1
|
Dos Santos AGA, Cassas F, Dos Santos KF, de Medeiros LS, Veiga TAM, Caseli L. Interaction of Myrsinoic acid a with biomembrane models: Differential effects on DPPC and DPPS properties revealed by surface rheology and vibrational spectroscopy. Biophys Chem 2025; 322:107439. [PMID: 40168714 DOI: 10.1016/j.bpc.2025.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
This study investigates the interactions of Myrsinoic acid A, a natural compound with reported anti-inflammatory and antitumor properties, with lipid monolayers composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylserine (DPPS). Utilizing tensiometry, polarization-modulation infrared reflection-absorption spectroscopy (PM-IRRAS), Brewster Angle Microscopy (BAM), and surface rheology, we analyzed how Myrsinoic acid A affects the structural and mechanical properties of these lipid systems. The PM-IRRAS spectra revealed that Myrsinoic acid A induced disorder in the DPPC monolayer, shifting CH₂ asymmetric stretching peaks and decreasing packing order, while DPPS remained structurally stable. Surface rheology measurements showed reduced elasticity in both lipids, with differential effects on viscosity: a decrease for DPPC and an increase for DPPS, indicating varied molecular interactions. BAM images confirmed that DPPC maintained a homogeneous morphology, while DPPS displayed aggregate formation, suggesting distinct lipid-drug interactions. These findings highlight the importance of lipid composition in modulating the effects of Myrsinoic acid A on membrane properties, providing insights into its potential therapeutic applications in targeting tumorigenic versus non-tumorigenic cells.
Collapse
Affiliation(s)
| | - Fernando Cassas
- Department of Chemistry, Federal University of São Paulo, Diadema, SP, Brazil
| | | | | | | | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
2
|
Karn R, Biswas S, Srimayee S, Patel A, Chauhan S, Manna D. Metal-Responsive Fluorophore and Amikacin-Conjugated Heparin for Bacterial Cell Imaging and Antibacterial Applications. ACS Infect Dis 2025; 11:1078-1091. [PMID: 39526654 DOI: 10.1021/acsinfecdis.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The escalating prevalence of bacterial infections presents a formidable challenge to current global healthcare systems. Rapid identification and quantification of bacterial pathogens with anticipated sensitivity and selectivity are crucial for targeted therapeutic interventions to mitigate disease burden, drug resistance, and further transmission. Concurrently, there is a pressing need to innovate novel approaches to combat infections and counter antibiotic resistance. Herein, we demonstrated the development of heparin (HP) conjugates modified with a Zn2+-induced "turn-on" fluorophore, 2-(pyridin-2-yl)-1H-benzo[d]imidazole (PBI), that interacts with bacterial cells via specific binding with the surface-exposed heparin-binding proteins (HPBs), thereby inducing fluorescence signals for rapid and selective sensing of whole bacterial cells. Additionally, amikacin (Amk) antibiotic was integrated into the modified heparin polymer (HP-PBI-Amk) to augment its antibacterial efficacy via reactive oxygen species generation. Despite the nephrotoxicity of only amikacin, its inclusion in the biopolymer retains its antibacterial properties while providing biocompatibility. The outcome of this study demonstrates the development of HP-PBI and HP-PBI-Amk as promising strategies for bacterial detection and eradication, respectively, offering potential avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Rama Karn
- Centre for Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sayantani Biswas
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Soumya Srimayee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Anjali Patel
- Centre for Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Suravi Chauhan
- Centre for Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Debasis Manna
- Centre for Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
3
|
Tanner JD, Richards SN, Corry B. Molecular basis of the functional conflict between chloroquine and peptide transport in the Malaria parasite chloroquine resistance transporter PfCRT. Nat Commun 2025; 16:2987. [PMID: 40140375 PMCID: PMC11947230 DOI: 10.1038/s41467-025-58244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/16/2025] [Indexed: 03/28/2025] Open
Abstract
The Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a key protein contributing to resistance against the antimalarial chloroquine (CQ). Mutations such as K76T enable PfCRT to transport CQ away from its target in the parasite's digestive vacuole, but this comes at a cost to its natural peptide transport function. This creates fitness costs which can drive changes to drug susceptibility in parasite populations, but the molecular basis of this is not well understood. To investigate, here we run 130 μs of molecular dynamics simulations of CQ-sensitive and CQ-resistant PfCRT isoforms with CQ and peptide substrates. We identify the CQ binding site and characterized diverse peptide binding modes. The K76T mutation allows CQ to access the binding site but disrupts peptide binding, highlighting the importance of cavity charge in determining substrate specificity. This study provides insight into PfCRT polyspecific peptide transport and will aid in rational, structure-based inhibitor design.
Collapse
Affiliation(s)
- John D Tanner
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Sashika N Richards
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
4
|
Rice A, Zourou AC, Goodell EP, Fu R, Pastor RW, Cotten ML. Investigating How Lysophosphatidylcholine and Lysophosphatidylethanolamine Enhance the Membrane Permeabilization Efficacy of Host Defense Peptide Piscidin 1. J Phys Chem B 2025; 129:210-227. [PMID: 39681296 PMCID: PMC11816835 DOI: 10.1021/acs.jpcb.4c05845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Lysophospholipids (LPLs) and host defense peptides (HDPs) are naturally occurring membrane-active agents that disrupt key membrane properties, including the hydrocarbon thickness, intrinsic curvature, and molecular packing. Although the membrane activity of these agents has been widely examined separately, their combined effects are largely unexplored. Here, we use experimental and computational tools to investigate how lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE), an LPL of lower positive spontaneous curvature, influence the membrane activity of piscidin 1 (P1), an α-helical HDP from fish. Four membrane systems are probed: 75:25 C16:0-C18:1 PC (POPC)/C16:0-C18:1 phosphoglycerol (POPG), 50:25:25 POPC/POPG/16:0 LPC, 75:25 C16:0-C18:1 PE (POPE)/POPG, and 50:25:25 POPE/POPG/14:0 LPE. Dye leakage, circular dichroism, and NMR experiments demonstrate that while the presence of LPLs alone does not induce leakage-proficient defects, it boosts the permeabilization capability of P1, resulting in an efficacy order of POPC/POPG/16:0 LPC > POPE/POPG/14:0 LPE > POPC/POPG > POPE/POPG. This enhancement occurs without altering the membrane affinity and conformation of P1. Molecular dynamics simulations feature two types of asymmetric membranes to represent the imbalanced ("area stressed") and balanced ("area relaxed") distribution of lipids and peptides in the two leaflets. The simulations capture the membrane thinning effects of P1, LPC, and LPE, and the positive curvature strain imposed by both LPLs is reflected in the lateral pressure profiles. They also reveal a higher number of membrane defects for the P1/LPC than P1/LPE combination, congruent with the permeabilization experiments. Altogether, these results show that P1 and LPLs disrupt membranes in a concerted fashion, with LPC, the more disruptive LPL, boosting the permeabilization of P1 more than LPE. This mechanistic knowledge is relevant to understanding biological processes where multiple membrane-active agents such as HDPs and LPLs are involved.
Collapse
Affiliation(s)
- Amy Rice
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Evan P. Goodell
- Department of Applied Science, William & Mary, Williamsburg, VA 23185
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL, 32310
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Myriam L. Cotten
- Department of Applied Science, William & Mary, Williamsburg, VA 23185
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
5
|
de Weerd S, Ruiter EA, Calicchia E, Portale G, Schuringa JJ, Roos WH, Salvati A. Optimization of Cell Membrane Purification for the Preparation and Characterization of Cell Membrane Liposomes. SMALL METHODS 2024; 8:e2400498. [PMID: 39431332 DOI: 10.1002/smtd.202400498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Cell membrane nanoparticles have attracted increasing interest in nanomedicine because they allow to exploit the complexity of cell membrane interactions for drug delivery. Several methods are used to obtain plasma membrane to generate cell membrane nanoparticles. Here, an optimized method combining nitrogen cavitation in isotonic buffer and sucrose gradient fractionation is presented. The method allows to obtain cell membrane fractions of high purity from both suspension and adherent cells. Comparison with other common methods for membrane extraction, where mechanical lysis using cell homogenizers is performed in isotonic or hypotonic buffers, shows that the optimized procedure yields high purity membrane in a robust and reproducible way. Procedures to mix the purified membrane with synthetic lipids to obtain cell membrane liposomes (CMLs) are presented and indications on how to optimize these steps are provided. CMLs made using crude membrane isolates or the purified membrane fractions show different uptake by cells. The CMLs made with the optimized procedure and liposomes of the same composition but without cell membrane components are thoroughly characterized and compared for their size, zeta potential, bilayer and mechanical properties to confirm membrane protein inclusion in the CMLs. Cell uptake studies confirm that the inclusion of membrane components modifies liposome interactions with cells.
Collapse
Affiliation(s)
- Sander de Weerd
- Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Molecular Biophysics, Zernike Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Emma A Ruiter
- Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Eleonora Calicchia
- Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Macromolecular Chemistry & New Polymer Materials, Zernike Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Giuseppe Portale
- Macromolecular Chemistry & New Polymer Materials, Zernike Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Anna Salvati
- Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
6
|
Eberle SA, Gustavsson M. Bilayer lipids modulate ligand binding to atypical chemokine receptor 3. Structure 2024; 32:1174-1183.e5. [PMID: 38776922 DOI: 10.1016/j.str.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Chemokine receptors belong to the large class of G protein-coupled receptors (GPCRs) and are involved in a number of (patho)physiological processes. Previous studies highlighted the importance of membrane lipids for modulating GPCR structure and function. However, the underlying mechanisms of how lipids regulate GPCRs are often poorly understood. Here, we report that anionic lipid bilayers increase the binding affinity of the chemokine CXCL12 for the atypical chemokine receptor 3 (ACKR3) by modulating the CXCL12 binding kinetics. Notably, the anionic bilayer favors CXCL12 over the more positively charged chemokine CXCL11, which we explained by bilayer interactions orienting CXCL12 but not CXCL11 for productive ACKR3 binding. Furthermore, our data suggest a stabilization of active ACKR3 conformations in anionic bilayers. Taken together, the described regulation of chemokine selectivity of ACKR3 by the lipid bilayer proposes an extended version of the classical model of chemokine binding including the lipid environment of the receptor.
Collapse
Affiliation(s)
- Stefanie Alexandra Eberle
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Martin Gustavsson
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
7
|
McCalpin SD, Mechakra L, Ivanova MI, Ramamoorthy A. Differential effects of ganglioside lipids on the conformation and aggregation of islet amyloid polypeptide. Protein Sci 2024; 33:e5119. [PMID: 39012029 PMCID: PMC11250416 DOI: 10.1002/pro.5119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Despite causing over 1 million deaths annually, Type 2 Diabetes (T2D) currently has no curative treatments. Aggregation of the islet amyloid polypeptide (hIAPP) into amyloid plaques plays an important role in the pathophysiology of T2D and thus presents a target for therapeutic intervention. The mechanism by which hIAPP aggregates contribute to the development of T2D is unclear, but it is proposed to involve disruption of cellular membranes. However, nearly all research on hIAPP-lipid interactions has focused on anionic phospholipids, which are primarily present in the cytosolic face of plasma membranes. We seek here to characterize the effects of three gangliosides, the dominant anionic lipids in the outer leaflet of the plasma membrane, on the aggregation, structure, and toxicity of hIAPP. Our results show a dual behavior that depends on the molar ratio between the gangliosides and hIAPP. For each ganglioside, a low-lipid:peptide ratio enhances hIAPP aggregation and alters the morphology of hIAPP fibrils, while a high ratio eliminates aggregation and stabilizes an α-helix-rich hIAPP conformation. A more negative lipid charge more efficiently promotes aggregation, and a larger lipid headgroup improves inhibition of aggregation. hIAPP also alters the phase transitions of the lipids, favoring spherical micelles over larger tubular micelles. We discuss our results in the context of the available lipid surface area for hIAPP binding and speculate on a role for gangliosides in facilitating toxic hIAPP aggregation.
Collapse
Affiliation(s)
- Samuel D. McCalpin
- Biophysics ProgramUniversity of MichiganAnn ArborMichiganUSA
- Department of ChemistryUniversity of MichiganAnn ArborMichiganUSA
| | - Lina Mechakra
- Biophysics ProgramUniversity of MichiganAnn ArborMichiganUSA
- Department of ChemistryUniversity of MichiganAnn ArborMichiganUSA
| | - Magdalena I. Ivanova
- Biophysics ProgramUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- Michigan Neuroscience InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Ayyalusamy Ramamoorthy
- Biophysics ProgramUniversity of MichiganAnn ArborMichiganUSA
- Department of ChemistryUniversity of MichiganAnn ArborMichiganUSA
- Michigan Neuroscience InstituteUniversity of MichiganAnn ArborMichiganUSA
- Biomedical Engineering, Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMichiganUSA
- National High Magnetic Field Laboratory, Department of Chemical and Biomedical Engineering, Institute of Molecular Biophysics, NeuroscienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
8
|
Santana-Lima B, Belaunde LHZ, de Souza KD, Rosa ME, de Carvalho JE, Machado-Jr J, Alonso-Vale MIC, Caseli L, Rando DGG, Caperuto LC. Acute Kaempferol Stimulation Induces AKT Phosphorylation in HepG2 Cells. Life (Basel) 2024; 14:764. [PMID: 38929747 PMCID: PMC11205056 DOI: 10.3390/life14060764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) stands as a prevalent global public health issue caused by deficiencies in the action of insulin and/or insulin production. In the liver, insulin plays an important role by inhibiting hepatic glucose production and stimulating glycogen storage, thereby contributing to blood glucose regulation. Kaempferitrin (KP) and kaempferol (KM), flavonoids found in Bauhinia forficata, exhibit insulin-mimetic properties, showing promise in managing T2DM. In this study, we aimed to assess the potential of these compounds in modulating the insulin signaling pathway and/or glucose metabolism. Cell viability assays confirmed the non-cytotoxic nature of both compounds toward HepG2 cells at the concentrations and times evaluated. Theoretical molecular docking studies revealed that KM had the best docking pose with the IR β subunit when compared to the KP. Moreover, Langmuir monolayer evaluation indicated molecular incorporation for both KM and KP. Specifically, KM exhibited the capability to increase AKT phosphorylation, a key kinase in insulin signaling, regardless of insulin receptor (IR) activation. Notably, KM showed an additional synergistic effect with insulin in activating AKT. In conclusion, our findings suggest the potential of KM as a promising compound for stimulating AKT activation, thereby influencing energy metabolism in T2DM.
Collapse
Affiliation(s)
- Beatriz Santana-Lima
- Programa de Pós-Graduação em Biologia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil; (B.S.-L.)
| | - Lucas Humberto Zimmermann Belaunde
- Programa de Pós-Graduação em Biologia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil; (B.S.-L.)
| | - Karine Damaceno de Souza
- Programa de Pós-Graduação em Biologia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil; (B.S.-L.)
| | - Matheus Elias Rosa
- Programa de Pós-Graduação em Química—Ciência e Tecnologia da Sustentabilidade, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Jose Eduardo de Carvalho
- Departamento de Biologia e Ecologia Evolutiva, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Joel Machado-Jr
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Maria Isabel Cardoso Alonso-Vale
- Programa de Pós-Graduação em Biologia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil; (B.S.-L.)
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Luciano Caseli
- Programa de Pós-Graduação em Química—Ciência e Tecnologia da Sustentabilidade, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Daniela Gonçales Galasse Rando
- Programa de Pós-Graduação em Biologia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil; (B.S.-L.)
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| | - Luciana Chagas Caperuto
- Programa de Pós-Graduação em Biologia Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil; (B.S.-L.)
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas—ICAQF, Universidade Federal de São Paulo, Diadema 09913-030, SP, Brazil
| |
Collapse
|
9
|
Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15:2504. [PMID: 38509073 PMCID: PMC10954685 DOI: 10.1038/s41467-024-46732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recent research in artificial cell production holds promise for the development of delivery agents with therapeutic effects akin to real cells. To succeed in these applications, these systems need to survive the circulatory conditions. In this review we present strategies that, inspired by the endurance of red blood cells, have enhanced the viability of large, cell-like vehicles for in vivo therapeutic use, particularly focusing on giant unilamellar vesicles. Insights from red blood cells can guide modifications that could transform these platforms into advanced drug delivery vehicles, showcasing biomimicry's potential in shaping the future of therapeutic applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.
| | - Willemien Gosselé
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Špela Lemež
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | | |
Collapse
|
10
|
Singh S, Srivastava P. Targeted Protein Degraders- The Druggability Perspective. J Pharm Sci 2024; 113:539-554. [PMID: 37926234 DOI: 10.1016/j.xphs.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
Targeted Protein degraders (TPDs) show promise in harnessing cellular machinery to eliminate disease-causing proteins, even those previously considered undruggable. Especially if protein turnover is low, targeted protein removal bestows lasting therapeutic effect over typical inhibition. The demonstrated safety and efficacy profile of clinical candidates has fueled the surge in the number of potential candidates across different therapeutic areas. As TPDs often do not comply with Lipinski's rule of five, developing novel TPDs and unlocking their full potential requires overcoming solubility, permeability and oral bioavailability challenges. Tailored in-vitro assays are key to precise profiling and optimization, propelling breakthroughs in targeted protein degradation.
Collapse
|
11
|
de Souza ML, Machado AC, Barbosa H, Lago JHG, Caseli L. Interaction of sakuranetin with unsaturated lipids forming Langmuir monolayers at the air-water interface: A biomembrane model. Colloids Surf B Biointerfaces 2024; 234:113747. [PMID: 38219639 DOI: 10.1016/j.colsurfb.2024.113747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
This study investigates the interaction between sakuranetin, a versatile pharmaceutical flavonoid, and monolayers composed of unsaturated phospholipids, serving as a surrogate for cell membranes. The phospholipids were 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE). We conducted a series of experiments to comprehensively investigate this interaction, including surface pressure assessments, Brewster angle microscopy (BAM), and polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). Our findings unequivocally demonstrate that sakuranetin interacts with these phospholipids, expanding the monomolecular films. Notably, regarding POPC, the presence of sakuranetin led to a reduction in stability and a decline in surface elasticity, which can likely be attributed to intricate molecular rearrangements at the interface. The visual evidence of aggregations in BAM images reinforces the interactions substantiated by PM-IRRAS, highlighting sakuranetin's interaction with the polar and nonpolar regions of POPC. However, it is worth noting that these aggregations do not appear to contribute significantly to the viscosity of the mixed film, and our investigations did not reveal any substantial hysteresis. In contrast, when examining POPE, we observed a minor reduction in thermodynamic stability, indicative of fewer rearrangements within the monolayer. This notion was further reinforced by the limited presence of aggregations in the BAM images. Sakuranetin also increased the rigidity of the lipid monolayer; nevertheless, the monolayer remained predominantly elastic, facilitating easy re-spreading on the surface, especially for the first lipid. PM-IRRAS analysis unveiled interactions between sakuranetin and POPE's polar and nonpolar segments, compellingly explaining the observed monolayer expansion. Taken together, our data suggest that sakuranetin was more effectively incorporated into the monomolecular layer of POPE, indicating that membranes comprised of POPC might exhibit a greater degree of interaction in the presence of this pharmacologically active compound.
Collapse
Affiliation(s)
| | | | | | | | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
12
|
Barros ALAN, Silva VC, Ribeiro-Junior AF, Cardoso MG, Costa SR, Moraes CB, Barbosa CG, Coleone AP, Simões RP, Cabral WF, Falcão RM, Vasconcelos AG, Rocha JA, Arcanjo DDR, Batagin-Neto A, Borges TKS, Gonçalves J, Brand GD, Freitas-Junior LHG, Eaton P, Marani M, Kato MJ, Plácido A, Leite JRSA. Antiviral Action against SARS-CoV-2 of a Synthetic Peptide Based on a Novel Defensin Present in the Transcriptome of the Fire Salamander ( Salamandra salamandra). Pharmaceutics 2024; 16:190. [PMID: 38399250 PMCID: PMC10892092 DOI: 10.3390/pharmaceutics16020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The potential emergence of zoonotic diseases has raised significant concerns, particularly in light of the recent pandemic, emphasizing the urgent need for scientific preparedness. The bioprospection and characterization of new molecules are strategically relevant to the research and development of innovative drugs for viral and bacterial treatment and disease management. Amphibian species possess a diverse array of compounds, including antimicrobial peptides. This study identified the first bioactive peptide from Salamandra salamandra in a transcriptome analysis. The synthetic peptide sequence, which belongs to the defensin family, was characterized through MALDI TOF/TOF mass spectrometry. Molecular docking assays hypothesized the interaction between the identified peptide and the active binding site of the spike WT RBD/hACE2 complex. Although additional studies are required, the preliminary evaluation of the antiviral potential of synthetic SS-I was conducted through an in vitro cell-based SARS-CoV-2 infection assay. Additionally, the cytotoxic and hemolytic effects of the synthesized peptide were assessed. These preliminary findings highlighted the potential of SS-I as a chemical scaffold for drug development against COVID-19, hindering viral infection. The peptide demonstrated hemolytic activity while not exhibiting cytotoxicity at the antiviral concentration.
Collapse
Affiliation(s)
- Ana Luisa A N Barros
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
- Programa de Pós-graduação em Medicina Tropical, PGMT, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Vladimir C Silva
- Laboratório de Vigilância Genômica e Biologia Molecular-Fundação Oswaldo Cruz Piauí, Teresina 64001-350, PI, Brazil
| | - Atvaldo F Ribeiro-Junior
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Miguel G Cardoso
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
- imed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Samuel R Costa
- Instituto de Química, IQ, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Carolina B Moraes
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema 09913-030, SP, Brazil
| | - Cecília G Barbosa
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-000, SP, Brazil
| | - Alex P Coleone
- Programa de Pós-Graduação em Ciência e Tecnologia de Materiais (POSMAT), School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
| | - Rafael P Simões
- School of Agriculture, Department of Bioprocess and Biotechnology, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
| | - Wanessa F Cabral
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Raul M Falcão
- Bioinformatics Postgraduate Program, Metrópole Digital Institute, Federal University of Rio Grande do Norte, Natal 59078-900, RN, Brazil
| | - Andreanne G Vasconcelos
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
- People&Science Pesquisa Desenvolvimento e Inovação LTDA, Centro de Desenvolvimento Tecnológico (CDT), Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Jefferson A Rocha
- Campus São Bernardo, Universidade Federal do Maranhão, UFMA, São Bernardo 65550-000, MA, Brazil
| | - Daniel D R Arcanjo
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina 64049-550, PI, Brazil
| | - Augusto Batagin-Neto
- Programa de Pós-Graduação em Ciência e Tecnologia de Materiais (POSMAT), School of Sciences, São Paulo State University (UNESP), Bauru 17033-360, SP, Brazil
- Institute of Sciences and Engineering, São Paulo State University (UNESP), Itapeva 18409-010, SP, Brazil
| | - Tatiana Karla S Borges
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - João Gonçalves
- imed.ULisboa-Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Guilherme D Brand
- Instituto de Química, IQ, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| | - Lucio H G Freitas-Junior
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-000, SP, Brazil
| | - Peter Eaton
- Laboratório Associado para a Química Verde/Rede de Química e Tecnologia (LAQV/REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- School of Chemistry, The Bridge, University of Lincoln, Lincoln LN6 7EL, UK
| | - Mariela Marani
- IPEEC-CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn 9120, Argentina
| | - Massuo J Kato
- Instituto de Química (IQ), Universidade de São Paulo (USP), São Paulo 05508-900, SP, Brazil
| | - Alexandra Plácido
- Laboratório Associado para a Química Verde/Rede de Química e Tecnologia (LAQV/REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - José Roberto S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília 70910-900, DF, Brazil
| |
Collapse
|
13
|
Lanai V, Chen Y, Naumovska E, Pandit S, Schröder E, Mijakovic I, Rahimi S. Differences in interaction of graphene/graphene oxide with bacterial and mammalian cell membranes. NANOSCALE 2024; 16:1156-1166. [PMID: 38126749 DOI: 10.1039/d3nr05354g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Graphene, a single layer, hexagonally packed two-dimensional carbon sheet is an attractive candidate for diverse applications including antibacterial potential and drug delivery. One of the knowledge gaps in biomedical application of graphene is the interaction of these materials with the cells. To address this, we investigated the interaction between graphene materials (graphene and graphene oxide) and plasma membranes of cells (bacterial and mammalian cells). The interactions of four of the most abundant phospholipids in bacteria and mammalian plasma membranes with graphene materials were studied using density functional theory (DFT) at the atomic level. The calculations showed that the mammalian phospholipids have stronger bonding to each other compared to bacterial phospholipids. When the graphene/graphene oxide sheet is approaching the phospholipid pairs, the bacterial pairs exhibit less repulsive interactions, thereby a more stable system with the sheets was found. We also assembled bacterial and mammalian phospholipids into liposomes. We further observed that the bacterial liposomes and cells let the graphene flakes penetrate the membrane. The differential scanning calorimetry measurements of liposomes revealed that the bacterial liposomes have the lowest heat capacity; this strengthens the theoretical predictions of weaker interaction between the bacterial phospholipids compared to the mammalian phospholipids. We further demonstrated that graphene oxide could be internalized into the mammalian liposomes without disrupting the membrane integrity. The results suggest that the weak bonding among bacteria phospholipids and less repulsive force when graphene materials approach, result in graphene materials interacting differently with the bacteria compared to mammalian cells.
Collapse
Affiliation(s)
- Victor Lanai
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Yanyan Chen
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Elena Naumovska
- Energy and Materials division, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Santosh Pandit
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Elsebeth Schröder
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| |
Collapse
|
14
|
Salinas-Restrepo C, Naranjo-Duran AM, Quintana J, Bueno J, Guzman F, Hoyos Palacio LM, Segura C. Short Antimicrobial Peptide Derived from the Venom Gland Transcriptome of Pamphobeteus verdolaga Increases Gentamicin Susceptibility of Multidrug-Resistant Klebsiella pneumoniae. Antibiotics (Basel) 2023; 13:6. [PMID: 38275316 PMCID: PMC10812672 DOI: 10.3390/antibiotics13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 01/27/2024] Open
Abstract
Infectious diseases account for nine percent of annual human deaths, and the widespread emergence of antimicrobial resistances threatens to significantly increase this number in the coming decades. The prospect of antimicrobial peptides (AMPs) derived from venomous animals presents an interesting alternative for developing novel active pharmaceutical ingredients (APIs). Small, cationic and amphiphilic peptides were predicted from the venom gland transcriptome of Pamphobeteus verdolaga using a custom database of the arthropod's AMPs. Ninety-four candidates were chemically synthesized and screened against ATCC® strains of Escherichia coli and Staphylococcus aureus. Among them, one AMP, named PvAMP66, showed broad-spectrum antimicrobial properties with selectivity towards Gram-negative bacteria. It also exhibited activity against Pseudomonas aeruginosa, as well as both an ATCC® and a clinically isolated multidrug-resistant (MDR) strain of K. pneumoniae. The scanning electron microscopy analysis revealed that PvAMP66 induced morphological changes of the MDR K. pneumoniae strain suggesting a potential "carpet model" mechanism of action. The isobologram analysis showed an additive interaction between PvAMP66 and gentamicin in inhibiting the growth of MDR K. pneumoniae, leading to a ten-fold reduction in gentamicin's effective concentration. A cytotoxicity against erythrocytes or peripheral blood mononuclear cells was observed at concentrations three to thirteen-fold higher than those exhibited against the evaluated bacterial strains. This evidence suggests that PvAMP66 can serve as a template for the development of AMPs with enhanced activity and deserves further pre-clinical studies as an API in combination therapy.
Collapse
Affiliation(s)
- Cristian Salinas-Restrepo
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (A.M.N.-D.)
| | - Ana María Naranjo-Duran
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (A.M.N.-D.)
| | - Juan Quintana
- Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050012, Colombia;
| | - Julio Bueno
- Grupo Reproducción, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia;
| | - Fanny Guzman
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 3100000, Chile;
| | - Lina M. Hoyos Palacio
- Escuela de Ciencias de la Salud, Grupo de Investigación Biología de Sistemas, Universidad Pontificia Bolivariana, Medellín 050031, Colombia;
| | - Cesar Segura
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia
| |
Collapse
|
15
|
Fernandes NMM, Caseli L, Bagatin IA. Bioinspired nanoarchitectonics at the air-water interface to understand the interaction of lipids with a Europium-coordinated quinoline derivative. Colloids Surf B Biointerfaces 2023; 229:113465. [PMID: 37490807 DOI: 10.1016/j.colsurfb.2023.113465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 07/27/2023]
Abstract
5SO3H-8-hydroxyquinoline coordinated to Europium (Eu-5SO3-HQ) was incorporated in biomembrane models using Langmuir monolayers. Dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylserine (DPPS) were employed, representing mammalian cells and dioctadecyldimethylammonium bromide (DODAB) as a positively charged lipid to study the contrast with negatively charged lipids. Tensiometric, rheological and spectroscopic techniques were employed to characterize Eu-5SO3-HQ- lipid monolayer interactions. The complex condenses all the monolayer indicating interactions with the lipids' polar heads, but with distinctive effects on the mechanical and rheological properties. While the complex decreases the compression and elastic moduli of DPPC and DPPS monolayers, it increases for DODAB, also decreasing its lateral viscosity. Infrared spectroscopy shows that the interaction of Eu-5-SO3-HQ alters the ordering of the lipids' alkyl chains, impacting the monolayer's molecular packing. These results show that the interaction of Eu-5SO3-HQ with lipid monolayers at the air-water is modulated by the composition of the polar head, which can be supportive in the preparation of nanodevices for molecular probing.
Collapse
Affiliation(s)
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, Diadema, SP, Brazil.
| | - Izilda A Bagatin
- Department of Chemistry, Federal University of São Paulo, Diadema, SP, Brazil
| |
Collapse
|
16
|
Kozon-Markiewicz D, Kopiasz RJ, Głusiec M, Łukasiak A, Bednarczyk P, Jańczewski D. Membrane lytic activity of antibacterial ionenes, critical role of phosphatidylcholine (PC) and cardiolipin (CL). Colloids Surf B Biointerfaces 2023; 229:113480. [PMID: 37536168 DOI: 10.1016/j.colsurfb.2023.113480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
Understanding the mechanism by which an antibacterial agent interacts with a model membrane provides vital information for better design of future antibiotics. In this study, we investigated two antibacterial polymers, hydrophilic C0-T-p and hydrophobic C8-T-p ionenes, known for their potent antimicrobial activity and ability to disrupt the integrity of lipid bilayers. Our hypothesize is that the composition of a lipid bilayer alters the mechanism of ionenes action, potentially providing an explanation for the observed differences in their bioactivity and selectivity. Calcein release experiments utilizing a range of liposomes to examine the impact of (i) cardiolipin (CL) to phosphatidylglycerol (PG) ratio, (ii) overall vesicle charge, and (iii) phosphatidylethanolamine (PE) to phosphatidylcholine (PC) ratio on the activity of ionenes were performed. Additionally, polymer-bilayer interactions were also investigated through vesicle fusion assay and the black lipid membrane (BLM) technique The activity of C0-T-p is strongly influenced by the amount of cardiolipin, while the activity of C8-T-p primarily depends on the overall vesicle charge. Consequently, C0-T-p acts through interactions with CL, whereas C8-T-p modifies the bulk properties of the membrane in a less-specific manner. Moreover, the presence of a small amount of PC in the membrane makes the vesicle resistant to permeabilization by tested molecules. Intriguingly, more hydrophilic C0-T-p retains higher membrane activity compared to the hydrophobic C8-T-p. However, both ionenes induce vesicle fusion and increase lipid bilayer ion permeability.
Collapse
Affiliation(s)
| | - Rafał J Kopiasz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Martyna Głusiec
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Agnieszka Łukasiak
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
| | - Dominik Jańczewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
17
|
Chen M, Leng Y, He C, Li X, Zhao L, Qu Y, Wu Y. Red blood cells: a potential delivery system. J Nanobiotechnology 2023; 21:288. [PMID: 37608283 PMCID: PMC10464085 DOI: 10.1186/s12951-023-02060-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Red blood cells (RBCs) are the most abundant cells in the body, possessing unique biological and physical properties. RBCs have demonstrated outstanding potential as delivery vehicles due to their low immunogenicity, long-circulating cycle, and immune characteristics, exhibiting delivery abilities. There have been several developments in understanding the delivery system of RBCs and their derivatives, and they have been applied in various aspects of biomedicine. This article compared the various physiological and physical characteristics of RBCs, analyzed their potential advantages in delivery systems, and summarized their existing practices in biomedicine.
Collapse
Affiliation(s)
- Mengran Chen
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yamei Leng
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chuan He
- Guang'an People's Hospital, Guang'an, 638001, Sichuan, People's Republic of China
| | - Xuefeng Li
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Zhao
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ying Qu
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
18
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
19
|
Khare P, Edgecomb SX, Hamadani CM, E L Tanner E, Manickam DS. Lipid nanoparticle-mediated drug delivery to the brain. Adv Drug Deliv Rev 2023; 197:114861. [PMID: 37150326 DOI: 10.1016/j.addr.2023.114861] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Lipid nanoparticles (LNPs) have revolutionized the field of drug delivery through their applications in siRNA delivery to the liver (Onpattro) and their use in the Pfizer-BioNTech and Moderna COVID-19 mRNA vaccines. While LNPs have been extensively studied for the delivery of RNA drugs to muscle and liver targets, their potential to deliver drugs to challenging tissue targets such as the brain remains underexplored. Multiple brain disorders currently lack safe and effective therapies and therefore repurposing LNPs could potentially be a game changer for improving drug delivery to cellular targets both at and across the blood-brain barrier (BBB). In this review, we will discuss (1) the rationale and factors involved in optimizing LNPs for brain delivery, (2) ionic liquid-coated LNPs as a potential approach for increasing LNP accumulation in the brain tissue and (3) considerations, open questions and potential opportunities in the development of LNPs for delivery to the brain.
Collapse
Affiliation(s)
- Purva Khare
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
| | - Sara X Edgecomb
- Department of Chemistry and Biochemistry, The University of Mississippi, MS
| | | | - Eden E L Tanner
- Department of Chemistry and Biochemistry, The University of Mississippi, MS.
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA.
| |
Collapse
|
20
|
Yamaguchi T, Hirakawa R, Ochiai H. Correlation between sphingomyelin and the membrane stability of mammalian erythrocytes. Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110833. [PMID: 36738823 DOI: 10.1016/j.cbpb.2023.110833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Lipid compositions of mammalian erythrocyte membranes are different among species. Therefore, the information on hemolysis from mammalian erythrocytes is useful to understand membrane properties of human erythrocytes. In this work, pressure-induced hemolysis and hypotonic one were examined using erythrocytes of human, sheep, cow, cat, dog, pig, horse, rat, and mouse. Pressure-induced hemolysis was suppressed by membrane sphingomyelin, whereas hypotonic hemolysis decreased upon increment of cell diameter. Mass spectra of erythrocyte membrane lipids demonstrated that sphingomyelin with an acyl chain 24:1 was associated with the suppression of pressure-induced hemolysis. In cow erythrocytes, pressure-induced hemolysis was greatly suppressed and the detachment of cytoskeletal proteins from the membrane under hypotonic conditions was also inhibited. Taken together, these results suggest that sphingomyelin with 24:1 fatty acid plays an important role in the stability of the erythrocyte membrane, perhaps via cholesterol.
Collapse
Affiliation(s)
- Takeo Yamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Ruka Hirakawa
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hideharu Ochiai
- Research Institute of Bioscience, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
21
|
Feng Y, Lao J, Zou J, Zhu Z, Li D, Liu G, Mao L. Interaction of Graphitic Carbon Nitride with Cell Membranes: Probing Phospholipid Extraction and Lipid Bilayer Destruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17663-17673. [PMID: 36456188 DOI: 10.1021/acs.est.2c05560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding how nanomaterials interact with cell membranes has important implications for ecotoxicology and human health. Here, we investigated the interactions between graphitic carbon nitride (g-C3N4, CN) and red blood cells, a plausible contact target for nanoparticles when they enter the bloodstream. Through a hemolysis assay, the cytotoxicity of CN derived from different precursors was quantitatively assessed, which is highly related to the surface area of CN. Reactive oxygen species (ROS) generation and lipid peroxidation detection confirmed that CN causes rapid cell membrane rupture by a physical interaction mechanism rather than ROS-related chemical oxidation. Dye leakage assay and theoretical simulation indicated that the less-layered CN is prone to folding inward to wrap and extract lipid molecules from cell membranes. The electron-rich inherent pores of CN play a dominant role in capturing the headgroups of phospholipids, whereas the hydrophobic interaction is critical for the anchoring of lipid tails. Our further experimental evidence demonstrated that the destructive extraction of phospholipids from cell membranes by CN occurs primarily in the outer leaflet, and phosphatidylcholine is the most easily extracted lipid. Moreover, the formation of protein corona on CN was found to decrease the nonspecific interactions but increase steric repulsion, thus mitigating CN cytotoxicity. Overall, our data provide a molecular basis for CN's cytotoxicity.
Collapse
Affiliation(s)
- Yiping Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Jiayong Lao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Jiale Zou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Zhiyu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Daguang Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
22
|
Wang L, Xu M, Chen J, Zhang X, Wang Q, Wang Y, Cui J, Zhang S. Distinct adverse outcomes and lipid profiles of erythrocytes upon single and combined exposure to cadmium and microplastics. CHEMOSPHERE 2022; 307:135942. [PMID: 35961459 DOI: 10.1016/j.chemosphere.2022.135942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The growing accumulation of environmental microplastics (MPs) has become a global concern. MPs are capable to interact with other environmental contaminants leading to altered toxicity. Red blood cells (RBCs), are the target with highest priority for most of toxic xenobiotics after entering blood stream. Whether co-existence of MPs changes the toxicity of cadmium, a typical hemolysis inducer, in RBCs is unknown. We investigated the adverse effects of CdCl2 and Polystyrene-MPs (PS-MPs) on RBCs in mice. We found that CdCl2 induced mild microcytic hypochromic anemia while PS-MPs induced polycythemia vera, indicating distinct outcomes between them. Moreover, co-treatment of PS-MPs with CdCl2 did not change the phenotype of microcytic hypochromic anemia, indicating an antagonistic relationship between CdCl2 and PS-MPs. However, the lipid profiles were also distinct between single exposure and combined exposure to CdCl2 and PS-MPs. The significant changed lipids were mainly involved in altering the physiochemical or biological properties of RBCs, including decreased membrane components, disrupted bilayer thickness and intrinsic lipid curvature. These results indicated impaired membrane functions of RBCs. The altered lipid profiles observed in the current study may represent new and previously unrecognized harmful characteristics of cadmium and MPs on erythrocytes at low dose without apparent induction of anemia.
Collapse
Affiliation(s)
- Lixin Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China.
| | - Man Xu
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Jiamin Chen
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Xuan Zhang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Quanshu Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Yingxue Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China; Hebei Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, 050018, China
| | - Shuping Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250062, China.
| |
Collapse
|
23
|
Fa K, Liu H, Li Z, Gong H, Petkov J, Ren Lu J. Acyl Chain Length Tuning Improves Antimicrobial Potency and Biocompatibility of Short Designed Lipopeptides. J Colloid Interface Sci 2022; 630:911-923. [DOI: 10.1016/j.jcis.2022.10.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
24
|
Doolan JA, Williams GT, Hilton KLF, Chaudhari R, Fossey JS, Goult BT, Hiscock JR. Advancements in antimicrobial nanoscale materials and self-assembling systems. Chem Soc Rev 2022; 51:8696-8755. [PMID: 36190355 PMCID: PMC9575517 DOI: 10.1039/d1cs00915j] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/21/2022]
Abstract
Antimicrobial resistance is directly responsible for more deaths per year than either HIV/AIDS or malaria and is predicted to incur a cumulative societal financial burden of at least $100 trillion between 2014 and 2050. Already heralded as one of the greatest threats to human health, the onset of the coronavirus pandemic has accelerated the prevalence of antimicrobial resistant bacterial infections due to factors including increased global antibiotic/antimicrobial use. Thus an urgent need for novel therapeutics to combat what some have termed the 'silent pandemic' is evident. This review acts as a repository of research and an overview of the novel therapeutic strategies being developed to overcome antimicrobial resistance, with a focus on self-assembling systems and nanoscale materials. The fundamental mechanisms of action, as well as the key advantages and disadvantages of each system are discussed, and attention is drawn to key examples within each field. As a result, this review provides a guide to the further design and development of antimicrobial systems, and outlines the interdisciplinary techniques required to translate this fundamental research towards the clinic.
Collapse
Affiliation(s)
- Jack A Doolan
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - George T Williams
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - Rajas Chaudhari
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, Kent CT2 7NH, UK.
| |
Collapse
|
25
|
Chen LY. Quantitative characterization of the path of glucose diffusion facilitated by human glucose transporter 1. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183975. [PMID: 35654150 DOI: 10.1016/j.bbamem.2022.183975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Glucose transporter GLUT1 is ubiquitously expressed in the human body from the red cells to the blood-brain barrier to the skeletal muscles. It is physiologically relevant to understand how GLUT1 facilitates diffusion of glucose across the cell membrane. It is also pathologically relevant because GLUT1 deficiency causes neurological disorders and anemia and because GLUT1 overexpression fuels the abnormal growth of cancer cells. This article presents a quantitative investigation of GLUT1 based on all-atom molecular-dynamics (MD) simulations of the transporter embedded in lipid bilayers of asymmetric inner-and-outer-leaflet lipid compositions, subject to asymmetric intra-and-extra-cellular environments. This is in contrast with the current literature of MD studies that have not considered both of the aforementioned asymmetries of the cell membrane. The equilibrium (unbiased) dynamics of GLUT1 shows that it can facilitate glucose diffusion across the cell membrane without undergoing large-scale conformational motions. The Gibbs free-energy profile, which is still lacking in the current literature of GLUT1, quantitatively characterizes the diffusion path of glucose from the periplasm, through an extracellular gate of GLUT1, on to the binding site, and off to the cytoplasm. This transport mechanism is validated by the experimental data that GLUT1 has low water-permeability, uptake-efflux symmetry, and 10 kcal/mol Arrhenius activation barrier around 37 °C.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
26
|
Lin Y, Buyan A, Corry B. Characterizing the lipid fingerprint of the mechanosensitive channel Piezo2. J Gen Physiol 2022; 154:213361. [PMID: 35861699 PMCID: PMC9532583 DOI: 10.1085/jgp.202113064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/22/2022] [Accepted: 07/01/2022] [Indexed: 01/23/2023] Open
Abstract
Piezo2 is a mechanosensitive ion channel that plays critical roles in sensing touch and pain, proprioception, and regulation of heart rate. Global knockout of Piezo2 leads to perinatal lethality in mice, and Piezo2 gain-of-function mutations are associated with distal arthrogryposis, a disease characterized by congenital joint contractures. Emerging evidence suggests that Piezo channels (Piezo1 and Piezo2) can be regulated by their local membrane environment and particularly by cholesterol and phosphoinositides. To characterize the local Piezo2 lipid environment and investigate key lipid-protein interactions, we carried out coarse-grained molecular dynamics simulations of Piezo2 embedded in a complex mammalian membrane containing >60 distinct lipid species. We show that Piezo2 alters its local membrane composition such that it becomes enriched with specific lipids, such as phosphoinositides, and forms specific, long-term interactions with a variety of lipids at functionally relevant sites.
Collapse
Affiliation(s)
| | | | - Ben Corry
- Research School of Biology, Canberra, Australia,Correspondence to Ben Corry:
| |
Collapse
|
27
|
Rawson KM, Lacey MM, Strong PN, Miller K. Improving the Therapeutic Index of Smp24, a Venom-Derived Antimicrobial Peptide: Increased Activity against Gram-Negative Bacteria. Int J Mol Sci 2022; 23:ijms23147979. [PMID: 35887325 PMCID: PMC9320964 DOI: 10.3390/ijms23147979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are naturally occurring compounds which possess a rapid killing mechanism and low resistance potential. Consequently, they are being viewed as potential alternatives to traditional antibiotics. One of the major factors limiting further development of AMPs is off-target toxicity. Enhancements to antimicrobial peptides which can maximise antimicrobial activity whilst reducing mammalian cytotoxicity would make these peptides more attractive as future pharmaceuticals. We have previously characterised Smp24, an AMP derived from the venom of the scorpion Scorpio maurus palmatus. This study sought to better understand the relationship between the structure, function and bacterial selectivity of this peptide by performing single amino acid substitutions. The antimicrobial, haemolytic and cytotoxic activity of modified Smp24 peptides was determined. The results of these investigations were compared with the activity of native Smp24 to determine which modifications produced enhanced therapeutic indices. The structure–function relationship of Smp24 was investigated by performing N-terminal, mid-chain and C-terminal amino acid substitutions and determining the effect that they had on the antimicrobial and cytotoxic activity of the peptide. Increased charge at the N-, mid- and C-termini of the peptide resulted in increased antimicrobial activity. Increased hydrophobicity at the N-terminus resulted in reduced haemolysis and cytotoxicity. Reduced antimicrobial, haemolytic and cytotoxic activity was observed by increased hydrophobicity at the mid-chain. Functional improvements have been made to modified peptides when compared with native Smp24, which has produced peptides with enhanced therapeutic indices.
Collapse
|
28
|
Abou Karam P, Rosenhek‐Goldian I, Ziv T, Ben Ami Pilo H, Azuri I, Rivkin A, Kiper E, Rotkopf R, Cohen SR, Torrecilhas AC, Avinoam O, Rojas A, Morandi MI, Regev‐Rudzki N. Malaria parasites release vesicle subpopulations with signatures of different destinations. EMBO Rep 2022; 23:e54755. [PMID: 35642585 PMCID: PMC9253735 DOI: 10.15252/embr.202254755] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Malaria is the most serious mosquito-borne parasitic disease, caused mainly by the intracellular parasite Plasmodium falciparum. The parasite invades human red blood cells and releases extracellular vesicles (EVs) to alter its host responses. It becomes clear that EVs are generally composed of sub-populations. Seeking to identify EV subpopulations, we subject malaria-derived EVs to size-separation analysis, using asymmetric flow field-flow fractionation. Multi-technique analysis reveals surprising characteristics: we identify two distinct EV subpopulations differing in size and protein content. Small EVs are enriched in complement-system proteins and large EVs in proteasome subunits. We then measure the membrane fusion abilities of each subpopulation with three types of host cellular membranes: plasma, late and early endosome. Remarkably, small EVs fuse to early endosome liposomes at significantly greater levels than large EVs. Atomic force microscope imaging combined with machine-learning methods further emphasizes the difference in biophysical properties between the two subpopulations. These results shed light on the sophisticated mechanism by which malaria parasites utilize EV subpopulations as a communication tool to target different cellular destinations or host systems.
Collapse
Affiliation(s)
- Paula Abou Karam
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | | | - Tamar Ziv
- Smoler Proteomics CenterDepartment of BiologyTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Hila Ben Ami Pilo
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ido Azuri
- Bioinformatics UnitLife Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Anna Rivkin
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Edo Kiper
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Ron Rotkopf
- Bioinformatics UnitLife Sciences Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Sidney R Cohen
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| | | | - Ori Avinoam
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Alicia Rojas
- Laboratory of HelminthologyFaculty of MicrobiologyUniversity of Costa RicaSan JoséCosta Rica
| | - Mattia I Morandi
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
29
|
Olival A, Vieira SF, Gonçalves VMF, Cunha C, Tiritan ME, Carvalho A, Reis RL, Ferreira H, Neves NM. Erythrocyte-derived liposomes for the treatment of inflammatory diseases. J Drug Target 2022; 30:873-883. [PMID: 35414285 DOI: 10.1080/1061186x.2022.2066107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Effective and safe therapies to counteract persistent inflammation are necessary. We developed erythrocyte-derived liposomes (EDLs) with intrinsic anti-inflammatory activity. The EDLs were prepared using lipids extracted from erythrocyte membranes, which are rich in omega-3 fatty acids with several health benefits. Diclofenac, a widely used anti-inflammatory drug, was incorporated into EDLs in relevant therapeutic concentrations. The EDLs were also functionalized with folic acid to allow their active targeting of M1 macrophages, which are key players in inflammatory processes. In the presence of lipopolysaccharide (LPS)-stimulated macrophages, empty EDLs and EDLs incorporating diclofenac were able to reduce the levels of important pro-inflammatory cytokines, namely interleukin-6 (IL-6; ≈85% and 77%, respectively) and tumor necrosis factor-alpha (TNF-α; ≈64% and 72%, respectively). Strikingly, cytocompatible concentrations of EDLs presented similar effects to dexamethasone, a potent anti-inflammatory drug, in reducing IL-6 and TNF-α concentrations, demonstrating the EDLs potential to be used as bioactive carriers in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- A Olival
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - S F Vieira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - V M F Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Paredes, Portugal
| | - C Cunha
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M E Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Paredes, Portugal.,Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - A Carvalho
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - H Ferreira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - N M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
30
|
Sun Y, Maltseva D, Liu J, Hooker T, Mailänder V, Ramløv H, DeVries AL, Bonn M, Meister K. Ice Recrystallization Inhibition Is Insufficient to Explain Cryopreservation Abilities of Antifreeze Proteins. Biomacromolecules 2022; 23:1214-1220. [PMID: 35080878 PMCID: PMC8924859 DOI: 10.1021/acs.biomac.1c01477] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Antifreeze proteins (AFPs) and glycoproteins (AFGPs) are exemplary at modifying ice crystal growth and at inhibiting ice recrystallization (IRI) in frozen solutions. These properties make them highly attractive for cold storage and cryopreservation applications of biological tissue, food, and other water-based materials. The specific requirements for optimal cryostorage remain unknown, but high IRI activity has been proposed to be crucial. Here, we show that high IRI activity alone is insufficient to explain the beneficial effects of AF(G)Ps on human red blood cell (hRBC) survival. We show that AF(G)Ps with different IRI activities cause similar cell recoveries of hRBCs and that a modified AFGP variant with decreased IRI activity shows increased cell recovery. The AFGP variant was found to have enhanced interactions with a hRBC model membrane, indicating that the capability to stabilize cell membranes is another important factor for increasing the survival of cells after cryostorage. This information should be considered when designing novel synthetic cryoprotectants.
Collapse
Affiliation(s)
- Yuling Sun
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Daria Maltseva
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Jie Liu
- Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Theordore Hooker
- University
of Alaska Southeast, Juneau, Alaska 99801, United States
| | - Volker Mailänder
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- Dermatology
Department, University Medical Center of
the Johannes Gutenberg-University, 55131 Mainz, Germany
| | | | - Arthur L. DeVries
- University
of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Konrad Meister
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- University
of Alaska Southeast, Juneau, Alaska 99801, United States
| |
Collapse
|
31
|
Stevens-Hernandez CJ, Bruce LJ. Reticulocyte Maturation. MEMBRANES 2022; 12:311. [PMID: 35323786 PMCID: PMC8953437 DOI: 10.3390/membranes12030311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023]
Abstract
Changes to the membrane proteins and rearrangement of the cytoskeleton must occur for a reticulocyte to mature into a red blood cell (RBC). Different mechanisms of reticulocyte maturation have been proposed to reduce the size and volume of the reticulocyte plasma membrane and to eliminate residual organelles. Lysosomal protein degradation, exosome release, autophagy and the extrusion of large autophagic-endocytic hybrid vesicles have been shown to contribute to reticulocyte maturation. These processes may occur simultaneously or perhaps sequentially. Reticulocyte maturation is incompletely understood and requires further investigation. RBCs with membrane defects or cation leak disorders caused by genetic variants offer an insight into reticulocyte maturation as they present characteristics of incomplete maturation. In this review, we compare the structure of the mature RBC membrane with that of the reticulocyte. We discuss the mechanisms of reticulocyte maturation with a focus on incomplete reticulocyte maturation in red cell variants.
Collapse
Affiliation(s)
- Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
- School of Biochemistry, University of Bristol, Bristol BS8 ITD, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, National Health Service (NHS) Blood and Transplant, Bristol BS34 7QH, UK
| |
Collapse
|
32
|
Georgiev V, Avalos-Padilla Y, Fernàndez-Busquets X, Dimova R. Femtoliter Injection of ESCRT-III Proteins into Adhered Giant Unilamellar Vesicles. Bio Protoc 2022; 12:e4328. [DOI: 10.21769/bioprotoc.4328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 11/02/2022] Open
|
33
|
Herrera-León C, Ramos-Martín F, Antonietti V, Sonnet P, D'Amelio N. The impact of phosphatidylserine exposure on cancer cell membranes on the activity of the anticancer peptide HB43. FEBS J 2021; 289:1984-2003. [PMID: 34767285 DOI: 10.1111/febs.16276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/19/2021] [Accepted: 11/10/2021] [Indexed: 02/04/2023]
Abstract
HB43 (FAKLLAKLAKKLL) is a synthetic peptide active against cell lines derived from breast, colon, melanoma, lung, prostate, and cervical cancers. Despite its remarkable spectrum of activity, the mechanism of action at the molecular level has never been investigated, preventing further optimization of its selectivity. The alternation of charged and hydrophobic residues suggests amphipathicity, but the formation of alpha-helical structure seems discouraged by its short length and the large number of positively charged residues. Using different biophysical and in silico approaches we show that HB43 is completely unstructured in solution but assumes alpha-helical conformation in the presence of DPC micelles and liposomes exposing phosphatidylserine (PS) used as mimics of cancer cell membranes. Membrane permeabilization assays demonstrate that the interaction leads to the preferential destabilization of PS-containing vesicles with respect to PC-containing ones, here used as noncancerous cell mimics. ssNMR reveals that HB43 is able to fluidify the internal structure of cancer-cell mimicking liposomes while MD simulations show its internalization in such bilayers. This is achieved by the formation of specific interactions between the lysine side chains and the carboxylate group of phosphatidylserine and/or the phosphate oxygen atoms of targeted phospholipids, which could catalyze the formation of the alpha helix required for internalization. With the aim of better understanding the peptide biocompatibility and the additional antibacterial activity, the interaction with noncancerous cell mimicking liposomes exposing phosphatidylcholine (PC) and bacterial mimicking bilayers exposing phosphatidylglycerol (PG) is also described.
Collapse
Affiliation(s)
- Claudia Herrera-León
- Unité de Génie Enzymatique et Cellulaire, UMR 7025, CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire, UMR 7025, CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Viviane Antonietti
- Agents Infectieux, Résistance et Chimiothérapie, UFR de Pharmacie, AGIR UR 4294, Université de Picardie Jules Verne, Amiens, France
| | - Pascal Sonnet
- Agents Infectieux, Résistance et Chimiothérapie, UFR de Pharmacie, AGIR UR 4294, Université de Picardie Jules Verne, Amiens, France
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire, UMR 7025, CNRS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
34
|
Abutaha N, Al-Keridis LA, Mohamed RAEH, AL-mekhlafi FA. Potency and selectivity indices of Myristica fragrans Houtt. mace chloroform extract against non-clinical and clinical human pathogens. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
This study assessed the antimicrobial, toxicity, and phytochemical profiles of Myristica fragrans extracts. Different solvent extracts were tested for antimicrobial activity against clinical and reference microbial strains, using disc and well diffusion assays and microdilution techniques. Antioxidant potential was investigated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assays. Cytotoxicity assay was conducted against human umbilical vein endothelial cells (HUVECs) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Acute toxicity was assessed in laboratory Swiss albino mice at a single dose of 2,000 mg/kg body weight for 14 days. To assess the phytochemical constituents, spectrophotometric and gas chromatography-mass spectrometry (GC-MS) methods were used. The chloroform extract revealed antimicrobial potencies against the Gram-positive bacteria and C. albicans with minimum inhibitory concentrations. In the DPPH assay, the IC50 value of the chloroform extract was determined to be 1.49 mg/mL. The phenolic and flavonoid contents were 26.64 ± 0.1 mg of gallic acid equivalents/g and 8.28 ± 0.1 mg quercetin equivalents/g, respectively. The IC50 value was determined to be 49 µg/mL against the HUVEC line. No mortality or morbidity was observed. GC-MS analysis indicated the presence of 2-cyclopenten-1-one (44.72%) as a major compound. The current results provide scientific support for the use of M. fragrans in folk medicine.
Collapse
Affiliation(s)
- Nael Abutaha
- Bioproducts Research Chair Department of Zoology, College of Science, King Saud University , Riyadh , Saudi Arabia
| | - Lamya Ahmed Al-Keridis
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Rania Ali El Hadi Mohamed
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University , Riyadh , Saudi Arabia
- Epidemiology Department, Scientific Researcher and Research Coordinator, Federal Ministry of Health , Khartoum , Sudan
| | - Fahd A. AL-mekhlafi
- Bioproducts Research Chair Department of Zoology, College of Science, King Saud University , Riyadh , Saudi Arabia
- Department of Agricultural Production, College of Agriculture and Veterinary Medicine, Thamar University , Dhamar , Yemen
| |
Collapse
|
35
|
Kerr D, Gong Z, Suwatthee T, Luoma A, Roy S, Scarpaci R, Hwang HL, Henderson JM, Cao KD, Bu W, Lin B, Tietjen GT, Steck TL, Adams EJ, Lee KYC. How Tim proteins differentially exploit membrane features to attain robust target sensitivity. Biophys J 2021; 120:4891-4902. [PMID: 34529946 PMCID: PMC8595564 DOI: 10.1016/j.bpj.2021.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/24/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022] Open
Abstract
Immune surveillance cells such as T cells and phagocytes utilize integral plasma membrane receptors to recognize surface signatures on triggered and activated cells such as those in apoptosis. One such family of plasma membrane sensors, the transmembrane immunoglobulin and mucin domain (Tim) proteins, specifically recognize phosphatidylserine (PS) but elicit distinct immunological responses. The molecular basis for the recognition of lipid signals on target cell surfaces is not well understood. Previous results suggest that basic side chains present at the membrane interface on the Tim proteins might facilitate association with additional anionic lipids including but not necessarily limited to PS. We, therefore, performed a comparative quantitative analysis of the binding of the murine Tim1, Tim3, and Tim4, to synthetic anionic phospholipid membranes under physiologically relevant conditions. X-ray reflectivity and vesicle binding studies were used to compare the water-soluble domain of Tim3 with results previously obtained for Tim1 and Tim4. Although a calcium link was essential for all three proteins, the three homologs differed in how they balance the hydrophobic and electrostatic interactions driving membrane association. The proteins also varied in their sensing of phospholipid chain unsaturation and showed different degrees of cooperativity in their dependence on bilayer PS concentration. Surprisingly, trace amounts of anionic phosphatidic acid greatly strengthened the bilayer association of Tim3 and Tim4, but not Tim1. A novel mathematical model provided values for the binding parameters and illuminated the complex interplay among ligands. In conclusion, our results provide a quantitative description of the contrasting selectivity used by three Tim proteins in the recognition of phospholipids presented on target cell surfaces. This paradigm is generally applicable to the analysis of the binding of peripheral proteins to target membranes through the heterotropic cooperative interactions of multiple ligands.
Collapse
Affiliation(s)
- Daniel Kerr
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, Chicago, Illinois; Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | - Zhiliang Gong
- Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | | | | | - Sobhan Roy
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Renee Scarpaci
- City University of New York City College, New York, New York
| | - Hyeondo Luke Hwang
- Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | - J Michael Henderson
- Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | - Kathleen D Cao
- Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois
| | - Wei Bu
- NSF's ChemMatCARS, The University of Chicago, Chicago, Illinois
| | - Binhua Lin
- James Franck Institute, Chicago, Illinois; NSF's ChemMatCARS, The University of Chicago, Chicago, Illinois
| | - Gregory T Tietjen
- Department of Surgery, Section of Transplant and Immunology and Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Erin J Adams
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, Chicago, Illinois; Committee on Immunology, Chicago, Illinois; Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois
| | - Ka Yee C Lee
- Program in Biophysical Sciences, Institute for Biophysical Dynamics, Chicago, Illinois; Department of Chemistry, Chicago, Illinois; James Franck Institute, Chicago, Illinois.
| |
Collapse
|
36
|
Glassman PM, Hood ED, Ferguson LT, Zhao Z, Siegel DL, Mitragotri S, Brenner JS, Muzykantov VR. Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv Drug Deliv Rev 2021; 178:113992. [PMID: 34597748 PMCID: PMC8556370 DOI: 10.1016/j.addr.2021.113992] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Drug delivery research pursues many types of carriers including proteins and other macromolecules, natural and synthetic polymeric structures, nanocarriers of diverse compositions and cells. In particular, liposomes and lipid nanoparticles represent arguably the most advanced and popular human-made nanocarriers, already in multiple clinical applications. On the other hand, red blood cells (RBCs) represent attractive natural carriers for the vascular route, featuring at least two distinct compartments for loading pharmacological cargoes, namely inner space enclosed by the plasma membrane and the outer surface of this membrane. Historically, studies of liposomal drug delivery systems (DDS) astronomically outnumbered and surpassed the RBC-based DDS. Nevertheless, these two types of carriers have different profile of advantages and disadvantages. Recent studies showed that RBC-based drug carriers indeed may feature unique pharmacokinetic and biodistribution characteristics favorably changing benefit/risk ratio of some cargo agents. Furthermore, RBC carriage cardinally alters behavior and effect of nanocarriers in the bloodstream, so called RBC hitchhiking (RBC-HH). This article represents an attempt for the comparative analysis of liposomal vs RBC drug delivery, culminating with design of hybrid DDSs enabling mutual collaborative advantages such as RBC-HH and camouflaging nanoparticles by RBC membrane. Finally, we discuss the key current challenges faced by these and other RBC-based DDSs including the issue of potential unintended and adverse effect and contingency measures to ameliorate this and other concerns.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Elizabeth D Hood
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Don L Siegel
- Department of Pathology & Laboratory Medicine, Division of Transfusion Medicine & Therapeutic Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02138, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
37
|
Yin R, Wang X, Li K, Yu K, Yang L. Lipidomic profiling reveals distinct differences in plasma lipid composition in overweight or obese adolescent students. BMC Endocr Disord 2021; 21:201. [PMID: 34641844 PMCID: PMC8513241 DOI: 10.1186/s12902-021-00859-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The relationship between dyslipidemia and obesity has been widely reported, but the global lipid profiles associated with the development of obesity still need to be clarified. An investigation into the association between the lipidomic plasma profile and adolescent obesity may provide new insights into the development of obesity. METHODS Mass spectrometry coupled with liquid chromatography was applied to detect the global lipidome in the fasting plasma from 90 Chinese adolescents, including 34 obese adolescents, 26 overweight adolescents, and 30 adolescents with a normal body mass index (BMI). All participants underwent anthropometric measurements by using InBody. Clinical biochemical indicators were measured by Cobas Elecsys. RESULTS Both qualitative and quantitative analyses revealed a gradual change in plasma lipid features among obese students, exhibiting characteristics close to overweight students, but differing significantly from normal students. Compared with normal and overweight students, levels of triglyceride (TG), 18-hydroxycortisol, isohumulinone A, and 11-dihydro-12-norneoquassin were up-regulated in the obese group, while phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysoPC (LPC), lysoPE (LPE), and phosphatidylinositol (PI) were significantly down-regulated in the obese group. Then, we conducted Venn diagrams and selected 8 significant metabolites from the 3 paired comparisons. Most of the selected features were significantly correlated with the anthropometric measurements. CONCLUSIONS This study demonstrated evidence for a relationship between the eight significant metabolites with obese adolescents. These lipid features may provide a basis for evaluating risk and monitoring the development of obesity.
Collapse
Affiliation(s)
- Ruili Yin
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Xiaojing Wang
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Kun Li
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China
| | - Ke Yu
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China.
| | - Longyan Yang
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
38
|
Bompard J, Maniti O, Aboukhachfe R, Ausserre D, Girard-Egrot A. BALM: Watching the Formation of Tethered Bilayer Lipid Membranes with Submicron Lateral Resolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9457-9471. [PMID: 34324820 DOI: 10.1021/acs.langmuir.1c01184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tethered bilayer lipid membranes (tBLMs) are artificial membranes largely used for the in situ study of biological membranes and membrane-associated proteins. To date, the formation of these membranes was essentially monitored by surface averaging techniques like surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D), which cannot provide both local and real-time information in a single approach. Here, we report an original application of backside absorbing layer microscopy (BALM), a novel white-light wide-field optical microscopy, to study tBLMs. Thanks to the combination of sensitivity and resolution, BALM not only allowed the real-time quantitative monitoring of tBLM formation but also enabled the high-resolution visualization of local fluxes and matter exchanges taking place at each step of the process. Quantitative BALM measurements of the final layer thickness, reproduced in parallel with SPR, were consistent with the achievement of a continuous lipid bilayer. This finding was confirmed by BALM imaging, which additionally revealed the heterogeneity of the bilayer during its formation. While established real-time techniques, like SPR or QCM-D, view the surface as homogeneous, BALM showed the presence of surface patterns appearing in the first step of the tBLM formation process and governing subsequent matter adsorption or desorption steps. Finally, matter fluxes persisting even after rinsing at the end of the tBLM formation demonstrated the lasting presence of dispersed vesicular pockets with laterally fluctuating positions over the final single and continuous lipid bilayer. These new mechanistic insights into the tBLM formation process demonstrate the great potential of BALM in the study of complex biological systems.
Collapse
Affiliation(s)
- J Bompard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, GEMBAS Team, Lederer building, 1 rue Victor Grignard, F-69622 Villeurbanne, France
| | - O Maniti
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, GEMBAS Team, Lederer building, 1 rue Victor Grignard, F-69622 Villeurbanne, France
| | - R Aboukhachfe
- Lebanese University, Faculty of Technology, Hisbe Street, Saida, Lebanon
| | - D Ausserre
- Institut Molecules & Matériaux du Mans, IMMM CNRS UMR 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France
| | - A Girard-Egrot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, GEMBAS Team, Lederer building, 1 rue Victor Grignard, F-69622 Villeurbanne, France
| |
Collapse
|
39
|
Influence of lipid bilayer composition on the activity of antimicrobial quaternary ammonium ionenes, the interplay of intrinsic lipid curvature and polymer hydrophobicity, the role of cardiolipin. Colloids Surf B Biointerfaces 2021; 207:112016. [PMID: 34364250 DOI: 10.1016/j.colsurfb.2021.112016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023]
Abstract
Incorporation of hydrophobic component into amphiphilic polycations structure is frequently accompanied by an increase of antimicrobial activity. There is, however, a group of relatively hydrophilic polycations containing quaternary ammonium moieties along mainchain, ionenes, which also display strong antimicrobial and limited hemolytic properties. In this work, an influence of a hydrophobic side group length on antimicrobial mechanism of action is investigated in a series of novel amphiphilic ionenes. High antimicrobial activity was found by determination of minimum inhibitory concentration (MIC) and minimum bactericidal, and fungicidal concentration (MBC and MFC) in both growth media and a buffer. Biocompatibility was estimated by hemolytic and mammalian cells viability assays. Mechanistic studies were performed using large unilamellar vesicles (LUVs) with different lipid composition, as simplified models of cell membranes. The investigated ionenes are potent and selective antimicrobial molecules displaying a decrease of antimicrobial activity correlated with increase of hydrophobicity. Studies using LUVs revealed that the cardiolipin is an essential component responsible for the lipid bilayer permeabilization by investigated ionens. In contrast to relatively hydrophilic ionenes, more hydrophobic polymers showed an ability to stabilize membranes composed of lipids with negative spontaneous curvature in a certain range of polymer to lipid ratio. The results substantially contribute to the understanding of antimicrobial activity of the investigated class of polymers.
Collapse
|
40
|
Coones RT, Green RJ, Frazier RA. Investigating lipid headgroup composition within epithelial membranes: a systematic review. SOFT MATTER 2021; 17:6773-6786. [PMID: 34212942 DOI: 10.1039/d1sm00703c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Membrane lipid composition is often quoted within the literature, but with very little insight into how or why these compositions vary when compared to other biological membranes. One prominent area that lacks understanding in terms of rationale for lipid variability is the human gastro-intestinal tract (GIT). We have carried out a comprehensive systematic literature search to ascertain the key lipid components of epithelial membranes, with a particular focus on addressing the human GIT and to use compositional data to understand structural aspects of biological membranes. Both bacterial outer membranes and the human erythrocyte membrane were used as a comparison for the mammalian [epithelial] membranes and to understand variations in lipid presence. We show that phosphatidylcholine (PC) lipid types tend to dominate (33%) with phosphatidylethanolamines (PE) and cholesterol having very similar abundances (25 and 23% respectively). This systematic review presents a detailed insight into lipid headgroup composition and roles in various membrane types, with a summary of the distinction between the major lipid bilayer forming lipids and how peripheral lipids regulate charge and fluidity. The variety of lipids present in biological membranes is discussed and rationalised in terms function as well as cellular position.
Collapse
Affiliation(s)
- R T Coones
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R J Green
- Department of Pharmacy, School of Chemistry, Food, and Pharmacy, University of Reading, UK.
| | - R A Frazier
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, UK.
| |
Collapse
|
41
|
Ionization properties of monophosphoinositides in mixed model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183692. [PMID: 34265284 DOI: 10.1016/j.bbamem.2021.183692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/28/2022]
Abstract
Phosphoinositides are found in low concentration in cellular membranes but perform numerous functions such as signaling, membrane trafficking, protein recruitment and modulation of protein activity. Spatiotemporal regulation by enzymes that phosphorylate and dephosphorylate the inositol ring results in the production of seven distinct and functionally diverse derivatives. Ionization properties of the phosphorylated headgroups of anionic lipids have been shown to impact how they interact with proteins and lipids in the membrane. While the ionization properties of the three bis and one tris phosphorylated forms have been studied in physiologically relevant model membranes, that of the monophosphorylated forms (i.e., phosphatidylinositol-3-phosphate (PI3P), phosphatidylinositol-4-phosphate (PI4P), phosphatidylinositol-5-phosphate (PI5P)) has received less attention. Here, we used 31P MAS NMR to determine the charge of 5 mol% of the monophosphorylated derivatives in pure dioleoylphosphatidylcholine (DOPC) and DOPC/dioleoylphosphatidylethanolamine (DOPE) bilayers as a function of pH. We find that PI3P, PI4P and PI5P each have unique pKa2 values in a DOPC bilayer, and each is reduced in DOPC/DOPE model membranes through the interaction of their headgroups with DOPE according to the electrostatic-hydrogen bond switch model. In this study, using model membranes mimicking the plasma membrane (inner leaflet), Golgi, nuclear membrane, and endosome (outer leaflet), we show that PI3P, PI4P or PI5P maximize their charge at neutral pH. Our results shed light on the electrostatics of the monophosphorylated headgroups of PI3P, PI4P, and PI5P and form the basis of their intracellular functions.
Collapse
|
42
|
Han M, Chen LY. Molecular dynamics simulation of human urea transporter B. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1941944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ming Han
- Department of Physics, University of Texas at San Antonio, San Antonio, TX, USA
| | - Liao Y. Chen
- Department of Physics, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
43
|
Liscano Y, Medina L, Oñate-Garzón J, Gúzman F, Pickholz M, Delgado JP. In Silico Selection and Evaluation of Pugnins with Antibacterial and Anticancer Activity Using Skin Transcriptome of Treefrog ( Boana pugnax). Pharmaceutics 2021; 13:578. [PMID: 33919639 PMCID: PMC8074116 DOI: 10.3390/pharmaceutics13040578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/10/2021] [Accepted: 04/10/2021] [Indexed: 12/14/2022] Open
Abstract
In order to combat bacterial and cancer resistance, we identified peptides (pugnins) with dual antibacterial l-anticancer activity from the Boana pugnax (B. pugnax) skin transcriptome through in silico analysis. Pugnins A and B were selected owing to their high similarity to the DS4.3 peptide, which served as a template for their alignment to the B. pugnax transcriptome, as well as their function as part of a voltage-dependent potassium channel protein. The secondary peptide structure stability in aqueous medium was evaluated as well, and after interaction with the Escherichia coli (E. coli) membrane model using molecular dynamics. These pugnins were synthesized via solid-phase synthesis strategy and verified by Reverse phase high-performance liquid chromatography (RP-HPLC) and mass spectrometry. Subsequently, their alpha-helix structure was determined by circular dichroism, after which antibacterial tests were then performed to evaluate their antimicrobial activity. Cytotoxicity tests against cancer cells also showed selectivity of pugnin A toward breast cancer (MFC7) cells, and pugnin B toward prostate cancer (PC3) cells. Alternatively, flow cytometry revealed necrotic cell damage with a major cytotoxic effect on human keratinocytes (HaCaT) control cells. Therefore, the pugnins found in the transcriptome of B. pugnax present dual antibacterial-anticancer activity with reduced selectivity to normal eukaryotic cells.
Collapse
Affiliation(s)
- Yamil Liscano
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 N° 62-00, Cali 760035, Colombia;
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Laura Medina
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Jose Oñate-Garzón
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 N° 62-00, Cali 760035, Colombia;
| | - Fanny Gúzman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, 2374631 Av. Universidad, Curauma 330, Chile;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET-UBA, Ciudad Universitaria, Pabellón 1, Buenos Aires 1428, Argentina;
| | - Jean Paul Delgado
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
44
|
Magneto-Erythrocyte Membrane Vesicles’ Superior T2 MRI Contrast Agents to Magneto-Liposomes. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7040051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite their high potential, most of the clinically approved iron oxide (IO)-based contrast agents for magnetic resonance imaging (MRI) have been withdrawn from the market either due to safety issues or lack of sales. To address this challenge, erythrocyte membranes have been used to prepare IO-based T2 contrast agents with superior MRI properties and higher safety margin. A simple formulation procedure has been proposed, and the nanostructures’ morphology and physicochemical properties have been evaluated. We compared their performance in terms of contrast ability in MRI to the more clinically established magneto-liposomes and non-encapsulated nanoparticles (NPs). The encapsulation of 5-nm iron oxide nanoparticles (IO NPs) in the liposomes and erythrocyte membrane vesicles (EMVs) led to a significant improvement in their r2 relaxivity. r2 values increased to r2 = 188 ± 2 mM−1s−1 for magneto-liposomes and r2 = 269 ± 3 mM−1s−1 for magneto-erythrocyte membranes, compared to “free” IO NPs with (r2 = 12 ± 1 mM−1 s−1), measured at a 9.4 T MRI scanner. The superiority of magneto-erythrocyte membranes in terms of MRI contrast efficacy is clearly shown on T2-weighted MR images. Our study revealed the hemocompatibility of the developed contrast agents in the MRI-relevant concentration range.
Collapse
|
45
|
Avalos-Padilla Y, Georgiev VN, Lantero E, Pujals S, Verhoef R, N. Borgheti-Cardoso L, Albertazzi L, Dimova R, Fernàndez-Busquets X. The ESCRT-III machinery participates in the production of extracellular vesicles and protein export during Plasmodium falciparum infection. PLoS Pathog 2021; 17:e1009455. [PMID: 33798247 PMCID: PMC9159051 DOI: 10.1371/journal.ppat.1009455] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/14/2021] [Accepted: 03/08/2021] [Indexed: 01/08/2023] Open
Abstract
Infection with Plasmodium falciparum enhances extracellular
vesicle (EV) production in parasitized red blood cells (pRBCs), an important
mechanism for parasite-to-parasite communication during the asexual
intraerythrocytic life cycle. The endosomal
sorting complex
required for transport
(ESCRT), and in particular the ESCRT-III sub-complex, participates in the
formation of EVs in higher eukaryotes. However, RBCs have lost the majority of
their organelles through the maturation process, including an important
reduction in their vesicular network. Therefore, the mechanism of EV production
in P. falciparum-infected RBCs remains to be
elucidated. Here we demonstrate that P.
falciparum possesses a functional ESCRT-III machinery
activated by an alternative recruitment pathway involving the action of PfBro1
and PfVps32/PfVps60 proteins. Additionally, multivesicular body formation and
membrane shedding, both reported mechanisms of EV production, were reconstituted
in the membrane model of giant unilamellar vesicles using the purified
recombinant proteins. Moreover, the presence of PfVps32, PfVps60 and PfBro1 in
EVs purified from a pRBC culture was confirmed by super-resolution microscopy
and dot blot assays. Finally, disruption of the PfVps60 gene
led to a reduction in the number of the produced EVs in the KO strain and
affected the distribution of other ESCRT-III components. Overall, our results
increase the knowledge on the underlying molecular mechanisms during malaria
pathogenesis and demonstrate that ESCRT-III P.
falciparum proteins participate in EV production. Malaria is a disease caused by Plasmodium parasites that is
still a leading cause of death in many low-income countries, and for which
currently available therapeutic strategies are not succeeding in its control,
let alone eradication. An interesting feature observed after
Plasmodium invasion is the increase of extracellular
vesicles (EVs) generated by parasitized red blood cells (pRBCs), which lack a
vesicular trafficking that would explain EV production. Here, by combining
different approaches, we demonstrated the participation of the
endosomal sorting
complex required for
transport (ESCRT) machinery from Plasmodium
falciparum in the production of EVs in pRBCs. Moreover, we were
able to detect ESCRT-III proteins adjacent to the membrane of the host and in
EVs purified from a pRBC culture, which shows the export of these proteins and
their participation in EV production. Finally, the disruption of an ESCRT-III
associated gene, Pfvps60, led to a significant reduction in the
amount of EVs. Altogether, these results confirm ESCRT-III participation in EV
production and provide novel information on the P.
falciparum protein export mechanisms, which can be used for
the development of new therapeutic strategies against malaria, based on the
disruption of EV formation and trafficking.
Collapse
Affiliation(s)
- Yunuen Avalos-Padilla
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal, Hospital
Clínic-Universitat de Barcelona), Barcelona, Spain
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids
and Interfaces, Science Park Golm, Potsdam, Germany
- * E-mail: (YA-P); (XF-B)
| | - Vasil N. Georgiev
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids
and Interfaces, Science Park Golm, Potsdam, Germany
| | - Elena Lantero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal, Hospital
Clínic-Universitat de Barcelona), Barcelona, Spain
| | - Silvia Pujals
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics,
Universitat de Barcelona, Barcelona, Spain
| | - René Verhoef
- Computational Biology Group, Eindhoven University of Technology,
Eindhoven, The Netherlands
| | - Livia N. Borgheti-Cardoso
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Engineering and the Institute for Complex
Molecular Systems, Eindhoven University of Technology, Eindhoven, The
Netherlands
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids
and Interfaces, Science Park Golm, Potsdam, Germany
| | - Xavier Fernàndez-Busquets
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute
of Science and Technology (BIST), Barcelona, Spain
- Barcelona Institute for Global Health (ISGlobal, Hospital
Clínic-Universitat de Barcelona), Barcelona, Spain
- * E-mail: (YA-P); (XF-B)
| |
Collapse
|
46
|
20S proteasomes secreted by the malaria parasite promote its growth. Nat Commun 2021; 12:1172. [PMID: 33608523 PMCID: PMC7895969 DOI: 10.1038/s41467-021-21344-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Mature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S). The EV-20S proteasomes modulate the mechanical properties of naïve human RBCs by remodeling their cytoskeletal network. Furthermore, we identify four degradation targets of the secreted 20S proteasome, the phosphorylated cytoskeletal proteins β-adducin, ankyrin-1, dematin and Epb4.1. Overall, our findings reveal a previously unknown 20S proteasome secretion mechanism employed by the human malaria parasite, which primes RBCs for parasite invasion by altering membrane stiffness, to facilitate malaria parasite growth. Plasmodium falciparum secretes extracellular vesicles (EVs) while growing inside red blood cells (RBCs). Here the authors show that these EVs contain assembled and functional 20S proteasome complexes that remodel the cytoskeleton of naïve human RBCs, priming the RBCs for parasite invasion.
Collapse
|
47
|
Ivanova N, Ivanova A. Influence of the dimensionality of the periodic boundary conditions on the transport of a drug-peptide complex across model cell membranes. J Biomol Struct Dyn 2021; 40:5345-5356. [PMID: 33416039 DOI: 10.1080/07391102.2020.1870157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Many research efforts are devoted to improving the efficiency of chemotherapy. One of the aspects is to facilitate the transport of drugs across the cell membranes by attaching the therapeutics to a carrier molecule. The current study focuses on computational investigation of such a system with doxorubicin as the model drug, which is covalently bound to a cell-penetrating peptide. The correct description of its membrane translocation at the molecular level requires proper choice of the model membrane and of the simulation parameters. For the purpose, two phospholipid bilayers are built, one containing solely DPPC and another with mixed lipid content mimicking the composition of a human erythrocyte membrane. Atomistic molecular dynamics simulations are carried out in two types of periodic boundary conditions (2D and 3D PBC), in order to assess the effect of the periodicity dimensionality on the intermolecular interactions. The evolution of some basic characteristics of the bilayers and of the drug-peptide complex is tracked: mass density profiles, electrostatic potentials, lateral diffusion coefficients and areas per lipid, lipid-complex radial distribution functions, secondary structure of the peptide and orientation of the drug relative to the membrane. Thus, the influence of the periodic boundary conditions is quantified and it shows that the mixed system in 3D PBC is the most suitable for analysis of the translocation of the transporting moiety across cell membranes.
Collapse
Affiliation(s)
- Nikoleta Ivanova
- Department of Physical Chemistry, Laboratory of Quantum and Computational Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, Sofia, Bulgaria
| | - Anela Ivanova
- Department of Physical Chemistry, Laboratory of Quantum and Computational Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia, Sofia, Bulgaria
| |
Collapse
|
48
|
Takahashi H, Caputo GA, Kuroda K. Amphiphilic polymer therapeutics: an alternative platform in the fight against antibiotic resistant bacteria. Biomater Sci 2021; 9:2758-2767. [DOI: 10.1039/d0bm01865a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amphiphilic antimicrobial polymers show promising potential as polymer therapeutics to fight drug resistant bacteria and biofilms.
Collapse
Affiliation(s)
- Haruko Takahashi
- Graduate School of Integrated Sciences for Life
- Hiroshima University
- Hiroshima 739-8526
- Japan
| | | | - Kenichi Kuroda
- Department of Biologic and Materials Sciences
- School of Dentistry
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|
49
|
Luchini A, Vitiello G. Mimicking the Mammalian Plasma Membrane: An Overview of Lipid Membrane Models for Biophysical Studies. Biomimetics (Basel) 2020; 6:biomimetics6010003. [PMID: 33396534 PMCID: PMC7838988 DOI: 10.3390/biomimetics6010003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes. These studies described physical and chemical properties that are most likely similar to those of real cell membranes. Indeed, biomimetic lipid membranes can be easily prepared in the lab and are compatible with multiple biophysical techniques. Lipid phase transitions, the bilayer structure, the impact of cholesterol on the structure and dynamics of lipid bilayers, and the selective recognition of target lipids by proteins, peptides, and drugs are all examples of the detailed information about cell membranes obtained by the investigation of biomimetic lipid membranes. This review focuses specifically on the advances that were achieved during the last decade in the field of biomimetic lipid membranes mimicking the mammalian plasma membrane. In particular, we provide a description of the most common types of lipid membrane models used for biophysical characterization, i.e., lipid membranes in solution and on surfaces, as well as recent examples of their applications for the investigation of protein-lipid and drug-lipid interactions. Altogether, promising directions for future developments of biomimetic lipid membranes are the further implementation of natural lipid mixtures for the development of more biologically relevant lipid membranes, as well as the development of sample preparation protocols that enable the incorporation of membrane proteins in the biomimetic lipid membranes.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark;
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- CSGI-Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
- Correspondence:
| |
Collapse
|
50
|
Rodriguez RA, Chan R, Liang H, Chen LY. Quantitative study of unsaturated transport of glycerol through aquaglyceroporin that has high affinity for glycerol. RSC Adv 2020; 10:34203-34214. [PMID: 32944226 PMCID: PMC7494219 DOI: 10.1039/d0ra05262k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/08/2020] [Indexed: 11/21/2022] Open
Abstract
The structures of several aquaglyceroporins have been resolved to atomic resolution showing two or more glycerols bound inside a channel and confirming a glycerol-facilitator's affinity for its substrate glycerol. However, the kinetics data of glycerol transport experiments all point to unsaturated transport that is characteristic of low substrate affinity in terms of the Michaelis-Menten kinetics. In this article, we present an in silico-in vitro research focused on AQP3, one of the human aquaglyceroporins that is natively expressed in the abundantly available erythrocytes. We conducted 2.1 μs in silico simulations of AQP3 embedded in a model erythrocyte membrane with intracellular-extracellular asymmetries in leaflet lipid compositions and compartment salt ions. From the equilibrium molecular dynamics (MD) simulations, we elucidated the mechanism of glycerol transport at high substrate concentrations. From the steered MD simulations, we computed the Gibbs free-energy profile throughout the AQP3 channel. From the free-energy profile, we quantified the kinetics of glycerol transport that is unsaturated due to glycerol-glycerol interactions mediated by AQP3 resulting in the concerted movement of two glycerol molecules for the transport of one glycerol molecule across the cell membrane. We conducted in vitro experiments on glycerol uptake into human erythrocytes for a wide range of substrate concentrations and various temperatures. The experimental data quantitatively validated our theoretical-computational conclusions on the unsaturated glycerol transport through AQP3 that has high affinity for glycerol.
Collapse
Affiliation(s)
- Roberto A. Rodriguez
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Ruth Chan
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| | - Huiyun Liang
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
- Department of Pharmacology, The University of Texas Health Science Center at San AntonioSan AntonioTexas 78229USA
| | - Liao Y. Chen
- Department of Physics, The University of Texas at San AntonioSan AntonioTexas 78249USA
| |
Collapse
|