1
|
Zhang Z, Xie W, Zhang J, Wang N, Zhao Y, Wang Y, Bai S. Construction of the first high-density genetic linkage map and identification of seed yield-related QTLs and candidate genes in Elymus sibiricus, an important forage grass in Qinghai-Tibet Plateau. BMC Genomics 2019; 20:861. [PMID: 31726988 PMCID: PMC6857239 DOI: 10.1186/s12864-019-6254-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022] Open
Abstract
Background Elymus sibiricus is an ecologically and economically important perennial, self-pollinated, and allotetraploid (StStHH) grass, widely used for forage production and animal husbandry in Western and Northern China. However, it has low seed yield mainly caused by seed shattering, which makes seed production difficult for this species. The goals of this study were to construct the high-density genetic linkage map, and to identify QTLs and candidate genes for seed-yield related traits. Results An F2 mapping population of 200 individuals was developed from a cross between single genotype from “Y1005” and “ZhN06”. Specific-locus amplified fragment sequencing (SLAF-seq) was applied to construct the first genetic linkage map. The final genetic map included 1971 markers on the 14 linkage groups (LGs) and was 1866.35 cM in total. The length of each linkage group varied from 87.67 cM (LG7) to 183.45 cM (LG1), with an average distance of 1.66 cM between adjacent markers. The marker sequences of E. sibiricus were compared to two grass genomes and showed 1556 (79%) markers mapped to wheat, 1380 (70%) to barley. Phenotypic data of eight seed-related traits (2016–2018) were used for QTL identification. A total of 29 QTLs were detected for eight seed-related traits on 14 linkage groups, of which 16 QTLs could be consistently detected for two or three years. A total of 6 QTLs were associated with seed shattering. Based on annotation with wheat and barley genome and transcriptome data of abscission zone in E. sibiricus, we identified 30 candidate genes for seed shattering, of which 15, 7, 6 and 2 genes were involved in plant hormone signal transcription, transcription factor, hydrolase activity and lignin biosynthetic pathway, respectively. Conclusion This study constructed the first high-density genetic linkage map and identified QTLs and candidate genes for seed-related traits in E. sibiricus. Results of this study will not only serve as genome-wide resources for gene/QTL fine mapping, but also provide a genetic framework for anchoring sequence scaffolds on chromosomes in future genome sequence assembly of E. sibiricus.
Collapse
Affiliation(s)
- Zongyu Zhang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Wengang Xie
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| | - Junchao Zhang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Na Wang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Yongqiang Zhao
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Yanrong Wang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| | - Shiqie Bai
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, 611731, People's Republic of China
| |
Collapse
|
2
|
Xia W, Luo T, Zhang W, Mason AS, Huang D, Huang X, Tang W, Dou Y, Zhang C, Xiao Y. Development of High-Density SNP Markers and Their Application in Evaluating Genetic Diversity and Population Structure in Elaeis guineensis. FRONTIERS IN PLANT SCIENCE 2019; 10:130. [PMID: 30809240 PMCID: PMC6380268 DOI: 10.3389/fpls.2019.00130] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/25/2019] [Indexed: 05/28/2023]
Abstract
High-density single nucleotide polymorphisms (SNPs) are used as highly favored makers to analyze genetic diversity and population structure, to construct high-density genetic maps and provide genotypes for genome-wide association analysis. In order to develop genome-wide SNP markers in oil palm (Elaeis guineensis), single locus amplified fragment sequencing (SLAF-seq) technology was performed in a diversity panel of 200 oil palm individuals and 1,261,501 SNPs were identified with minor allele frequency > 0.05 and integrity > 1. Among them, only 17.81% can be mapped within the genic region and the remaining was located into the intergenic region. A positive correlation was detected between the distribution of SNP markers and retrotransposons [transposable elements (TEs)]. Population structure analysis showed that the 200 individuals of oil palm can be divided into five subgroups based on cross-validation errors. However, the subpopulations divided for the 200 oil palm individuals based on the SNP markers were not accurately related to their geographical origins and 80 oil palm individuals from Malaysia showed highest genetic diversity. In addition, the physical distance of linkage disequilibrium (LD) decay in the analyzed oil palm population was 14.516 kb when r2 = 0.1. The LD decay distances for different chromosomes varied from 3.324 (chromosome 15) to 19.983 kb (chromosome 7). Our research provides genome-wide SNPs for future targeted breeding in palm oil.
Collapse
Affiliation(s)
- Wei Xia
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Tingting Luo
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Annaliese S. Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
| | - Dongyi Huang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xiaolong Huang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Wenqi Tang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Yajing Dou
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Chunyu Zhang
- National Research Center of Rapeseed Engineering and Technology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong Xiao
- Coconut Research Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| |
Collapse
|
3
|
El-Heliebi A, Chen S, Kroneis T. Heat-Induced Fragmentation and Adapter-Assisted Whole Genome Amplification Using GenomePlex® Single-Cell Whole Genome Amplification Kit (WGA4). Methods Mol Biol 2015; 1347:101-9. [PMID: 26374312 DOI: 10.1007/978-1-4939-2990-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Whole genome amplification (WGA) is a widely used technique allowing multiplying picogram amounts of target DNA by several orders of magnitude. The technique described here is based on heat-induced random fragmentation yielding DNA strands mainly ranging from 0.1 to 1 kb in length. The fragmented DNA is then subjected to library generation by annealing of adaptor sequences to both ends of the DNA fragments. Using primers hybridizing to the adapter sequences, the DNA is amplified by thermal cycling. This amplification typically yields > 2 mg DNA from a single cell, is suited for amplifying DNA isolated from (partly) degraded samples [e.g. formalin-fixed paraffin-embedded (FFPE) material] and works well when used for array-comparative genome hybridization (array-CGH).
Collapse
Affiliation(s)
- Amin El-Heliebi
- Research Unit for Single Cell Analysis, Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Harrachgasse 21, Graz, 8010, Austria
| | - Shukun Chen
- Research Unit for Single Cell Analysis, Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Harrachgasse 21, Graz, 8010, Austria
| | - Thomas Kroneis
- Research Unit for Single Cell Analysis, Institute of Cell Biology, Histology & Embryology, Medical University of Graz, Harrachgasse 21, Graz, 8010, Austria. .,Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Zhang J, Zhang Q, Cheng T, Yang W, Pan H, Zhong J, Huang L, Liu E. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc). DNA Res 2015; 22:183-91. [PMID: 25776277 PMCID: PMC4463843 DOI: 10.1093/dnares/dsv003] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/21/2015] [Indexed: 11/14/2022] Open
Abstract
High-density genetic map is a valuable tool for fine mapping locus controlling a specific trait especially for perennial woody plants. In this study, we firstly constructed a high-density genetic map of mei (Prunus mume) using SLAF markers, developed by specific locus amplified fragment sequencing (SLAF-seq). The linkage map contains 8,007 markers, with a mean marker distance of 0.195 cM, making it the densest genetic map for the genus Prunus. Though weeping trees are used worldwide as landscape plants, little is known about weeping controlling gene(s) (Pl). To test the utility of the high-density genetic map, we did fine-scale mapping of this important ornamental trait. In total, three statistic methods were performed progressively based on the result of inheritance analysis. Quantitative trait loci (QTL) analysis initially revealed that a locus on linkage group 7 was strongly responsible for weeping trait. Mutmap-like strategy and extreme linkage analysis were then applied to fine map this locus within 1.14 cM. Bioinformatics analysis of the locus identified some candidate genes. The successful localization of weeping trait strongly indicates that the high-density map constructed using SLAF markers is a worthy reference for mapping important traits for woody plants.
Collapse
Affiliation(s)
- Jie Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Weiru Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Junjun Zhong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Long Huang
- Biomarker Technologies Corporation, Beijing, China
| | - Enze Liu
- Biomarker Technologies Corporation, Beijing, China
| |
Collapse
|
5
|
Abstract
Modern molecular biology relies on large amounts of high-quality genomic DNA. However, in a number of clinical or biological applications this requirement cannot be met, as starting material is either limited (e.g., preimplantation genetic diagnosis (PGD) or analysis of minimal residual cancer) or of insufficient quality (e.g., formalin-fixed paraffin-embedded tissue samples or forensics). As a consequence, in order to obtain sufficient amounts of material to analyze these demanding samples by state-of-the-art modern molecular assays, genomic DNA has to be amplified. This chapter summarizes available technologies for whole-genome amplification (WGA), bridging the last 25 years from the first developments to currently applied methods. We will especially elaborate on research application, as well as inherent advantages and limitations of various WGA technologies.
Collapse
Affiliation(s)
- Zbigniew Tadeusz Czyz
- Project Group, Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Josef-Engert-Straße 9, 93053, Regensburg, Germany
| | - Stefan Kirsch
- Project Group, Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Josef-Engert-Straße 9, 93053, Regensburg, Germany
| | - Bernhard Polzer
- Project Group, Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Josef-Engert-Straße 9, 93053, Regensburg, Germany.
| |
Collapse
|
6
|
Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics 2014; 15:1158. [PMID: 25534138 PMCID: PMC4367881 DOI: 10.1186/1471-2164-15-1158] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/11/2014] [Indexed: 11/29/2022] Open
Abstract
Background Cucumber, Cucumis sativus L., is an economically important vegetable crop which is processed or consumed fresh worldwide. However, the narrow genetic base in cucumber makes it difficult for constructing high-density genetic maps. The development of massively parallel genotyping methods and next-generation sequencing (NGS) technologies provides an excellent opportunity for developing single nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of horticultural traits. Specific-length amplified fragment sequencing (SLAF-seq) is a recent marker development technology that allows large-scale SNP discovery and genotyping at a reasonable cost. In this study, we constructed a high-density SNP map for cucumber using SLAF-seq and detected fruit-related QTLs. Results An F2 population of 148 individuals was developed from an intra-varietal cross between CC3 and NC76. Genomic DNAs extracted from two parents and 148 F2 individuals were subjected to high-throughput sequencing and SLAF library construction. A total of 10.76 Gb raw data and 75,024,043 pair-end reads were generated to develop 52,684 high-quality SLAFs, out of which 5,044 were polymorphic. 4,817 SLAFs were encoded and grouped into different segregation patterns. A high-resolution genetic map containing 1,800 SNPs was constructed for cucumber spanning 890.79 cM. The average distance between adjacent markers was 0.50 cM. 183 scaffolds were anchored to the SNP-based genetic map covering 46% (168.9 Mb) of the cucumber genome (367 Mb). Nine QTLs for fruit length and weight were detected, a QTL designated fl3.2 explained 44.60% of the phenotypic variance. Alignment of the SNP markers to draft genome scaffolds revealed two mis-assembled scaffolds that were validated by fluorescence in situ hybridization (FISH). Conclusions We report herein the development of evenly dispersed SNPs across cucumber genome, and for the first time an SNP-based saturated linkage map. This 1,800-locus map would likely facilitate genetic mapping of complex QTL loci controlling fruit yield, and the orientation of draft genome scaffolds. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1158) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No,1, Nanjing 210095, China.
| | | |
Collapse
|
7
|
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 2013; 8:e58700. [PMID: 23527008 PMCID: PMC3602454 DOI: 10.1371/journal.pone.0058700] [Citation(s) in RCA: 477] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
Large-scale genotyping plays an important role in genetic association studies. It has provided new opportunities for gene discovery, especially when combined with high-throughput sequencing technologies. Here, we report an efficient solution for large-scale genotyping. We call it specific-locus amplified fragment sequencing (SLAF-seq). SLAF-seq technology has several distinguishing characteristics: i) deep sequencing to ensure genotyping accuracy; ii) reduced representation strategy to reduce sequencing costs; iii) pre-designed reduced representation scheme to optimize marker efficiency; and iv) double barcode system for large populations. In this study, we tested the efficiency of SLAF-seq on rice and soybean data. Both sets of results showed strong consistency between predicted and practical SLAFs and considerable genotyping accuracy. We also report the highest density genetic map yet created for any organism without a reference genome sequence, common carp in this case, using SLAF-seq data. We detected 50,530 high-quality SLAFs with 13,291 SNPs genotyped in 211 individual carp. The genetic map contained 5,885 markers with 0.68 cM intervals on average. A comparative genomics study between common carp genetic map and zebrafish genome sequence map showed high-quality SLAF-seq genotyping results. SLAF-seq provides a high-resolution strategy for large-scale genotyping and can be generally applicable to various species and populations.
Collapse
Affiliation(s)
- Xiaowen Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Dongyuan Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Xiaofeng Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Wenbin Li
- Biomarker Technologies Corporation, Beijing, China
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hui Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Weiguo Hong
- Biomarker Technologies Corporation, Beijing, China
| | | | - Ning Guan
- Biomarker Technologies Corporation, Beijing, China
| | - Chouxian Ma
- Biomarker Technologies Corporation, Beijing, China
| | - Huaping Zeng
- Biomarker Technologies Corporation, Beijing, China
| | - Chunhua Xu
- Biomarker Technologies Corporation, Beijing, China
| | - Jun Song
- Biomarker Technologies Corporation, Beijing, China
| | - Long Huang
- Biomarker Technologies Corporation, Beijing, China
| | - Chunmei Wang
- Biomarker Technologies Corporation, Beijing, China
| | - Junjie Shi
- Biomarker Technologies Corporation, Beijing, China
| | - Rui Wang
- Biomarker Technologies Corporation, Beijing, China
| | - Xianhu Zheng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Cuiyun Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | |
Collapse
|
8
|
Chiba M, Asari S, Kimura M, Nakamura T. An efficient method for high-fidelity messenger RNA amplification from a small amount of total RNA. Biomed Rep 2013; 1:105-110. [PMID: 24648903 DOI: 10.3892/br.2012.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/01/2012] [Indexed: 11/06/2022] Open
Abstract
Comprehensive analyses of gene expression have been carried out by the development of microarrays and deep sequencers. However, it is difficult to obtain comprehensive information on gene expression from a small amount of ribonucleic acid (RNA). Therefore, we investigated the reproducibility and application of T7 RNA polymerase-mediated transcription, adaptor ligation and polymerase chain reaction (PCR) amplification, followed by T7 transcription (TALPAT), an efficient method for amplifying poly (A)-positive RNA, such as messenger RNA (mRNA). When amplified complementary RNA (cRNA) was electrophoresed, a large number of amplified cRNA was detected in the size of 0.2-0.5 kb. This indicates that the region up to 0.2-0.5 kb from the 3' end of the original mRNA was amplified by the TALPAT method. Seven housekeeping genes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hydroxymethylbilane synthase (HMBS), hypoxanthine phosphoribosyltransferase (HPRT1), ribosomal protein L13a (RPL13A), succinate dehydrogenase complex (SDHA), TATA box-binding protein (TBP) and ubiquitin C (UBC), showed high reproducibility (square of the correlation coefficient, R2=0.9954), according to scatter plots of Ct values obtained in the real-time PCR analysis of amplified cRNA. In addition, relative expression ratios of amplified cRNA of the seven housekeeping genes were approximately equal to the ratio of the original RNA solution. Furthermore, cRNA was amplified from 20 pg total RNA. In the present study, we confirmed the characteristics of mRNA amplification using the TALPAT method. This method may be applicable to mRNA and poly (A)-positive non-coding RNA amplification, using a small amount of RNA from single, laser-captured and sorted cells, as well as exosomes from serum, urine and body fluids.
Collapse
Affiliation(s)
- Mitsuru Chiba
- Department of Biomedical Sciences, Division of Medical Life Sciences; ; Research Center for Biomedical Sciences
| | - Saya Asari
- Department of Medical Technology, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Misako Kimura
- Department of Medical Technology, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Toshiya Nakamura
- Department of Biomedical Sciences, Division of Medical Life Sciences; ; Research Center for Biomedical Sciences
| |
Collapse
|
9
|
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 2013. [PMID: 23527008 DOI: 10.1371/jour-nal.pone.0058700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Large-scale genotyping plays an important role in genetic association studies. It has provided new opportunities for gene discovery, especially when combined with high-throughput sequencing technologies. Here, we report an efficient solution for large-scale genotyping. We call it specific-locus amplified fragment sequencing (SLAF-seq). SLAF-seq technology has several distinguishing characteristics: i) deep sequencing to ensure genotyping accuracy; ii) reduced representation strategy to reduce sequencing costs; iii) pre-designed reduced representation scheme to optimize marker efficiency; and iv) double barcode system for large populations. In this study, we tested the efficiency of SLAF-seq on rice and soybean data. Both sets of results showed strong consistency between predicted and practical SLAFs and considerable genotyping accuracy. We also report the highest density genetic map yet created for any organism without a reference genome sequence, common carp in this case, using SLAF-seq data. We detected 50,530 high-quality SLAFs with 13,291 SNPs genotyped in 211 individual carp. The genetic map contained 5,885 markers with 0.68 cM intervals on average. A comparative genomics study between common carp genetic map and zebrafish genome sequence map showed high-quality SLAF-seq genotyping results. SLAF-seq provides a high-resolution strategy for large-scale genotyping and can be generally applicable to various species and populations.
Collapse
Affiliation(s)
- Xiaowen Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Arneson N, Moreno J, Iakovlev V, Ghazani A, Warren K, McCready D, Jurisica I, Done SJ. Comparison of whole genome amplification methods for analysis of DNA extracted from microdissected early breast lesions in formalin-fixed paraffin-embedded tissue. ISRN ONCOLOGY 2012; 2012:710692. [PMID: 22530150 PMCID: PMC3317021 DOI: 10.5402/2012/710692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/09/2011] [Indexed: 12/03/2022]
Abstract
To understand cancer progression, it is desirable to study the earliest stages of its development, which are often microscopic lesions. Array comparative genomic hybridization (aCGH) is a valuable high-throughput molecular approach for discovering DNA copy number changes; however, it requires a relatively large amount of DNA, which is difficult to obtain from microdissected lesions. Whole genome amplification (WGA) methods were developed to increase DNA quantity; however their reproducibility, fidelity, and suitability for formalin-fixed paraffin-embedded (FFPE) samples are questioned. Using aCGH analysis, we compared two widely used approaches for WGA: single cell comparative genomic hybridization protocol (SCOMP) and degenerate oligonucleotide primed PCR (DOP-PCR). Cancer cell line and microdissected FFPE breast cancer DNA samples were amplified by the two WGA methods and subjected to aCGH. The genomic profiles of amplified DNA were compared with those of non-amplified controls by four analytic methods and validated by quantitative PCR (Q-PCR). We found that SCOMP-amplified samples had close similarity to non-amplified controls with concordance rates close to those of reference tests, while DOP-amplified samples had a statistically significant amount of changes. SCOMP is able to amplify small amounts of DNA extracted from FFPE samples and provides quality of aCGH data similar to non-amplified samples.
Collapse
Affiliation(s)
- Nona Arneson
- Division of Applied Molecular Oncology, Ontario Cancer Institute, Princess Margaret Hospital, Toronto, ON, Canada M5G 2M9
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wrzeszczynski KO, Varadan V, Byrnes J, Lum E, Kamalakaran S, Levine DA, Dimitrova N, Zhang MQ, Lucito R. Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer. PLoS One 2011; 6:e28503. [PMID: 22174824 PMCID: PMC3234280 DOI: 10.1371/journal.pone.0028503] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/09/2011] [Indexed: 12/26/2022] Open
Abstract
The identification of genetic and epigenetic alterations from primary tumor cells has become a common method to identify genes critical to the development and progression of cancer. We seek to identify those genetic and epigenetic aberrations that have the most impact on gene function within the tumor. First, we perform a bioinformatic analysis of copy number variation (CNV) and DNA methylation covering the genetic landscape of ovarian cancer tumor cells. We separately examined CNV and DNA methylation for 42 primary serous ovarian cancer samples using MOMA-ROMA assays and 379 tumor samples analyzed by The Cancer Genome Atlas. We have identified 346 genes with significant deletions or amplifications among the tumor samples. Utilizing associated gene expression data we predict 156 genes with altered copy number and correlated changes in expression. Among these genes CCNE1, POP4, UQCRB, PHF20L1 and C19orf2 were identified within both data sets. We were specifically interested in copy number variation as our base genomic property in the prediction of tumor suppressors and oncogenes in the altered ovarian tumor. We therefore identify changes in DNA methylation and expression for all amplified and deleted genes. We statistically define tumor suppressor and oncogenic features for these modalities and perform a correlation analysis with expression. We predicted 611 potential oncogenes and tumor suppressors candidates by integrating these data types. Genes with a strong correlation for methylation dependent expression changes exhibited at varying copy number aberrations include CDCA8, ATAD2, CDKN2A, RAB25, AURKA, BOP1 and EIF2C3. We provide copy number variation and DNA methylation analysis for over 11,500 individual genes covering the genetic landscape of ovarian cancer tumors. We show the extent of genomic and epigenetic alterations for known tumor suppressors and oncogenes and also use these defined features to identify potential ovarian cancer gene candidates.
Collapse
Affiliation(s)
- Kazimierz O Wrzeszczynski
- Bioinformatics and Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lange C, Mittermayr L, Dohm JC, Holtgräwe D, Weisshaar B, Himmelbauer H. High-throughput identification of genetic markers using representational oligonucleotide microarray analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:549-565. [PMID: 20379697 DOI: 10.1007/s00122-010-1329-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/22/2010] [Indexed: 05/29/2023]
Abstract
We describe a novel approach for high-throughput development of genetic markers using representational oligonucleotide microarray analysis. We test the performance of the method in sugar beet (Beta vulgaris L.) as a model for crop plants with little sequence information available. Genomic representations of both parents of a mapping population were hybridized on microarrays containing in total 146,554 custom made oligonucleotides based on sugar beet bacterial artificial chromosome (BAC) end sequences and expressed sequence tags (ESTs). Oligonucleotides showing a signal with one parental line only, were selected as potential marker candidates and placed onto an array, designed for genotyping of 184 F(2) individuals from the mapping population. Utilizing known co-dominant anchor markers we obtained 511 new dominant markers (392 derived from BAC end sequences, and 119 from ESTs) distributed over all nine sugar beet linkage groups and calculated genetic maps. Further improvements for large-scale application of the approach are discussed and its feasibility for the cost-effective and flexible generation of genetic markers is presented.
Collapse
Affiliation(s)
- Cornelia Lange
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Kousoulidou L, Sismani C, Patsalis PC. Multiplex Amplifiable Probe Hybridization (MAPH) methodology as an alternative to comparative genomic hybridization (CGH). Methods Mol Biol 2010; 653:47-71. [PMID: 20721737 DOI: 10.1007/978-1-60761-759-4_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Genomic imbalances in locus copy-number are highly significant for the diagnosis and prognosis of cancer. Rapidly progressing DNA microarray technologies detect such pathogenic copy-number changes in the genome with high throughput, efficiency, and resolution. A variety of different microarray-based approaches have emerged, with array comparative genomic hybridization (array-CGH) being the method of choice in current clinical practice. Here we describe an alternative microarray-based technique called array-MAPH, derived from conventional Multiplex Amplifiable Probe Hybridization (MAPH).The main novelty of array-MAPH is the directed reduction of test DNA complexity prior to hybridization, yielding a mixture of specific probes, identical to target sequences on the microarray and thus increasing hybridization specificity. Unique amplifiable 400-600 bp fragments can be designed for any genomic region of interest, PCR-amplified, and spotted onto arrays as targets. The same sequences are combined into a probe mixture and hybridized to genomic DNA immobilized on a membrane. Bound probes are recovered by quantitative PCR and hybridized to the array. Array-MAPH can be used for the detection of small-scale copy-number changes, thereby providing new insights into the genetic basis of several diseases, including cancer.
Collapse
Affiliation(s)
- Ludmila Kousoulidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | | |
Collapse
|
14
|
Lucito R, Byrnes J. Comparative genomic hybridization by representational oligonucleotide microarray analysis. Methods Mol Biol 2009; 556:33-46. [PMID: 19488870 DOI: 10.1007/978-1-60327-192-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The central cause to any cancer ultimately lies in the genome and the initial alterations that result in changes in gene expression that are reflected in the phenotype of the cancer cell. The gene expression data are rich in information but the primary lesions responsible for carcinogenesis are obscured due to the complex cascade of expression changes that can occur. The primary lesions can be characterized by the smallest of point mutations to small insertions and deletions (in/dels) to much larger deletions and amplifications (for simplicity all copy number gains will be referred to as amplifications) as well as balanced or unbalanced translocations. In addition to these mutations there are a myriad of epigenetic alterations that affect the cells phenotype. Any gene if important to tumor growth will be altered by mutation or by deletion/amplification eventually, and if a large number of tumor samples is analyzed the majority of these genes will be detected. This chapter describes a variation of comparative genomic hybridization, called Representational oligonucleotide microarray analysis (ROMA), that surveys reduced-complexity representations of tumor genomic DNA to discover deletions and amplifications (and the underlying cancer genes).
Collapse
Affiliation(s)
- Robert Lucito
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
15
|
Chen S, Auletta T, Dovirak O, Hutter C, Kuntz K, El-ftesi S, Kendall J, Han H, Von Hoff DD, Ashfaq R, Maitra A, Iacobuzio-Donahue CA, Hruban RH, Lucito R. Copy number alterations in pancreatic cancer identify recurrent PAK4 amplification. Cancer Biol Ther 2008; 7:1793-802. [PMID: 18836286 DOI: 10.4161/cbt.7.11.6840] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer is one of the most lethal of all cancers. The median survival is six months and less than 5% of those diagnosed survive five years. Recurrent genetic deletions and amplifications in 72 pancreatic adenocarcinomas, the largest sample set analyzed to date for pancreatic cancer, were defined using comparative genomic hybridization The recurrent genetic alterations identified target a number of previously well-characterized genes, as well as regions that contain possible new oncogenes and tumor suppressor genes. We have focused on chromosome 19q13, a region frequently found amplified in pancreatic cancer and demonstrate how boundaries of common regions of mutation can be mapped and how a gene, in this case PAK4 amplified on chromosome19q13, can be functionally validated. We show that although the PAK4 gene is not activated by mutation in cell lines with gene amplification, an oncogenic form of the KRAS2 gene is present in these cells and oncogenic KRAS2 can activate PAK4. In fact in the three samples we identified with PAK4 gene amplification, the KRAS2 gene was activated and genomically amplified. The kinase activity of the PAK4 protein is significantly higher in cells with genomic amplification as compared to cells without amplification. Our study demonstrates the utility of analyzing copy number data in a large set of neoplasms to identify genes involved in cancer. We have generated a useful dataset which will be particularly useful for the pancreatic cancer community as efforts are undertaken to sequence the pancreatic cancer genome.
Collapse
Affiliation(s)
- Shuaili Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Array-MAPH: a methodology for the detection of locus copy-number changes in complex genomes. Nat Protoc 2008; 3:849-65. [DOI: 10.1038/nprot.2008.49] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Abstract
The rapid accumulation of complete genomic sequences offers the opportunity to carry out an analysis of inter- and intra-individual genome variation within a species on a routine basis. Sequencing whole genomes requires resources that are currently beyond those of a single laboratory and therefore it is not a practical approach for resequencing hundreds of individual genomes. DNA microarrays present an alternative way to study differences between closely related genomes. Advances in microarray-based approaches have enabled the main forms of genomic variation (amplifications, deletions, insertions, rearrangements and base-pair changes) to be detected using techniques that are readily performed in individual laboratories using simple experimental approaches.
Collapse
|
18
|
Arneson N, Hughes S, Houlston R, Done S. Whole-Genome Amplification by Single-Cell Comparative Genomic Hybridization PCR (SCOMP). Cold Spring Harb Protoc 2008; 2008:pdb.prot4923. [PMID: 21356677 DOI: 10.1101/pdb.prot4923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTIONPCR-based whole-genome amplification (WGA) has the goal of generating microgram quantities of genome-representative DNA from picogram or nanogram amounts of starting material. This amplification should introduce little, or ideally no, representational bias. In contrast to other techniques for WGA, PCR-based methods are generally less affected by DNA quality and are more applicable to DNA extracted from various sources (fixed and fresh tissues). Ligation-mediated PCR techniques involve ligating an adaptor sequence onto a "representation" of DNA molecules, generated following enzymatic digestion, random shearing, or chemical cleavage. Single-cell comparative genomic hybridization (SCOMP), described in this protocol, is a form of ligation-mediated PCR that was specifically designed for WGA of extremely limited sources of genomic DNA. The reaction volume is purposely kept to a minimum, and all buffers are optimized to eliminate the need to purify the reaction between steps. In addition, the entire reaction is performed in a single tube. This avoids initial template loss and reduces the risk of PCR contamination. SCOMP begins by converting the genome to a high-complexity representation with a fragment size of <2 kb by digesting with the restriction enzyme MseI. This results in a smear in the range of 100-1500 bp. Following enzyme digestion, adaptors containing specific primer sequences (specific to the restriction enzyme used) are ligated onto the ends of the genomic DNA and amplified in a high-stringency PCR. This results in a smear of PCR products in the range of 100-1500 bp, which can be visualized by agarose gel electrophoresis.
Collapse
|
19
|
Whole genome amplification with Phi29 DNA polymerase to enable genetic or genomic analysis of samples of low DNA yield. Methods Mol Biol 2008; 439:1-18. [PMID: 18370092 DOI: 10.1007/978-1-59745-188-8_1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In many large genetic studies, the amount of available DNA can be one of the criteria for selecting samples for study. In the case of large population cohorts, selecting samples based on their DNA yield can lead to biased sample selection. In addition, many valuable clinical and research sample collections exist in which the amount of DNA is very small. Unbiased whole genome amplification (WGA) of such unique samples enables genomewide scale genetic studies that would have been impossible otherwise. Multiply primed rolling circle amplification (MPRCA) and multiple displacement amplification (MDA) methods are based on the same principle. The DNA amplification is non-PCR based and uses Phi29 DNA polymerase and random hexamer primers for unbiased whole genome amplification. MDA is used for linear DNA molecules, such as genomic DNA. This chapter reviews the various applications in which whole genome amplified DNA can be used, the types of commercial kits available, and the quality control steps necessary before using the DNA in the genetic studies.
Collapse
|
20
|
Michels E, De Preter K, Van Roy N, Speleman F. Detection of DNA copy number alterations in cancer by array comparative genomic hybridization. Genet Med 2007; 9:574-84. [PMID: 17873645 DOI: 10.1097/gim.0b013e318145b25b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Over the past few years, various reliable platforms for high-resolution detection of DNA copy number changes have become widely available. Together with optimized protocols for labeling and hybridization and algorithms for data analysis and representation, this has lead to a rapid increase in the application of this technology in the study of copy number variation in the human genome in normal cells and copy number imbalances in genetic diseases, including cancer. In this review, we briefly discuss specific technical issues relevant for array comparative genomic hybridization analysis in cancer tissues. We specifically focus on recent successes of array comparative genomic hybridization technology in the progress of our understanding of oncogenesis in a variety of cancer types. A third section highlights the potential of sensitive genome-wide detection of patterns of DNA imbalances or molecular portraits for class discovery and therapeutic stratification.
Collapse
Affiliation(s)
- Evi Michels
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | |
Collapse
|
21
|
Das S, Subramanian K, Chakraborty S. Analytical investigations on the effects of substrate kinetics on macromolecular transport and hybridization through microfluidic channels. Colloids Surf B Biointerfaces 2007; 58:203-17. [PMID: 17481862 DOI: 10.1016/j.colsurfb.2007.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 03/05/2007] [Accepted: 03/09/2007] [Indexed: 11/26/2022]
Abstract
In this paper, a generalized surface-kinetics based model is developed to analytically investigate the influences of the substrate types and the buffer compositions on the macromolecular transport and hybridization in microfluidic channels, under electrokinetic influences. For specific illustration, three typical microchannel substrates, namely silanized glass, polycarbonate and PDMS, are considered, in order to obtain analytical expressions for their zeta potentials as a function of the buffer pH and the substrate compositions. The expressions for the zeta potential are subsequently employed to derive the respective velocity distributions, under the application of electric fields of identical strengths in all cases. It is also taken into consideration that the charged macromolecules introduced into these channels are subjected to electrophoretic influences on account of the applied electric fields. Closed form expressions are derived to predict the transport behaviour of the macromolecules and their subsequent hybridization characteristics. From the analysis presented, it is shown that the modification of the channel surface with silane-treatment becomes useful for enhancing the macromolecular transport and surface hybridization, only if the buffer pH permits a large surface charge density. The analytical solutions are also compared with full-scale numerical solutions of the coupled problem of fluid dynamic and macromolecular transport in presence of the pertinent surface reactions, in order to justify the effectiveness of closed-form expressions derived in this study.
Collapse
Affiliation(s)
- Siddhartha Das
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | | | | |
Collapse
|
22
|
Akatsuka S, Aung TT, Dutta KK, Jiang L, Lee WH, Liu YT, Onuki J, Shirase T, Yamasaki K, Ochi H, Naito Y, Yoshikawa T, Kasai H, Tominaga Y, Sakumi K, Nakabeppu Y, Kawai Y, Uchida K, Yamasaki A, Tsuruyama T, Yamada Y, Toyokuni S. Contrasting genome-wide distribution of 8-hydroxyguanine and acrolein-modified adenine during oxidative stress-induced renal carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1328-42. [PMID: 17003489 PMCID: PMC1780183 DOI: 10.2353/ajpath.2006.051280] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxidative stress is a persistent threat to the genome and is associated with major causes of human mortality, including cancer, atherosclerosis, and aging. Here we established a method to generate libraries of genomic DNA fragments containing oxidatively modified bases by using specific monoclonal antibodies to immunoprecipitate enzyme-digested genome DNA. We applied this technique to two different base modifications, 8-hydroxyguanine and 1,N6-propanoadenine (acrotein-Ade), in a ferric nitrilotriacetate-induced murine renal carcinogenesis model. Renal cortical genomic DNA derived from 10- to 12-week-old male C57BL/6 mice, of untreated control or 6 hours after intraperitoneal injection of 3 mg iron/kg ferric nitrilotriacetate, was enzyme digested, immunoprecipitated, cloned, and mapped to each chromosome. The results revealed that distribution of the two modified bases was not random but differed in terms of chromosomes, gene size, and expression, which could be partially explained by chromosomal territory. In the wild-type mice, low GC content areas were more likely to harbor the two modified bases. Knockout of OGG1, a repair enzyme for genomic 8-hydroxyguanine, increased the amounts of acrolein-Ade as determined by quantitative polymerase chain reaction analyses. This versatile technique would introduce a novel research area as a high-throughput screening method for critical genomic loci under oxidative stress.
Collapse
Affiliation(s)
- Shinya Akatsuka
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Patsalis PC, Kousoulidou L, Männik K, Sismani C, Zilina O, Parkel S, Puusepp H, Tõnisson N, Palta P, Remm M, Kurg A. Detection of small genomic imbalances using microarray-based multiplex amplifiable probe hybridization. Eur J Hum Genet 2006; 15:162-72. [PMID: 17119536 DOI: 10.1038/sj.ejhg.5201738] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Array-based genome-wide screening methods were recently introduced to clinical practice in order to detect small genomic imbalances that may cause severe genetic disorders. The continuous advancement of such methods plays an extremely important role in diagnostic genetics and medical genomics. We have modified and adapted the original multiplex amplifiable probe hybridization (MAPH) to a novel microarray format providing an important new diagnostic tool for detection of small size copy-number changes in any locus of human genome. Here, we describe the new array-MAPH diagnostic method and show proof of concept through fabrication, interrogation and validation of a human chromosome X-specific array. We have developed new bioinformatic tools and methodology for designing and producing amplifiable hybridization probes (200-600 bp) for array-MAPH. We designed 558 chromosome X-specific probes with median spacing 238 kb and 107 autosomal probes, which were spotted onto microarrays. DNA samples from normal individuals and patients with known and unknown chromosome X aberrations were analyzed for validation. Array-MAPH detected exactly the same deletions and duplications in blind studies, as well as other unknown small size deletions showing its accuracy and sensitivity. All results were confirmed by fluorescence in situ hybridization and probe-specific PCR. Array-MAPH is a new microarray-based diagnostic tool for the detection of small-scale copy-number changes in complex genomes, which may be useful for genotype-phenotype correlations, identification of new genes, studying genetic variation and provision of genetic services.
Collapse
Affiliation(s)
- Philippos C Patsalis
- Department of Cytogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Recent developments in highly parallel genome-wide assays are transforming the study of human health and disease. High-resolution whole-genome association studies of complex diseases are finally being undertaken after much hypothesizing about their merit for finding disease loci. The availability of inexpensive high-density SNP-genotyping arrays has made this feasible. Cancer biology will also be transformed by high-resolution genomic and epigenomic analysis. In the future, most cancers might be staged by high-resolution molecular profiling rather than by gross cytological analysis. Here, we describe the key developments that enable highly parallel genomic assays.
Collapse
Affiliation(s)
- Jian-Bing Fan
- Illumina Inc., 9885 Towne Centre Drive, San Diego, California 92121, USA
| | | | | |
Collapse
|
25
|
Li J, Harris L, Mamon H, Kulke MH, Liu WH, Zhu P, Mike Makrigiorgos G. Whole genome amplification of plasma-circulating DNA enables expanded screening for allelic imbalance in plasma. J Mol Diagn 2006; 8:22-30. [PMID: 16436631 PMCID: PMC1867563 DOI: 10.2353/jmoldx.2006.050074] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Apoptotic and necrotic tumor cells release DNA into plasma, providing an accessible tumor biomarker. Tumor-released plasma-circulating DNA can be screened for tumor-specific genetic changes, including mutation, methylation, or allelic imbalance. However, technical problems relating to the quantity and quality of DNA collected from plasma hinder downstream genetic screening and reduce biomarker detection sensitivity. Here, we present a new methodology, blunt-end ligation-mediated whole genome amplification (BL-WGA), that efficiently amplifies small apoptotic fragments (<200 bp) as well as intermediate and large necrotic fragments (>5 kb) and enables reliable high-throughput analysis of plasma-circulating DNA. In a single-tube reaction, purified double-stranded DNA was blunted with T4 DNA polymerase, self-ligated or cross-ligated with T4 DNA ligase and amplified via random primer-initiated multiple displacement amplification. Using plasma DNA from breast cancer patients and normal controls, we demonstrate that BL-WGA amplified the plasma-circulating genome by approximately 1000-fold. Of 25 informative polymorphic sites screened via polymerase chain reaction-denaturating high-performance liquid chromatography, 24 (95%) were correctly determined by BL-WGA to be allelic retention or imbalance compared to 44% by multiple displacement amplification. By enabling target magnification and application of high-throughput genome analysis, BL-WGA improves sensitivity for detection of circulating tumor-specific biomarkers from bodily fluids or for recovery of nucleic acids from suboptimally stored specimens.
Collapse
Affiliation(s)
- Jin Li
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Brigham and Women's Hospital, Level L2, Radiation Therapy, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Lovmar L, Syvänen AC. Multiple displacement amplification to create a long-lasting source of DNA for genetic studies. Hum Mutat 2006; 27:603-14. [PMID: 16786504 DOI: 10.1002/humu.20341] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In many situations there may not be sufficient DNA collected from patient or population cohorts to meet the requirements of genome-wide analysis of SNPs, genomic copy number polymorphisms, or acquired copy number alternations. When the amount of available DNA for genotype analysis is limited, high performance whole-genome amplification (WGA) represents a new development in genetic analysis. It is especially useful for analysis of DNA extracted from stored histology slides, tissue samples, buccal swabs, or blood stains collected on filter paper. The multiple displacement amplification (MDA) method, which relies on isothermal amplification using the DNA polymerase of the bacteriophage phi29, is a recently developed technique for high performance WGA. This review addresses new trends in the technical performance of MDA and its applications to genetic analyses. The main challenge of WGA methods is to obtain balanced and faithful replication of all chromosomal regions without the loss of or preferential amplification of any genomic loci or allele. In multiple comparisons to other WGA methods, MDA appears to be most reliable for genotyping, with the most favorable call rates, best genomic coverage, and lowest amplification bias.
Collapse
Affiliation(s)
- Lovisa Lovmar
- Molecular Medicine, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
27
|
Panelli S, Damiani G, Espen L, Micheli G, Sgaramella V. Towards the analysis of the genomes of single cells: Further characterisation of the multiple displacement amplification. Gene 2006; 372:1-7. [PMID: 16564650 DOI: 10.1016/j.gene.2006.01.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/25/2006] [Accepted: 01/31/2006] [Indexed: 11/17/2022]
Abstract
The development of methods for the analysis and comparison of the nucleic acids contained in single cells is an ambitious and challenging goal that may provide useful insights in many physiopathological processes. We review here some of the published protocols for the amplification of whole genomes (WGA). We focus on the reaction known as Multiple Displacement Amplification (MDA), which probably represents the most reliable and efficient WGA protocol developed to date. We discuss some recent advances and applications, as well as some modifications to the reaction, which should improve its use and enlarge its range of applicability possibly to degraded genomes, and also to RNA via complementary DNA.
Collapse
Affiliation(s)
- Simona Panelli
- CERSA/Fondazione Parco Tecnologico Padano, via Einstein 2, Lodi, Italy.
| | | | | | | | | |
Collapse
|
28
|
West J, Healy J, Wigler M, Casey W, Mishra B. Validation of S. Pombe Sequence Assembly by Microarray Hybridization. J Comput Biol 2006; 13:1-20. [PMID: 16472019 DOI: 10.1089/cmb.2006.13.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe a method to make physical maps of genomes using correlative hybridization patterns of probes to random pools of BACs. We derive thereby an estimated distance between probes, and then use this estimated distance to order probes. To test the method, we used BAC libraries from Schizzosaccharomyces pombe. We compared our data to the known sequence assembly, in order to assess accuracy. We demonstrate a small number of significant discrepancies between our method and the map derived by sequence assembly. Some of these discrepancies may arise because genome order within a population is not stable; imposing a linear order on a population may not be biologically meaningful.
Collapse
Affiliation(s)
- Joseph West
- Cold Spring Harbor Laboratory, 1 Bungtown Road, P.O. Box 100, NY 11724, USA
| | | | | | | | | |
Collapse
|
29
|
Ng G, Roberts I, Coleman N. Evaluation of 3 Methods of Whole-Genome Amplification for Subsequent Metaphase Comparative Genomic Hybridization. ACTA ACUST UNITED AC 2005; 14:203-12. [PMID: 16319690 DOI: 10.1097/01.pas.0000177801.60121.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A common aim in cancer research is to investigate mechanisms of malignant progression by genetic analysis of key stages, including pre-malignancy, microinvasion, and micrometastases. As such lesions are small and require microdissection from clinical samples, the amount of DNA that can be recovered is limited and frequently inadequate for commonly used techniques of genomic analysis, such as comparative genomic hybridization (CGH). There is a critical requirement for techniques of whole-genome amplification that minimize representation bias in the amplified sample. Several techniques have been described, although their relative suitability for CGH has not been examined adequately. Here we compare the abilities of degenerate oligonucleotide-primed PCR (DOP-PCR), multiple-strand displacement amplification (MDA), and balanced PCR accurately to amplify limited amounts of template DNA for use in CGH. Amplification by DOP-PCR and MDA, but not balanced PCR faithfully preserved the original genomic content following amplification, as evidenced by generally concordant CGH copy number karyograms. Whereas the amplification products of DOP-PCR were immediately available for labeling and hybridization, the products of MDA required a further digestion step to produce optimal-sized probes for CGH. Moreover, MDA was less reliable overall than DOP-PCR at the lowest starting amount of 10 pg of template DNA. We conclude that DOP-PCR is the method of choice for whole-genome amplification of minute quantities of DNA to enable global genomic analysis to be performed on limited clinical samples.
Collapse
Affiliation(s)
- Grace Ng
- Medical Research Council, Cancer Cell Unit, Hutchison/MRC Research Centre, Cambridge, United Kingdom
| | | | | |
Collapse
|
30
|
Carret CK, Horrocks P, Konfortov B, Winzeler E, Qureshi M, Newbold C, Ivens A. Microarray-based comparative genomic analyses of the human malaria parasite Plasmodium falciparum using Affymetrix arrays. Mol Biochem Parasitol 2005; 144:177-86. [PMID: 16174539 DOI: 10.1016/j.molbiopara.2005.08.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/16/2005] [Accepted: 08/16/2005] [Indexed: 12/13/2022]
Abstract
Microarray-based comparative genomic hybridization (CGH) provides a powerful tool for whole genome analyses and the rapid detection of genomic variation that underlies virulence and disease. In the field of Plasmodium research, many of the parasite genomes that one might wish to study in a high throughput manner are not laboratory clones, but clinical isolates. One of the key limitations to the use of clinical samples in CGH, however, is the miniscule amounts of genomic DNA available. Here we describe the successful application of multiple displacement amplification (MDA), a non-PCR-based amplification method that exhibits clear advantages over all other currently available methods. Using MDA, CGH was performed on a panel of NF54 and IT/FCR3 clones, identifying previously published deletions on chromosomes 2 and 9 as well as polymorphism in genes associated with disease pathology.
Collapse
Affiliation(s)
- Céline Karine Carret
- Pathogen Microarrays Group, The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | | | | | | | | | | | |
Collapse
|
31
|
Bergen AW, Haque KA, Qi Y, Beerman MB, Garcia-Closas M, Rothman N, Chanock SJ. Comparison of yield and genotyping performance of multiple displacement amplification and OmniPlex™ whole genome amplified DNA generated from multiple DNA sources. Hum Mutat 2005; 26:262-70. [PMID: 16086324 DOI: 10.1002/humu.20213] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The promise of whole genome amplification (WGA) is that genomic DNA (gDNA) quantity will not limit molecular genetic analyses. Multiple displacement amplification (MDA) and the OmniPlex PCR-based WGA protocols were evaluated using 4 and 5 ng of input gDNA from 60 gDNA samples from three tissue sources (mouthwash, buffy coat, and lymphoblast). WGA DNA (wgaDNA) yield and genotyping performance were evaluated using genotypes determined from gDNA and wgaDNA using the AmpFlSTR Identifiler assay and N = 49 TaqMan SNP assays. Short tandem repeat (STR) and SNP genotyping completion and concordance rates were significantly reduced with wgaDNA from all WGA methods compared with gDNA. OmniPlex wgaDNA exhibited a greater reduction in genotyping performance than MDA wgaDNA. Reduced wgaDNA genotyping performance was due to allelic (all protocols) and locus (OmniPlex) amplification bias leading to heterozygote and locus dropout, respectively, and %GC sequence content (%GC) was significantly correlated with TaqMan assay performance. Lymphoblast wgaDNA exhibited higher yield (OmniPlex), buffy coat wgaDNA exhibited higher STR genotyping completion (MDA), whereas mouthwash wgaDNA exhibited higher SNP genotyping discordance (MDA). Genotyping of wgaDNA generated from < or = 5 ng gDNA, e.g., from archaeological, forensic, prenatal diagnostic, or pathology samples, may require additional genotyping validation with gDNA and/or more sophisticated analysis of genotypes incorporating observed reductions in genotyping performance.
Collapse
Affiliation(s)
- Andrew W Bergen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-7236, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Devries S, Nyante S, Korkola J, Segraves R, Nakao K, Moore D, Bae H, Wilhelm M, Hwang S, Waldman F. Array-based comparative genomic hybridization from formalin-fixed, paraffin-embedded breast tumors. J Mol Diagn 2005; 7:65-71. [PMID: 15681476 PMCID: PMC1867501 DOI: 10.1016/s1525-1578(10)60010-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Identification of prognostic and predictive genomic markers requires long-term clinical follow-up of patients. Extraction of high-quality DNA from archived formalin-fixed, paraffin-embedded material is essential for such studies. Of particular importance is a robust reproducible method of whole genome amplification for small tissue samples. This is especially true for high-resolution analytical approaches because different genomic regions and sequences may amplify differentially. We have tested a number of protocols for DNA amplification for array-based comparative genomic hybridization (CGH), in which relative copy number of the entire genome is measured at 1 to 2 mb resolution. Both random-primed amplification and degenerate oligonucleotide-primed amplification approaches were tested using varying amounts of fresh and paraffin-extracted normal and breast tumor input DNAs. We found that random-primed amplification was clearly superior to degenerate oligonucleotide-primed amplification for array-based CGH. The best quality and reproducibility strongly depended on accurate determination of the amount of input DNA using a quantitative polymerase chain reaction-based method. Reproducible and high-quality results were attained using 50 ng of input DNA, and some samples yielded quality results with as little as 5 ng input DNA. We conclude that random-primed amplification of DNA isolated from paraffin sections is a robust and reproducible approach for array-based CGH analysis of archival tumor samples.
Collapse
Affiliation(s)
- Sandy Devries
- Cancer Center, Box 0808, University of California San Francisco, San Francisco, CA 94143-0808, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hughes S, Arneson N, Done S, Squire J. The use of whole genome amplification in the study of human disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 88:173-89. [PMID: 15561304 DOI: 10.1016/j.pbiomolbio.2004.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The availability of large amounts of genomic DNA is of critical importance for many of the molecular biology assays used in the analysis of human disease. However, since the amount of patient tissue available is often limited and as particular foci of interest may consist of only a few hundred cells, the yield of DNA is often insufficient for extensive analysis. To address this problem, several whole genome amplification (WGA) methodologies have been developed. Initial WGA approaches were based on the polymerase chain reaction (PCR). However, recent reports have described the use of non-PCR-based linear amplification protocols for WGA. Using these methods, it is possible to generate microgram quantities of DNA starting with as little as 1mg of genomic DNA. This review will provide an overview of WGA approaches and summarize some of the uses for amplified DNA in various high-throughput genetic applications.
Collapse
Affiliation(s)
- Simon Hughes
- Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Ontario, Canada.
| | | | | | | |
Collapse
|
34
|
Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS. A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 2005; 37:549-54. [PMID: 15838508 DOI: 10.1038/ng1547] [Citation(s) in RCA: 450] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 03/10/2005] [Indexed: 11/09/2022]
Abstract
Oligonucleotide probe arrays have enabled massively parallel analysis of gene expression levels from a single cDNA sample. Application of microarray technology to analyzing genomic DNA has been stymied by the sequence complexity of the entire human genome. A robust, single base-resolution direct genomic assay would extend the reach of microarray technology. We developed an array-based whole-genome genotyping assay that does not require PCR and enables effectively unlimited multiplexing. The assay achieves a high signal-to-noise ratio by combining specific hybridization of picomolar concentrations of whole genome-amplified DNA to arrayed probes with allele-specific primer extension and signal amplification. As proof of principle, we genotyped several hundred previously characterized SNPs. The conversion rate, call rate and accuracy were comparable to those of high-performance PCR-based genotyping assays.
Collapse
Affiliation(s)
- Kevin L Gunderson
- Illumina, Inc., 9885 Towne Centre Dr., San Diego, California 92121, USA.
| | | | | | | | | |
Collapse
|
35
|
Huang J, Wei W, Zhang J, Liu G, Bignell GR, Stratton MR, Futreal PA, Wooster R, Jones KW, Shapero MH. Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Hum Genomics 2005; 1:287-99. [PMID: 15588488 PMCID: PMC3525261 DOI: 10.1186/1479-7364-1-4-287] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Changes in DNA copy number are one of the hallmarks of the genetic instability common to most human cancers. Previous micro-array-based methods have been used to identify chromosomal gains and losses; however, they are unable to genotype alleles at the level of single nucleotide polymorphisms (SNPs). Here we describe a novel algorithm that uses a recently developed high-density oligonucleotide array-based SNP genotyping method, whole genome sampling analysis (WGSA), to identify genome-wide chromosomal gains and losses at high resolution. WGSA simultaneously genotypes over 10,000 SNPs by allele-specific hybridisation to perfect match (PM) and mismatch (MM) probes synthesised on a single array. The copy number algorithm jointly uses PM intensity and discrimination ratios between paired PM and MM intensity values to identify and estimate genetic copy number changes. Values from an experimental sample are compared with SNP-specific distributions derived from a reference set containing over 100 normal individuals to gain statistical power. Genomic regions with statistically significant copy number changes can be identified using both single point analysis and contiguous point analysis of SNP intensities. We identified multiple regions of amplification and deletion using a panel of human breast cancer cell lines. We verified these results using an independent method based on quantitative polymerase chain reaction and found that our approach is both sensitive and specific and can tolerate samples which contain a mixture of both tumour and normal DNA. In addition, by using known allele frequencies from the reference set, statistically significant genomic intervals can be identified containing contiguous stretches of homozygous markers, potentially allowing the detection of regions undergoing loss of heterozygosity (LOH) without the need for a matched normal control sample. The coupling of LOH analysis, via SNP genotyping, with copy number estimations using a single array provides additional insight into the structure of genomic alterations. With mean and median inter-SNP euchromatin distances of 244 kilobases (kb) and 119 kb, respectively, this method affords a resolution that is not easily achievable with non-oligonucleotide-based experimental approaches.
Collapse
Affiliation(s)
- Jing Huang
- Affymetrix, Inc., 3380 Central Expressway, Santa Clara, CA 95051, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The utility of DNA sequence information for phylogenetics and phylogeography is now well known. Rather than attempt to summarize studies addressing this well-demonstrated utility, this chapter focuses on fundamental approaches and techniques that implement the collection of DNA sequence data for comparative phylogenetic purposes in a genomic context (phylogenomics). Whole genome sequencing approaches have changed the way we think about phylogenetics and have opened the way for new perspectives on "old" phylogenetics concerns. Some of these concerns are which gene regions to use and how much sequence information is needed for robust phylogenetic inference. Whole genome sequences of a few animal model organisms have gone a long way to implement approaches to better understand these important phylogenetic concerns. This chapter also addresses how genomics has made it more important for a clear understanding of orthology of gene regions in comparative biology. Finally, genome-enabled technologies that are affecting comparative biology are also discussed.
Collapse
Affiliation(s)
- Rob DeSalle
- Department of Interbrate Zoology, American Museum of Natural History, New York, New York 10024, USA
| |
Collapse
|
37
|
Liu D, Liu C, DeVries S, Waldman F, Cote RJ, Datar RH. LM-PCR permits highly representative whole genome amplification of DNA isolated from small number of cells and paraffin-embedded tumor tissue sections. ACTA ACUST UNITED AC 2004; 13:105-15. [PMID: 15167012 DOI: 10.1097/00019606-200406000-00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Analysis of genetic changes is often hampered by insufficient starting DNA from limited clinical tissue specimens. We employed ligation-mediated PCR (LM-PCR) for global amplification of the genome to overcome this limitation, generating up to 5 microg of representative amplicons of genomic DNA from as little as one cell. We demonstrate successful global genome amplification in high-quality starting DNA source like laser-captured cultured cells, as well as partially degraded starting DNA from old formalin-fixed paraffin-embedded tissue sections. This process generates adaptor-tailed templates that can be repeatedly amplified almost ad infinitum. We have further modified this technique such that, instead of a single endonuclease digest, we can achieve higher amplicon coverage by combining 3 endonuclease digests prior to LM-PCR. As tested by examining amplification of STS sequences scattered genome-wide, the coverage was improved from the published 70% to 96%. The faithful representation of global losses and gains in the amplified genomic DNA was confirmed by array-comparative genomic hybridization. Further, we exemplify the utility of this technique for finer p53 point mutation analysis by PCR-SSCP. This technique is thus a clinically useful tool for globally amplifying and archiving DNA from finite sources like paraffin tissue sections, providing a potentially unlimited resource for genetic analyses.
Collapse
Affiliation(s)
- Dongxin Liu
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, 90033, USA
| | | | | | | | | | | |
Collapse
|
38
|
Daruwala RS, Rudra A, Ostrer H, Lucito R, Wigler M, Mishra B. A versatile statistical analysis algorithm to detect genome copy number variation. Proc Natl Acad Sci U S A 2004; 101:16292-7. [PMID: 15534219 PMCID: PMC528962 DOI: 10.1073/pnas.0407247101] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2004] [Indexed: 11/18/2022] Open
Abstract
We have developed a versatile statistical analysis algorithm for the detection of genomic aberrations in human cancer cell lines. The algorithm analyzes genomic data obtained from a variety of array technologies, such as oligonucleotide array, bacterial artificial chromosome array, or array-based comparative genomic hybridization, that operate by hybridizing with genomic material obtained from cancer and normal cells and allow detection of regions of the genome with altered copy number. The number of probes (i.e., resolution), the amount of uncharacterized noise per probe, and the severity of chromosomal aberrations per chromosomal region may vary with the underlying technology, biological sample, and sample preparation. Constrained by these uncertainties, our algorithm aims at robustness by using a priorless maximum a posteriori estimator and at efficiency by a dynamic programming implementation. We illustrate these characteristics of our algorithm by applying it to data obtained from representational oligonucleotide microarray analysis and array-based comparative genomic hybridization technology as well as to synthetic data obtained from an artificial model whose properties can be varied computationally. The algorithm can combine data from multiple sources and thus facilitate the discovery of genes and markers important in cancer, as well as the discovery of loci important in inherited genetic disease.
Collapse
Affiliation(s)
- Raoul-Sam Daruwala
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA
| | | | | | | | | | | |
Collapse
|
39
|
Wang G, Maher E, Brennan C, Chin L, Leo C, Kaur M, Zhu P, Rook M, Wolfe JL, Makrigiorgos GM. DNA amplification method tolerant to sample degradation. Genome Res 2004; 14:2357-66. [PMID: 15520297 PMCID: PMC525695 DOI: 10.1101/gr.2813404] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 09/01/2004] [Indexed: 01/08/2023]
Abstract
Despite recent advances in linear whole genome amplification of intact DNA/RNA, amplification of degraded nucleic acids in an unbiased fashion remains a serious challenge for genetic diagnosis. We describe a new whole genome amplification procedure, RCA-RCA (Restriction and Circularization-Aided Rolling Circle Amplification), which retains the allelic differences among degraded amplified genomes while achieving almost complete genome coverage. RCA-RCA utilizes restriction digestion and whole genome circularization to generate genomic sequences amenable to rolling circle amplification. When intact genomic DNA is used, RCA-RCA retains gene-amplification differences (twofold or higher) between complex genomes on a genome-wide scale providing highly improved concordance with unamplified material as compared with other amplification methodologies including multiple displacement amplification. Using RCA-RCA, formalin-fixed samples of modest or substantial DNA degradation were successfully amplified and screened via array-CGH or Taqman PCR that displayed retention of the principal gene amplification features of the original material. Microsatellite analysis revealed that RCA-RCA amplified genomic DNA is representative of the original material at the nucleotide level. Amplification of cDNA is successfully performed via RCA-RCA and results to unbiased gene expression analysis (R(2) = 0.99). The simplicity and universal applicability of RCA-RCA make it a powerful new tool for genome analysis with unique advantages over previous amplification technologies.
Collapse
Affiliation(s)
- Gang Wang
- Department of Radiation Oncology, and Arthur and Rochelle Belfer Cancer Genomics Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Brennan C, Zhang Y, Leo C, Feng B, Cauwels C, Aguirre AJ, Kim M, Protopopov A, Chin L. High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res 2004; 64:4744-8. [PMID: 15256441 DOI: 10.1158/0008-5472.can-04-1241] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer represents the phenotypic end point of multiple genetic lesions that endow cells with a full range of biological properties required for tumorigenesis. Among the hallmark features of the cancer genome are recurrent regional gains and losses that, upon detailed characterization, have provided highly productive discovery paths for new oncogenes and tumor suppressor genes. In this study, we describe the use of an oligonucleotide-based microarray platform and development of requisite assay conditions and bioinformatic mining tools that permits high-resolution genome-wide array-comparative genome hybridization profiling of human and mouse tumors. Using a commercially available 60-mer oligonucleotide microarray, we demonstrate that this platform provides sufficient sensitivity to detect single-copy difference in gene dosage of full complexity genomic DNA while offering high resolution. The commercial availability of the microarrays and associated reagents, along with the technical protocols and analytical tools described in this report, should provide investigators with the immediate capacity to perform DNA analysis of normal and diseased genomes in a global and detailed manner.
Collapse
Affiliation(s)
- Cameron Brennan
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang G, Brennan C, Rook M, Wolfe JL, Leo C, Chin L, Pan H, Liu WH, Price B, Makrigiorgos GM. Balanced-PCR amplification allows unbiased identification of genomic copy changes in minute cell and tissue samples. Nucleic Acids Res 2004; 32:e76. [PMID: 15155823 PMCID: PMC419625 DOI: 10.1093/nar/gnh070] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Analysis of genomic DNA derived from cells and fresh or fixed tissues often requires whole genome amplification prior to microarray screening. Technical hurdles to this process are the introduction of amplification bias and/or the inhibitory effects of formalin fixation on DNA amplification. Here we demonstrate a balanced-PCR procedure that allows unbiased amplification of genomic DNA from fresh or modestly degraded paraffin-embedded DNA samples. Following digestion and ligation of a target and a control genome with distinct linkers, the two are mixed and amplified in a single PCR, thereby avoiding biases associated with PCR saturation and impurities. We demonstrate genome-wide retention of allelic differences following balanced-PCR amplification of DNA from breast cancer and normal human cells and genomic profiling by array-CGH (cDNA arrays, 100 kb resolution) and by real-time PCR (single gene resolution). Comparison of balanced-PCR with multiple displacement amplification (MDA) demonstrates equivalent performance between the two when intact genomic DNA is used. When DNA from paraffin-embedded samples is used, balanced PCR overcomes problems associated with modest DNA degradation and produces unbiased amplification whereas MDA does not. Balanced-PCR allows amplification and recovery of modestly degraded genomic DNA for subsequent retrospective analysis of human tumors with known outcomes.
Collapse
Affiliation(s)
- Gang Wang
- Department of Radiation Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bignell GR, Huang J, Greshock J, Watt S, Butler A, West S, Grigorova M, Jones KW, Wei W, Stratton MR, Futreal PA, Weber B, Shapero MH, Wooster R. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res 2004; 14:287-95. [PMID: 14762065 PMCID: PMC327104 DOI: 10.1101/gr.2012304] [Citation(s) in RCA: 267] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Genomic copy number alterations are a feature of many human diseases including cancer. We have evaluated the effectiveness of an oligonucleotide array, originally designed to detect single-nucleotide polymorphisms, to assess DNA copy number. We first showed that fluorescent signal from the oligonucleotide array varies in proportion to both decreases and increases in copy number. Subsequently we applied the system to a series of 20 cancer cell lines. All of the putative homozygous deletions (10) and high-level amplifications (12; putative copy number >4) tested were confirmed by PCR (either qPCR or normal PCR) analysis. Low-level copy number changes for two of the lines under analysis were compared with BAC array CGH; 77% (n = 44) of the autosomal chromosomes used in the comparison showed consistent patterns of LOH (loss of heterozygosity) and low-level amplification. Of the remaining 10 comparisons that were discordant, eight were caused by low SNP densities and failed in both lines. The studies demonstrate that combining the genotype and copy number analyses gives greater insight into the underlying genetic alterations in cancer cells with identification of complex events including loss and reduplication of loci.
Collapse
Affiliation(s)
- Graham R Bignell
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Watson SK, deLeeuw RJ, Ishkanian AS, Malloff CA, Lam WL. Methods for high throughput validation of amplified fragment pools of BAC DNA for constructing high resolution CGH arrays. BMC Genomics 2004; 5:6. [PMID: 14723794 PMCID: PMC324397 DOI: 10.1186/1471-2164-5-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Accepted: 01/14/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The recent development of array based comparative genomic hybridization (CGH) technology provides improved resolution for detection of genomic DNA copy number alterations. In array CGH, generating spotting solution is a multi-step process where bacterial artificial chromosome (BAC) clones are converted to replenishable PCR amplified fragments pools (AFP) for use as spotting solution in a microarray format on glass substrate. With completion of the human and mouse genome sequencing, large BAC clone sets providing complete genome coverage are available for construction of whole genome BAC arrays. Currently, Southern hybridization, fluorescent in-situ hybridization (FISH), and BAC end sequencing methods are commonly used to identify the initial BAC clone but not the end product used for spotting arrays. The AFP sequencing technique described in this study is a novel method designed to verify the identity of array spotting solution in a high throughput manner. RESULTS We show here that Southern hybridization, FISH, and AFP sequencing can be used to verify the identity of final spotting solutions using less than 10% of the AFP product. Single pass AFP sequencing identified over half of the 960 AFPs analyzed. Moreover, using two vector primers approximately 90% of the AFP spotting solutions can be identified. CONCLUSIONS In this feasibility study we demonstrate that current methods for identifying initial BAC clones can be adapted to verify the identity of AFP spotting solutions used in printing arrays. Of these methods, AFP sequencing proves to be the most efficient for large scale identification of spotting solution in a high throughput manner.
Collapse
Affiliation(s)
- Spencer K Watson
- Department of Cancer Genetics and Developmental Biology. BC Cancer Agency 601 W.10th Ave. Vancouver B.C. V5Z 1L3 Canada
| | - Ronald J deLeeuw
- Department of Cancer Genetics and Developmental Biology. BC Cancer Agency 601 W.10th Ave. Vancouver B.C. V5Z 1L3 Canada
| | - Adrian S Ishkanian
- Department of Cancer Genetics and Developmental Biology. BC Cancer Agency 601 W.10th Ave. Vancouver B.C. V5Z 1L3 Canada
| | - Chad A Malloff
- Department of Cancer Genetics and Developmental Biology. BC Cancer Agency 601 W.10th Ave. Vancouver B.C. V5Z 1L3 Canada
| | - Wan L Lam
- Department of Cancer Genetics and Developmental Biology. BC Cancer Agency 601 W.10th Ave. Vancouver B.C. V5Z 1L3 Canada
| |
Collapse
|
44
|
Liu ET. Representational oligonucleotide microarray analysis (ROMA) in pharmacogenomics. THE PHARMACOGENOMICS JOURNAL 2004; 4:74-6. [PMID: 15042143 DOI: 10.1038/sj.tpj.6500232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
45
|
Kennedy GC, Matsuzaki H, Dong S, Liu WM, Huang J, Liu G, Su X, Cao M, Chen W, Zhang J, Liu W, Yang G, Di X, Ryder T, He Z, Surti U, Phillips MS, Boyce-Jacino MT, Fodor SPA, Jones KW. Large-scale genotyping of complex DNA. Nat Biotechnol 2003; 21:1233-7. [PMID: 12960966 DOI: 10.1038/nbt869] [Citation(s) in RCA: 383] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2003] [Accepted: 07/16/2003] [Indexed: 02/07/2023]
Abstract
Genetic studies aimed at understanding the molecular basis of complex human phenotypes require the genotyping of many thousands of single-nucleotide polymorphisms (SNPs) across large numbers of individuals. Public efforts have so far identified over two million common human SNPs; however, the scoring of these SNPs is labor-intensive and requires a substantial amount of automation. Here we describe a simple but effective approach, termed whole-genome sampling analysis (WGSA), for genotyping thousands of SNPs simultaneously in a complex DNA sample without locus-specific primers or automation. Our method amplifies highly reproducible fractions of the genome across multiple DNA samples and calls genotypes at >99% accuracy. We rapidly genotyped 14,548 SNPs in three different human populations and identified a subset of them with significant allele frequency differences between groups. We also determined the ancestral allele for 8,386 SNPs by genotyping chimpanzee and gorilla DNA. WGSA is highly scaleable and enables the creation of ultrahigh density SNP maps for use in genetic studies.
Collapse
Affiliation(s)
- Giulia C Kennedy
- Affymetrix, 3380 Central Expressway, Santa Clara, California 95051, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tanabe C, Aoyagi K, Sakiyama T, Kohno T, Yanagitani N, Akimoto S, Sakamoto M, Sakamoto H, Yokota J, Ohki M, Terada M, Yoshida T, Sasaki H. Evaluation of a whole-genome amplification method based on adaptor-ligation PCR of randomly sheared genomic DNA. Genes Chromosomes Cancer 2003; 38:168-76. [PMID: 12939744 DOI: 10.1002/gcc.10269] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
High-throughput genetic studies often require large quantities of DNA for a variety of analyses. Developing and assessing a whole-genome amplification method is thus important, especially with the current desire for large-scale genotyping in previously collected samples for which limited DNA is available. The method we have developed, called PRSG, is based on an adaptor-ligation-mediated PCR of randomly sheared genomic DNA. An unbiased representation was evaluated by performing PCR on 2,607 exons of 367 genes, which are randomly distributed throughout the genome, on PRSG products of hundreds of individuals. An infrequent loss (<1%) of the exon sequence on the PRSG products was found. Out of 307 microsatellites on various chromosomes, 258 (84%) were amplified in both the PRSG product and an original DNA, whereas 49 (16%) microsatellites were lost only in the PRSG product. Array CGH analysis of 287 loci for measuring the relative gene copy number demonstrated that a low bias was detected. Moreover, this method was validated on 100-1,000 laser-captured cells from paraffin-embedded tissues. These data show that PRSG can provide a sufficient amount of genomic sequence for a variety of genetic analyses as well as for long-term storage for future work.
Collapse
Affiliation(s)
- Chikako Tanabe
- Genetics Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lucito R, Healy J, Alexander J, Reiner A, Esposito D, Chi M, Rodgers L, Brady A, Sebat J, Troge J, West JA, Rostan S, Nguyen KCQ, Powers S, Ye KQ, Olshen A, Venkatraman E, Norton L, Wigler M. Representational oligonucleotide microarray analysis: a high-resolution method to detect genome copy number variation. Genome Res 2003; 13:2291-305. [PMID: 12975311 PMCID: PMC403708 DOI: 10.1101/gr.1349003] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have developed a methodology we call ROMA (representational oligonucleotide microarray analysis), for the detection of the genomic aberrations in cancer and normal humans. By arraying oligonucleotide probes designed from the human genome sequence, and hybridizing with "representations" from cancer and normal cells, we detect regions of the genome with altered "copy number." We achieve an average resolution of 30 kb throughout the genome, and resolutions as high as a probe every 15 kb are practical. We illustrate the characteristics of probes on the array and accuracy of measurements obtained using ROMA. Using this methodology, we identify variation between cancer and normal genomes, as well as between normal human genomes. In cancer genomes, we readily detect amplifications and large and small homozygous and hemizygous deletions. Between normal human genomes, we frequently detect large (100 kb to 1 Mb) deletions or duplications. Many of these changes encompass known genes. ROMA will assist in the discovery of genes and markers important in cancer, and the discovery of loci that may be important in inherited predispositions to disease.
Collapse
Affiliation(s)
- Robert Lucito
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mu D, Chen L, Zhang X, See LH, Koch CM, Yen C, Tong JJ, Spiegel L, Nguyen KCQ, Servoss A, Peng Y, Pei L, Marks JR, Lowe S, Hoey T, Jan LY, McCombie WR, Wigler MH, Powers S. Genomic amplification and oncogenic properties of the KCNK9 potassium channel gene. Cancer Cell 2003; 3:297-302. [PMID: 12676587 DOI: 10.1016/s1535-6108(03)00054-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Representational difference analysis (RDA) of human breast cancer was used to discover a novel amplicon located at chromosomal region 8q24.3. We examined a series of breast cancer samples harboring amplification of this region and determined that KCNK9 is the sole overexpressed gene within the amplification epicenter. KCNK9 encodes a potassium channel that is amplified from 3-fold to 10-fold in 10% of breast tumors and overexpressed from 5-fold to over 100-fold in 44% of breast tumors. Overexpression of KCNK9 in cell lines promotes tumor formation and confers resistance to both hypoxia and serum deprivation, suggesting that its amplification and overexpression plays a physiologically important role in human breast cancer.
Collapse
Affiliation(s)
- David Mu
- Tularik Inc, Genomics Division, 266 E Pulaski Road, Greenlawn, NY 11740, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lage JM, Leamon JH, Pejovic T, Hamann S, Lacey M, Dillon D, Segraves R, Vossbrinck B, González A, Pinkel D, Albertson DG, Costa J, Lizardi PM. Whole genome analysis of genetic alterations in small DNA samples using hyperbranched strand displacement amplification and array-CGH. Genome Res 2003; 13:294-307. [PMID: 12566408 PMCID: PMC420367 DOI: 10.1101/gr.377203] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Structural genetic alterations in cancer often involve gene loss or gene amplification. With the advent of microarray approaches for the analysis of the genome, as exemplified by array-CGH (Comparative Genomic Hybridization), scanning for gene-dosage alterations is limited only by issues of DNA microarray density. However, samples of interest to the pathologist often comprise small clusters of just a few hundred cells, which do not provide sufficient DNA for array-CGH analysis. We sought to develop a simple method that would permit amplification of the whole genome without the use of thermocycling or ligation of DNA adaptors, because such a method would lend itself to the automated processing of a large number of tissue samples. We describe a method that permits the isothermal amplification of genomic DNA with high fidelity and limited sequence representation bias. The method is based on strand displacement reactions that propagate by a hyperbranching mechanism, and generate hundreds, or even thousands, of copies of the genome in a few hours. Using whole genome isothermal amplification, in combination with comparative genomic hybridization on cDNA microarrays, we demonstrate the ability to detect gene losses in yeast and gene dosage imbalances in human breast tumor cell lines. Although sequence representation bias in the amplified DNA presents potential problems for CGH analysis, these problems have been overcome by using amplified DNA in both control and tester samples. Gene-dosage alterations of threefold or more can be observed with high reproducibility with as few as 1000 cells of starting material.
Collapse
Affiliation(s)
- José M Lage
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Aoyagi K, Tatsuta T, Nishigaki M, Akimoto S, Tanabe C, Omoto Y, Hayashi SI, Sakamoto H, Sakamoto M, Yoshida T, Terada M, Sasaki H. A faithful method for PCR-mediated global mRNA amplification and its integration into microarray analysis on laser-captured cells. Biochem Biophys Res Commun 2003; 300:915-20. [PMID: 12559960 DOI: 10.1016/s0006-291x(02)02967-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Quantitative and qualitative analyses of mRNAs from a small number of cells are extremely important for studies on gene expression in various physiological and pathological conditions in multicellular organisms. We present here an effective method for high-fidelity global mRNA amplification for in vivo gene expression profiling of as few as 100 cells obtained by laser-captured microdissection (LCM). This method, called TALPAT, is based on T7 RNA polymerase-mediated transcription, adaptor ligation, and PCR amplification followed by T7-transcription. More than 80% of genes were commonly identified as a more than 3-fold changed gene among three gastric cancer cell lines using cRNA amplified by both TALPAT and the ordinary in vitro T7-transcription. The reproducibility of TALPAT was validated by microarray analysis on 100 breast cancer cells obtained by LCM. For the application of the LCM-TALPAT method, we successfully obtained expression profiles of gastric cancer cells and the mesenchymal cells, enabling us to understand in vivo cell-to-cell cross-talk in the microenvironment.
Collapse
Affiliation(s)
- Kazuhiko Aoyagi
- Genetics Division, National Cancer Center Research Institute, 1-1, Tsukiji 5-chrome, Chuo-ku, Tokyo 104-0045, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|