1
|
Datta D, Arnsten AFT. The etiology and prevention of early-stage tau pathology in higher cortical circuits: Insights from aging rhesus macaques. Alzheimers Dement 2025; 21:e14477. [PMID: 39776253 PMCID: PMC11848412 DOI: 10.1002/alz.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
Aging rhesus macaques provide a unique model for learning how age and inflammation drive early-stage pathology in sporadic Alzheimer's disease, and for testing potential therapeutics. Unlike mice, aging macaques have extensive association cortices and inflammatory signaling similar to humans, are apolipoprotein E ε4 homozygotes, and naturally develop tau and amyloid pathology with marked cognitive deficits. Importantly, monkeys provide the unique opportunity to study early-stage, soluble hyperphosphorylated tau (p-tau), including p-tau217. As soluble p-tau is rapidly dephosphorylated post mortem, it is not captured in human brains except with biopsy material. However, new macaque data show that soluble p-tau is toxic to neurons and capable of seeding across cortical circuits. Extensive evidence indicates that age-related inflammatory signaling contributes to calcium dysregulation, which drives tau hyperphosphorylation and amyloid beta generation. Pharmacological studies in aged macaques suggest that inhibiting inflammation and restoring calcium regulation can reduce tau hyperphosphorylation with minimal side effects, appropriate for potential preventive therapeutics. HIGHLIGHTS: Aging monkeys provide a unique window into early stage, soluble phosphorylated tau (p-tau). Inflammation with advancing age leads to calcium dysregulation, p-tau, and amyloid beta (Aβ). Macaque research shows p-tau undergoes transsynaptic seeding early in the cortex. p-tau traps amyloid precursor protein-containing endosomes, which may increase Aβ and drive vicious cycles. Restoring calcium regulation in cortex reduced p-tau217 levels in aged macaques.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of PsychiatryYale Medical SchoolNew HavenConnecticutUSA
| | - Amy F. T. Arnsten
- Department of NeuroscienceYale Medical SchoolNew HavenConnecticutUSA
| |
Collapse
|
2
|
Kaar A, Weir MP, Rae MG. Altered neuronal group 1 metabotropic glutamate receptor- and endoplasmic reticulum-mediated Ca 2+ signaling in two rodent models of Alzheimer's disease. Neurosci Lett 2024; 823:137664. [PMID: 38309326 DOI: 10.1016/j.neulet.2024.137664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Calcium mobilization from the endoplasmic reticulum (ER) induced by, for example, IP3 receptor (IP3R) stimulation, and its subsequent crosstalk with extracellular Ca2+ influx mediated through voltage-gated calcium channels (VGCCs) and neuronal store-operated calcium entry (nSOCE), is essential for normal neuronal signaling and cellular homeostasis. However, several studies suggest that chronic calcium dysregulation may play a key role in the onset and/or progression of neurodegenerative conditions, particularly Alzheimer's disease (AD). Here, using early postnatal hippocampal tissue from two transgenic murine models of AD, we provide further evidence that not only are crucial calcium signaling pathways dysregulated, but also that such dysregulation occurs at very early stages of development. Utilizing epifluorescence calcium imaging, we investigated ER-, nSOCE- and VGCC-mediated calcium signaling in cultured primary hippocampal neurons from two transgenic rodent models of AD: 3xTg-AD mice (PS1M146V/APPSWE/TauP301L) and TgF344-AD rats (APPSWE/PS1ΔE9) between 2 and 9 days old. Our results reveal that, in comparison to control hippocampal neurons, those from 3xTg-AD mice possessed significantly greater basal ER calcium levels, as measured by larger responses to I-mGluR-mediated ER Ca2+ mobilization (amplitude; 4 (0-19) vs 21(12-36) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = 14 a.u. (11-18); p = 0.004)) but reduced nSOCE (15 (4-22) vs 8(5-11) a.u., non-Tg vs 3xTg-AD; median difference (95 % Cl) = -7 a.u. (-3- -10 a.u.); p < 0.0001). Furthermore, unlike non-Tg neurons, where depolarization enhanced the amplitude, duration and area under the curve (A.U.C.) of I-mGluR-evoked ER-mediated calcium signals when compared with basal conditions, this was not apparent in 3xTg-AD neurons. Whilst the amplitude of depolarization-enhanced I-mGluR-evoked ER-mediated calcium signals from both non-Tg F344 and TgF344-AD neurons was significantly enhanced relative to basal conditions, the A.U.C. and duration of responses were enhanced significantly upon depolarization in non-Tg F344, but not in TgF344-AD, neurons. Overall, the nature of basal I-mGluR-mediated calcium responses did not differ significantly between non-Tg F344 and TgF344-AD neurons. In summary, our results characterizing ER- and nSOCE-mediated calcium signaling in neurons demonstrate that ER Ca2+ dyshomeostasis is an early and potentially pathogenic event in familial AD.
Collapse
Affiliation(s)
- Aidan Kaar
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Cork, Ireland
| | - Megan P Weir
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Cork, Ireland
| | - Mark G Rae
- Department of Physiology, School of Medicine, University College Cork, Western Gateway Building, Cork, Ireland.
| |
Collapse
|
3
|
Arnsten AFT, Ishizawa Y, Xie Z. Scientific rationale for the use of α2A-adrenoceptor agonists in treating neuroinflammatory cognitive disorders. Mol Psychiatry 2023; 28:4540-4552. [PMID: 37029295 PMCID: PMC10080530 DOI: 10.1038/s41380-023-02057-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023]
Abstract
Neuroinflammatory disorders preferentially impair the higher cognitive and executive functions of the prefrontal cortex (PFC). This includes such challenging disorders as delirium, perioperative neurocognitive disorder, and the sustained cognitive deficits from "long-COVID" or traumatic brain injury. There are no FDA-approved treatments for these symptoms; thus, understanding their etiology is important for generating therapeutic strategies. The current review describes the molecular rationale for why PFC circuits are especially vulnerable to inflammation, and how α2A-adrenoceptor (α2A-AR) actions throughout the nervous and immune systems can benefit the circuits in PFC needed for higher cognition. The layer III circuits in the dorsolateral PFC (dlPFC) that generate and sustain the mental representations needed for higher cognition have unusual neurotransmission and neuromodulation. They are wholly dependent on NMDAR neurotransmission, with little AMPAR contribution, and thus are especially vulnerable to kynurenic acid inflammatory signaling which blocks NMDAR. Layer III dlPFC spines also have unusual neuromodulation, with cAMP magnification of calcium signaling in spines, which opens nearby potassium channels to rapidly weaken connectivity and reduce neuronal firing. This process must be tightly regulated, e.g. by mGluR3 or α2A-AR on spines, to prevent loss of firing. However, the production of GCPII inflammatory signaling reduces mGluR3 actions and markedly diminishes dlPFC network firing. Both basic and clinical studies show that α2A-AR agonists such as guanfacine can restore dlPFC network firing and cognitive function, through direct actions in the dlPFC, but also by reducing the activity of stress-related circuits, e.g. in the locus coeruleus and amygdala, and by having anti-inflammatory actions in the immune system. This information is particularly timely, as guanfacine is currently the focus of large clinical trials for the treatment of delirium, and in open label studies for the treatment of cognitive deficits from long-COVID.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department Neuroscience, Yale University School of Medicine, New Haven, CT, 056510, USA.
| | - Yumiko Ishizawa
- Department Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Zhongcong Xie
- Department Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
4
|
Martin N, Zhu K, Czarnecka-Herok J, Vernier M, Bernard D. Regulation and role of calcium in cellular senescence. Cell Calcium 2023; 110:102701. [PMID: 36736165 DOI: 10.1016/j.ceca.2023.102701] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Cellular senescence is a state of stable cell proliferation arrest accompanied by a distinct secretory program impacting the senescent cell microenvironment. This phenotype can be induced by many stresses, including telomere shortening, oncogene activation, oxidative or genotoxic stress. Cellular senescence plays a key role in the organism throughout life, with beneficial effects at a young age for instance in embryonic development and wound healing, and deleterious effects during aging and in aging-related diseases. In the last decade calcium and calcium signaling have been established as critical factors in the implementation and regulation of cellular senescence. In this review we will present and discuss the main discoveries in this field, from the observation of an increased intracellular calcium concentration in senescent cells to the identification of calcium-binding proteins, calcium channels (TRP, ITPR, …) and MERCs (mitochondria-endoplasmic reticulum contact sites) as key players in this context.
Collapse
Affiliation(s)
- Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Equipe Labellisée la Ligue Contre le Cancer, Université de Lyon, Lyon, France.
| | - Kexin Zhu
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Equipe Labellisée la Ligue Contre le Cancer, Université de Lyon, Lyon, France
| | - Joanna Czarnecka-Herok
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Equipe Labellisée la Ligue Contre le Cancer, Université de Lyon, Lyon, France
| | - Mathieu Vernier
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Equipe Labellisée la Ligue Contre le Cancer, Université de Lyon, Lyon, France
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Centre Léon Bérard, Equipe Labellisée la Ligue Contre le Cancer, Université de Lyon, Lyon, France.
| |
Collapse
|
5
|
da Silva BPM, Fanalli SL, Gomes JD, de Almeida VV, Fukumasu H, Freitas FAO, Moreira GCM, Silva-Vignato B, Reecy JM, Koltes JE, Koltes D, de Carvalho Balieiro JC, de Alencar SM, da Silva JPM, Coutinho LL, Afonso J, Regitano LCDA, Mourão GB, Luchiari Filho A, Cesar ASM. Brain fatty acid and transcriptome profiles of pig fed diets with different levels of soybean oil. BMC Genomics 2023; 24:91. [PMID: 36855067 PMCID: PMC9976441 DOI: 10.1186/s12864-023-09188-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND The high similarity in anatomical and neurophysiological processes between pigs and humans make pigs an excellent model for metabolic diseases and neurological disorders. Lipids are essential for brain structure and function, and the polyunsaturated fatty acids (PUFA) have anti-inflammatory and positive effects against cognitive dysfunction in neurodegenerative diseases. Nutrigenomics studies involving pigs and fatty acids (FA) may help us in better understanding important biological processes. In this study, the main goal was to evaluate the effect of different levels of dietary soybean oil on the lipid profile and transcriptome in pigs' brain tissue. RESULTS Thirty-six male Large White pigs were used in a 98-day study using two experimental diets corn-soybean meal diet containing 1.5% soybean oil (SOY1.5) and corn-soybean meal diet containing 3.0% soybean oil (SOY3.0). No differences were found for the brain total lipid content and FA profile between the different levels of soybean oil. For differential expression analysis, using the DESeq2 statistical package, a total of 34 differentially expressed genes (DEG, FDR-corrected p-value < 0.05) were identified. Of these 34 DEG, 25 are known-genes, of which 11 were up-regulated (log2 fold change ranging from + 0.25 to + 2.93) and 14 were down-regulated (log2 fold change ranging from - 3.43 to -0.36) for the SOY1.5 group compared to SOY3.0. For the functional enrichment analysis performed using MetaCore with the 34 DEG, four pathway maps were identified (p-value < 0.05), related to the ALOX15B (log2 fold change - 1.489), CALB1 (log2 fold change - 3.431) and CAST (log2 fold change + 0.421) genes. A "calcium transport" network (p-value = 2.303e-2), related to the CAST and CALB1 genes, was also identified. CONCLUSION The results found in this study contribute to understanding the pathways and networks associated with processes involved in intracellular calcium, lipid metabolism, and oxidative processes in the brain tissue. Moreover, these results may help a better comprehension of the modulating effects of soybean oil and its FA composition on processes and diseases affecting the brain tissue.
Collapse
Affiliation(s)
- Bruna Pereira Martins da Silva
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Simara Larissa Fanalli
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Julia Dezen Gomes
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Vivian Vezzoni de Almeida
- grid.411195.90000 0001 2192 5801College of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia, Goiás Brazil
| | - Heidge Fukumasu
- grid.11899.380000 0004 1937 0722Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe André Oliveira Freitas
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Bárbara Silva-Vignato
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - James Mark Reecy
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - James Eugene Koltes
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - Dawn Koltes
- grid.34421.300000 0004 1936 7312College of Agriculture and Life Sciences, Iowa State University, Ames, IA USA
| | - Júlio Cesar de Carvalho Balieiro
- grid.11899.380000 0004 1937 0722School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Severino Matias de Alencar
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Julia Pereira Martins da Silva
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Luiz Lehmann Coutinho
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Juliana Afonso
- grid.460200.00000 0004 0541 873XEmbrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | | | - Gerson Barreto Mourão
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Albino Luchiari Filho
- grid.11899.380000 0004 1937 0722Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil. .,Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
6
|
Raynard C, Tessier N, Huna A, Warnier M, Flaman JM, Van Coppenolle F, Ducreux S, Martin N, Bernard D. Expression of the Calcium-Binding Protein CALB1 Is Induced and Controls Intracellular Ca 2+ Levels in Senescent Cells. Int J Mol Sci 2022; 23:ijms23169376. [PMID: 36012633 PMCID: PMC9409414 DOI: 10.3390/ijms23169376] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 01/10/2023] Open
Abstract
In response to many stresses, such as oncogene activation or DNA damage, cells can enter cellular senescence, a state of proliferation arrest accompanied by a senescence-associated secretory phenotype (SASP). Cellular senescence plays a key role in many physiopathological contexts, including cancer, aging and aging-associated diseases, therefore, it is critical to understand how senescence is regulated. Calcium ions (Ca2+) recently emerged as pivotal regulators of cellular senescence. However, how Ca2+ levels are controlled during this process is barely known. Here, we report that intracellular Ca2+ contents increase in response to many senescence inducers in immortalized human mammary epithelial cells (HMECs) and that expression of calbindin 1 (CALB1), a Ca2+-binding protein, is upregulated in this context, through the Ca2+-dependent calcineurin/NFAT pathway. We further show that overexpression of CALB1 buffers the rise in intracellular Ca2+ levels observed in senescent cells. Finally, we suggest that increased expression of Ca2+-binding proteins calbindins is a frequent mark of senescent cells. This work thus supports that, together with Ca2+channels, Ca2+-binding proteins modulate Ca2+ levels and flux during cellular senescence. This opens potential avenues of research to better understand the role of Ca2+ and of Ca2+-binding proteins in regulating cellular senescence.
Collapse
Affiliation(s)
- Clotilde Raynard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 69373 Lyon, France
| | - Nolwenn Tessier
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Anda Huna
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 69373 Lyon, France
| | - Marine Warnier
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 69373 Lyon, France
| | - Jean-Michel Flaman
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 69373 Lyon, France
| | - Fabien Van Coppenolle
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Sylvie Ducreux
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 69373 Lyon, France
- Correspondence: (N.M.); (D.B.)
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, 69373 Lyon, France
- Correspondence: (N.M.); (D.B.)
| |
Collapse
|
7
|
Salazar J, Poejo J, Mata AM, Samhan-Arias AK, Gutierrez-Merino C. Structural Features of Cytochrome b5-Cytochrome b5 Reductase Complex Formation and Implications for the Intramolecular Dynamics of Cytochrome b5 Reductase. Int J Mol Sci 2021; 23:118. [PMID: 35008543 PMCID: PMC8880779 DOI: 10.3390/ijms23042289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022] Open
Abstract
Membrane cytochrome b5 reductase is a pleiotropic oxidoreductase that uses primarily soluble reduced nicotinamide adenine dinucleotide (NADH) as an electron donor to reduce multiple biological acceptors localized in cellular membranes. Some of the biological acceptors of the reductase and coupled redox proteins might eventually transfer electrons to oxygen to form reactive oxygen species. Additionally, an inefficient electron transfer to redox acceptors can lead to electron uncoupling and superoxide anion formation by the reductase. Many efforts have been made to characterize the involved catalytic domains in the electron transfer from the reduced flavoprotein to its electron acceptors, such as cytochrome b5, through a detailed description of the flavin and NADH-binding sites. This information might help to understand better the processes and modifications involved in reactive oxygen formation by the cytochrome b5 reductase. Nevertheless, more than half a century since this enzyme was first purified, the one-electron transfer process toward potential electron acceptors of the reductase is still only partially understood. New advances in computational analysis of protein structures allow predicting the intramolecular protein dynamics, identifying potential functional sites, or evaluating the effects of microenvironment changes in protein structure and dynamics. We applied this approach to characterize further the roles of amino acid domains within cytochrome b5 reductase structure, part of the catalytic domain, and several sensors and structural domains involved in the interactions with cytochrome b5 and other electron acceptors. The computational analysis results allowed us to rationalize some of the available spectroscopic data regarding ligand-induced conformational changes leading to an increase in the flavin adenine dinucleotide (FAD) solvent-exposed surface, which has been previously correlated with the formation of complexes with electron acceptors.
Collapse
Affiliation(s)
- Jairo Salazar
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain; (J.S.); (J.P.); (A.M.M.)
- Departamento de Química, Universidad Nacional Autónoma de Nicaragua-León, León 21000, Nicaragua
| | - Joana Poejo
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain; (J.S.); (J.P.); (A.M.M.)
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Ana M. Mata
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain; (J.S.); (J.P.); (A.M.M.)
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Alejandro K. Samhan-Arias
- Department of Biochemistry, Faculty of Medicine, Universidad Autónoma de Madrid (UAM), Arzobispo Morcillo, 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain
| | - Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain; (J.S.); (J.P.); (A.M.M.)
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
8
|
Mitochondrial Dysfunction in Alzheimer's Disease: A Biomarker of the Future? Biomedicines 2021; 9:biomedicines9010063. [PMID: 33440662 PMCID: PMC7827030 DOI: 10.3390/biomedicines9010063] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide and is characterised pathologically by the accumulation of amyloid beta and tau protein aggregates. Currently, there are no approved disease modifying therapies for clearance of either of these proteins from the brain of people with AD. As well as abnormalities in protein aggregation, other pathological changes are seen in this condition. The function of mitochondria in both the nervous system and rest of the body is altered early in this disease, and both amyloid and tau have detrimental effects on mitochondrial function. In this review article, we describe how the function and structure of mitochondria change in AD. This review summarises current imaging techniques that use surrogate markers of mitochondrial function in both research and clinical practice, but also how mitochondrial functions such as ATP production, calcium homeostasis, mitophagy and reactive oxygen species production are affected in AD mitochondria. The evidence reviewed suggests that the measurement of mitochondrial function may be developed into a future biomarker for early AD. Further work with larger cohorts of patients is needed before mitochondrial functional biomarkers are ready for clinical use.
Collapse
|
9
|
Xiang W, Long Z, Zeng J, Zhu X, Yuan M, Wu J, Wu Y, Liu L. Mechanism of Radix Rhei Et Rhizome Intervention in Cerebral Infarction: A Research Based on Chemoinformatics and Systematic Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6789835. [PMID: 34531920 PMCID: PMC8440083 DOI: 10.1155/2021/6789835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/13/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the therapeutic targets, network modules, and coexpressed genes of Radix Rhei Et Rhizome intervention in cerebral infarction (CI), and to predict significant biological processes and pathways through network pharmacology. To explore the differential proteins of Radix Rhei Et Rhizome intervention in CI, conduct bioinformatics verification, and initially explain the possible therapeutic mechanism of Radix Rhei Et Rhizome intervention in CI through proteomics. METHODS The TCM database was used to predict the potential compounds of Radix Rhei Et Rhizome, and the PharmMapper was used to predict its potential targets. GeneCards and OMIM were used to search for CI-related genes. Cytoscape was used to construct a protein-protein interaction (PPI) network and to screen out core genes and detection network modules. Then, DAVID and Metascape were used for enrichment analysis. After that, in-depth analysis of the proteomics data was carried out to further explore the mechanism of Radix Rhei Et Rhizome intervention in CI. RESULTS (1) A total of 14 Radix Rhei Et Rhizome potential components and 425 potential targets were obtained. The core components include sennoside A, palmidin A, emodin, toralactone, and so on. The potential targets were combined with 297 CI genes to construct a PPI network. The targets shared by Radix Rhei Et Rhizome and CI include ALB, AKT1, MMP9, IGF1, CASP3, etc. The biological processes that Radix Rhei Et Rhizome may treat CI include platelet degranulation, cell migration, fibrinolysis, platelet activation, hypoxia, angiogenesis, endothelial cell apoptosis, coagulation, and neuronal apoptosis. The signaling pathways include Ras, PI3K-Akt, TNF, FoxO, HIF-1, and Rap1 signaling pathways. (2) Proteomics shows that the top 20 proteins in the differential protein PPI network were Syp, Syn1, Mbp, Gap43, Aif1, Camk2a, Syt1, Calm1, Calb1, Nsf, Nefl, Hspa5, Nefh, Ncam1, Dcx, Unc13a, Mapk1, Syt2, Dnm1, and Cltc. Differential protein enrichment results show that these proteins may be related to synaptic vesicle cycle, vesicle-mediated transport in synapse, presynaptic endocytosis, synaptic vesicle endocytosis, axon guidance, calcium signaling pathway, and so on. CONCLUSION This study combined network pharmacology and proteomics to explore the main material basis of Radix Rhei Et Rhizome for the treatment of CI such as sennoside A, palmidin A, emodin, and toralactone. The mechanism may be related to the regulation of biological processes (such as synaptic vesicle cycle, vesicle-mediated transport in synapse, presynaptic endocytosis, and synaptic vesicle endocytosis) and signaling pathways (such as Ras, PI3K-Akt, TNF, FoxO, HIF-1, Rap1, and axon guidance).
Collapse
Affiliation(s)
- Wang Xiang
- The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Zhiyong Long
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Jinsong Zeng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiaofei Zhu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Mengxia Yuan
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Jiamin Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghe Wu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liang Liu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
10
|
Hamrick MW, Stranahan AM. Metabolic regulation of aging and age-related disease. Ageing Res Rev 2020; 64:101175. [PMID: 32971259 DOI: 10.1016/j.arr.2020.101175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022]
Abstract
Inquiry into relationships between energy metabolism and brain function requires a uniquely interdisciplinary mindset, and implementation of anti-aging lifestyle strategies based on this work also involves consistent mental and physical discipline. Dr. Mark P. Mattson embodies both of these qualities, based on the breadth and depth of his work on neurobiological responses to energetic stress, and on his own diligent practice of regular exercise and caloric restriction. Dr. Mattson created a neurotrophic niche in his own laboratory, allowing trainees to grow their skills, form new connections, and eventually migrate, forming their own labs while remaining part of the extended lab family. In this historical review, we highlight Dr. Mattson's many contributions to understanding neurobiological responses to physical exercise and dietary restriction, with an emphasis on the mechanisms that may underlie neuroprotection in ageing and age-related disease. On the occasion of Dr. Mattson's retirement from the National Institute on Aging, we highlight his foundational work on metabolism and neuroplasticity by reviewing the context for these findings and considering their impact on future research on the neuroscience of aging.
Collapse
|
11
|
Shukla M, Vincent B. The multi-faceted impact of methamphetamine on Alzheimer's disease: From a triggering role to a possible therapeutic use. Ageing Res Rev 2020; 60:101062. [PMID: 32304732 DOI: 10.1016/j.arr.2020.101062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Although it has been initially synthesized for therapeutic purposes and currently FDA-approved and prescribed for obesity, attention-deficit/hyperactivity disorder, narcolepsy and depression, methamphetamine became a recreational drug that is nowadays massively manufactured illegally. Because it is a powerful and extremely addictive psychotropic agent, its abuse has turned out to become a major health problem worldwide. Importantly, the numerous effects triggered by this drug induce neurotoxicity in the brain ultimately leading to serious neurological impairments, tissue damage and neuropsychological disturbances that are reminiscent to most of the symptoms observed in Alzheimer's disease and other pathological manifestations in aging brain. In this context, there is a growing number of compelling evidence linking methamphetamine abuse with a higher probability of developing premature Alzheimer's disease and consequent neurodegeneration. This review proposes to establish a broad assessment of the effects that this drug can generate at the cellular and molecular levels in connection with the development of the age-related Alzheimer's disease. Altogether, the objective is to warn against the long-term effects that methamphetamine abuse may convey on young consumers and the increased risk of developing this devastating brain disorder at later stages of their lives, but also to discuss a more recently emerging concept suggesting a possible use of methamphetamine for treating this pathology under proper and strictly controlled conditions.
Collapse
|
12
|
Liu K, Zhao J, Yang L, Guan M, Yuan L, Geng Y. Protective effects of calbindin‑D28K on the UVB radiation‑induced apoptosis of human lens epithelial cells. Int J Mol Med 2020; 45:1793-1802. [PMID: 32236567 PMCID: PMC7169820 DOI: 10.3892/ijmm.2020.4552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/13/2020] [Indexed: 11/20/2022] Open
Abstract
Calbindin-D28K (Calb1) may protect human lens epithelial cells (HLECs) from apoptosis, which is a process resulting in individual cell death. The protective effects of Calb1 may be attributed to buffering high concentrations of Ca2+. The present study investigated the mechanisms through which Calb1 protects SRA01/04 cells (a human lens epithelial cell line) against apoptosis induced by ultraviolet B (UVB) exposure. Cells transfected with a lentivirus overexpressing Calb1 and control cells were treated with 40 µW/cm2 irradiation for 15 min and then cultured for 24 h. The changes in intracellular Ca2+ were detected by colorimetry, and the protein expression levels of Bad, Bcl-2 and caspase-12 were measured by western blot analysis. The intracellular Ca2+ concentration of control HLECs increased significantly following UVB irradiation, whereas in Calb1-overexpressing cells, the Ca2+ levels remained steady. In the control cells, the expression of Bad and caspase-12 was upregulated, and that of Bcl-2 was down-regulated. Notably, during UVB radiation-induced apoptosis, the overexpression of Calb1 inhibited cell death, resulting in the decreased expression of Bad and caspase-12, and in the upregulated expression of Bcl-2. These results suggested that Calb1 inhibited the upregulation of genes involved in apoptosis. The siRNA-mediated knockdown of Calb1 resulted in increased rates of UVB radiation-induced apoptosis, the increased expression of Bad and caspase-12, and the decreased expression of Bcl-2, further demonstrating that Calb1 may mediate UVB radiation-mediated apoptosis by regulating Ca2+. On the whole, the findings of the present study indicate that UVB exposure can lead to an imbalance in the intracellular Ca2+ homeostasis in HLECs and that Calb1 protein exerts a negative effect on the expression of pro-apoptotic genes in HLECs. Calb1 may thus inhibit the UVB radiation-induced apoptosis of HLECs by regulating Ca2+.
Collapse
Affiliation(s)
- Kang Liu
- Department of Ophthalmology, The 920th Hospital of The Joint Logistic Support Force, Kunming, Yunnan 650031, P.R. China
| | - Jianfeng Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Liushu Yang
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Meng Guan
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Ling Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Yu Geng
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| |
Collapse
|
13
|
Galla L, Redolfi N, Pozzan T, Pizzo P, Greotti E. Intracellular Calcium Dysregulation by the Alzheimer's Disease-Linked Protein Presenilin 2. Int J Mol Sci 2020; 21:E770. [PMID: 31991578 PMCID: PMC7037278 DOI: 10.3390/ijms21030770] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Even though most AD cases are sporadic, a small percentage is familial due to autosomal dominant mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) genes. AD mutations contribute to the generation of toxic amyloid β (Aβ) peptides and the formation of cerebral plaques, leading to the formulation of the amyloid cascade hypothesis for AD pathogenesis. Many drugs have been developed to inhibit this pathway but all these approaches currently failed, raising the need to find additional pathogenic mechanisms. Alterations in cellular calcium (Ca2+) signaling have also been reported as causative of neurodegeneration. Interestingly, Aβ peptides, mutated presenilin-1 (PS1), and presenilin-2 (PS2) variously lead to modifications in Ca2+ homeostasis. In this contribution, we focus on PS2, summarizing how AD-linked PS2 mutants alter multiple Ca2+ pathways and the functional consequences of this Ca2+ dysregulation in AD pathogenesis.
Collapse
Affiliation(s)
- Luisa Galla
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), 35131 Padua, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; (L.G.); (N.R.); (T.P.); (E.G.)
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy
| |
Collapse
|
14
|
Pi G, Gao D, Wu D, Wang Y, Lei H, Zeng W, Gao Y, Yu H, Xiong R, Jiang T, Li S, Wang X, Guo J, Zhang S, Yin T, He T, Ke D, Li R, Li H, Liu G, Yang X, Luo MH, Zhang X, Yang Y, Wang JZ. Posterior basolateral amygdala to ventral hippocampal CA1 drives approach behaviour to exert an anxiolytic effect. Nat Commun 2020; 11:183. [PMID: 31924799 PMCID: PMC6954243 DOI: 10.1038/s41467-019-13919-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 12/05/2019] [Indexed: 01/23/2023] Open
Abstract
The basolateral amygdala (BLA) and ventral hippocampal CA1 (vCA1) are cellularly and functionally diverse along their anterior-posterior and superficial-deep axes. Here, we find that anterior BLA (aBLA) and posterior BLA (pBLA) innervate deep-layer calbindin1-negative (Calb1-) and superficial-layer calbindin1-positive neurons (Calb1+) in vCA1, respectively. Photostimulation of pBLA-vCA1 inputs has an anxiolytic effect in mice, promoting approach behaviours during conflict exploratory tasks. By contrast, stimulating aBLA-vCA1 inputs induces anxiety-like behaviour resulting in fewer approaches. During conflict stages of the elevated plus maze task vCA1Calb1+ neurons are preferentially activated at the open-to-closed arm transition, and photostimulation of vCA1Calb1+ neurons at decision-making zones promotes approach with fewer retreats. In the APP/PS1 mouse model of Alzheimer's disease, which shows anxiety-like behaviour, photostimulating the pBLA-vCA1Calb1+ circuit ameliorates the anxiety in a Calb1-dependent manner. These findings suggest the pBLA-vCA1Calb1+ circuit from heterogeneous BLA-vCA1 connections drives approach behaviour to reduce anxiety-like behaviour.
Collapse
Affiliation(s)
- Guilin Pi
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Di Gao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongqin Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yali Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Physiology and Neurology, Key Laboratory for Brain Research of Henan Province, Xinxiang Medical University, Xinxiang, 453000, China
| | - Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yang Gao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huiling Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao Jiang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shihong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Taoyuan Yin
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruining Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Honglian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gongping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Centre for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, 518055, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience & Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100000, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
15
|
Jiang H, Jayadev S, Lardelli M, Newman M. A Review of the Familial Alzheimer's Disease Locus PRESENILIN 2 and Its Relationship to PRESENILIN 1. J Alzheimers Dis 2019; 66:1323-1339. [PMID: 30412492 DOI: 10.3233/jad-180656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PRESENILIN 1 (PSEN1) and PRESENILIN 2 (PSEN2) genes are loci for mutations causing familial Alzheimer's disease (fAD). However, the function of these genes and how they contribute to fAD pathogenesis has not been fully determined. This review provides a summary of the overlapping and independent functions of the PRESENILINS with a focus on the lesser studied PSEN2. As a core component of the γ-secretase complex, the PSEN2 protein is involved in many γ-secretase-related physiological activities, including innate immunity, Notch signaling, autophagy, and mitochondrial function. These physiological activities have all been associated with AD progression, indicating that PSEN2 plays a particular role in AD pathogenesis.
Collapse
Affiliation(s)
- Haowei Jiang
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
16
|
Fischer N, Johnson Chacko L, Majerus A, Potrusil T, Riechelmann H, Schmutzhard J, Schrott-Fischer A, Glueckert R. Age-Dependent Calcium-Binding Protein Expression in the Spiral Ganglion and Hearing Performance of C57BL/6J and 129/SvJ Mice. ORL J Otorhinolaryngol Relat Spec 2019; 81:138-154. [PMID: 31170714 DOI: 10.1159/000499472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/08/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Calcium-binding proteins in neurons buffer intracellular free Ca2+ ions, which interact with proteins controlling enzymatic and ion channel activity. The heterogeneous distribution of calretinin, calbindin, and parvalbumin influences calcium homeostasis, and calcium-related neuronal processes play an important role in neuronal aging and degeneration. This study evaluated age-related changes in calretinin, calbindin, and parvalbumin immune reactivity in spiral ganglion cells. METHODS A total of 16 C57BL/6J and 16 129/SvJ mice at different ages (2, 4, 7, and 12 months) were included in the study. Hearing thresholds were assessed using auditory brainstem response before inner ears were excised for further evaluation. Semiquantitative immunohistochemistry for the aforementioned calcium-binding proteins was performed at the cellular level. RESULTS The hearing thresholds of C57BL/6J and 129/SvJ mice increased significantly by 7 months of age. The average immune reactivity of calbin-din as well as the relative number of positive cells increased significantly with aging, but no significant alterations in calretinin or parvalbumin were observed. CONCLUSIONS Upregulation of calbindin could serve as a protection to compensate for functional deficits that occur with aging. Expression of both calretinin and parvalbumin seem to be stabilizing factors in murine inner ears up to the age of 12 months in C57BL/6J and 129/SvJ mice.
Collapse
Affiliation(s)
- Natalie Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Lejo Johnson Chacko
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Majerus
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Potrusil
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria.,Department of Otorhinolaryngology, Tirol Kliniken, University Clinics of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Inoue KI, Miyachi S, Nishi K, Okado H, Nagai Y, Minamimoto T, Nambu A, Takada M. Recruitment of calbindin into nigral dopamine neurons protects against MPTP-Induced parkinsonism. Mov Disord 2018; 34:200-209. [PMID: 30161282 DOI: 10.1002/mds.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/06/2018] [Accepted: 06/29/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Parkinson's disease is caused by dopamine deficiency in the striatum, which is a result of loss of dopamine neurons from the substantia nigra pars compacta. There is a consensus that a subpopulation of nigral dopamine neurons that expresses the calcium-binding protein calbindin is selectively invulnerable to parkinsonian insults. The objective of the present study was to test the hypothesis that dopamine neuron degeneration might be prevented by viral vector-mediated gene delivery of calbindin into the dopamine neurons that do not normally contain it. METHODS A calbindin-expressing adenoviral vector was injected into the striatum of macaque monkeys to be conveyed to cell bodies of nigral dopamine neurons through retrograde axonal transport, or the calbindin-expressing lentiviral vector was injected into the nigra directly because of its predominant uptake from cell bodies and dendrites. The animals in which calbindin was successfully recruited into nigral dopamine neurons were administered systemically with MPTP. RESULTS In the monkeys that had received unilateral vector injections, parkinsonian motor deficits, such as muscular rigidity and akinesia/bradykinesia, appeared predominantly in the limbs corresponding to the non-calbindin-recruited hemisphere after MPTP administration. Data obtained from tyrosine hydroxylase immunostaining and PET imaging for the dopamine transporter revealed that the nigrostriatal dopamine system was preserved better on the calbindin-recruited side. Conversely, on the non-calbindin-recruited control side, many more dopamine neurons expressed α-synuclein. CONCLUSIONS The present results indicate that calbindin recruitment into nigral dopamine neurons protects against the onset of parkinsonian insults, thus providing a novel approach to PD prevention. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan.,Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Shigehiro Miyachi
- Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo, Japan.,Cognitive Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Katsunori Nishi
- Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo, Japan
| | - Haruo Okado
- Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo, Japan.,Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Atsushi Nambu
- Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo, Japan.,Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan.,Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo, Japan
| |
Collapse
|
18
|
Isx9 Regulates Calbindin D28K Expression in Pancreatic β Cells and Promotes β Cell Survival and Function. Int J Mol Sci 2018; 19:ijms19092542. [PMID: 30150605 PMCID: PMC6165483 DOI: 10.3390/ijms19092542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 08/19/2018] [Indexed: 11/21/2022] Open
Abstract
Pancreatic β-cell dysfunction and death contribute to the onset of diabetes, and novel strategies of β-cell function and survival under diabetogenic conditions need to be explored. We previously demonstrated that Isx9, a small molecule based on the isoxazole scaffold, drives neuroendocrine phenotypes by increasing the expression of genes required for β-cell function and improves glycemia in a model of β cell regeneration. We further investigated the role of Isx9 in β-cell survival. We find that Isx9 drives the expression of Calbindin-D28K (D28K), a key regulator of calcium homeostasis, and plays a cytoprotective role through its calcium buffering capacity in β cells. Isx9 increased the activity of the calcineurin (CN)/cytoplasmic nuclear factor of the activated T-cells (NFAT) transcription factor, a key regulator of D28K, and improved the recruitment of NFATc1, cAMP response element-binding protein (CREB), and p300 to the D28K promoter. We found that nutrient stimulation increased D28K plasma membrane enrichment and modulated calcium channel activity in order to regulate glucose-induced insulin secretion. Isx9-mediated expression of D28K protected β cells against chronic stress induced by serum withdrawal or chronic inflammation by reducing caspase 3 activity. Consequently, Isx9 improved human islet function after transplantation in NOD-SCID mice in a streptozotocin-induced diabetes model. In summary, Isx9 significantly regulates expression of genes relevant to β cell survival and function, and may be an attractive therapy to treat diabetes and improve islet function post-transplantation.
Collapse
|
19
|
Turovsky EA, Zinchenko VP, Gaidin SG, Turovskaya MV. Calcium-Binding Proteins Protect GABAergic Neurons of the Hippocampus from Hypoxia and Ischemia in vitro. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2018. [DOI: 10.1134/s1990747818010105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Masurkar AV. Towards a circuit-level understanding of hippocampal CA1 dysfunction in Alzheimer's disease across anatomical axes. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2018; 8:412. [PMID: 29928558 PMCID: PMC6005196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The hippocampus has been a primary region of study with regards to synaptic and functional changes in Alzheimer’s disease (AD) due to its involvement in early stages, specifically area CA1. However, most work in this area has treated CA1 as a homogeneous structure comprised of uniform neural circuits. Yet, there is a plethora of evidence that CA1 varies in its structure and function across anatomical axes. Here I review the heterogeneity of the functional and circuit architecture of hippocampal area CA1 across three primary anatomical axes. I also summarize evidence that AD differentially affects these subregions, as well as hypotheses as to why this may occur.
Collapse
Affiliation(s)
- Arjun V Masurkar
- Center for Cognitive Neurology, Department of Neurology, Department of Neuroscience & Physiology, NYU School of Medicine
| |
Collapse
|
21
|
Association between Antihypertensive Drug Use and the Incidence of Cognitive Decline and Dementia: A Meta-Analysis of Prospective Cohort Studies. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4368474. [PMID: 29094046 PMCID: PMC5637833 DOI: 10.1155/2017/4368474] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/28/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
Background Antihypertensive drug use is inconsistently associated with the risk of dementia, Alzheimer's disease, cognitive impairment, and cognitive decline. Therefore, we conducted a meta-analysis of available prospective cohort studies to summarize the evidence on the strength of these relationships. Methods Three electronic databases including MedLine, Embase, and the Cochrane Library were searched to identify studies from inception to April 2017. Only prospective cohort studies that reported effect estimates with corresponding 95% confidence intervals (CIs) of dementia, Alzheimer's disease, cognitive impairment, and cognitive decline for antihypertensive drug use versus not using antihypertensive drugs were included. Results We included 10 prospective cohort studies reporting data on 30,895 individuals. Overall, participants who received antihypertensive drugs had lower incidence of dementia (relative risk [RR]: 0.86; 95% CI: 0.75–0.99; p = 0.033), while there was no significant effect on the incidence of Alzheimer's disease (RR: 0.83; 95% CI: 0.64–1.09; p = 0.154), cognitive impairment (RR: 0.89; 95% CI: 0.57–1.38; p = 0.596), and cognitive decline (RR: 1.11; 95% CI: 0.86–1.43; p = 0.415). Further, the incidence of Alzheimer's disease might be affected by antihypertensive drug use in participants with specific characteristics. Conclusions Antihypertensive drug use was associated with a significantly reduced risk of dementia, but not with the risk of Alzheimer's disease, cognitive impairment, and cognitive decline.
Collapse
|
22
|
Kim IH, Jeon YH, Lee TK, Cho JH, Lee JC, Park JH, Ahn JH, Shin BN, Kim YH, Hong S, Yan BC, Won MH, Lee YL. Neuroprotective effects of ischemic preconditioning on hippocampal CA1 pyramidal neurons through maintaining calbindin D28k immunoreactivity following subsequent transient cerebral ischemia. Neural Regen Res 2017; 12:918-924. [PMID: 28761424 PMCID: PMC5514866 DOI: 10.4103/1673-5374.208573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ischemic preconditioning elicited by a non-fatal brief occlusion of blood flow has been applied for an experimental therapeutic strategy against a subsequent fatal ischemic insult. In this study, we investigated the neuroprotective effects of ischemic preconditioning (2-minute transient cerebral ischemia) on calbindin D28k immunoreactivity in the gerbil hippocampal CA1 area following a subsequent fatal transient ischemic insult (5-minute transient cerebral ischemia). A large number of pyramidal neurons in the hippocampal CA1 area died 4 days after 5-minute transient cerebral ischemia. Ischemic preconditioning reduced the death of pyramidal neurons in the hippocampal CA1 area. Calbindin D28k immunoreactivity was greatly attenuated at 2 days after 5-minute transient cerebral ischemia and it was hardly detected at 5 days post-ischemia. Ischemic preconditioning maintained calbindin D28k immunoreactivity after transient cerebral ischemia. These findings suggest that ischemic preconditioning can attenuate transient cerebral ischemia-caused damage to the pyramidal neurons in the hippocampal CA1 area through maintaining calbindin D28k immunoreactivity.
Collapse
Affiliation(s)
- In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yong Hwan Jeon
- Department of Radiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bing Chun Yan
- Institute of Integrative Traditional & Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
23
|
Abstract
Presenilin-1 and presenilin-2 are highly homologous genes located on chromosomes 14 and 1, respectively, that have recently been linked to some cases of early-onset autosomal dominant inherited forms of Alzhei mer's disease (AD). Presenilins are integral membrane proteins localized in the endoplasmic reticulum of neurons throughout the nervous system. Studies of presenilin-1 knockout mice, and of invertebrate homo logues of presenilins and their interacting proteins, suggest major roles for presenilins in normal develop ment. Presenilin-1 mutant knockin mice do not exhibit developmental abnormalities, which indicates that the pathogenic mechanism of presenilin mutations involves gain of an adverse property of the mutant protein. Expression of presenilin mutations in cultured neurons and transgenic mice results in increased sensitivity to apoptosis induced by trophic factor withdrawal and exposure to oxidative and metabolic insults, and also alters gene expression. The pathogenic mechanism of presenilin mutations may involve perturbed endo plasmic reticulum calcium homeostasis resulting in enhanced oxidative stress, altered proteolytic processing of the amyloid precursor protein (APP), and increased neuronal vulnerability to excitotoxicity. Studies of presenilins are rapidly increasing our understanding the molecular and cellular underpinnings of AD and are also elucidating novel roles of the endoplasmic reticulum in neuronal plasticity and cell death. NEURO SCIENTIST 5:112-124, 1999
Collapse
Affiliation(s)
- Mark P. Mattson
- Sanders-Brown Research Center on Aging Department of Anatomy and Neurobiology University of Kentucky Lexmgton, Kentucky
| | - Qing Guo
- Sanders-Brown Research Center on Aging Department of Anatomy and Neurobiology University of Kentucky Lexmgton, Kentucky
| |
Collapse
|
24
|
Gu YN, Lee ES, Jeon CJ. Types and density of calbindin D28k-immunoreactive ganglion cells in mouse retina. Exp Eye Res 2016; 145:327-336. [PMID: 26874036 DOI: 10.1016/j.exer.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Single-cell injection after immunocytochemistry is a reliable technique for classifying neurons by their morphological structure and their expression of a particular protein. The aim of the present study was to classify the morphological types of calbindin D28k-immunoreactive retinal ganglion cells in the mouse using single-cell injection after immunocytochemistry, to estimate the density of calbindin D28k-immunoreactive retinal ganglion cells in the mouse retina. Calbindin D28k is an important calcium-binding protein that is widely expressed in the central nervous system. Calbindin D28k-immunoreactive retinal ganglion cells were identified by immunocytochemistry and then iontophoretically injected with the lipophilic dye, DiI. Subsequently, the injected cells were imaged by confocal microscopy to classify calbindin D28k-immunoreactive retinal ganglion cells based on their dendritic ramification depth within the inner plexiform layer, field size, and morphology. The cells were heterogeneous in morphology: monostratified or bistratified, with small to large dendritic field size and sparse to dense dendritic arbors. At least 10 different morphological types (CB1-CB10) of calbindin D28k-immunoreactive retinal ganglion cells were found in the mouse retina. The density of each cell type was quite variable (1.98-23.76%). The density of calbindin D28k-immunoreactive cells in the ganglion cell layer of the mouse retina was 562 cells/mm(2), 8.18% of calbindin D28k-immunoreactive cells were axon-less displaced amacrine cells, 91.82% were retinal ganglion cells, and approximately 18.17% of mouse retinal ganglion cells expressed calbindin D28k. The selective expression of calbindin D28k in cells with different morphologies may provide important data for further physiological studies of the mouse retina.
Collapse
Affiliation(s)
- Ya-Nan Gu
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Deagu, 41566, South Korea
| | - Eun-Shil Lee
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Deagu, 41566, South Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Deagu, 41566, South Korea.
| |
Collapse
|
25
|
Mithbaokar P, Fiorito F, Della Morte R, Maharajan V, Costagliola A. Chronic maternal morphine alters calbindin D-28k expression pattern in postnatal mouse brain. Synapse 2015; 70:15-23. [PMID: 26418221 DOI: 10.1002/syn.21866] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 12/18/2022]
Abstract
The distribution pattern of calbindin (CB)-D28k-expressing neurons results to be altered in several brain regions of chronic morphine exposed adult mice. In this study, the influence of chronic maternal exposure to morphine on the distribution pattern of CB-D28k-expressing neurons in the brain of mouse offspring was investigated. Females of CD-1 mice were daily administered with saline or morphine for 7 days before mating, during the whole gestation period, and until 21 day post-partum. Their offspring were sacrificed on postnatal day 18, and the brains were examined by histology using cresyl violet and by immunohistochemistry using a rabbit polyclonal anti-CB-D28k antibody. Histology revealed no significant differences in the distribution pattern and the number of neurons between the offspring forebrain of the control group of mice and the two groups of mice treated with different doses of morphine. However, immunohistochemical analysis revealed that the number of CB-D28k-immunoreactive neurons remarkably decreased in the cingulate cortex, in the layers II-IV of the parietal cortex and in all regions of the hippocampus, while it increased in the layers V-VI of the parietal cortex and in the subicular region of the offspring brain of morphine treated mice. Overall, our findings demonstrate that maternal exposure to morphine alters the pattern of CB-D28k-expressing neuron pattern in specific regions of murine developing brain, in a layer- and dose-dependent way, thus suggesting that these alterations might represent a mechanism by which morphine modifies the functional aspects of developing brain.
Collapse
Affiliation(s)
- Pratibha Mithbaokar
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1, Naples, 80137, Italy
| | - Filomena Fiorito
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1, Naples, 80137, Italy.,Department of Chemistry, Istituto Zooprofilattico Sperimentale Del Mezzogiorno, via Salute, 2, Portici, Naples, 80055, Italy
| | - Rossella Della Morte
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1, Naples, 80137, Italy
| | | | - Anna Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, via F. Delpino, 1, Naples, 80137, Italy
| |
Collapse
|
26
|
Hajibeigi A, Dioum EM, Guo J, Öz OK. Identification of novel regulatory NFAT and TFII-I binding elements in the calbindin-D28k promoter in response to serum deprivation. Biochem Biophys Res Commun 2015; 465:414-420. [PMID: 26260319 DOI: 10.1016/j.bbrc.2015.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022]
Abstract
Calbindin-D28k, a key regulator of calcium homeostasis plays a cytoprotective role in various tissues. We used serum free (SFM) and charcoal stripped serum (csFBS) culture media as models of cellular stress to modulate calbindin D28k expression and identify regulatory cis-elements and trans-acting factors in kidney and beta cells. The murine calbindin-D28k promoter activity was significantly upregulated under SFM or csFBS condition. Promoter analysis revealed evolutionary conserved regulatory cis-elements and deletion of 23 nt from +117/+139 as critical for basal transcription. Bioinformatics analysis of the promoter revealed conserved NFAT and TFII regulators elements. Forced expression of NFAT stimulated promoter activity. Inhibition of NFAT transcriptional activity by FK506 attenuated calbindin-D28k expression. TFII-I was shown to be necessary for basal promoter activity and to act cooperatively with NFAT. Using chromatin immunoprecipitation (ChIP) assays, NFAT was shown to bind to both proximal and distal promoter regions. ChIP assays also revealed recruitment of TFII to the -36/+139 region. Knockdown of TFII-I decreased promoter activity. In summary, calbindin-D28k expression during serum deprivation is partly regulated by NFAT and TF-II. This regulation may be important in vivo during ischemia and growth factor withdrawal to regulate cellular function and maintenance.
Collapse
Affiliation(s)
- Asghar Hajibeigi
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390-9153, USA
| | - Elhadji M Dioum
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas 75390-9153, USA
| | - Jianfei Guo
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390-9153, USA
| | - Orhan K Öz
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390-9153, USA
| |
Collapse
|
27
|
Norvin D, Kim G, Baker-Nigh A, Geula C. Accumulation and age-related elevation of amyloid-β within basal forebrain cholinergic neurons in the rhesus monkey. Neuroscience 2015; 298:102-11. [DOI: 10.1016/j.neuroscience.2015.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 11/29/2022]
|
28
|
Baker-Nigh A, Vahedi S, Davis EG, Weintraub S, Bigio EH, Klein WL, Geula C. Neuronal amyloid-β accumulation within cholinergic basal forebrain in ageing and Alzheimer's disease. Brain 2015; 138:1722-37. [PMID: 25732182 DOI: 10.1093/brain/awv024] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/14/2014] [Indexed: 11/14/2022] Open
Abstract
The mechanisms that contribute to selective vulnerability of the magnocellular basal forebrain cholinergic neurons in neurodegenerative diseases, such as Alzheimer's disease, are not fully understood. Because age is the primary risk factor for Alzheimer's disease, mechanisms of interest must include age-related alterations in protein expression, cell type-specific markers and pathology. The present study explored the extent and characteristics of intraneuronal amyloid-β accumulation, particularly of the fibrillogenic 42-amino acid isoform, within basal forebrain cholinergic neurons in normal young, normal aged and Alzheimer's disease brains as a potential contributor to the selective vulnerability of these neurons using immunohistochemistry and western blot analysis. Amyloid-β1-42 immunoreactivity was observed in the entire cholinergic neuronal population regardless of age or Alzheimer's disease diagnosis. The magnitude of this accumulation as revealed by optical density measures was significantly greater than that in cortical pyramidal neurons, and magnocellular neurons in the globus pallidus did not demonstrate a similar extent of amyloid immunoreactivity. Immunoblot analysis with a panel of amyloid-β antibodies confirmed accumulation of high concentration of amyloid-β in basal forebrain early in adult life. There was no age- or Alzheimer-related alteration in total amyloid-β content within this region. In contrast, an increase in the large molecular weight soluble oligomer species was observed with a highly oligomer-specific antibody in aged and Alzheimer brains when compared with the young. Similarly, intermediate molecular weight oligomeric species displayed an increase in aged and Alzheimer brains when compared with the young using two amyloid-β42 antibodies. Compared to cortical homogenates, small molecular weight oligomeric species were lower and intermediate species were enriched in basal forebrain in ageing and Alzheimer's disease. Regional and age-related differences in accumulation were not the result of alterations in expression of the amyloid precursor protein, as confirmed by both immunostaining and western blot. Our results demonstrate that intraneuronal amyloid-β accumulation is a relatively selective trait of basal forebrain cholinergic neurons early in adult life, and increases in the prevalence of intermediate and large oligomeric assembly states are associated with both ageing and Alzheimer's disease. Selective intraneuronal amyloid-β accumulation in adult life and oligomerization during the ageing process are potential contributors to the degeneration of basal forebrain cholinergic neurons in Alzheimer's disease.
Collapse
Affiliation(s)
- Alaina Baker-Nigh
- 1 Cognitive Neurology and Alzheimer's Disease Centre, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Shahrooz Vahedi
- 1 Cognitive Neurology and Alzheimer's Disease Centre, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elena Goetz Davis
- 1 Cognitive Neurology and Alzheimer's Disease Centre, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Sandra Weintraub
- 1 Cognitive Neurology and Alzheimer's Disease Centre, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Eileen H Bigio
- 1 Cognitive Neurology and Alzheimer's Disease Centre, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - William L Klein
- 2 Neurobiology, Northwestern University, Evanston, IL 60201, USA
| | - Changiz Geula
- 1 Cognitive Neurology and Alzheimer's Disease Centre, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
29
|
Foo KS, Hellysaz A, Broberger C. Expression and colocalization patterns of calbindin-D28k, calretinin and parvalbumin in the rat hypothalamic arcuate nucleus. J Chem Neuroanat 2014; 61-62:20-32. [PMID: 25014433 DOI: 10.1016/j.jchemneu.2014.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 11/16/2022]
Abstract
Calcium binding proteins (CaBPs) form a diverse group of molecules that function as signal transducers or as intracellular buffers of Ca(2+) concentration. They have been extensively used to histochemically categorize cell types throughout the brain. One region which has not yet been characterized with regard to CaBP expression is the hypothalamic arcuate nucleus, which plays a vital role in neuroendocrine control and the central regulation of energy metabolism. Using in situ hybridization and immunofluorescence, we have investigated the cellular distribution of the three CaBPs, calbindin-D28k (CB), calretinin (CR) and parvalbumin (PV) in the rat arcuate nucleus. Both mRNA and immunoreactivity was detected in the arcuate nucleus for CB - located in the medial aspects - and CR - located ventrolaterally. No PV mRNA was detected in the arcuate nucleus. Immunofluorescence results for PV were ambiguous; while one antibody detected a group of cell somata, a different antibody failed to visualize any arcuate nucleus cell profiles. Using double-labeling, neither of the examined CaBPs were observed in cells immunoreactive for the signaling molecules agouti gene-related protein, tyrosine hydroxylase, neurotensin, growth hormone-releasing hormone, somatostatin, enkephalin, dynorphin or galanin. We did, however, observe CB- and CR-immunoreactivity, in two distinct populations of neurons immunoreactive for the melanocortin peptide α-melanocyte-stimulating hormone. These data identify distinct subpopulations of arcuate neurons defined by their expression of CaBPs and provide further support for differentiation between subpopulations of anorexigenic melanocortin neurons.
Collapse
Affiliation(s)
- Kylie S Foo
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Arash Hellysaz
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
30
|
Cho I, Cho YJ, Kim HW, Heo K, Lee BI, Kim WJ. Effect of Androsterone after Pilocarpine-induced Status Epilepticus in Mice. J Epilepsy Res 2014; 4:7-13. [PMID: 24977124 PMCID: PMC4066622 DOI: 10.14581/jer.14002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/28/2014] [Indexed: 12/03/2022] Open
Abstract
Background and Purpose: Neurosteroids exert their antiepileptic effects via GABAA and NMDA receptors. Another cell death mechanism is excessive Ca2+ influx into cells. Calbindin-D28k (CB) is a protein that modulates intracellular Ca2+ in the nervous system. We evaluated whether androsterone up-regulates the expression of CB and has a neuroprotective effect by controlling Ca2+ after pilocarpine-induced status epilepticus (SE) in mice. Methods: SE was induced in ICR mice by injection of pilocarpine. Two hours after SE, mice were treated intraperitoneally (i.p.) with androsterone (100–200 mg/kg) or vehicle, and compared with other control groups. Two days after injection, immunohistochemical staining for CB was performed using a hippocampal slice from each mice group. We also used cresyl violet staining to compare changes in hippocampal structures. Results: Two days after pilocarpine-induced SE, androsterone increased the expression of CB in the hippocampus compared with control SE mice. The number of CB-positive cells was 1±0.4 cells/mm3 in pilocarpine-only group, 14±1.1 cells/mm3 in pilocarpine plus androsterone 100 mg group and 29±2.5 cells/mm3 in pilocarpine plus androsterone 200 mg group (p<0.001). Conclusions: These results suggest that the neuroprotective effect of androsterone after pilocarpine- induced SE may be mediated by an increased expression of CB.
Collapse
Affiliation(s)
- Inja Cho
- Department of Neurology and Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea ; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Korea
| | - Yang-Je Cho
- Department of Neurology and Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun-Woo Kim
- Department of Neurology and Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Heo
- Department of Neurology and Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Byung-In Lee
- Department of Neurology and Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea ; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Korea
| | - Won-Joo Kim
- Department of Neurology and Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Kook SY, Jeong H, Kang MJ, Park R, Shin HJ, Han SH, Son SM, Song H, Baik SH, Moon M, Yi EC, Hwang D, Mook-Jung I. Crucial role of calbindin-D28k in the pathogenesis of Alzheimer's disease mouse model. Cell Death Differ 2014; 21:1575-87. [PMID: 24853300 PMCID: PMC4158683 DOI: 10.1038/cdd.2014.67] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 03/03/2014] [Accepted: 04/04/2014] [Indexed: 01/22/2023] Open
Abstract
Calbindin-D28k (CB), one of the major calcium-binding and buffering proteins, has a critical role in preventing a neuronal death as well as maintaining calcium homeostasis. Although marked reductions of CB expression have been observed in the brains of mice and humans with Alzheimer disease (AD), it is unknown whether these changes contribute to AD-related dysfunction. To determine the pathogenic importance of CB depletions in AD models, we crossed 5 familial AD mutations (5XFAD; Tg) mice with CB knock-out (CBKO) mice and generated a novel line CBKO·5XFAD (CBKOTg) mice. We first identified the change of signaling pathways and differentially expressed proteins globally by removing CB in Tg mice using mass spectrometry and antibody microarray. Immunohistochemistry showed that CBKOTg mice had significant neuronal loss in the subiculum area without changing the magnitude (number) of amyloid β-peptide (Aβ) plaques deposition and elicited significant apoptotic features and mitochondrial dysfunction compared with Tg mice. Moreover, CBKOTg mice reduced levels of phosphorylated mitogen-activated protein kinase (extracellular signal-regulated kinase) 1/2 and cAMP response element-binding protein at Ser-133 and synaptic molecules such as N-methyl-D-aspartate receptor 1 (NMDA receptor 1), NMDA receptor 2A, PSD-95 and synaptophysin in the subiculum compared with Tg mice. Importantly, this is the first experimental evidence that removal of CB from amyloid precursor protein/presenilin transgenic mice aggravates AD pathogenesis, suggesting that CB has a critical role in AD pathogenesis.
Collapse
Affiliation(s)
- S-Y Kook
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - H Jeong
- School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, Korea
| | - M J Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - R Park
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - H J Shin
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - S-H Han
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - S M Son
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - H Song
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - S H Baik
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - M Moon
- Molecular Neurobiology Laboratory, Department of Psychiatry and Mclean Hospital, Harvard Medical School, Belmont, MA, USA
| | - E C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - D Hwang
- 1] School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, Korea [2] Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu, Korea
| | - I Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Fournier A, Oprisiu-Fournier R, Serot JM, Godefroy O, Achard JM, Faure S, Mazouz H, Temmar M, Albu A, Bordet R, Hanon O, Gueyffier F, Wang J, Black S, Sato N. Prevention of dementia by antihypertensive drugs: how AT1-receptor-blockers and dihydropyridines better prevent dementia in hypertensive patients than thiazides and ACE-inhibitors. Expert Rev Neurother 2014; 9:1413-31. [DOI: 10.1586/ern.09.89] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
33
|
Xu JH, Yang ZB, Wang H, Tang FR. Co-localization of L-type voltage dependent calcium channel alpha 1D subunit (Ca(v)1.3) and calbindin (CB) in the mouse central nervous system. Neurosci Lett 2014; 561:80-5. [PMID: 24394909 DOI: 10.1016/j.neulet.2013.12.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/16/2013] [Accepted: 12/23/2013] [Indexed: 11/28/2022]
Abstract
Previous study has shown that the co-localization of calbindin (CB) with L-type voltage dependent Ca(2+) channel (VDCC) alpha 1C subunit (Ca(v)1.2) in the rat insulinoma 1046-38 (RIN) beta cells may play an important regulatory role in Ca(2+) influx and exocytosis of insulin granules. In the present study, L-type voltage dependent Ca(2+) channel (VDCC) and calbindin (CB) were demonstrated in different regions of the mouse central nervous system (CNS). Double labeling immunofluorescence staining showed a co-localization of Ca(v)1.3 and CB. The co-localization of Ca(v)1.3 and CB in certain brain regions such as the hippocampus suggests their important roles in neuroplasticity. The relative high percentages of co-localization of Ca(v)1.3 with CB in the laminae II of the dorsal horn of the spinal cord indicate that the regulation mechanism of nociceptive transmission may be related with both VDCC and Ca(2+) binding protein.
Collapse
Affiliation(s)
- Jie Hua Xu
- Department of Anatomy and Histology, Xi'an Jiaotong University College of Medicine, Xi'an 710061, People's Republic of China
| | - Zhen Bang Yang
- Department of Orthopedics, The First Hospital of Yulin, Yulin 71900, People's Republic of China
| | - Hui Wang
- Department of Anatomy and Histology, Xi'an Jiaotong University College of Medicine, Xi'an 710061, People's Republic of China; Center for Human Assisted Reproduction, Maternity and Child Healthcare Hospital of Shaanxi Province, Xi'an, Shaanxi 710003, People's Republic of China
| | - Feng-Ru Tang
- Temasek Laboratories, National University of Singapore, Singapore, Singapore; Medical School of Yangtze University, People's Republic of China.
| |
Collapse
|
34
|
Dalla Corte CL, Wagner C, Sudati JH, Comparsi B, Leite GO, Busanello A, Soares FAA, Aschner M, Rocha JBT. Effects of diphenyl diselenide on methylmercury toxicity in rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:983821. [PMID: 24459674 PMCID: PMC3891606 DOI: 10.1155/2013/983821] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 02/06/2023]
Abstract
This study investigates the efficacy of diphenyl diselenide [(PhSe)2] in attenuating methylmercury- (MeHg-)induced toxicity in rats. Adult rats were treated with MeHg [5 mg/kg/day, intragastrically (i.g.)] and/ or (PhSe)2 [1 mg/kg/day, intraperitoneally (i.p.)] for 21 days. Body weight gain and motor deficits were evaluated prior to treatment, on treatment days 11 and 21. In addition, hepatic and cerebral mitochondrial function (reactive oxygen species (ROS) formation, total and nonprotein thiol levels, membrane potential (ΔΨm), metabolic function, and swelling), hepatic, cerebral, and muscular mercury levels, and hepatic, cerebral, and renal thioredoxin reductase (TrxR) activity were evaluated. MeHg caused hepatic and cerebral mitochondrial dysfunction and inhibited TrxR activity in liver (38,9%), brain (64,3%), and kidney (73,8%). Cotreatment with (PhSe)2 protected hepatic and cerebral mitochondrial thiols from depletion by MeHg but failed to completely reverse MeHg's effect on hepatic and cerebral mitochondrial dysfunction or hepatic, cerebral, and renal inhibition of TrxR activity. Additionally, the cotreatment with (PhSe)2 increased Hg accumulation in the liver (50,5%) and brain (49,4%) and increased the MeHg-induced motor deficits and body-weight loss. In conclusion, these results indicate that (PhSe)2 can increase Hg body burden as well as the neurotoxic effects induced by MeHg exposure in rats.
Collapse
Affiliation(s)
- Cristiane L. Dalla Corte
- Biochemistry and Molecular Biology Department, Graduation Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Caroline Wagner
- Federal University of Pampa—Caçapava do Sul Campus, Avenida Pedro Anunciação, Vila Batista, 96570-000 Caçapava do Sul, RS, Brazil
| | - Jéssie H. Sudati
- Federal University of Pampa—Caçapava do Sul Campus, Avenida Pedro Anunciação, Vila Batista, 96570-000 Caçapava do Sul, RS, Brazil
| | - Bruna Comparsi
- Higher Education Cenecista Institute of Santo Ângelo—IESA, Rua Dr. João Augusto Rodrigues 471, 98801-015 Santo Ângelo, RS, Brazil
| | - Gerlania O. Leite
- Regional University of Cariri, Pharmacology and Molecular Chemistry Laboratory, Rua Cel. Antônio Luís 1161, 63100-000 Crato, CE, Brazil
| | - Alcindo Busanello
- Biochemistry and Molecular Biology Department, Graduation Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Félix A. A. Soares
- Biochemistry and Molecular Biology Department, Graduation Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - João B. T. Rocha
- Biochemistry and Molecular Biology Department, Graduation Program in Biological Sciences: Toxicological Biochemistry, Natural and Exact Sciences Center, Federal University of Santa Maria, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
35
|
Focal cerebral ischemic injury decreases calbindin expression in brain tissue and HT22 cells. Lab Anim Res 2013; 29:156-61. [PMID: 24106510 PMCID: PMC3791349 DOI: 10.5625/lar.2013.29.3.156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/01/2013] [Accepted: 07/19/2013] [Indexed: 02/05/2023] Open
Abstract
Calbindin is a calcium binding protein that controls intracellular calcium levels and has a neuroprotective function against apoptotic stimuli. We investigated the expression of calbindin in ischemic brain injury. Focal cerebral ischemia was induced in male rats by middle cerebral artery occlusion (MCAO) and cerebral cortices were collected 24 h after MCAO. Cerebral ischemia significantly increased infarct volume. RT-PCR and Western blot analyses showed that MCAO injury induced a decrease of calbindin expression. Moreover, immunohistochemical staining showed that the number of calbindin-positive cells decreased in ischemic regions of MCAO-operated animals. In cultured hippocampal-derived cell lines, glutamate exposure increased intracellular Ca2+ concentrations and decreased calbindin expression. Taken together, both in vivo and in vitro results demonstrated decreases of calbindin after neuronal cell injury. These results suggest that decreases of calbindin in ischemic brain injury contribute to neuronal cell death.
Collapse
|
36
|
Zhang H, Shao D, Wu Y, Dai B, Cai C, Fang W, Ye B, Zhang Y, liu J, Jia X. Regulation of nodularin-induced apoptosis by epigallocatechin-3-gallate on fish lymphocytes in vitro. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1085-1093. [PMID: 23403155 DOI: 10.1016/j.fsi.2013.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 01/10/2013] [Accepted: 01/20/2013] [Indexed: 06/01/2023]
Abstract
Nodularin is one of the most conspicuous and widespread pollutants that elicit water ecological hazards to fish, causing serious damage on the immune system and physiological functions. Nodularin can cause oxidative stress-induced apoptosis on fish lymphocytes. The regulatory effects of epigallocatechin-3-gallate (EGCG) at 10, 100, and 1000 μg/L levels on the antioxidant defense system and apoptosis of Carassius auratus lymphocytes exposed to a high dose of nodularin (100 μg/L) were quantified in vitro. EGCG reduced nodularin-induced oxidative damage on fish immune cells. This compound significantly increased the activities of superoxide dismutase and catalase and the level of glutathione but decreased the levels of intracellular reactive oxygen species and malondialdehyde. Flow cytometry results showed that the percentages of apoptotic cells after treatment with 10, 100, and 1000 μg/L EGCG for 12 h reached 27.9%, 19.1%, and 13.7%, respectively. By contrast, the nodularin alone-induced group showed a high percentage of apoptosis (44.2%). Western blot analysis showed the increased expression of bcl-2 and the decreased expression of bax and caspase-3 in EGCG-treated fish lymphocytes. EGCG also inhibited the potential collapse of the mitochondrial membrane. Overall, EGCG can inhibit nodularin-induced apoptosis and protect the normal immunity of fish by regulating bax/bcl-2 and blocking the downstream of mitochondrial apoptosis pathway with increased intracellular antioxidant enzyme activity.
Collapse
Affiliation(s)
- Hangjun Zhang
- Department of Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province 310036, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Diphenyl diselenide prevents methylmercury-induced mitochondrial dysfunction in rat liver slices. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Nikoletopoulou V, Tavernarakis N. Calcium homeostasis in aging neurons. Front Genet 2012; 3:200. [PMID: 23060904 PMCID: PMC3462315 DOI: 10.3389/fgene.2012.00200] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/19/2012] [Indexed: 11/13/2022] Open
Abstract
The nervous system becomes increasingly vulnerable to insults and prone to dysfunction during aging. Age-related decline of neuronal function is manifested by the late onset of many neurodegenerative disorders, as well as by reduced signaling and processing capacity of individual neuron populations. Recent findings indicate that impairment of Ca(2+) homeostasis underlies the increased susceptibility of neurons to damage, associated with the aging process. However, the impact of aging on Ca(2+) homeostasis in neurons remains largely unknown. Here, we survey the molecular mechanisms that mediate neuronal Ca(2+) homeostasis and discuss the impact of aging on their efficacy. To address the question of how aging impinges on Ca(2+) homeostasis, we consider potential nodes through which mechanisms regulating Ca(2+) levels interface with molecular pathways known to influence the process of aging and senescent decline. Delineation of this crosstalk would facilitate the development of interventions aiming to fortify neurons against age-associated functional deterioration and death by augmenting Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Vassiliki Nikoletopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas Heraklion, Crete, Greece
| | | |
Collapse
|
39
|
Jung EM, An BS, Choi KC, Jeung EB. Apoptosis- and endoplasmic reticulum stress-related genes were regulated by estrogen and progesterone in the uteri of calbindin-D(9k) and -D(28k) knockout mice. J Cell Biochem 2012; 113:194-203. [PMID: 21882229 DOI: 10.1002/jcb.23344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Calcium (Ca(2+)) is an important regulator of apoptotic signaling. Calbindin-D(9k) (CaBP-9k) and -D(28k) (CaBP-28k) have a high affinity for Ca(2+) ions. Uterine calbindins appear to be involved in the regulation of myometrial activity by intracellular Ca(2+). In addition, uterine calbindins are expressed in the mouse endometrium and are regulated by steroid hormones during implantation and development. The aim of the present study was to evaluate the regulation of apoptosis in the uteri of CaBP-9k, CaBP-28k, and CaBP-9k/28k knockout (KO) mice. Our findings indicated that Bax protein was enhanced in the uteri of CaBP-28k and CaBP-9k/28k KO mice compared to wild-type (WT) and CaBP-9k KO mice, but no difference was observed in Bcl-2 protein expression. The expressions of caspase 3, 6, and 7 proteins were higher in both CaBP-28k and CaBP-9k/28k KO mice than in WT and CaBP-9k KO mice. These results suggest that the absence of CaBP-28k increases apoptotic signaling. We also investigated the expression of endoplasmic reticulum (ER) stress genes by Western blot analysis in calbindin KO mice. C/EBP homologous protein and immunoglobulin heavy chain-binding protein protein levels were elevated in CaBP-28k KO mice compared to WT mice. When immature mice were treated with 17β-estradiol (E2) or progesterone (P4) for 3 days, we found that the expressions of Bax and caspase 3 protein were increased by E2 treatment in WT and CaBP-9k KO mice, and by P4 treatment in CaBP-28k KO mice. These results indicate that CaBP-28k blocks the up-regulation of apoptosis-related genes and ER stress genes, implying that CaBP-28k may decrease the expression of genes involved in apoptosis and ER stress in murine uterine tissue.
Collapse
Affiliation(s)
- Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | |
Collapse
|
40
|
Gilmore RF, Varnum MM, Forger NG. Effects of blocking developmental cell death on sexually dimorphic calbindin cell groups in the preoptic area and bed nucleus of the stria terminalis. Biol Sex Differ 2012; 3:5. [PMID: 22336348 PMCID: PMC3305593 DOI: 10.1186/2042-6410-3-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/15/2012] [Indexed: 01/01/2023] Open
Abstract
Background Calbindin-D28 has been used as a marker for the sexually dimorphic nucleus of the preoptic area (SDN-POA). Males have a distinct cluster of calbindin-immunoreactive (ir) cells in the medial preoptic area (CALB-SDN) that is reduced or absent in females. However, it is not clear whether the sex difference is due to the absolute number of calbindin-ir cells or to cell position (that is, spread), and the cellular mechanisms underlying the sex difference are not known. We examined the number of cells in the CALB-SDN and surrounding regions of C57Bl/6 mice and used mice lacking the pro-death gene, Bax, to test the hypothesis that observed sex differences are due to cell death. Methods Experiment 1 compared the number of cells in the CALB-SDN and surrounding regions in adult males, females, and females injected with estradiol benzoate on the day of birth. In experiment 2, cell number in the CALB-SDN and adjacent regions were compared in wild-type and Bax knockout mice of both sexes. In addition, calbindin-ir cells were quantified within the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), a nearby region that is larger in males due to Bax-dependent cell death. Results Males had more cells in the CALB-SDN as well as in surrounding regions than did females, and estradiol treatment of females at birth masculinized both measures. Bax deletion had no effect on cell number in the CALB-SDN or surrounding regions but increased calbindin-ir cell number in the BNSTp. Conclusions The sex difference in the CALB-SDN of mice results from an estrogen-dependent difference in cell number with no evidence found for greater spread of cells in females. Blocking Bax-dependent cell death does not prevent sex differences in calbindin-ir cell number in the BNST or CALB-SDN but increases calbindin-ir cell number in the BNSTp of both sexes.
Collapse
Affiliation(s)
- Richard F Gilmore
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
41
|
Real MA, Simón MP, Heredia R, de Diego Y, Guirado S. Phenotypic changes in calbindin D28K immunoreactivity in the hippocampus of Fmr1 knockout mice. J Comp Neurol 2011; 519:2622-36. [PMID: 21491426 DOI: 10.1002/cne.22643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Fragile X syndrome (FXS), the most prevalent form of inherited mental retardation, is caused by the lack of FMRP (fragile mental retardation protein) as a result of the transcriptional silencing of the FMR1 gene. Here we analyze the immunohistochemical expression of the calbindin D28K protein in the hippocampus of Fmr1 knockout (KO) mice and compare it with that of their wildtype (WT) littermates. The spatial distribution pattern of calbindin-immunoreactive cells in the hippocampus was similar in WT and KO mice but for each age studied (ranging from 3.5-8 months) the dentate gyrus of Fmr1-KO mice showed a significant reduction in calbindin-immunoreactive granule cells. Also, the number of calbindin-immunoreactive cells was reduced in the CA1 pyramidal layer in KO mice compared to their WT littermates. In addition, Frm1-KO mice showed a group of calbindin-immunoreactive cells located only in the left CA3b subregion that was only sometimes observed in WT mice. Overall, the absence of FMRP results in a dysregulation of the calbindin protein expression in the hippocampus. This dysregulation is cell type- and time-dependent and as a consequence key elements of the hippocampal trisynaptic circuitry may lack calbindin in critical periods for normal memory/learning abilities to be achieved and may explain some of the FXS symptoms observed in the Fmr1-KO mouse model.
Collapse
Affiliation(s)
- M Angeles Real
- University of Málaga, Department of Cell Biology, Genetics, and Physiology, Málaga, Spain
| | | | | | | | | |
Collapse
|
42
|
Slomianka L, Amrein I, Knuesel I, Sørensen JC, Wolfer DP. Hippocampal pyramidal cells: the reemergence of cortical lamination. Brain Struct Funct 2011; 216:301-17. [PMID: 21597968 PMCID: PMC3197924 DOI: 10.1007/s00429-011-0322-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/26/2011] [Indexed: 12/16/2022]
Abstract
The increasing resolution of tract-tracing studies has led to the definition of segments along the transverse axis of the hippocampal pyramidal cell layer, which may represent functionally defined elements. This review will summarize evidence for a morphological and functional differentiation of pyramidal cells along the radial (deep to superficial) axis of the cell layer. In many species, deep and superficial sublayers can be identified histologically throughout large parts of the septotemporal extent of the hippocampus. Neurons in these sublayers are generated during different periods of development. During development, deep and superficial cells express genes (Sox5, SatB2) that also specify the phenotypes of superficial and deep cells in the neocortex. Deep and superficial cells differ neurochemically (e.g. calbindin and zinc) and in their adult gene expression patterns. These markers also distinguish sublayers in the septal hippocampus, where they are not readily apparent histologically in rat or mouse. Deep and superficial pyramidal cells differ in septal, striatal, and neocortical efferent connections. Distributions of deep and superficial pyramidal cell dendrites and studies in reeler or sparsely GFP-expressing mice indicate that this also applies to afferent pathways. Histological, neurochemical, and connective differences between deep and superficial neurons may correlate with (patho-) physiological phenomena specific to pyramidal cells at different radial locations. We feel that an appreciation of radial subdivisions in the pyramidal cell layer reminiscent of lamination in other cortical areas may be critical in the interpretation of studies of hippocampal anatomy and function.
Collapse
Affiliation(s)
- Lutz Slomianka
- Institute of Anatomy, University of Zürich, 8057 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
43
|
Abstract
New insights into how Ca(2+) regulates learning and memory have begun to provide clues as to how the amyloid-dependent remodelling of neuronal Ca(2+) signalling pathways can disrupt the mechanisms of learning and memory in Alzheimer's disease (AD). The calcium hypothesis of AD proposes that activation of the amyloidogenic pathway remodels the neuronal Ca(2+) signalling pathways responsible for cognition by enhancing the entry of Ca(2+) and/or the release of internal Ca(2+) by ryanodine receptors or InsP(3) receptors. The specific proposal is that Ca(2+) signalling remodelling results in a persistent elevation in the level of Ca(2+) that constantly erases newly acquired memories by enhancing the mechanism of long-term depression (LTD). Neurons can still form memories through the process of LTP, but this stored information is rapidly removed by the persistent activation of LTD. Further dysregulation in Ca(2+) signalling will then go on to induce the neurodegeneration that characterizes the later stages of dementia.
Collapse
|
44
|
Camandola S, Mattson MP. Aberrant subcellular neuronal calcium regulation in aging and Alzheimer's disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1813:965-73. [PMID: 20950656 PMCID: PMC3032815 DOI: 10.1016/j.bbamcr.2010.10.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 02/06/2023]
Abstract
In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer's disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | | |
Collapse
|
45
|
Craig-Schapiro R, Kuhn M, Xiong C, Pickering EH, Liu J, Misko TP, Perrin RJ, Bales KR, Soares H, Fagan AM, Holtzman DM. Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer's disease diagnosis and prognosis. PLoS One 2011; 6:e18850. [PMID: 21526197 PMCID: PMC3079734 DOI: 10.1371/journal.pone.0018850] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 03/21/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Clinicopathological studies suggest that Alzheimer's disease (AD) pathology begins ∼10-15 years before the resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and predict dementia onset would, therefore, be invaluable for patient care and efficient clinical trial design. We utilized a targeted proteomics approach to discover novel cerebrospinal fluid (CSF) biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers (Aβ42, tau, p-tau181). METHODS AND FINDINGS Using a multiplexed Luminex platform, 190 analytes were measured in 333 CSF samples from cognitively normal (Clinical Dementia Rating [CDR] 0), very mildly demented (CDR 0.5), and mildly demented (CDR 1) individuals. Mean levels of 37 analytes (12 after Bonferroni correction) were found to differ between CDR 0 and CDR>0 groups. Receiver-operating characteristic curve analyses revealed that small combinations of a subset of these markers (cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-α, fibrinogen, FAS, eotaxin-3) enhanced the ability of the best-performing established CSF biomarker, the tau/Aβ42 ratio, to discriminate CDR>0 from CDR 0 individuals. Multiple machine learning algorithms likewise showed that the novel biomarker panels improved the diagnostic performance of the current leading biomarkers. Importantly, most of the markers that best discriminated CDR 0 from CDR>0 individuals in the more targeted ROC analyses were also identified as top predictors in the machine learning models, reconfirming their potential as biomarkers for early-stage AD. Cox proportional hazards models demonstrated that an optimal panel of markers for predicting risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) consisted of calbindin, Aβ42, and age. CONCLUSIONS/SIGNIFICANCE Using a targeted proteomic screen, we identified novel candidate biomarkers that complement the best current CSF biomarkers for distinguishing very mildly/mildly demented from cognitively normal individuals. Additionally, we identified a novel biomarker (calbindin) with significant prognostic potential.
Collapse
Affiliation(s)
- Rebecca Craig-Schapiro
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Max Kuhn
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Chengjie Xiong
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eve H. Pickering
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Jingxia Liu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Thomas P. Misko
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Richard J. Perrin
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Neuropathology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kelly R. Bales
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Holly Soares
- Neuroscience Research Unit, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- Neuroscience Research Unit, Pfizer Global Research and Development, St. Louis, Missouri, United States of America
| | - Anne M. Fagan
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- The Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
46
|
Müller M, Cheung KH, Foskett JK. Enhanced ROS generation mediated by Alzheimer's disease presenilin regulation of InsP3R Ca2+ signaling. Antioxid Redox Signal 2011; 14:1225-35. [PMID: 20701429 PMCID: PMC3048838 DOI: 10.1089/ars.2010.3421] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Familial Alzheimer's disease (FAD) is caused by mutations in amyloid precursor protein and presenilins (PS1, PS2). Many FAD-linked PS mutations affect intracellular calcium (Ca(2+)) homeostasis by proximal mechanisms independent of amyloid production by dramatically enhancing gating of the inositol trisphosphate receptor (InsP(3)R) intracellular Ca(2+) release channel by a gain-of-function effect that mirrors genetics of FAD and is independent of secretase activity. Electrophysiological recordings of InsP(3)R in FAD patient B cells, cortical neurons of asymptomatic PS1-AD mice, and other cells revealed they have higher occupancy in a high open probability burst mode, resulting in enhanced Ca(2+) signaling. Exaggerated Ca(2+) signaling through this mechanism results in enhanced generation of reactive oxygen species, believed to be an important component in AD pathogenesis. Exaggerated Ca(2+) signaling through InsP(3)R-PS interaction is a disease specific and robust proximal mechanism in AD that may contribute to the pathology of AD by enhanced generation of reactive oxygen species.
Collapse
Affiliation(s)
- Marioly Müller
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
47
|
Rammouz G, Lecanu L, Papadopoulos V. Oxidative Stress-Mediated Brain Dehydroepiandrosterone (DHEA) Formation in Alzheimer's Disease Diagnosis. Front Endocrinol (Lausanne) 2011; 2:69. [PMID: 22654823 PMCID: PMC3356139 DOI: 10.3389/fendo.2011.00069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/19/2011] [Indexed: 02/06/2023] Open
Abstract
Neurosteroids are steroids made by brain cells independently of peripheral steroidogenic sources. The biosynthesis of most neurosteroids is mediated by proteins and enzymes similar to those identified in the steroidogenic pathway of adrenal and gonadal cells. Dehydroepiandrosterone (DHEA) is a major neurosteroid identified in the brain. Over the years we have reported that, unlike other neurosteroids, DHEA biosynthesis in rat, bovine, and human brain is mediated by an oxidative stress-mediated mechanism, independent of the cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) enzyme activity found in the periphery. This alternative pathway is induced by pro-oxidant agents, such as Fe(2+) and β-amyloid peptide. Neurosteroids are involved in many aspects of brain function, and as such, are involved in various neuropathologies, including Alzheimer's disease (AD). AD is a progressive, yet irreversible neurodegenerative disease for which there are limited means for ante-mortem diagnosis. Using brain tissue specimens from control and AD patients, we provided evidence that DHEA is formed in the AD brain by the oxidative stress-mediated metabolism of an unidentified precursor, thus depleting levels of the precursor in the blood stream. We tested for the presence of this DHEA precursor in human serum using a Fe(2+)-based reaction and determined the amounts of DHEA formed. Fe(2+) treatment of the serum resulted in a dramatic increase in DHEA levels in control patients, whereas only a moderate or no increase was observed in AD patients. The DHEA variation after oxidation correlated with the patients' cognitive and mental status. In this review, we present the cumulative evidence for oxidative stress as a natural regulator of DHEA formation and the use of this concept to develop a blood-based diagnostic tool for neurodegenerative diseases linked to oxidative stress, such as AD.
Collapse
Affiliation(s)
- Georges Rammouz
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill UniversityMontreal, QC, Canada
| | - Laurent Lecanu
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill UniversityMontreal, QC, Canada
| | - Vassilios Papadopoulos
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill UniversityMontreal, QC, Canada
- Department of Biochemistry, McGill UniversityMontreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill UniversityMontreal, QC, Canada
- *Correspondence: Vassilios Papadopoulos, The Research Institute of the McGill University Health Center, Montreal General Hospital, 1650 Cedar Avenue, C10-148, Montreal, QC, Canada H3G 1A4. e-mail:
| |
Collapse
|
48
|
Selective vulnerability of neurons in layer II of the entorhinal cortex during aging and Alzheimer's disease. Neural Plast 2010; 2010:108190. [PMID: 21331296 PMCID: PMC3039218 DOI: 10.1155/2010/108190] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/26/2010] [Indexed: 01/04/2023] Open
Abstract
All neurons are not created equal. Certain cell populations in specific brain regions are more susceptible to age-related changes that initiate regional and system-level dysfunction. In this respect, neurons in layer II of the entorhinal cortex are selectively vulnerable in aging and Alzheimer's disease (AD). This paper will cover several hypotheses that attempt to account for age-related alterations among this cell population. We consider whether specific developmental, anatomical, or biochemical features of neurons in layer II of the entorhinal cortex contribute to their particular sensitivity to aging and AD. The entorhinal cortex is a functionally heterogeneous environment, and we will also review data suggesting that, within the entorhinal cortex, there is subregional specificity for molecular alterations that may initiate cognitive decline. Taken together, the existing data point to a regional cascade in which entorhinal cortical alterations directly contribute to downstream changes in its primary afferent region, the hippocampus.
Collapse
|
49
|
Kim SA, Jeon JH, Son MJ, Cha J, Chun MH, Kim IB. Changes in transcript and protein levels of calbindin D28k, calretinin and parvalbumin, and numbers of neuronal populations expressing these proteins in an ischemia model of rat retina. Anat Cell Biol 2010; 43:218-29. [PMID: 21212862 PMCID: PMC3015040 DOI: 10.5115/acb.2010.43.3.218] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/07/2010] [Accepted: 09/10/2010] [Indexed: 02/06/2023] Open
Abstract
Excessive calcium is thought to be a critical step in various neurodegenerative processes including ischemia. Calbindin D28k (CB), calretinin (CR), and parvalbumin (PV), members of the EF-hand calcium-binding protein family, are thought to play a neuroprotective role in various pathologic conditions by serving as a buffer against excessive calcium. The expression of CB, PV and CR in the ischemic rat retina induced by increasing intraocular pressure was investigated at the transcript and protein levels, by means of the quantitative real-time reverse transcription-polymerase chain reaction, western blot and immunohistochemistry. The transcript and protein levels of CB, which is strongly expressed in the horizontal cells in both normal and affected retinas, were not changed significantly and the number of CB-expressing horizontal cells remained unchanged throughout the experimental period 8 weeks after ischemia/reperfusion injury. At both the transcript and protein levels, however, CR, which is strongly expressed in several types of amacrine, ganglion, and displaced amacrine cells in both normal and affected retinas, was decreased. CR-expressing ganglion cell number was particularly decreased in ischemic retinas. Similar to the CR, PV transcript and protein levels, and PV-expressing AII amacrine cell number were decreased. Interestingly, in ischemic retinas PV was transiently expressed in putative cone bipolar cell types possibly those that connect with AII amacrine cells via gap junctions. These results suggest that these three calcium binding proteins may play different neuroprotective roles in ischemic insult by their ability to buffer calcium in the rat retina.
Collapse
Affiliation(s)
- Shin Ae Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
50
|
Halhali A, Figueras AG, Díaz L, Avila E, Barrera D, Hernández G, Larrea F. Effects of calcitriol on calbindins gene expression and lipid peroxidation in human placenta. J Steroid Biochem Mol Biol 2010; 121:448-51. [PMID: 20214988 DOI: 10.1016/j.jsbmb.2010.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/11/2010] [Accepted: 03/01/2010] [Indexed: 11/30/2022]
Abstract
Pregnancy is associated with increased maternal calcitriol levels and placenta is an extrarenal source of this hormone. Calbindin-D9k and calbindin-D28k are vitamin D-dependent. Since calbindin-D28k has been considered as an antioxidant factor, the aim of the present work was to investigate the effects of calcitriol on calbindins gene expression and lipid peroxidation in cultured syncytiotrophoblast cells obtained from healthy human placentas. Gene expression of calbindins was evaluated using RT and real-time PCR techniques. Malondialdehyde (MDA) levels were used as lipid peroxidation marker. The results of the present study showed that cultured syncytiotrophoblast cells expressed the mRNA of calbindin-D9k and calbindin-D28k. In addition, calcitriol stimulated gene expression of both calbindins in a dose-dependent manner. Placental MDA levels were not significantly different at physiological concentrations of calcitriol (10(-11) M and 10(-9) M). However, the use of calcitriol at 10(-7) M resulted in significantly higher MDA levels (P<0.05). In conclusion, the results showed that cultured syncytiotrophoblast cells expressed calbindin-D9k and calbindin-D28k genes, which were stimulated by calcitriol. In addition, the results suggest that calcitriol may be considered as pro-oxidant when used at pharmacological doses.
Collapse
Affiliation(s)
- Ali Halhali
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan 14000, México D.F., Mexico
| | | | | | | | | | | | | |
Collapse
|