecules that interact with PrbP in vitro. Chemical hits were analyzed for therapeutic efficacy against L. asiaticus via an infected leaf assay, where the transcriptional activity of L. asiaticus was found to decrease significantly after exposure to tolfenamic acid. Similarly, tolfenamic acid was found to inhibit L. asiaticus infection in highly symptomatic citrus seedlings. Our results indicate that PrbP is an important transcriptional regulator for survival of L. asiaticus in planta, and the chemicals identified by molecular screening assays could be used as a therapeutic treatment for huanglongbing disease.
Collapse
Affiliation(s)
- Christopher L Gardner
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Fernando A Pagliai
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Lei Pan
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Lora Bojilova
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Maria I Torino
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Graciela L Lorca
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Claudio F Gonzalez
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| |
Collapse
|
42
|
Pontes MH, Yeom J, Groisman EA. Reducing Ribosome Biosynthesis Promotes Translation during Low Mg 2+ Stress. Mol Cell 2016; 64:480-492. [PMID: 27746019 DOI: 10.1016/j.molcel.2016.05.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/31/2016] [Accepted: 05/05/2016] [Indexed: 12/30/2022]
Abstract
The synthesis of ribosomes is regulated by both amino acid abundance and the availability of ATP, which regenerates guanosine triphosphate (GTP), powers ribosomes, and promotes transcription of rRNA genes. We now report that bacteria supersede both of these controls when experiencing low cytosolic magnesium (Mg2+), a divalent cation essential for ribosome stabilization and for neutralization of ATP's negative charge. We uncover a regulatory circuit that responds to low cytosolic Mg2+ by promoting expression of proteins that import Mg2+ and lower ATP amounts. This response reduces the levels of ATP and ribosomes, making Mg2+ ions available for translation. Mutants defective in Mg2+ uptake and unable to reduce ATP levels accumulate non-functional ribosomal components and undergo translational arrest. Our findings establish a paradigm whereby cells reduce the amounts of translating ribosomes to carry out protein synthesis.
Collapse
Affiliation(s)
- Mauricio H Pontes
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA; Yale Microbial Sciences Institute, PO Box 27389, West Haven, CT 06516, USA
| | - Jinki Yeom
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Eduardo A Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA; Yale Microbial Sciences Institute, PO Box 27389, West Haven, CT 06516, USA.
| |
Collapse
|
43
|
Gifford DR, Toll-Riera M, MacLean RC. Epistatic interactions between ancestral genotype and beneficial mutations shape evolvability in Pseudomonas aeruginosa. Evolution 2016; 70:1659-66. [PMID: 27230588 DOI: 10.1111/evo.12958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 05/08/2016] [Indexed: 01/22/2023]
Abstract
The idea that interactions between mutations influence adaptation by driving populations to low and high fitness peaks on adaptive landscapes is deeply ingrained in evolutionary theory. Here, we investigate the impact of epistasis on evolvability by challenging populations of two Pseudomonas aeruginosa clones bearing different initial mutations (in rpoB conferring rifampicin resistance, and the type IV pili gene network) to adaptation to a medium containing l-serine as the sole carbon source. Despite being initially indistinguishable in fitness, populations founded by the two ancestral genotypes reached different fitness following 300 generations of evolution. Genome sequencing revealed that the difference could not be explained by acquiring mutations in different targets of selection; the majority of clones from both ancestors converged on one of the following two strategies: (1) acquiring mutations in either PA2449 (gcsR, an l-serine-metabolism RpoN enhancer binding protein) or (2) protease genes. Additionally, populations from both ancestors converged on loss-of-function mutations in the type IV pili gene network, either due to ancestral or acquired mutations. No compensatory or reversion mutations were observed in RNA polymerase (RNAP) genes, in spite of the large fitness costs typically associated with mutations in rpoB. Although current theory points to sign epistasis as the dominant constraint on evolvability, these results suggest that the role of magnitude epistasis in constraining evolvability may be underappreciated. The contribution of magnitude epistasis is likely to be greatest under the biologically relevant mutation supply rates that make back mutations probabilistically unlikely.
Collapse
Affiliation(s)
- Danna R Gifford
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom. .,Current Address: Faculty of Life Sciences, University of Manchester, Michael Smith Building, Dover St., Manchester, M13 9PL, United Kingdom.
| | - Macarena Toll-Riera
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom.,Current Address: Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - R Craig MacLean
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, United Kingdom
| |
Collapse
|
44
|
Translation quality control is critical for bacterial responses to amino acid stress. Proc Natl Acad Sci U S A 2016; 113:2252-7. [PMID: 26858451 DOI: 10.1073/pnas.1525206113] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene expression relies on quality control for accurate transmission of genetic information. One mechanism that prevents amino acid misincorporation errors during translation is editing of misacylated tRNAs by aminoacyl-tRNA synthetases. In the absence of editing, growth is limited upon exposure to excess noncognate amino acid substrates and other stresses, but whether these physiological effects result solely from mistranslation remains unclear. To explore if translation quality control influences cellular processes other than protein synthesis, an Escherichia coli strain defective in Tyr-tRNA(Phe) editing was used. In the absence of editing, cellular levels of aminoacylated tRNA(Phe) were elevated during amino acid stress, whereas in the wild-type strain these levels declined under the same growth conditions. In the editing-defective strain, increased levels of aminoacylated tRNA(Phe) led to continued synthesis of the PheL leader peptide and attenuation of pheA transcription under amino acid stress. Consequently, in the absence of editing, activation of the phenylalanine biosynthetic operon becomes less responsive to phenylalanine limitation. In addition to raising aminoacylated tRNA levels, the absence of editing lowered the amount of deacylated tRNA(Phe) in the cell. This reduction in deacylated tRNA was accompanied by decreased synthesis of the second messenger guanosine tetraphosphate and limited induction of stringent response-dependent gene expression in editing-defective cells during amino acid stress. These data show that a single quality-control mechanism, the editing of misacylated aminoacyl-tRNAs, provides a critical checkpoint both for maintaining the accuracy of translation and for determining the sensitivity of transcriptional responses to amino acid stress.
Collapse
|
45
|
Inactivation of Cell Division Protein FtsZ by SulA Makes Lon Indispensable for the Viability of a ppGpp0 Strain of Escherichia coli. J Bacteriol 2015; 198:688-700. [PMID: 26644431 DOI: 10.1128/jb.00693-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The modified nucleotides (p)ppGpp play an important role in bacterial physiology. While the accumulation of the nucleotides is vital for adaptation to various kinds of stress, changes in the basal level modulates growth rate and vice versa. Studying the phenotypes unique to the strain lacking (p)ppGpp (ppGpp(0)) under overtly unstressed growth conditions may be useful to understand functions regulated by basal levels of (p)ppGpp and its physiological significance. In this study, we show that the ppGpp(0) strain, unlike the wild type, requires the Lon protease for cell division and viability in LB. Our results indicate the decrease in FtsZ concentration in the ppGpp(0) strain makes cell division vulnerable to SulA inhibition. We did not find evidence for SOS induction contributing to the cell division defect in the ppGpp(0) Δlon strain. Based on the results, we propose that basal levels of (p)ppGpp are required to sustain normal cell division in Escherichia coli during growth in rich medium and that the basal SulA level set by Lon protease is important for insulating cell division against a decrease in FtsZ concentration and conditions that can increase the susceptibility of FtsZ to SulA. IMPORTANCE The physiology of the stringent response has been the subject of investigation for more than 4 decades, with the majority of the work carried out using the bacterial model organism Escherichia coli. These studies have revealed that the accumulation of (p)ppGpp, the effector of the stringent response, is associated with growth retardation and changes in gene expression that vary with the intracellular concentration of (p)ppGpp. By studying a synthetic lethal phenotype, we have uncovered a function modulated by the basal levels of (p)ppGpp and studied its physiological significance. Our results show that (p)ppGpp and Lon protease contribute to the robustness of the cell division machinery in E. coli during growth in rich medium.
Collapse
|
46
|
Abstract
Early investigations on arginine biosynthesis brought to light basic features of metabolic regulation. The most significant advances of the last 10 to 15 years concern the arginine repressor, its structure and mode of action in both E. coli and Salmonella typhimurium, the sequence analysis of all arg structural genes in E. coli and Salmonella typhimurium, the resulting evolutionary inferences, and the dual regulation of the carAB operon. This review provides an overall picture of the pathways, their interconnections, the regulatory circuits involved, and the resulting interferences between arginine and polyamine biosynthesis. Carbamoylphosphate is a precursor common to arginine and the pyrimidines. In both Escherichia coli and Salmonella enterica serovar Typhimurium, it is produced by a single synthetase, carbamoylphosphate synthetase (CPSase), with glutamine as the physiological amino group donor. This situation contrasts with the existence of separate enzymes specific for arginine and pyrimidine biosynthesis in Bacillus subtilis and fungi. Polyamine biosynthesis has been particularly well studied in E. coli, and the cognate genes have been identified in the Salmonella genome as well, including those involved in transport functions. The review summarizes what is known about the enzymes involved in the arginine pathway of E. coli and S. enterica serovar Typhimurium; homologous genes were identified in both organisms, except argF (encoding a supplementary OTCase), which is lacking in Salmonella. Several examples of putative enzyme recruitment (homologous enzymes performing analogous functions) are also presented.
Collapse
|
47
|
Meenakshi S, Munavar MH. Suppression of capsule expression in Δlon strains of Escherichia coli by two novel rpoB mutations in concert with HNS: possible role for DNA bending at rcsA promoter. Microbiologyopen 2015; 4:712-29. [PMID: 26403574 PMCID: PMC4618605 DOI: 10.1002/mbo3.268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 11/29/2022] Open
Abstract
Analyses of mutations in genes coding for subunits of RNA polymerase always throw more light on the intricate events that regulate the expression of gene(s). Lon protease of Escherichia coli is implicated in the turnover of RcsA (positive regulator of genes involved in capsular polysaccharide synthesis) and SulA (cell division inhibitor induced upon DNA damage). Failure to degrade RcsA and SulA makes lon mutant cells to overproduce capsular polysaccharides and to become sensitive to DNA damaging agents. Earlier reports on suppressors for these characteristic lon phenotypes related the role of cochaperon DnaJ and tmRNA. Here, we report the isolation and characterization of two novel mutations in rpoB gene capable of modulating the expression of cps genes in Δlon strains of E. coli in concert with HNS. clpA, clpB, clpY, and clpQ mutations do not affect this capsule expression suppressor (Ces) phenotype. These mutant RNA polymerases affect rcsA transcription, but per se are not defective either at rcsA or at cps promoters. The results combined with bioinformatics analyses indicate that the weaker interaction between the enzyme and DNA::RNA hybrid during transcription might play a vital role in the lower level expression of rcsA. These results might have relevance to pathogenesis in related bacteria.
Collapse
Affiliation(s)
- Shanmugaraja Meenakshi
- Department of Molecular Biology, School of Biological Sciences, Centre for Advanced Studies in Functional and Organismal Genomics, Madurai Kamaraj University [University with Potential for Excellence], Madurai, Tamil Nadu, 625 021, India
| | - M Hussain Munavar
- Department of Molecular Biology, School of Biological Sciences, Centre for Advanced Studies in Functional and Organismal Genomics, Madurai Kamaraj University [University with Potential for Excellence], Madurai, Tamil Nadu, 625 021, India
| |
Collapse
|
48
|
Davis MC, Kesthely CA, Smith LK, Breen J, MacLellan SR. Functional reconstitution of an unusual Firmicutes σ factor into a Gram-negative heterologous host. Can J Microbiol 2015; 61:818-26. [PMID: 26367498 DOI: 10.1139/cjm-2015-0408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sigma (σ) factors are single-subunit proteins that reversibly bind RNA polymerase and play an important role in the transcription initiation process. An unusual 2-subunit σ factor, consisting of proteins SigO and RsoA, activates transcription from a group of related promoters in Bacillus subtilis. These 2 proteins specifically interact with each other and with RNA polymerase subunits. This system is widespread among species in several Bacillus-related genera, but otherwise appears restricted to the Firmicutes. Here, we reconstituted SigO-RsoA, and a cognate promoter, into the distantly related heterologous host Escherichia coli to examine whether this system can function in bacteria outside of the Firmicutes. We show that these proteins can productively associate with E. coli RNA polymerase and activate transcription, demonstrating that there are no structural barriers to function. In parallel, we tested a wide array of protein-protein interaction mutations and promoter mutations that impact SigO-RsoA function in both B. subtilis and E. coli and conclude that the SigO-RsoA system behaves, in most instances, similarly in both genetic backgrounds. These data raise the possibility of genetically isolating the system in this heterologous host and away from unknown B. subtilis factors that may also be playing a role in SigO-RsoA regulatory pathways, thus facilitating further study of the system. As a result of this work, we also provide a comprehensive mutational analysis of a SigO-RsoA promoter and report the preliminary identification of amino acids in SigO that play a role in mediating the SigO-RsoA protein-protein interaction.
Collapse
Affiliation(s)
- Maria C Davis
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.,Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Christopher A Kesthely
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.,Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Logan K Smith
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.,Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Jillian Breen
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.,Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Shawn R MacLellan
- Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.,Department of Biology, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
49
|
Abstract
Bacillus subtilis is an important model bacterium for the study of developmental adaptations that enhance survival in the face of fluctuating environmental challenges. These adaptations include sporulation, biofilm formation, motility, cannibalism, and competence. Remarkably, not all the cells in a given population exhibit the same response. The choice of fate by individual cells is random but is also governed by complex signal transduction pathways and cross talk mechanisms that reinforce decisions once made. The interplay of stochastic and deterministic mechanisms governing the selection of developmental fate on the single-cell level is discussed in this article.
Collapse
|
50
|
Syal K, Joshi H, Chatterji D, Jain V. Novel pppGpp binding site at the C-terminal region of the Rel enzyme from Mycobacterium smegmatis. FEBS J 2015; 282:3773-85. [PMID: 26179484 DOI: 10.1111/febs.13373] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/26/2015] [Accepted: 07/09/2015] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis elicits the stringent response under unfavorable growth conditions, such as those encountered by the pathogen inside the host. The hallmark of this response is production of guanosine tetra- and pentaphosphates, collectively termed (p)ppGpp, which have pleiotropic effects on the bacterial physiology. As the stringent response is connected to survival under stress, it is now being targeted for developing inhibitors against bacterial persistence. The Rel enzyme in mycobacteria has two catalytic domains at its N-terminus that are involved in the synthesis and hydrolysis of (p)ppGpp, respectively. However, the function of the C-terminal region of the protein remained unknown. Here, we have identified a binding site for pppGpp in the C-terminal region of Rel. The binding affinity of pppGpp was quantified by isothermal titration calorimetry. The binding site was determined by crosslinking using the nucleotide analog azido-pppGpp, and examining the crosslink product by mass spectrometry. Additionally, mutations in the Rel protein were created to confirm the site of pppGpp binding by isothermal titration calorimetry. These mutants showed increased pppGpp synthesis and reduced hydrolytic activity. We believe that binding of pppGpp to Rel provides a feedback mechanism that allows the protein to detect and adjust the (p)ppGpp level in the cell. Our work suggests that such sites should also be considered while designing inhibitors to target the stringent response.
Collapse
Affiliation(s)
- Kirtimaan Syal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Himanshu Joshi
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|