1
|
Ruginsk SG, Greenwood MP, Greenwood M, Elias LLK, Murphy D, Antunes-Rodrigues J. Knockdown of the type 1 cannabinoid receptor in the central amygdala increases both spontaneous and water deprivation-induced sodium intake in rats. Am J Physiol Regul Integr Comp Physiol 2025; 328:R423-R432. [PMID: 39965157 DOI: 10.1152/ajpregu.00241.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Important inputs originating in the forebrain circumventricular organs and also in the central amygdala (CeA) trigger essential water deprivation (WD)-induced behaviors, such as thirst and sodium appetite. Together with the secretion of the neurohypophysial peptides arginine vasopressin (AVP) and oxytocin (OT), these behavioral responses seek to maintain the normalcy of extracellular fluid (ECF) osmolality and volume. Within this context, the main hypothesis tested by the present study was that CeA type 1 cannabinoid receptors (CB1Rs) were essential for the maintenance of body fluid homeostasis, particularly in response to WD challenge. We found that CeA CB1R knockdown increased spontaneous and WD-induced hypertonic saline intake, without significantly impacting water ingestion. In euhydrated rats, despite unaltered urinary volume, CB1R knockdown reduced urinary osmolality, and diminished urinary nitrate concentrations, suggesting reduced renal sodium excretion. No relevant changes were induced by CeA CB1R knockdown on urinary parameters following WD-induced rehydration, which is consistent with unaltered AVP and OT mRNA transcription and hormone release under the same experimental conditions. Taken together, the present data support the notion that CeA CB1Rs participate in both spontaneous and WD-induced NaCl intake, without significantly affecting neuroendocrine output. Given the well-described facilitatory CeA role on natriorexigenic responses, and the reported interplay between CB1Rs and γ-aminobutyric acid (GABA) within the CeA, the present findings suggest that CB1Rs may indirectly regulate sodium appetite through effects on CeA GABAergic neurotransmission.NEW & NOTEWORTHY CeA CB1R knockdown increased spontaneous and WD-induced hypertonic saline intake, without significantly impacting water ingestion. In euhydrated rats, despite unaltered urinary volume, CB1R knockdown reduced urinary osmolality, and diminished urinary nitrate concentrations, suggesting reduced renal sodium excretion. No relevant changes were induced by CeA CB1R knockdown on urinary parameters following WD-induced rehydration, which is consistent with unaltered AVP and OT mRNA transcription and hormone release under the same experimental conditions.
Collapse
Affiliation(s)
- S G Ruginsk
- Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Brazil
| | - M P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - M Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - L L K Elias
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - D Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - J Antunes-Rodrigues
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
2
|
Abstract
Oxytocin (OT) is a nonapeptide mainly produced in the supraoptic and paraventricular nuclei. OT in the brain and blood has extensive functions in both mental and physical activities. These functions are mediated by OT receptors (OTRs) that are distributed in a broad spectrum of tissues with dramatic sexual dimorphism. In both sexes, OT generally facilitates social cognition and behaviors, facilitates parental behavior and sexual activity and inhibits feeding and pain perception. However, there are significant differences in OT levels and distribution of OTRs in men from women. Thus, many OT functions in men are different from women, particularly in the reproduction. In men, the reproductive functions are relatively simple. In women, the reproductive functions involve menstrual cycle, pregnancy, parturition, lactation, and menopause. These functions make OT regulation of women's health and disease a unique topic of physiological and pathological studies. In menstruation, pre-ovulatory increase in OT secretion in the hypothalamus and the ovary can promote the secretion of gonadotropin-releasing hormone and facilitate ovulation. During pregnancy, increased OT synthesis and preterm release endow OT system the ability to promote maternal behavior and lactation. In parturition, cervix expansion-elicited pulse OT secretion and uterine OT release accelerate the expelling of fetus and reduce postpartum hemorrhage. During lactation, intermittent pulsatile OT secretion is necessary for the milk-ejection reflex and maternal behavior. Disorders in OT secretion can account for maternal depression and hypogalactia. In menopause, the reduction of OT secretion accounts for many menopausal symptoms and diseases. These issues are reviewed in this work.
Collapse
Affiliation(s)
- Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haipeng Yang
- Neonatal Division of the Department of Pediatrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liqun Han
- Department of Radiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingxing Ma
- Department of Colorectal Cancer Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingxing Ma,
| |
Collapse
|
3
|
Boumansour L, Benhafri N, Guillon G, Corbani M, Touati H, Dekar-Madoui A, Ouali-Hassenaoui S. Vasopressin and oxytocin expression in hypothalamic supraoptic nucleus and plasma electrolytes changes in water-deprived male Meriones libycus. Anim Cells Syst (Seoul) 2021; 25:337-346. [PMID: 34745439 PMCID: PMC8567926 DOI: 10.1080/19768354.2021.1986130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In mammals, plasmatic osmolality needs to be stable, and it is highly related to the hydric state of the animals which depends on the activity of the hypothalamic neurohypophysial system and more particularly by vasopressin secretion. Meriones, a desert rodent, can survive even without drinking for more than one month. The mechanism(s) by which they survive under these conditions remains poorly understood. In this study, we examine the water’s deprivation consequences on the: (1) anatomy, morphology, and physiology of the hypothalamic supraoptic nucleus, (2) body mass and plasma electrolytes changes in male desert rodents ‘Meriones libycus’ subjected to water deprivation for 30 days. The effect of water deprivation was evaluated on the structural and cellular organization of the supraoptic nucleus by morphological observations and immunohistochemical approaches, allowing the labeling of AVP but also oxytocin. Our finding demonstrated that upon water deprivation (1) the body weight decreased and reached a plateau after a month of water restriction. (2) The plasmatic osmolality began to decrease and return to values similar to control animals at day 30. (3) The SON, both in hydrated and water-deprived animals, is highly developed.(4) The AVP labeling in the SON increased upon dehydration at variance with OT. These changes observed in body mass and plasma osmolality reveal an important adaptive process of male Meriones in response to prolonged water deprivation. Overall, this animal represents an interesting model for the study of water body homeostasis and the mechanisms underlying the survival of desert rodents to xeric environments.
Collapse
Affiliation(s)
- Lydia Boumansour
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria.,Université de Montpellier, CNRS, ISERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Nadir Benhafri
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Gilles Guillon
- Université de Montpellier, CNRS, ISERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Maithe Corbani
- Université de Montpellier, CNRS, ISERM, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Hanane Touati
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Aicha Dekar-Madoui
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Saliha Ouali-Hassenaoui
- Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
4
|
Aikins AO, Nguyen DH, Paundralingga O, Farmer GE, Shimoura CG, Brock C, Cunningham JT. Cardiovascular Neuroendocrinology: Emerging Role for Neurohypophyseal Hormones in Pathophysiology. Endocrinology 2021; 162:6247962. [PMID: 33891015 PMCID: PMC8234498 DOI: 10.1210/endocr/bqab082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/19/2022]
Abstract
Arginine vasopressin (AVP) and oxytocin (OXY) are released by magnocellular neurosecretory cells that project to the posterior pituitary. While AVP and OXY currently receive more attention for their contributions to affiliative behavior, this mini-review discusses their roles in cardiovascular function broadly defined to include indirect effects that influence cardiovascular function. The traditional view is that neither AVP nor OXY contributes to basal cardiovascular function, although some recent studies suggest that this position might be re-evaluated. More evidence indicates that adaptations and neuroplasticity of AVP and OXY neurons contribute to cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Ato O Aikins
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Dianna H Nguyen
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Obed Paundralingga
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - George E Farmer
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Caroline Gusson Shimoura
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Courtney Brock
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, Graduate School of Biomedical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: J. Thomas Cunningham Department of Physiology & Anatomy CBH 338 UNT Health Science Center 3500 Camp Bowie Blvd Fort Worth, TX 76107, USA.
| |
Collapse
|
5
|
Valentim-Lima E, de Oliveira JAC, Antunes-Rodrigues J, Reis LC, Garcia-Cairasco N, Mecawi AS. Neuroendocrine changes in the hypothalamic-neurohypophysial system in the Wistar audiogenic rat (WAR) strain submitted to audiogenic kindling. J Neuroendocrinol 2021; 33:e12975. [PMID: 33942400 DOI: 10.1111/jne.12975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/21/2021] [Accepted: 03/28/2021] [Indexed: 11/27/2022]
Abstract
The Wistar audiogenic rat (WAR) strain is used as an animal model of epilepsy, which when submitted to acute acoustic stimulus presents tonic-clonic seizures, mainly dependent on brainstem (mesencephalic) structures. However, when WARs are exposed to chronic acoustic stimuli (audiogenic kindling-AK), they usually present tonic-clonic seizures, followed by limbic seizures, after recruitment of forebrain structures such as the cortex, hippocampus and amygdala. Although some studies have reported that hypothalamic-hypophysis function is also altered in WAR through modulating vasopressin (AVP) and oxytocin (OXT) secretion, the role of these neuropeptides in epilepsy still is controversial. We analyzed the impact of AK and consequent activation of mesencephalic neurocircuits and the recruitment of forebrain limbic (LiR) sites on the hypothalamic-neurohypophysial system and expression of Avpr1a and Oxtr in these structures. At the end of the AK protocol, nine out of 18 WARs presented LiR. Increases in both plasma vasopressin and oxytocin levels were observed in WAR when compared to Wistar rats. These results were correlated with an increase in the expressions of heteronuclear (hn) and messenger (m) RNA for Oxt in the paraventricular nucleus (PVN) in WARs submitted to AK that presented LiR. In the paraventricular nucleus, the hnAvp and mAvp expressions increased in WARs with and without LiR, respectively. There were no significant differences in Avp and Oxt expression in supraoptic nuclei (SON). Also, there was a reduction in the Avpr1a expression in the central nucleus of the amygdala and frontal lobe in the WAR strain. In the inferior colliculus, Avpr1a expression was lower in WARs after AK, especially those without LiR. Our results indicate that both AK and LiR in WARs lead to changes in the hypothalamic-neurohypophysial system and its receptors, providing a new molecular basis to better understaind epilepsy.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Disease Models, Animal
- Epilepsy, Reflex/genetics
- Epilepsy, Reflex/metabolism
- Epilepsy, Reflex/pathology
- Epilepsy, Reflex/physiopathology
- Gene Expression Regulation
- Hippocampus/metabolism
- Hippocampus/pathology
- Hippocampus/physiopathology
- Hypothalamus/metabolism
- Hypothalamus/pathology
- Hypothalamus/physiopathology
- Kindling, Neurologic/pathology
- Kindling, Neurologic/physiology
- Male
- Neurosecretory Systems/metabolism
- Neurosecretory Systems/pathology
- Neurosecretory Systems/physiopathology
- Oxytocin/blood
- Oxytocin/genetics
- Oxytocin/metabolism
- Pituitary Gland, Posterior/metabolism
- Pituitary Gland, Posterior/pathology
- Pituitary Gland, Posterior/physiopathology
- Rats
- Rats, Wistar
- Seizures/genetics
- Seizures/metabolism
- Seizures/physiopathology
- Seizures/psychology
- Vasopressins/blood
- Vasopressins/genetics
- Vasopressins/metabolism
Collapse
Affiliation(s)
- Evandro Valentim-Lima
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Luis Carlos Reis
- Department of Physiological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | | | - Andre S Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Escola Paulista de Medicina, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Constanthin PE, Isidor N, de Seigneux S, Momjian S. Increased oxytocin release precedes hyponatremia after pituitary surgery. Pituitary 2021; 24:420-428. [PMID: 33506439 PMCID: PMC8119398 DOI: 10.1007/s11102-020-01121-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/26/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE The syndrome of inappropriate secretion of antidiuretic hormone (SIADH) is a well-known complication of transsphenoidal pituitary surgery, related to inappropriate secretion of arginine vasopressin (AVP). Its diagnosis is based on hyponatremia, with a peak of occurrence around day 7 after surgery and, to date, no early marker has been reported. In particular, copeptin levels are not predictive of hyponatremia in this case. Oxytocin (OXT) is secreted into the peripheral blood by axon terminals adjacent to those of AVP neurons in the posterior pituitary. Besides its role in childbirth and lactation, recent evidences suggested a role for OXT in sodium balance. The contribution of this hormone in the dysnatremias observed after pituitary surgery has however never been investigated. METHODS We analyzed the urinary output of OXT in patients subjected to transsphenoidal pituitary surgery. RESULTS While OXT excretion remained stable in patients who presented a normonatremic postoperative course, patients who were later diagnosed with SIADH-related hyponatremia presented with a significantly increased urinary secretion of OXT 4 days after surgery. CONCLUSION Taken together, these results show for the first time that urinary OXT output remains normally stable after transsphenoidal pituitary surgery. OXT excretion however becomes abnormally high on or around 4 days after surgery in patients later developing hyponatremia, suggesting that this abnormal dynamics of OXT secretion might serve as an early marker for transsphenoidal surgery-related hyponatremia attributed to SIADH.
Collapse
Affiliation(s)
- Paul Eugène Constanthin
- Department of Neurosurgery, Hôpitaux Universitaires de Genève (HUG), Geneva, Switzerland
- Faculty of Medicine, Université de Genève (UNIGE), Geneva, Switzerland
| | - Nathalie Isidor
- Clinical Investigation Unit, Clinical Research Center, University of Geneva, Hôpitaux Universitaires de Genève (HUG), Geneva, Switzerland
| | - Sophie de Seigneux
- Department of Nephrology, Hôpitaux Universitaires de Genève (HUG), Geneva, Switzerland
| | - Shahan Momjian
- Department of Neurosurgery, Hôpitaux Universitaires de Genève (HUG), Geneva, Switzerland.
- Faculty of Medicine, Université de Genève (UNIGE), Geneva, Switzerland.
| |
Collapse
|
7
|
Effects of endogenous H 2S production inhibition on the homeostatic responses induced by acute high-salt diet consumption. Mol Cell Biochem 2020; 476:715-725. [PMID: 33128215 DOI: 10.1007/s11010-020-03938-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/09/2020] [Indexed: 12/31/2022]
Abstract
The gaseous modulator hydrogen sulfide (H2S) is synthesized, among other routes, by the action of cystathionine-γ-lyase (CSE) and importantly participates in body fluid homeostasis. Therefore, the present study aimed to evaluate the participation of H2S in behavioral, renal and neuroendocrine homeostatic responses triggered by the acute consumption of a high Na+ diet. After habituation, adult male Wistar rats were randomly distributed and maintained for seven days on a control [CD (0.27% of Na+)] or hypersodic diet [HD (0.81% of Na+)]. CD and HD-fed animals were treated with DL-Propargylglycine (PAG, 25 mg/kg/day, ip) or vehicle (0.9% NaCl in equivalent volume) for the same period. At the end of the experiment, animals were euthanized for blood and tissue collection. We demonstrated that a short-term increase in dietary Na+ intake, in values that mimic the variations in human consumption (two times the recommended) significantly modified hydroelectrolytic homeostasis, with repercussions in the hypothalamic-neurohypophysial system and hypothalamic-pituitary-adrenal axis function. These findings were accompanied by the development of a clear inflammatory response in renal tubular cells and microvascular components. On the other hand, the inhibition of the endogenous production of H2S by CSE provided by PAG treatment prevented the inflammation induced by HD. In the kidney, PAG treatment induced the overexpression of inducible nitric oxide synthase in animals fed with HD. Taken together, these data suggest, therefore, that HD-induced H2S production plays an important proinflammatory role in the kidney, apparently counter regulating nitric oxide actions in renal tissue.
Collapse
|
8
|
Jankowski M, Broderick TL, Gutkowska J. The Role of Oxytocin in Cardiovascular Protection. Front Psychol 2020; 11:2139. [PMID: 32982875 PMCID: PMC7477297 DOI: 10.3389/fpsyg.2020.02139] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The beneficial effects of oxytocin on infarct size and functional recovery of the ischemic reperfused heart are well documented. The mechanisms for this cardioprotection are not well defined. Evidence indicates that oxytocin treatment improves cardiac work, reduces apoptosis and inflammation, and increases scar vascularization. Oxytocin-mediated cytoprotection involves the production of cGMP stimulated by local release of atrial natriuretic peptide and synthesis of nitric oxide. Treatment with oxytocin reduces the expression of proinflammatory cytokines and reduces immune cell infiltration. Oxytocin also stimulates differentiation stem cells to cardiomyocyte lineages as well as generation of endothelial and smooth muscle cells, promoting angiogenesis. The beneficial actions of oxytocin may include the increase in glucose uptake by cardiomyocytes, reduction in cardiomyocyte hypertrophy, decrease in oxidative stress, and mitochondrial protection of several cell types. In cardiac and cellular models of ischemia and reperfusion, acute administration of oxytocin at the onset of reperfusion enhances cardiomyocyte viability and function by activating Pi3K and Akt phosphorylation and downstream cellular signaling. Reperfusion injury salvage kinase and signal transducer and activator of transcription proteins cardioprotective pathways are involved. Oxytocin is cardioprotective by reducing the inflammatory response and improving cardiovascular and metabolic function. Because of its pleiotropic nature, this peptide demonstrates a clear potential for the treatment of cardiovascular pathologies. In this review, we discuss the possible cellular mechanisms of action of oxytocin involved in cardioprotection.
Collapse
Affiliation(s)
- Marek Jankowski
- Cardiovascular Biochemistry Laboratory, University of Montreal Hospital Centre, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| | - Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, AZ, United States
| | - Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, University of Montreal Hospital Centre, Montreal, QC, Canada.,Department of Medicine, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
9
|
Balapattabi K, Little JT, Bachelor ME, Cunningham RL, Cunningham JT. Sex Differences in the Regulation of Vasopressin and Oxytocin Secretion in Bile Duct-Ligated Rats. Neuroendocrinology 2020; 111:237-248. [PMID: 32335554 PMCID: PMC7584765 DOI: 10.1159/000508104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hyponatremia due to elevated arginine vasopressin (AVP) secretion increases mortality in liver failure patients. No previous studies have addressed sex differences in hyponatremia in liver failure animal models. OBJECTIVE This study addressed this gap in our understanding of the potential sex differences in hyponatremia associated with increased AVP secretion. METHODS This study tested the role of sex in the development of hyponatremia using adult male, female, and ovariectomized (OVX) female bile duct-ligated (BDL) rats. RESULTS All BDL rats had significantly increased liver to body weight ratios compared to sham controls. Male BDL rats had hyponatremia with significant increases in plasma copeptin and FosB expression in supraoptic AVP neurons compared to male shams (all p < 0.05; 5-7). Female BDL rats did not become hyponatremic or demonstrate increased supraoptic AVP neuron activation and copeptin secretion compared to female shams. Plasma oxytocin was significantly higher in female BDL rats compared to female sham (p < 0.05; 6-10). This increase was not observed in male BDL rats. Ovariectomy significantly decreased plasma estradiol in sham rats compared to intact female sham (p < 0.05; 6-10). However, circulating estradiol was significantly elevated in OVX BDL rats compared to the OVX and female shams (p < 0.05; 6-10). Adrenal estradiol, testosterone, and dehydroepiandrosterone (DHEA) were measured to identify a possible source of circulating estradiol in OVX BDL rats. The OVX BDL rats had significantly increased adrenal estradiol along with significantly decreased adrenal testosterone and DHEA compared to OVX shams (all p < 0.05; 6-7). Plasma osmolality, hematocrit, copeptin, and AVP neuron activation were not significantly different between OVX BDL and OVX shams. Plasma oxytocin was significantly higher in OVX BDL rats compared to OVX sham. CONCLUSIONS Our results show that unlike male BDL rats, female and OVX BDL rats did not develop hyponatremia, supraoptic AVP neuron activation, or increased copeptin secretion compared to female shams. Adrenal estradiol might have compensated for the lack of ovarian estrogens in OVX BDL rats.
Collapse
Affiliation(s)
- Kirthikaa Balapattabi
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Martha E Bachelor
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA,
| |
Collapse
|
10
|
Natochin YV, Shakhmatova EI, Bogolepova AE. Mechanism of Natriuretic Effect of Oxytocin. Bull Exp Biol Med 2020; 168:634-636. [PMID: 32246367 DOI: 10.1007/s10517-020-04768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 10/24/2022]
Abstract
In rats, intramuscular injection of oxytocin (0.25 nmol/100 g body weight) increased sodium excretion from 19±5 to 120±11 μmol/min. A significant correlation (p<0.001) was revealed between renal excretion of oxytocin and sodium ions. Under the action of oxytocin, natriuresis was characterized by diminished reabsorption of fluid in the proximal tubule of the nephron attested by elevated lithium clearance rate and from stimulation of V1a receptors in the cells of thick ascending loop of Henle. Pmp-Tyr(Me)-Phe-Gln-Asn-Cys-Pro-Arg-Gly-NH2, a V1a receptors antagonist, prevented the natriuretic effect of oxytocin.
Collapse
Affiliation(s)
- Yu V Natochin
- Laboratory of Kidney Physiology and Water-Ion Balance, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - E I Shakhmatova
- Laboratory of Kidney Physiology and Water-Ion Balance, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A E Bogolepova
- Laboratory of Kidney Physiology and Water-Ion Balance, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
11
|
Mahía J, Bernal A, Puerto A. Effects of oxytocin administration on the hydromineral balance of median eminence-lesioned rats. J Neuroendocrinol 2019; 31:e12778. [PMID: 31393999 DOI: 10.1111/jne.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/13/2019] [Accepted: 08/06/2019] [Indexed: 11/30/2022]
Abstract
In the clinical setting, acute injuries in hypothalamic mediobasal regions, along with polydipsia and polyuria, have been observed in patients with cerebral salt wasting (CSW). CSW is also characterised by hypovolaemia and hyponatraemia as a result of an early increase in natriuretic peptide activity. Salt and additional amounts of fluid are the main treatment for this disorder. Similarly, experimental lesions to these brain regions, which include the median eminence (ME), produce a well-documented neurological model of polydipsia and polyuria in rats, which is preceded by an early sodium excretion of unknown cause. In the present study, oxytocin (OT) was used to increase the renal sodium loss and prolong the hydroelectrolyte abnormalities of ME-lesioned animals during the first few hours post-surgery. The objective was to determine whether OT-treated ME-lesioned animals increase their sodium appetite and water intake to restore the volume and composition of extracellular body fluid. Electrolytic lesion of the ME increased water intake, urinary volume and sodium excretion of food-deprived rats and also decreased urine osmolality and estimated plasma sodium concentration. OT administration at 8 hours post-surgery reduced water intake, urine output and plasma sodium concentration and also increased urine osmolality and urine sodium excretion between 8 and 24 hours post-lesion. From 24 to 30 hours, more water and hypertonic NaCl was consumed by OT-treated ME-lesioned rats than by physiological saline-treated-ME-lesioned animals. Food availability from 30 to 48 hours reduced the intake of hypertonic saline solution by ME/OT animals, which increased their water and food intake during this period. OT administration therefore appears to enhance the natriuretic effect of ME lesion, producing hydroelectrolyte changes that reduce the water intake of food-deprived animals. Conversely, the presence of hypertonic NaCl increases the fluid intake of these animals, possibly as a result of the plasma sodium depletion and hypovolaemic states previously generated. Finally, the subsequent increase in food intake by ME/OT animals reduces their need for hypertonic NaCl but not water, possibly in response to osmotic thirst. These results are discussed in relation to a possible transient activation of the ME with the consequent secretion of natriuretic peptides stored in terminal swellings, which would be augmented by OT administration. Electrolytic lesion of the ME may therefore represent a useful neurobiological model of CSW.
Collapse
Affiliation(s)
- Javier Mahía
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Antonio Bernal
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Amadeo Puerto
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
12
|
Dissociation of natriuresis and diuresis by oxytocin molecular forms in rats. PLoS One 2019; 14:e0219205. [PMID: 31269062 PMCID: PMC6608960 DOI: 10.1371/journal.pone.0219205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
In the rat, oxytocin (OT) produces dose-dependent diuretic and natriuretic responses. Post-translational enzymatic conversion of the OT biosynthetic precursor forms both mature and C-terminally extended peptides. The plasma concentrations of these C-terminally extended peptides (OT-G; OT-GK and OT-GKR) are elevated in newborns and pregnant rats. Intravenous injection of OT-GKR to rats inhibits diuresis, whereas injection of amidated OT stimulates diuresis. Since OT and OT-GKR show different effects on the urine flow, we investigated whether OT-GKR modulates renal action by inhibition of the arginine-vasopressin (AVP) receptor V2 (V2R), the receptor involved in renal water reabsorption. Experiments were carried out in the 8-week-old Wistar rats receiving intravenous (iv) injections of vehicle, OT, OT-GKR or OT+OT-GKR combination. OT (10 μmol/kg) increased urine outflow by 40% (P<0.01) and sodium excretion by 47% (P<0.01). Treatment with OT-GKR (10 μmol/kg) decreased diuresis by 50% (P<0.001), decreased sodium excretion by 50% (P<0.05) and lowered potassium by 42% (P<0.05). OT antagonist (OTA) reduced diuresis and natriuresis exerted by OT, whereas the anti-diuretic effect of OT-GKR was unaffected by OTA. The treatment with V2R antagonist (V2A) in the presence and absence of OT induced diuresis, sodium and potassium outflow. V2A in the presence of OT-GKR only partially increased diuresis and natriuresis. Autoradiography and molecular docking analysis showed potent binding of OT-GKR to V2R. Finally, the release of cAMP from CHO cells overexpressing V2 receptor was induced by low concentration of AVP (EC50:4.2e-011), at higher concentrations of OT (EC50:3.2e-010) and by the highest concentrations of OT-GKR (EC50:1.1e-006). OT-GKR potentiated cAMP release when combined with AVP, but blocked cAMP release when combined with OT. These results suggest that OT-GKR by competing for the OT renal receptor (OTR) and binding to V2R in the kidney, induces anti-diuretic, anti-natriuretic, and anti-kaliuretic effects.
Collapse
|
13
|
Wang P, Wang SC, Yang H, Lv C, Jia S, Liu X, Wang X, Meng D, Qin D, Zhu H, Wang YF. Therapeutic Potential of Oxytocin in Atherosclerotic Cardiovascular Disease: Mechanisms and Signaling Pathways. Front Neurosci 2019; 13:454. [PMID: 31178679 PMCID: PMC6537480 DOI: 10.3389/fnins.2019.00454] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Coronary artery disease (CAD) is a major cardiovascular disease responsible for high morbidity and mortality worldwide. The major pathophysiological basis of CAD is atherosclerosis in association with varieties of immunometabolic disorders that can suppress oxytocin (OT) receptor (OTR) signaling in the cardiovascular system (CVS). By contrast, OT not only maintains cardiovascular integrity but also has the potential to suppress and even reverse atherosclerotic alterations and CAD. These protective effects of OT are associated with its protection of the heart and blood vessels from immunometabolic injuries and the resultant inflammation and apoptosis through both peripheral and central approaches. As a result, OT can decelerate the progression of atherosclerosis and facilitate the recovery of CVS from these injuries. At the cellular level, the protective effect of OT on CVS involves a broad array of OTR signaling events. These signals mainly belong to the reperfusion injury salvage kinase pathway that is composed of phosphatidylinositol 3-kinase-Akt-endothelial nitric oxide synthase cascades and extracellular signal-regulated protein kinase 1/2. Additionally, AMP-activated protein kinase, Ca2+/calmodulin-dependent protein kinase signaling and many others are also implicated in OTR signaling in the CVS protection. These signaling events interact coordinately at many levels to suppress the production of inflammatory cytokines and the activation of apoptotic pathways. A particular target of these signaling events is endoplasmic reticulum (ER) stress and mitochondrial oxidative stress that interact through mitochondria-associated ER membrane. In contrast to these protective effects and machineries, rare but serious cardiovascular disturbances were also reported in labor induction and animal studies including hypotension, reflexive tachycardia, coronary spasm or thrombosis and allergy. Here, we review our current understanding of the protective effect of OT against varieties of atherosclerotic etiologies as well as the approaches and underlying mechanisms of these effects. Moreover, potential cardiovascular disturbances following OT application are also discussed to avoid unwanted effects in clinical trials of OT usages.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Stephani C Wang
- Department of Medicine, Albany Medical Center, Albany, NY, United States
| | - Haipeng Yang
- Department of Pediatrics, The Forth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chunmei Lv
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dexin Meng
- Department of Physiology, Jiamusi University, Jiamusi, China
| | - Danian Qin
- Department of Physiology, Shantou University of Medical College, Shantou, China
| | - Hui Zhu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Jung C, Wernly B, Bjursell M, Wiseman J, Admyre T, Wikström J, Palmér M, Seeliger F, Lichtenauer M, Franz M, Frick C, Andersson AK, Elg M, Pernow J, Sjöquist PO, Bohlooly-Y M, Wang QD. Cardiac-Specific Overexpression of Oxytocin Receptor Leads to Cardiomyopathy in Mice. J Card Fail 2018; 24:470-478. [PMID: 29802896 DOI: 10.1016/j.cardfail.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 04/18/2018] [Accepted: 05/11/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Oxytocin (Oxt) and its receptor (Oxtr) gene system has been implicated in cardiomyogenesis and cardioprotection; however, effects of chronic activation of Oxtr are not known. We generated and investigated transgenic (TG) mice that overexpress Oxtr specifically in the heart. METHODS AND RESULTS Cardiac-specific overexpression of Oxtr was obtained by having the α-major histocompatibility complex promoter drive the mouse Oxtr gene (α-Mhc-Oxtr). Left ventricular (LV) function and remodeling were assessed by magnetic resonance imaging and echocardiography. In α-Mhc-Oxtr TG mice, LV ejection fraction was severely compromised at 14 weeks of age compared with wild-type (WT) littermates (25 ± 6% vs 63 ± 3%; P < .001). LV end-diastolic volume was larger in the TG mice (103 ± 6 µL vs 67 ± 5 µL; P < .001). α-Mhc-Oxtr TG animals displayed cardiac fibrosis, atrial thrombus, and increased expression of pro-fibrogenic genes. Mortality of α-Mhc-Oxtr TG animals was 45% compared with 0% (P < .0001) of WT littermates by 20 weeks of age. Most cardiomyocytes of α-Mhc-Oxtr TG animals but not WT littermates (68.0 ± 12.1% vs 5.6 ± 2.4%; P = .008) were positive in staining for nuclear factor of activated T cells (NFAT). To study if thrombin inhibitor prevents thrombus formation, a cohort of 7-week-old α-Mhc-Oxtr TG mice were treated for 12 weeks with AZD0837, a potent thrombin inhibitor. Treatment with AZD0837 reduced thrombus formation (P < .05) and tended to attenuate fibrosis and increase survival. CONCLUSIONS Cardiac-specific overexpression of Oxtr had negative consequences on LV function and survival in mice. The present findings necessitate further studies to investigate potential adverse effects of chronic Oxt administration. We provide a possible mechanism of Oxtr overexpression leading to heart failure by nuclear factor of activated T cell signaling. The recapitulation of human heart failure and the beneficial effects of the antithrombin inhibitor render the α-Mhc-Oxtr TG mice a promising tool in drug discovery for heart failure.
Collapse
Affiliation(s)
- Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Duesseldorf, Düsseldorf, Germany.
| | - Bernhard Wernly
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Mikael Bjursell
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - John Wiseman
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Therese Admyre
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Johannes Wikström
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Malin Palmér
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Drug safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | | | - Charlotte Frick
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ann-Katrin Andersson
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Margareta Elg
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - John Pernow
- Department of Cardiology, Karolinska Institute, Solna, Sweden
| | - Per-Ove Sjöquist
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | - Qing-Dong Wang
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
15
|
KOÇYİĞİT ÜM. Sıçanların Kalp Dokusunda Oksitosin’in Karbonik Anhidraz ve Asetilkolinesteraz Enzimleri Üzerine İnhibisyon Etkisinin Araştırılması. ACTA ACUST UNITED AC 2018. [DOI: 10.21597/jist.407875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Increased Activity of the Intracardiac Oxytocinergic System in the Development of Postinfarction Heart Failure. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3652068. [PMID: 27957495 PMCID: PMC5121437 DOI: 10.1155/2016/3652068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/08/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022]
Abstract
Aim. The present study was designed to test the hypothesis that the development of postinfarction heart failure is associated with a change of activity of the intracardiac oxytocinergic system. Methods. Experiments were performed on male Sprague-Dawley rats subjected to myocardial infarction or sham surgery. Four weeks after the surgery, blood samples were collected and the samples of the left ventricle (LV) and right ventricle (RV) were harvested for evaluation of the mRNA expression (RT-PCR) of oxytocin (OT), oxytocin receptor (OTR), natriuretic peptides, and the level of OT and OTR protein (ELISA). The concentration of N-terminal B-type natriuretic peptide was measured to determine the presence of heart failure. Results. Plasma NT-proBNP concentration was higher in the infarcted rats. In the infarcted rats, the expression of OT mRNA and the OT protein level were higher in the RV. There were no significant differences between infarcted and noninfarcted rats in the expression of OT mRNA and in the OT protein level in the fragments of the LV. In both the left and the right ventricles, OTR mRNA expression was lower but the level of OTR protein was higher in the infarcted rats. Conclusions. In the present study, we indicate that postinfarction heart failure is associated with an increased activity of the intracardiac oxytocinergic system.
Collapse
|
17
|
Kutina AV, Golosova DV, Marina AS, Shakhmatova EI, Natochin YV. Role of Vasopressin in the Regulation of Renal Sodium Excretion: Interaction with Glucagon-Like Peptide-1. J Neuroendocrinol 2016; 28. [PMID: 26791475 DOI: 10.1111/jne.12367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 12/14/2022]
Abstract
The present study aimed to investigate the potential physiological role of vasopressin and the incretin hormone of the gastrointestinal tract (glucagon-like peptide-1; GLP-1) in the regulation of the water-salt balance in a hyperosmolar state as a result of sodium loadings. In rats, the administration of hypertonic NaCl solution resulted in a significant increase in natriuresis, which correlated with the vasopressin excretion rate. Natriuresis following an i.p. NaCl load (23.2 ± 1.4 μmol/min/kg) was enhanced by inhibition of V2 receptors (51.6 ± 3.7 μmol/min/kg, P < 0.05) and was reduced by a V1a antagonist injection (6.3 ± 1.1 μmol/min/kg, P < 0.05). Compared to i.p. salt administration, oral NaCl loading induced a significant increase in the plasma GLP-1 level within 5 min and resulted in more prominent natriuresis and a smaller increase in blood sodium concentration. It was hypothesised that the basis for the fast elimination of excess sodium following an oral NaCl load could be the involvement of GLP-1 in osmoregulation combined with vasopressin. It was demonstrated that GLP-1 mimetic exenatide (1.5 nmol/kg) produced a significant decrease in proximal reabsorption and an increase in fractional sodium excretion (from 0.15 ± 0.04% to 9 ± 1%). It was also shown that vasopressin at doses of 1-10 μg/kg and the selective V1a agonist (1 μg/kg) induced an increase in sodium fractional excretion to 10 ± 2% and 8 ± 2%, respectively. Combined administration of exenatide and V1a agonist revealed their cumulative natriuretic effect, and sodium fractional excretion increased by up to 18 ± 2%. These data suggest that GLP-1 combined with vasopressin could be involved in the regulation of sodium balance in the hyperosmolar state as a result of NaCl loading. Vasopressin regulates the reabsorption of a significant portion of filtered sodium in the distal segment of the nephron and modulates the natriuretic effect of GLP-1.
Collapse
Affiliation(s)
- A V Kutina
- Laboratory of Renal Physiology and Water-Salt Balance, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - D V Golosova
- Laboratory of Renal Physiology and Water-Salt Balance, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - A S Marina
- Laboratory of Renal Physiology and Water-Salt Balance, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - E I Shakhmatova
- Laboratory of Renal Physiology and Water-Salt Balance, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Y V Natochin
- Laboratory of Renal Physiology and Water-Salt Balance, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
18
|
Gutkowska J, Aliou Y, Lavoie JL, Gaab K, Jankowski M, Broderick TL. Oxytocin decreases diurnal and nocturnal arterial blood pressure in the conscious unrestrained spontaneously hypertensive rat. ACTA ACUST UNITED AC 2016; 23:111-21. [PMID: 27020751 DOI: 10.1016/j.pathophys.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 01/27/2023]
Abstract
In this study, we assessed the effects of oxytocin (OT) on mean arterial blood pressure (MAP), heart rate (HR), and locomotor activity (LA) in male spontaneous hypertensive rats (SHR) and Sprague-Dawley (SDR) controls using telemetry. OT was given by intravenous injections of 0.1, 0.2 or 0.4mg/kg to assess short term acute effects or by daily subcutaneous injections of 0.5 or 1.0mg/kg for 5 days. Compared to the saline infusion, (i) intravenous OT, regardless of concentration, increased MAP in SHR and SDR, (ii) HR increased, but was periodically lower in both strains with 0.2 or 0.4mg/kg, and (iii) no effects of OT on LA were observed. Subcutaneous injections demonstrated that (i) 1.0mg/kg for 5days lowered diurnal MAP and HR in SDR and SHR, persisting for 6 days, (ii) 1.0mg/kg decreased nocturnal HR in SDR, (iii) 0.5 and 1.0mg/kg decreased MAP with minor effects on HR in the SHR, and lastly (iv) OT decreased LA mainly during the diurnal cycle in both strains. Our main results show that OT induces significant beneficial effects on cardiovascular function over several diurnal and nocturnal cycles in the SHR, with the most prominent effect being a robust decrease in MAP.
Collapse
Affiliation(s)
- Jolanta Gutkowska
- Cardiovascular Biochemistry Laboratory, Centre de Recherché du Centre Hospitalier de l 'Université de Montréal, Montréal, Québec, Canada; Département de Medecine, Université de Montréal, Montreal, Quebec, Canada
| | - Yessoufou Aliou
- Cardiovascular Biochemistry Laboratory, Centre de Recherché du Centre Hospitalier de l 'Université de Montréal, Montréal, Québec, Canada; Département de Pharmacologie, Université de Montréal, Montreal, Quebec, Canada
| | - Julie L Lavoie
- Cardiovascular Biochemistry Laboratory, Centre de Recherché du Centre Hospitalier de l 'Université de Montréal, Montréal, Québec, Canada; Department de Kinesiologie, Université de Montréal, Montreal, Quebec, Canada
| | - Katie Gaab
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, Midwestern University, Glendale, AZ, USA
| | - Marek Jankowski
- Cardiovascular Biochemistry Laboratory, Centre de Recherché du Centre Hospitalier de l 'Université de Montréal, Montréal, Québec, Canada; Département de Medecine, Université de Montréal, Montreal, Quebec, Canada
| | - Tom L Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, Midwestern University, Glendale, AZ, USA.
| |
Collapse
|
19
|
Sladek CD, Michelini LC, Stachenfeld NS, Stern JE, Urban JH. Endocrine‐Autonomic Linkages. Compr Physiol 2015; 5:1281-323. [DOI: 10.1002/cphy.c140028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
de Souza Mecawi A, Ruginsk SG, Elias LLK, Varanda WA, Antunes‐Rodrigues J. Neuroendocrine Regulation of Hydromineral Homeostasis. Compr Physiol 2015; 5:1465-516. [DOI: 10.1002/cphy.c140031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Opposite effects of oxytocin on water intake induced by hypertonic NaCl or polyethylene glycol administration. Physiol Behav 2015; 141:135-42. [PMID: 25617595 DOI: 10.1016/j.physbeh.2015.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/20/2014] [Accepted: 01/20/2015] [Indexed: 11/21/2022]
|
22
|
Amaral NO, de Oliveira TS, Naves LM, Filgueira FP, Ferreira-Neto ML, Schoorlemmer GHM, de Castro CH, Freiria-Oliveira AH, Xavier CH, Colugnati DB, Rosa DA, Blanch GT, Borges CL, Soares CMA, Reis AAS, Cravo SL, Pedrino GR. Efferent pathways in sodium overload-induced renal vasodilation in rats. PLoS One 2014; 9:e109620. [PMID: 25279805 PMCID: PMC4184892 DOI: 10.1371/journal.pone.0109620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 09/11/2014] [Indexed: 11/19/2022] Open
Abstract
Hypernatremia stimulates the secretion of oxytocin (OT), but the physiological role of OT remains unclear. The present study sought to determine the involvement of OT and renal nerves in the renal responses to an intravenous infusion of hypertonic saline. Male Wistar rats (280–350 g) were anesthetized with sodium thiopental (40 mg. kg−1, i.v.). A bladder cannula was implanted for collection of urine. Animals were also instrumented for measurement of mean arterial pressure (MAP) and renal blood flow (RBF). Renal vascular conductance (RVC) was calculated as the ratio of RBF by MAP. In anesthetized rats (n = 6), OT infusion (0.03 µg • kg−1, i.v.) induced renal vasodilation. Consistent with this result, exvivo experiments demonstrated that OT caused renal artery relaxation. Blockade of OT receptors (OXTR) reduced these responses to OT, indicating a direct effect of this peptide on OXTR on this artery. Hypertonic saline (3 M NaCl, 1.8 ml • kg−1 b.wt., i.v.) was infused over 60 s. In sham rats (n = 6), hypertonic saline induced renal vasodilation. The OXTR antagonist (AT; atosiban, 40 µg • kg−1 • h−1, i.v.; n = 7) and renal denervation (RX) reduced the renal vasodilation induced by hypernatremia. The combination of atosiban and renal denervation (RX+AT; n = 7) completely abolished the renal vasodilation induced by sodium overload. Intact rats excreted 51% of the injected sodium within 90 min. Natriuresis was slightly blunted by atosiban and renal denervation (42% and 39% of load, respectively), whereas atosiban with renal denervation reduced sodium excretion to 16% of the load. These results suggest that OT and renal nerves are involved in renal vasodilation and natriuresis induced by acute plasma hypernatremia.
Collapse
Affiliation(s)
- Nathalia O. Amaral
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thiago S. de Oliveira
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Lara M. Naves
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernando P. Filgueira
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marcos L. Ferreira-Neto
- Faculty of Physical Education, Biological Sciences Institute, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Carlos H. de Castro
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - André H. Freiria-Oliveira
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos H. Xavier
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Diego B. Colugnati
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Daniel A. Rosa
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Graziela T. Blanch
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Clayton L. Borges
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Célia M. A. Soares
- Laboratory of Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Angela A. S. Reis
- Department of Biochemistry and Molecular Biology, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
| | - Sergio L. Cravo
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo R. Pedrino
- Center for Neuroscience and Cardiovascular Physiology, Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goiás, Goiânia, GO, Brazil
- * E-mail:
| |
Collapse
|
23
|
Abstract
Studies of body volume expansion have indicated that lesions of the anteroventral third ventricle and median eminence block the release of atrial natriuretic peptide (ANP) into the circulation. Detailed analysis of the lesions showed that activation of oxytocin (OT)-ergic neurons is responsible for ANP release, and it has become clear that activation of neuronal circuitry elicits OT secretion into the circulation, activating atrial OT receptors and ANP release from the heart. Subsequently, we have uncovered the entire functional OT system in the rat and the human heart. An abundance of OT has been observed in the early development of the fetal heart, and the capacity of OT to generate cardiomyocytes (CMs) has been demonstrated in various types of stem cells. OT treatment of mesenchymal stem cells stimulates paracrine factors beneficial for cardioprotection. Cardiovascular actions of OT include: i) lowering blood pressure, ii) negative inotropic and chronotropic effects, iii) parasympathetic neuromodulation, iv) vasodilatation, v) anti-inflammatory activity, vi) antioxidant activity, and vii) metabolic effects. OT actions are mediated by nitric oxide and ANP. The beneficial actions of OT may include the increase in glucose uptake by CMs and stem cells, reduction in CM hypertrophy, oxidative stress, and mitochondrial protection of several cell types. In experimentally induced myocardial infarction in rats, continuous in vivo OT delivery improves cardiac healing and cardiac work, reduces inflammation, and stimulates angiogenesis. Because OT plays anti-inflammatory and cardioprotective roles and improves vascular and metabolic functions, it demonstrates potential for therapeutic use in various pathologic conditions.
Collapse
Affiliation(s)
- J Gutkowska
- Laboratory of Cardiovascular Biochemistry, Department of Medicine, Faculty of Medicine, University of Montreal, CHUM Research Centre, Montreal, Quebec, Canada
| | - M Jankowski
- Laboratory of Cardiovascular Biochemistry, Department of Medicine, Faculty of Medicine, University of Montreal, CHUM Research Centre, Montreal, Quebec, Canada
| | - J Antunes-Rodrigues
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, SP, Brasil
| |
Collapse
|
24
|
Makani V, Sultana R, Sie KS, Orjiako D, Tatangelo M, Dowling A, Cai J, Pierce W, Butterfield DA, Hill J, Park J. Annexin A1 complex mediates oxytocin vesicle transport. J Neuroendocrinol 2013; 25:1241-1254. [PMID: 24118254 PMCID: PMC3975805 DOI: 10.1111/jne.12112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 09/24/2013] [Accepted: 09/29/2013] [Indexed: 12/20/2022]
Abstract
Oxytocin is a major neuropeptide that modulates the brain functions involved in social behaviour and interaction. Despite of the importance of oxytocin for the neural control of social behaviour, little is known about the molecular mechanism(s) by which oxytocin secretion in the brain is regulated. Pro-oxytocin is synthesised in the cell bodies of hypothalamic neurones in the supraoptic and paraventricular nuclei and processed to a 9-amino-acid mature form during post-Golgi transport to the secretion sites at the axon terminals and somatodendritic regions. Oxytocin secreted from the somatodendritic regions diffuses throughout the hypothalamus and its neighbouring brain regions. Some oxytocin-positive axons innervate and secrete oxytocin to the brain regions distal to the hypothalamus. Brain oxytocin binds to its receptors in the brain regions involved in social behaviour. Oxytocin is also secreted from the axon terminal at the posterior pituitary gland into the blood circulation. We have discovered a new molecular complex consisting of annexin A1 (ANXA1), A-kinase anchor protein 150 (AKAP150) and microtubule motor that controls the distribution of oxytocin vesicles between the axon and the cell body in a protein kinase A (PKA)- and protein kinase C (PKC)-sensitive manner. ANXA1 showed significant co-localisation with oxytocin vesicles. Activation of PKA enhanced the association of kinesin-2 with ANXA1, thus increasing the axon-localisation of oxytocin vesicles. Conversely, activation of PKC decreased the binding of kinesin-2 to ANXA1, thus attenuating the axon-localisation of oxytocin vesicles. The result of the present study suggest that ANXA1 complex coordinates the actions of PKA and PKC to control the distribution of oxytocin vesicles between the axon and the cell body.
Collapse
Affiliation(s)
- Vishruti Makani
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Rukhsana Sultana
- Department of Chemistry, University of Kentucky, Lexington, KY 40506
| | - Khin Sander Sie
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Doris Orjiako
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Marco Tatangelo
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Abigail Dowling
- Department of Physiology and Pharmacology, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Jian Cai
- Department of Pharmacology, University of Louisville, Louisville, KY 40292
| | - William Pierce
- Department of Pharmacology, University of Louisville, Louisville, KY 40292
| | | | - Jennifer Hill
- Department of Physiology and Pharmacology, University of Toledo, College of Medicine, Toledo, OH 43614
| | - Joshua Park
- Department of Neurosciences, University of Toledo, College of Medicine, Toledo, OH 43614
- To whom correspondence should be addressed. Department of Neurosciences, University of Toledo College of Medicine, Toledo, Ohio 43614, , Phone: (419) 383-4085, Fax: (419) 383-3008
| |
Collapse
|
25
|
Liccardi G, Bilò MB, Mauro C, Salzillo A, Piccolo A, D’Amato M, Liccardi A, D’Amato G. Oxytocin: an unexpected risk for cardiologic and broncho-obstructive effects, and allergic reactions in susceptible delivering women. Multidiscip Respir Med 2013; 8:67. [PMID: 24139438 PMCID: PMC4014859 DOI: 10.1186/2049-6958-8-67] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/25/2013] [Indexed: 01/05/2023] Open
Abstract
Oxytocin (Sintocynon) is considered an uncommon cause of severe allergic reactions during delivery. We have recently shown that allergic sensitization to latex might constitute an important predisposing risk factor for anaphylaxis after the first infusion of oxytocin during delivery.Some oxytocin cardiovascular activities such as lowering blood pressure, negative cardiac inotropy and cronotropy, parasympathetic neuromodulation, vasodilatation etc. can induce significant side effects mimicking cardiac anaphylaxis, and constitute an additional differential diagnostic problem in delivering women with suspected or real allergic background. Finally, some ex vivo models have shown that oxytocin, under pro-inflammatory cytokines stimulation, such as those occurring in asthma, may induce contraction of smooth muscle and airway narrowing.This background suggests that allergic sensitization to latex allergens constitutes a significant but underestimated risk factor for triggering severe systemic reactions after the infusion of oxytocin and, consequently, there is a need of particular attention in managing delivering women suffering from latex allergy and bronchial asthma. An accurate anamnestic, clinical and diagnostic evaluation, latex-free anesthesiological setting, use of oxytocin-alternative agents and, if necessary, a drug premedication are likely to reduce the risk of anaphylactic/broncho-obstructive reactions in these women.
Collapse
Affiliation(s)
- Gennaro Liccardi
- Department of Chest Diseases, Division of Pneumology and Allergology. High Speciality “A.Cardarelli” Hospital, Naples, Italy
| | - Maria Beatrice Bilò
- Allergy Unit, Department of Immunology, Allergy and Respiratory Diseases, University Hospital, Ancona, Italy
| | - Ciro Mauro
- Division of Cardiology, Cardiac Intensive Care and Hemodynamic. Department of Intensive Care, High Speciality “A.Cardarelli” Hospital, Naples, Italy
| | - Antonello Salzillo
- Department of Chest Diseases, Division of Pneumology and Allergology. High Speciality “A.Cardarelli” Hospital, Naples, Italy
| | - Amedeo Piccolo
- Department of Chest Diseases, Division of Pneumology and Allergology. High Speciality “A.Cardarelli” Hospital, Naples, Italy
| | - Maria D’Amato
- Department of Respiratory Disease, University “Federico II” University – AO “Dei Colli”, Naples, Italy
| | - Annabella Liccardi
- Department of Chest Diseases, Division of Pneumology and Allergology. High Speciality “A.Cardarelli” Hospital, Naples, Italy
| | - Gennaro D’Amato
- Department of Chest Diseases, Division of Pneumology and Allergology. High Speciality “A.Cardarelli” Hospital, Naples, Italy
| |
Collapse
|
26
|
Armstrong DWJ, Tse MY, O'Tierney-Ginn PF, Wong PG, Ventura NM, Janzen-Pang JJ, Matangi MF, Johri AM, Croy BA, Adams MA, Pang SC. Gestational hypertension in atrial natriuretic peptide knockout mice and the developmental origins of salt-sensitivity and cardiac hypertrophy. ACTA ACUST UNITED AC 2013; 186:108-15. [PMID: 23981445 DOI: 10.1016/j.regpep.2013.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 07/24/2013] [Accepted: 08/13/2013] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To determine the effect of gestational hypertension on the developmental origins of blood pressure (BP), altered kidney gene expression, salt-sensitivity and cardiac hypertrophy (CH) in adult offspring. METHODS Female mice lacking atrial natriuretic peptide (ANP-/-) were used as a model of gestational hypertension. Heterozygous ANP+/- offspring was bred from crossing either ANP+/+ females with ANP-/- males yielding ANP+/-(WT) offspring, or from ANP-/- females with ANP+/+ males yielding ANP+/-(KO) offspring. Maternal BP during pregnancy was measured using radiotelemetry. At 14weeks of age, offspring BP, gene and protein expression were measured in the kidney with real-time quantitative PCR, receptor binding assay and ELISA. RESULTS ANP+/-(KO) offspring exhibited normal BP at 14weeks of age, but displayed significant CH (P<0.001) as compared to ANP+/-(WT) offspring. ANP+/-(KO) offspring exhibited significantly increased gene expression of natriuretic peptide receptor A (NPR-A) (P<0.001) and radioligand binding studies demonstrated significantly reduced NPR-C binding (P=0.01) in the kidney. Treatment with high salt diet increased BP (P<0.01) and caused LV hypertrophy (P<0.001) and interstitial myocardial fibrosis only in ANP+/-(WT) and not ANP+/-(KO) offspring, suggesting gestational hypertension programs the offspring to show resistance to salt-induced hypertension and LV remodeling. Our data demonstrate that altered maternal environments can determine the salt-sensitive phenotype of offspring.
Collapse
Affiliation(s)
- David W J Armstrong
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada; The Kingston Heart Clinic, 460 Princess Street, Kingston, ON K7L 1C2, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kutina AV, Marina AS, Shakhmatova EI, Natochin YV. Vasotocin analogues with selective natriuretic, kaliuretic and antidiuretic effects in rats. ACTA ACUST UNITED AC 2013; 185:57-64. [PMID: 23835093 DOI: 10.1016/j.regpep.2013.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 05/07/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
The aim of the present study was an investigation of mechanisms mediating selective effect of vasotocin analogues on water, sodium, and potassium excretion. We tested vasotocin analogues: Mpa(1)-vasotocin (dAVT), Mpa(1)-Arg(4)-vasotocin (dAAVT) and Mpa(1)-DArg(8)-vasotocin (dDAVT). The effects on water, sodium, and potassium transport were evaluated in experiments using normal and water-loaded Wistar rats. It was shown that all tested peptides exerted antidiuretic activity. Vasotocin and dAVT induced natriuresis and kaliuresis in rats. V1a agonist (Phe(2)-Ile(3)-Orn(8)-vasopressin) reproduced the renal effects of dAVT on sodium and potassium excretion but not on water reabsorption. dAAVT, dDAVT and V2 agonist (desmopressin) induced kaliuresis without any effect on sodium excretion. Natriuresis was associated with increase in cGMP excretion, whereas kaliuresis was correlated with rise of cAMP excretion. V1a antagonist (Pmp(1)-Tyr(Me)(2)-vasopressin) significantly reduced the dAVT-stimulated natriuresis and did not influence on urinary potassium excretion. V2 antagonist (Pmp(1)-DIle(2)-Ile(4)-vasopressin) significantly reduced the dAVT- and dAAVT-induced kaliuresis. It is assumed that effects of the nonapeptides on sodium and potassium transport are independent of their antidiuretic activity and mediated by different subtypes of V receptors (the V1a or V1a-like receptor for natriuretic effect and V2 or V2-like one for kaliuretic). In accordance to the data obtained, there is a possibility of selective regulation of renal water reabsorption and urinary sodium and potassium excretion with involvement of neurohypophysial hormones.
Collapse
Affiliation(s)
- Anna V Kutina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 44 Thorez Pr., 194223 Saint-Petersburg, Russia.
| | | | | | | |
Collapse
|
28
|
Margatho LO, Elias CF, Elias LLK, Antunes-Rodrigues J. Oxytocin in the central amygdaloid nucleus modulates the neuroendocrine responses induced by hypertonic volume expansion in the rat. J Neuroendocrinol 2013; 25:466-77. [PMID: 23331859 DOI: 10.1111/jne.12021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 12/13/2012] [Accepted: 01/04/2013] [Indexed: 12/01/2022]
Abstract
The present study investigated the involvement of the oxytocinergic neurones that project into the central amygdala (CeA) in the control of electrolyte excretion and hormone secretion in unanaesthetised rats subjected to acute hypertonic blood volume expansion (BVE; 0.3 M NaCl, 2 ml/100 g of body weight over 1 min). Oxytocin and vasopressin mRNA expression in the paraventricular (Pa) and supraoptic nucleus (SON) of the hypothalamus were also determined using the real time-polymerase chain reaction and in situ hybridisation. Male Wistar rats with unilaterally implanted stainless steel cannulas in the CeA were used. Oxytocin (1 μg/0.2 μl), vasotocin, an oxytocin antagonist (1 μg/0.2 μl) or vehicle was injected into the CeA 20 min before the BVE. In rats treated with vehicle in the CeA, hypertonic BVE increased urinary volume, sodium excretion, plasma oxytocin (OT), vasopressin (AVP) and atrial natriuretic peptide (ANP) levels and also increased the expression of OT and AVP mRNA in the Pa and SON. In rats pre-treated with OT in the CeA, previously to the hypertonic BVE, there were further significant increases in plasma AVP, OT and ANP levels, urinary sodium and urine output, as well as in gene expression (AVP and OT mRNA) in the Pa and SON compared to BVE alone. Vasotocin reduced sodium, urine output and ANP levels, although no changes were observed in plasma AVP and OT levels or in the expression of the AVP and OT genes in both hypothalamic nuclei. The results of the present study suggest that oxytocin in the CeA exerts a facilitatory role in the maintenance of hydroelectrolyte balance in response to changes in extracellular volume and osmolality.
Collapse
Affiliation(s)
- L O Margatho
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Brazil.
| | | | | | | |
Collapse
|
29
|
Santiago MB, Vieira AA, Elias LLK, Rodrigues JA, Giusti-Paiva A. Neurohypophyseal response to fluid resuscitation with hypertonic saline during septic shock in rats. Exp Physiol 2012; 98:556-63. [DOI: 10.1113/expphysiol.2012.066241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Abstract
Traditionally associated with female reproduction, oxytocin (OT) was revisited recently and was revealed to have several new roles in the cardiovascular system. Functional OT receptors have been discovered in the rat and human heart, as well as in vascular beds. The cardiovascular activities of OT include: (i) lowering blood pressure; (ii) negative cardiac inotropy and chronotropy; (iii) parasympathetic neuromodulation; (iv) vasodilatation; (v) anti-inflammatory; (vi) antioxidative; and (vii) metabolic effects. These outcomes are mediated, at least in part, by stimulating cardioprotective mediators, such as nitric oxide and atrial natriuretic peptide. OT and its extended form OT-Gly-Lys-Arg have been shown to be abundant in the foetal mouse heart. OT has the capacity to generate cardiomyocytes from various types of stem cells, including the cardiac side population. Mesenchymal cells transfected with OT-Gly-Lys-Arg, or preconditioned with OT, are resistant to apoptosis and express endothelial cell markers. OT increases glucose uptake in cultured cardiomyocytes from newborn and adult rats, in normal, hypoxic and even insulin resistance conditions. In rats with experimentally-induced myocardial infarction, continuous in vivo OT delivery improves the cardiac healing process, as well as cardiac work, reduces inflammation and stimulates angiogenesis. Therefore, in pathological conditions, OT exerts anti-inflammatory and cardioprotective properties, and improves vascular and metabolic functions. Thus, OT has potential for therapeutic use.
Collapse
Affiliation(s)
- J Gutkowska
- Laboratory of Cardiovascular Biochemistry, Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) - Hôtel-Dieu and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
31
|
Vilhena-Franco T, Mecawi AS, Elias LLK, Antunes-Rodrigues J. Oestradiol potentiates hormone secretion and neuronal activation in response to hypertonic extracellular volume expansion in ovariectomised rats. J Neuroendocrinol 2011; 23:481-9. [PMID: 21470318 DOI: 10.1111/j.1365-2826.2011.02133.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Secretion of vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) is an essential mechanism for the maintenance of hydromineral homeostasis. Secretion of these hormones is modulated by several circulating factors, including oestradiol. However, it remains unclear how oestradiol exerts this modulation. In the present study we investigated the participation of oestradiol in the secretion of VP, OT and ANP and in activation of vasopressinergic and oxytocinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus in response to extracellular volume expansion (EVE). For this purpose, ovariectomised (OVX) rats treated for 7 days with vehicle (corn oil, 0.1 ml/rat, OVX+O group) or oestradiol (oestradiol cypionate, 10 μg/kg, OVX+E group) were subjected to either isotonic (0.15 m NaCl, 2 ml/100 g b.w., i.v.) or hypertonic (0.30 m NaCl, 2 ml/100 g b.w., i.v.) EVE. Blood samples were collected for plasma VP, OT and ANP determination. Another group of rats was subjected to cerebral perfusion, and brain sections were processed for c-Fos-VP and c-Fos-OT double-labelling immunohistochemistry. In OVX+O rats, we observed that both isotonic and hypertonic EVE increased plasma OT and ANP concentrations, although no changes were observed in VP secretion. Oestradiol replacement did not alter hormonal secretion in response to isotonic EVE, but it increased VP secretion and potentiated plasma OT and ANP concentrations in response to hypertonic EVE. Immunohistochemical data showed that, in the OVX+O group, hypertonic EVE increased the number of c-Fos-OT and c-Fos-VP double-labelled neurones in the PVN and SON. Oestradiol replacement did not alter neuronal activation in response to isotonic EVE, but it potentiated vasopressinergic and oxytocinergic neuronal activation in the medial magnocellular PVN (PaMM) and SON. Taken together, these results suggest that oestradiol increases the responsiveness of vasopressinergic and oxytocinergic magnocellular neurones in the PVN and SON in response to osmotic stimulation.
Collapse
Affiliation(s)
- T Vilhena-Franco
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Brasil
| | | | | | | |
Collapse
|
32
|
Bae EH, Ma SK, Lee J, Kim SW. Altered regulation of renal nitric oxide and atrial natriuretic peptide systems in angiotensin II-induced hypertension. ACTA ACUST UNITED AC 2011; 170:31-7. [PMID: 21616096 DOI: 10.1016/j.regpep.2011.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 11/25/2022]
Abstract
The present study was aimed to determine whether there is an altered role of local nitric oxide (NO) and atrial natriuretic peptide (ANP) systems in the kidney in association with the angiotensin (Ang) II-induced hypertension. Male Sprague-Dawley rats were used. Ang II (100 ng·min⁻¹·kg⁻¹) was infused through entire time course. Thirteenth day after beginning the regimen, kidneys were taken. The protein expression of NO synthase (NOS) and nitrotyrosine was determined by semiquantitative immunoblotting. The mRNA expression of components of ANP system was determined by real-time polymerase chain reaction. The activities of soluble and particulate guanylyl cyclases were determined by the amount of cGMP generated in responses to sodium nitroprusside and ANP, respectively. There developed hypertension and decreased creatinine clearance in the experimental group. The protein expression of eNOS, nNOS and nitrotyrosine was increased in the cortex, while that of iNOS remained unaltered. The urinary excretion of NO increased in Ang II-induced hypertensive rats. The catalytic activity of soluble guanylyl cyclase was blunted in the glomerulus in Ang II-induced hypertensive rats. The mRNA expression of ANP was increased in Ang II-induced hypertensive rats. Neither the expression of NPR-A nor that of NPR-C was changed. The protein expression of neutral endopeptidase was decreased and the activity of particulate guanylyl cyclase was blunted in the glomerulus and papilla in Ang II-induced hypertensive rats. In conclusion, the synthesis of NO and ANP was increased in the kidney of Ang II-induced hypertension, while stimulated cGMP response was blunted. These results suggest desensitization of guanylyl cyclase in the kidney of Ang II-induced hypertensive rats, which may contribute to the associated renal vasoconstriction and hypertension.
Collapse
Affiliation(s)
- Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | | | | | | |
Collapse
|
33
|
Martins AR, Zanella CAB, Zucchi FCR, Dombroski TCD, Costa ET, Guethe LM, Oliveira AO, Donatti ALF, Neder L, Chimelli L, De Nucci G, Lee-Ho P, Murad F. Immunolocalization of nitric oxide synthase isoforms in human archival and rat tissues, and cultured cells. J Neurosci Methods 2011; 198:16-22. [PMID: 21420432 DOI: 10.1016/j.jneumeth.2011.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 02/16/2011] [Accepted: 02/24/2011] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) exerts important physiological and pathological roles in humans. The study of NO requires the immunolocalization of its synthesizing enzymes, neuronal, endothelial and inducible NO synthases (NOS). NOS are labile to formalin-fixation and paraffin-embedding, which are used to prepare human archival tissues. This lability has made NOS immunohistochemical studies difficult, and a detailed protocol is not yet available. We describe here a protocol for the immunolocalization of NOS isoforms in human archival cerebellum and non-nervous tissues, and in rat tissues and cultured cells. Neuronal NOS antigenicity in human archival and rat nervous tissue sections was microwave-retrieved in 50 mM Tris-HCl buffer, pH 9.5, for 20 min at 900 W. Neuronal NOS was expressed in stellate, basket, Purkinje and granule cells in human and rat cerebellum. Archival and frozen human cerebellar sections showed the same neuronal NOS staining pattern. Archival cerebellar sections not subjected to antigen retrieval stained weakly. Antigenicity of inducible NOS in human lung was best retrieved in 10 mM sodium citrate buffer, pH 6.0, for 15 min at 900 W. Inflammatory cells in a human lung tuberculoma were strongly stained by anti-inducible NOS antibody. Anti-endothelial NOS strongly stained kidney glomeruli. Cultured PC12 cells were strongly stained by anti-neuronal NOS without antigen retrieving. The present immunohistochemistry protocol is easy to perform, timeless, and suitable for the localization of NOS isoforms in nervous and non-nervous tissues, in human archival and rat tissues. It has been extensively used in our laboratory, and is also appropriate for other antigens.
Collapse
Affiliation(s)
- Antonio R Martins
- Institute of Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Karavashkina TA, Kutina AV, Shakhmatova EI, Natochin YV. Mechanism of 1-deamino-arginine vasotocin induced natriuresis in rats. Gen Comp Endocrinol 2011; 170:460-7. [PMID: 21050856 DOI: 10.1016/j.ygcen.2010.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/15/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
Abstract
1-Deamino-arginine vasotocin (1dAVT) induced diuresis and a considerable increase in urinary sodium excretion in female Wistar rats. Sodium fractional excretion rose up to 19.3 ± 1.1%. An increase in urine flow rate after 1dAVT (0.5 nmol/kg body-weight [bw]) injection was accompanied by a significant rise of the solute-free water reabsorption. The 1dAVT-induced natriuresis was as high as natriuresis produced by injection of a maximal dose of furosemide (10mg/kg bw). V(1)-receptor antagonists (ОРС-21268, [β-mercapto-β,β-cyclopentamethylenepropionyl(1),O-Me-Tyr(2),Arg(8)]-vasopressin) blocked the increase in urinary sodium excretion after the 1dAVT injection. The 1dAVT-induced natriuresis was strongly correlated with an increase in the urinary cGMP and prostaglandin E(2) excretion. The natriuretic effect of 1dAVT did not depend on the formation of nitric oxide (NO) or atrial natriuretic peptide of which concentration in the rat blood serum remained stable. The above results indicate that the 1dAVT has unique effects on rat kidney compared to all other known diuretics - it induces extremely high natriuresis and stimulates solute-free water reabsorption. Mechanism of the natriuretic effect of 1dAVT includes decrease in tubular sodium reabsorption due to activation of V(1)-like receptors and formation of cGMP and PGЕ(2).
Collapse
Affiliation(s)
- Tatjana A Karavashkina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Thorez Av 44, St Petersburg 194223, Russia
| | | | | | | |
Collapse
|
35
|
Oxytocin or Social Housing Alleviates Local Burn Injury in Rats. J Surg Res 2010; 162:122-31. [DOI: 10.1016/j.jss.2009.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/04/2009] [Accepted: 02/13/2009] [Indexed: 11/23/2022]
|
36
|
Gutkowska J, Jankowski M. Oxytocin: Old Hormone, New Drug. PHARMACEUTICALS (BASEL, SWITZERLAND) 2009. [PMID: 27713231 PMCID: PMC3978540 DOI: 10.3390/ph2030168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oxytocin (OT), traditionally associated with reproductive functions, was revisited recently, and several new functions in cardiovascular regulation were discovered. These functions include stimulation of the cardioprotective mediators nitric oxide (NO) and atrial natriuretic peptide. OT’s cardiovascular outcomes comprise: (i) natriuresis, (ii) blood pressure reduction, (iii) negative inotropic and chronotropic effects, (iv) parasympathetic neuromodulation, (v) NO pathway involvement in vasodilatation and endothelial cell growth, (vi) anti-inflammatory and (vii) antioxidant activities as well as (viii) metabolic effects. In addition, we have reported abundant OT in the early developing heart with its capacity to generate cardiomyocytes (CMs) from mouse embryonic stem cells and stem cells residing in the heart. OT increases glucose uptake by cultured CMs, in normal, hypoxic and even in insulin resistance conditions. In experimentally-induced myocardial infarction in rats, continuous in vivo OT delivery improves the cardiac healing process and cardiac work, diminishes inflammation, and stimulates angiogenesis. Therefore, in pathological situations, OT plays an anti-inflammatory and cardioprotective role, enhancing vascular and metabolic functions, with potential therapeutic application(s).
Collapse
Affiliation(s)
- Jolanta Gutkowska
- Laboratory of Cardiovascular Biochemistry, Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM)-Hôtel-Dieu, Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| | - Marek Jankowski
- Laboratory of Cardiovascular Biochemistry, Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM)-Hôtel-Dieu, Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Oxytocin: Old Hormone, New Drug. Pharmaceuticals (Basel) 2009; 2:168-183. [DOI: 10.3390/ph203168] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 01/16/2023] Open
|
38
|
Ruginsk SG, Lopes da Silva A, Ventura RR, Elias LLK, Antunes-Rodrigues J. Central actions of glucocorticoids in the control of body fluid homeostasis: review. Braz J Med Biol Res 2009; 42:61-7. [PMID: 19219298 DOI: 10.1590/s0100-879x2009000100010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 11/18/2008] [Indexed: 01/08/2023] Open
Abstract
The involvement of the hypothalamic-pituitary-adrenal axis in the control of body fluid homeostasis has been extensively investigated in the past few years. In the present study, we reviewed the recent results obtained using different approaches to investigate the effects of glucocorticoids on the mechanisms of oxytocin and vasopressin synthesis and secretion in response to acute and chronic plasma volume and osmolality changes. The data presented here suggest that glucocorticoids are not only involved in the mechanisms underlying the fast release but also in the transcriptional events that lead to decreased synthesis and secretion of these neuropeptides, particularly oxytocin, under diverse experimental conditions of altered fluid volume and tonicity. The endocannabinoid system, through its effects on glutamatergic neurotransmission within the hypothalamus and the nuclear factor kappaB-mediated transcriptional activity, seems to be also involved in the specific mechanisms by which glucocorticoids exert their central effects on neurohypophyseal hormone synthesis and secretion.
Collapse
Affiliation(s)
- S G Ruginsk
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
39
|
Mahía J, Bernal A, García del Rio C, Puerto A. The natriuretic effect of oxytocin blocks medial tuberomammillary polydipsia and polyuria in male rats. Eur J Neurosci 2009; 29:1440-6. [DOI: 10.1111/j.1460-9568.2009.06686.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Margatho L, Elias L, Antunes-Rodrigues J. GABA in the central amygdaloid nucleus modulates the electrolyte excretion and hormonal responses to blood volume expansion in rats. Braz J Med Biol Res 2009; 42:114-21. [DOI: 10.1590/s0100-879x2009000100016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 01/15/2009] [Indexed: 11/21/2022] Open
|
41
|
Alexander K, Ybarra N, del Castillo JRE, Morin V, Gauvin D, Bichot S, Beauchamp G, Troncy É. Determination of glomerular filtration rate in anesthetized pigs by use of three-phase whole-kidney computed tomography and Patlak plot analysis. Am J Vet Res 2008; 69:1455-62. [DOI: 10.2460/ajvr.69.11.1455] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Gutkowska J, Jankowski M. Oxytocin revisited: It is also a cardiovascular hormone. ACTA ACUST UNITED AC 2008; 2:318-25. [DOI: 10.1016/j.jash.2008.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 03/13/2008] [Accepted: 04/17/2008] [Indexed: 12/27/2022]
|
43
|
Stefanidis K, Loutradis D, Anastasiadou V, Bletsa R, Kiapekou E, Drakakis P, Beretsos P, Elenis E, Mesogitis S, Antsaklis A. Oxytocin receptor- and Oct-4-expressing cells in human amniotic fluid. Gynecol Endocrinol 2008; 24:280-4. [PMID: 18569033 DOI: 10.1080/09513590801977167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND/AIMS The present clinical and molecular study aimed at investigating the presence of the genes encoding oxytocin receptor (OT-R) and Oct-4 in human amniotic fluid cells. METHODS Amniotic fluid samples were obtained from amniocentesis. Cells from human amniotic fluid samples were analyzed for mRNA expression of OT-R and Oct-4 via reverse transcription-polymerase chain reaction (RT-PCR). Immunocytochemistry was also performed with OT-R and Oct-4 antibodies. RESULTS RT-PCR from 10 independent amniocentesis samples demonstrated the expression of OT-R and Oct-4 mRNA. The cells also showed strong immunoreactivity for molecular markers of OT-R and Oct-4. CONCLUSION OT-R and Oct-4 are expressed in human amniotic fluid cells. The role of oxytocin in the physiology and pathophysiology of amniotic fluid cells remains to be settled.
Collapse
Affiliation(s)
- Konstantinos Stefanidis
- Laboratory of Stem Cells, Division of Reproductive Medicine, Alexandra Maternity Hospital, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Reis LC. Role of the serotoninergic system in the sodium appetite control. AN ACAD BRAS CIENC 2007; 79:261-83. [PMID: 17625681 DOI: 10.1590/s0001-37652007000200009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Accepted: 09/27/2006] [Indexed: 11/22/2022] Open
Abstract
The present article reviews the role of the serotoninergic system in the regulation of the sodium appetite. Data from the peripheral and icv administration of serotoninergic (5-HTergic) agents showed the participation of 5-HT2/3 receptors in the modulation of sodium appetite. These observations were extended with the studies carried out after brain serotonin depletion, lesions of DRN and during blockade of 5-HT2A/2C receptors in lateral parabrachial nucleus (LPBN). Brain serotonin depletion and lesions of DRN increased the sodium appetite response, in basal conditions, after sodium depletion and hypovolemia or after beta-adrenergic stimulation as well. These observations raised the hypothesis that the suppression of ascending pathways from the DRN, possibly, 5-HTergic fibers, modifies the angiotensinergic or sodium sensing mechanisms of the subfornical organ involved in the control of the sodium appetite. 5-HTergic blockade in LPBN induced to similar results, particularly those regarded to the natriorexigenic response evoked by volume depletion or increase of the hypertonic saline ingestion induced by brain angiotensinergic stimulation. In conclusion, many evidences lead to acceptation of an integrated participation resulting of an interaction, between DRN and LPBN, for the sodium appetite control.
Collapse
Affiliation(s)
- Luís C Reis
- Departamento de Ciências Fisiológicas, Instituto de Biologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23890-000, Brazil.
| |
Collapse
|
45
|
Cedraz-Mercez PL, Mecawi AS, Lepletier A, Araújo IG, Costa-e-Sousa RH, Rocha FF, Olivares EL, Medeiros MA, Reis LC. Noradrenergic stimulation within midbrain raphe increases electrolyte excretion in rats. Exp Physiol 2007; 92:923-31. [PMID: 17591682 DOI: 10.1113/expphysiol.2007.037317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study was carried out to assess the influence of noradrenergic stimulation of the midbrain dorsal (DRN) and median raphe nuclei (MRN) on urinary volume and electrolyte excretion in hydrated rats. Wistar rats were implanted with a guide cannula into the MRN or DRN and then submitted to two intragastric administrations of water in order to attain an increased diuresis. The following treatments were performed. (1) Intra-DRN microinjections of saline (0.2 microl), alpha(1)-adrenergic agonist phenylephrine (PHE, 0.49 and 4.9 nmol in 0.2 microl), alpha(2)-adrenergic antagonist idazoxan (IDZ, 0.42 and 4.2 nmol in 0.2 microl) or the alpha(1)-adrenergic antagonist prazosin (PRZ, 0.24 and 2.4 nmol in 0.2 microl). (2) Intra-MRN microinjections of saline, IDZ (4.2 nmol in 0.2 microl), PHE (4.9 nmol in 0.2 microl) or PRZ (2.4 nmol in 0.2 microl). Urine samples were subsequently collected over 120 min at 20 min intervals for photometric measurement of sodium and potassium. Intra-DRN administration of PHE and IDZ significantly increased the urinary volume, natriuresis and kaliuresis. Intra-DRN microinjection of a higher dose of PRZ reduced the urinary volume and both sodium and potassium excretion. Intra-MRN microinjections of PHE, IDZ or PRZ did not induce any significant effect on urinary volume or electrolyte excretion. These data suggest that the increase of tonic excitatory noradrenergic input conveyed to DRN influences the hydroelectrolyte homeostasis, possibly through 5-HTergic circuitry.
Collapse
Affiliation(s)
- P L Cedraz-Mercez
- Department of Physiological Sciences, Biology Institute, Federal Rural University of Rio de Janeiro, BR465, Km 7, 23890-000, Seropédica, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ruginsk SG, Oliveira FRT, Margatho LO, Vivas L, Elias LLK, Antunes-Rodrigues J. Glucocorticoid modulation of neuronal activity and hormone secretion induced by blood volume expansion. Exp Neurol 2007; 206:192-200. [PMID: 17553493 DOI: 10.1016/j.expneurol.2007.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 04/02/2007] [Accepted: 04/07/2007] [Indexed: 11/29/2022]
Abstract
The present study evaluated the involvement of glucocorticoid in the activation of vasopressinergic and oxytocinergic neurons of hypothalamic nuclei and plasma levels of vasopressin (AVP), oxytocin (OT), atrial natriuretic peptide (ANP) and corticosterone (CORT) in response to both isotonic and hypertonic blood volume expansion (BVE). Rats were subjected to isotonic (0.15 M NaCl, 2 ml/100 g b.w., i.v.) or hypertonic (0.30 M NaCl, 2 ml/100 g b.w., i.v.) BVE with or without pre-treatment with dexamethasone (1 mg/kg, i.p.). Results showed that isotonic BVE increased OT, ANP and CORT, and decreased AVP plasma levels. On the other hand, hypertonic BVE enhanced AVP, ANP, OT, and CORT plasma concentrations. Both hypertonic and isotonic BVE induced an increase in the number of Fos-OT double-labeled magnocellular neurons in the PVN and SON. Pre-treatment with dexamethasone reduced OT secretion, as well as Fos-OT immunoreactive neurons in response to both isotonic and hypertonic BVE. We also observed that dexamethasone pre-treatment had no effect on AVP secretion in response to hypertonic BVE, although this effect was associated with a blockade of Fos expression in the vasopressinergic magnocellular neurons in the PVN and SON. In conclusion, these data suggest that, not only the rapid OT release from storages, but also the oxytocinergic cellular activation induced by BVE are modulated by glucocorticoids. However, this pattern of response was not observed for AVP cells, suggesting that dexamethasone is not likely to influence rapid release of AVP but seems to modulate the activation of these neurons in response to hypertonic BVE.
Collapse
Affiliation(s)
- S G Ruginsk
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirao Preto, Universidade de São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
de Magalhães-Nunes AP, Badauê-Passos D, Ventura RR, Guedes DDS, Araújo JP, Granadeiro PC, Milanez-Barbosa HK, da Costa-e-Sousa RH, de Medeiros MA, Antunes-Rodrigues J, Reis LC. Sertraline, a selective serotonin reuptake inhibitor, affects thirst, salt appetite and plasma levels of oxytocin and vasopressin in rats. Exp Physiol 2007; 92:913-22. [PMID: 17573416 DOI: 10.1113/expphysiol.2007.037358] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the effects of chronic administration of sertraline (SERT; approximately 20 mg kg(-1) day(-1) in drinking water), a selective serotonin reuptake inhibitor, on water and sodium intake and on plasma levels of oxytocin (OT) and vasopressin (AVP) in basal and stimulated conditions. Basal water intake was reduced in SERT-treated rats. After 24 h of water deprivation, rats treated with SERT for 21 days ingested less water than the control rats (9.7 +/- 0.5 versus 20.0 +/- 0.9 ml, respectively, at 300 min after water presentation, P < 0.0001). Subcutaneous injection of 2 m NaCl or isoproterenol evoked a lower dipsogenic response in rats treated with SERT for 21 days. Fluid and food deprivation also induced a weaker dipsogenic response in SERT-treated rats (1.6 +/- 0.5 versus 10.2 +/- 1.2 ml, at 300 min, P < 0.0001) but had no effect on saline intake. Sodium depletion induced a higher natriorexigenic response in the SERT group (5.6 +/- 1.3 versus 1.2 +/- 0.3 ml, at 300 min, P < 0.0002). Higher urinary density and lower plasma sodium levels were observed after SERT treatment. Sertraline also increased plasma levels of vasopressin and oxytocin (AVP, 2.65 +/- 0.36 versus 1.31 +/- 0.16 pg ml(-1), P < 0.005; OT, 17.16 +/- 1.06 versus 11.3 +/- 1.03 pg ml(-1), P < 0.0009, at the third week post-treatment). These data constitute the first evidence that chronic SERT treatment affects water and sodium intake in rats. These effects seem to be related to the hyponatraemia caused by the higher plasma levels of AVP and OT.
Collapse
|
48
|
Pournajafi-Nazarloo H, Perry A, Partoo L, Papademeteriou E, Azizi F, Carter CS, Cushing BS. Neonatal oxytocin treatment modulates oxytocin receptor, atrial natriuretic peptide, nitric oxide synthase and estrogen receptor mRNAs expression in rat heart. Peptides 2007; 28:1170-7. [PMID: 17537544 PMCID: PMC2044561 DOI: 10.1016/j.peptides.2007.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 04/27/2007] [Accepted: 04/30/2007] [Indexed: 11/26/2022]
Abstract
Oxytocin (OT) has been implicated in reproductive functions, induction of maternal behavior as well as endocrine and neuroendocrine regulation of the cardiovascular system. Here we demonstrate that neonatal manipulation of OT can modulate the mRNAs expression for OT receptor (OTR), atrial natriuretic peptide (ANP), endothelial nitric oxide synthase (eNOS) and estrogen receptor alpha (ERalpha) in the heart. On the first day of postnatal life, female and male rats were randomly assigned to receive one of the following treatments: (a) 50microl i.p. injection of 7microg OT; (b) 0.7microg of OT antagonist (OTA); or (c) isotonic saline (SAL). Hearts were collected either on postnatal day 1 or day 21 (D1 or D21) and the mRNAs expression of OTR, ANP, inducible NOS (iNOS), eNOS, ERalpha and estrogen receptor beta (ERbeta) were compared by age, treatment, and sex utilizing real time PCR. OT treatment significantly increased heart OTR, ANP and eNOS mRNAs expression on D1 in both males and females, ERalpha increased only in females. While there were significant changes in the relative expression of all types of mRNA between D1 and D21, there were no significant treatment effects observed in D21 animals. OTA treatment significantly decreased basal ANP and eNOS mRNAs expression on D1 in both sexes. The results indicate that during the early postnatal period OT can have an immediate effect on the expression OTR, ANP, eNOS, and ERalpha mRNAs and that these effects are mitigated by D21. Also with the exception of ERalpha mRNA, the effects are the same in both sexes.
Collapse
Affiliation(s)
- Hossein Pournajafi-Nazarloo
- Brain-Body Center, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Siegel AJ, Verbalis JG, Clement S, Mendelson JH, Mello NK, Adner M, Shirey T, Glowacki J, Lee-Lewandrowski E, Lewandrowski KB. Hyponatremia in marathon runners due to inappropriate arginine vasopressin secretion. Am J Med 2007; 120:461.e11-7. [PMID: 17466660 DOI: 10.1016/j.amjmed.2006.10.027] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 09/08/2006] [Accepted: 10/02/2006] [Indexed: 11/16/2022]
Abstract
PURPOSE Exercise-associated hyponatremia (EAH), as defined by a blood sodium concentration [Na+] less than 135 mmol/L, may lead to hypotonic encephalopathy with fatal cerebral edema. Understanding the pathogenetic role of antidiuresis may lead to improved strategies for prevention and treatment. METHODS Normonatremic marathon runners were tested pre- and post-race for creatine kinase, interleukin-6, cortisol, prolactin, and arginine vasopressin. Similar testing also was carried out in runners with encephalopathy caused by EAH, including 2 cases with fatal cerebral edema. RESULTS Normonatremic runners (n = 33; 2001) with a mean 3% decrease in body weight showed a 40-fold increase in interleukin-6 (66.6 +/- 11.9 pg/mL from 1.6 +/- 0.5 pg/mL, P = .001), which was significantly correlated with increases in creatine kinase (r = 0.88, P = <.0001), cortisol (r = 0.70, P = .0003), and prolactin (r = 0.67, P <.007), but not arginine vasopressin (r = 0.44, P = .07). Collapsed runners with EAH (n = 22; 2004) showed a mean blood urea nitrogen less than 15 mg/dL with measurable plasma levels of arginine vasopressin (>0.5 pg/mL) in 43% of cases. Two marathon runners with fatal cerebral edema additionally showed less than maximally dilute urines (>100 mmol/kg/H2O) and urine [Na+] greater than 25 mEq/L. CONCLUSIONS Cases of EAH fulfill the essential diagnostic criteria for the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Runners with hypotonic encephalopathy at subsequent races were treated with intravenous hypertonic (3%) saline on the basis of this paradigm, which resulted in rapid clinical improvement without adverse effects. Release of muscle-derived interleukin-6 may play a role in the nonosmotic secretion of arginine vasopressin, thereby linking rhabdomyolysis to the pathogenesis of EAH.
Collapse
|
50
|
Tuğtepe H, Sener G, Biyikli NK, Yüksel M, Cetinel S, Gedik N, Yeğen BC. The protective effect of oxytocin on renal ischemia/reperfusion injury in rats. ACTA ACUST UNITED AC 2007; 140:101-8. [PMID: 17261335 DOI: 10.1016/j.regpep.2006.11.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/09/2006] [Accepted: 11/11/2006] [Indexed: 11/16/2022]
Abstract
AIM Oxytocin was previously shown to have anti-inflammatory effects in different inflammation models. The major objective of the present study was to evaluate the protective role of oxytocin (OT) in protecting the kidney against ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS Male Wistar albino rats (250-300 g) were unilaterally nephrectomized, and subjected to 45 min of renal pedicle occlusion followed by 6 h of reperfusion. OT (1 mg/kg, ip) or vehicle was administered 15 min prior to ischemia and was repeated immediately before the reperfusion period. At the end of the reperfusion period, rats were decapitated and kidney samples were taken for histological examination or determination of malondialdehyde (MDA), an end product of lipid peroxidation; glutathione (GSH), a key antioxidant; and myeloperoxidase (MPO) activity, an index of tissue neutrophil infiltration. Creatinine and urea concentrations in blood were measured for the evaluation of renal function, while TNF-alpha and lactate dehydrogenase (LDH) levels were determined to evaluate generalized tissue damage. Formation of reactive oxygen species in renal tissue samples was monitored by chemiluminescence technique using luminol and lucigenin probes. RESULTS The results revealed that I/R injury increased (p<0.01-0.001) serum urea, creatinine, TNF-alpha and LDH levels, as well as MDA, MPO and reactive oxygen radical levels in the renal tissue, while decreasing renal GSH content. However, alterations in these biochemical and histopathological indices due to I/R injury were attenuated by OT treatment (p<0.05-0.001). CONCLUSIONS Since OT administration improved renal function and microscopic damage, along with the alleviation of oxidant tissue responses, it appears that oxytocin protects renal tissue against I/R-induced oxidative damage.
Collapse
Affiliation(s)
- Halil Tuğtepe
- Marmara University, School of Medicine, Department of Pediatric Surgery, Istanbul, Turkey.
| | | | | | | | | | | | | |
Collapse
|