1
|
Madabeni A, Bortoli M, Nogara PA, Ribaudo G, Dalla Tiezza M, Flohé L, Rocha JBT, Orian L. 50 Years of Organoselenium Chemistry, Biochemistry and Reactivity: Mechanistic Understanding, Successful and Controversial Stories. Chemistry 2024; 30:e202403003. [PMID: 39304519 PMCID: PMC11639659 DOI: 10.1002/chem.202403003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
In 1973, two major discoveries changed the face of selenium chemistry: the identification of the first mammal selenoenzyme, glutathione peroxidase 1, and the discovery of the synthetic utility of the so-called selenoxide elimination. While the chemical mechanism behind the catalytic activity of glutathione peroxidases appears to be mostly unveiled, little is known about the mechanisms of other selenoproteins and, for some of them, even the function lies in the dark. In chemistry, the capacity of organoselenides of catalyzing hydrogen peroxide activation for the practical manipulation of organic functional groups has been largely explored, and some mechanistic details have been clearly elucidated. As a paradox, despite the long-standing experience in the field, the nature of the active oxidant in various reactions still remains matter of debate. While many successes characterize these fields, the pharmacological use of organoselenides still lacks any true application, and while some organoselenides were found to be non-toxic and safe to use, to date no therapeutically approved use was granted. In this review, some fundamental and chronologically aligned topics spanning organoselenium biochemistry, chemistry and pharmacology are discussed, focusing on the current mechanistic picture describing their activity as either bioactive compounds or catalysts.
Collapse
Affiliation(s)
- Andrea Madabeni
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - Marco Bortoli
- Department of Chemistry and Hylleraas Centre for Quantum Molecular SciencesUniversity of OsloOslo0315Norway
| | - Pablo A. Nogara
- Instituto Federal de Educação, Ciência e Tecnologia Sul-rio-grandense (IFSul)Av. Leonel de Moura Brizola, 250196418-400Bagé, RSBrasil
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e TraslazionaleUniversità degli Studi di BresciaViale Europa 1125123BresciaItaly
| | - Marco Dalla Tiezza
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - Leopold Flohé
- Department of Molecular MedicineUniversity of PadovaItaly
- Departamento de BioquímicaUniversidad de la RepúblicaMontevideoUruguay
| | - João B. T. Rocha
- Departamento de BioquímicaUniversidade Federaldo Rio Grande do Sul (UFRGS)90035-003Porto Alegre, RSBrazil
| | - Laura Orian
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
2
|
Manta B, Makarova NE, Mariotti M. The selenophosphate synthetase family: A review. Free Radic Biol Med 2022; 192:63-76. [PMID: 36122644 DOI: 10.1016/j.freeradbiomed.2022.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
Abstract
Selenophosphate synthetases use selenium and ATP to synthesize selenophosphate. This is required for biological utilization of selenium, most notably for the synthesis of the non-canonical amino acid selenocysteine (Sec). Therefore, selenophosphate synthetases underlie all functions of selenoproteins, which include redox homeostasis, protein quality control, hormone regulation, metabolism, and many others. This protein family comprises two groups, SelD/SPS2 and SPS1. The SelD/SPS2 group represent true selenophosphate synthetases, enzymes central to selenium metabolism which are present in all Sec-utilizing organisms across the tree of life. Notably, many SelD/SPS2 proteins contain Sec as catalytic residue in their N-terminal flexible selenium-binding loop, while others replace it with cysteine (Cys). The SPS1 group comprises proteins originated through gene duplications of SelD/SPS2 in metazoa in which the Sec/Cys-dependent catalysis was disrupted. SPS1 proteins do not synthesize selenophosphate and are not required for Sec synthesis. They have essential regulatory functions related to redox homeostasis and pyridoxal phosphate, which affect signaling pathways for growth and differentiation. In this review, we summarize the knowledge about the selenophosphate synthetase family acquired through decades of research, encompassing their structure, mechanism, function, and evolution.
Collapse
Affiliation(s)
- Bruno Manta
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Uruguay, Cátedra de Fisiopatología, Facultad de Odontología, Universidad de la República, Uruguay
| | - Nadezhda E Makarova
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain
| | - Marco Mariotti
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Avinguda Diagonal 643, Barcelona, 08028, Catalonia, Spain.
| |
Collapse
|
3
|
Morellon-Sterling R, Bolivar JM, Fernandez-Lafuente R. Switch off/switch on of a cysteinyl protease as a way to preserve the active catalytic group by modification with a reversible covalent thiol modifier: Immobilization of ficin on vinyl-sulfone activated supports. Int J Biol Macromol 2022; 220:1155-1162. [PMID: 36037909 DOI: 10.1016/j.ijbiomac.2022.08.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022]
Abstract
The immobilization of ficin (a cysteinyl proteases) on vinyl sulfone agarose produced its almost full inactivation. It was observed that the incubation of the free and immobilized enzyme in β-mercaptoethanol produced a 20 % of enzyme activity recovery, suggesting that the inactivation due to the immobilization could be a consequence of the modification of the catalytic Cys. To prevent the enzyme inactivation during the immobilization, switching off of ficin via Cys reaction with dipyridyl-disulfide was implemented, giving a reversible disulfide bond that produced a fully inactive enzyme. The switch on of ficin activity was implemented by incubation in 1 M β-mercaptoethanol. Using this strategy to immobilize the enzyme on vinyl sulfone agarose beads, the expressed activity of the immobilized ficin could be boosted up to 80 %. The immobilized enzyme presented a thermal stabilization similar to that obtained using ficin-glyoxyl-agarose beads. This procedure may be extended to many enzymes containing critical Cys, to permit their immobilization or chemical modification.
Collapse
Affiliation(s)
- Roberto Morellon-Sterling
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Juan M Bolivar
- FQPIMA Group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., Madrid 28040, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
4
|
Chung CZ, Söll D, Krahn N. Using selenocysteine-specific reporters to screen for efficient tRNA Sec variants. Methods Enzymol 2022; 662:63-93. [PMID: 35101219 DOI: 10.1016/bs.mie.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The unique properties of selenocysteine (Sec) have generated an interest in the scientific community to site-specifically incorporate Sec into a protein of choice. Current technologies have rewired the natural Sec-specific translation factor-dependent selenoprotein biosynthesis pathway by harnessing the canonical elongation factor (EF-Tu) to simplify the requirements for Sec incorporation in Escherichia coli. This strategy is versatile and can be applied to Sec incorporation at any position in a protein of interest. However, selenoprotein production is still limited by yield and serine misincorporation. This protocol outlines a method in E. coli to design and optimize tRNA libraries which can be selected and screened for by the use of Sec-specific intein-based reporters. This provides a fast and simple way to engineer tRNAs with enhanced Sec-incorporation ability.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States; Department of Chemistry, Yale University, New Haven, CT, United States.
| | - Natalie Krahn
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
5
|
Shimizu A, Tobe R, Aono R, Inoue M, Hagita S, Kiriyama K, Toyotake Y, Ogawa T, Kurihara T, Goto K, Prakash NT, Mihara H. Initial Step of Selenite Reduction via Thioredoxin for Bacterial Selenoprotein Biosynthesis. Int J Mol Sci 2021; 22:ijms222010965. [PMID: 34681630 PMCID: PMC8538045 DOI: 10.3390/ijms222010965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Many organisms reductively assimilate selenite to synthesize selenoprotein. Although the thioredoxin system, consisting of thioredoxin 1 (TrxA) and thioredoxin reductase with NADPH, can reduce selenite and is considered to facilitate selenite assimilation, the detailed mechanism remains obscure. Here, we show that selenite was reduced by the thioredoxin system from Pseudomonas stutzeri only in the presence of the TrxA (PsTrxA), and this system was specific to selenite among the oxyanions examined. Mutational analysis revealed that Cys33 and Cys36 residues in PsTrxA are important for selenite reduction. Free thiol-labeling assays suggested that Cys33 is more reactive than Cys36. Mass spectrometry analysis suggested that PsTrxA reduces selenite via PsTrxA-SeO intermediate formation. Furthermore, an in vivo formate dehydrogenase activity assay in Escherichia coli with a gene disruption suggested that TrxA is important for selenoprotein biosynthesis. The introduction of PsTrxA complemented the effects of TrxA disruption in E. coli cells, only when PsTrxA contained Cys33 and Cys36. Based on these results, we proposed the early steps of the link between selenite and selenoprotein biosynthesis via the formation of TrxA–selenium complexes.
Collapse
Affiliation(s)
- Atsuki Shimizu
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
| | - Ryuta Tobe
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
| | - Riku Aono
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
| | - Masao Inoue
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
- R-GIRO, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Satoru Hagita
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
| | - Kaito Kiriyama
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
| | - Yosuke Toyotake
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Kyoto, Japan; (Y.T.); (T.O.); (T.K.)
| | - Takuya Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Kyoto, Japan; (Y.T.); (T.O.); (T.K.)
| | - Tatsuo Kurihara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji 611-0011, Kyoto, Japan; (Y.T.); (T.O.); (T.K.)
| | - Kei Goto
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan;
| | - N. Tejo Prakash
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
| | - Hisaaki Mihara
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan; (A.S.); (R.T.); (R.A.); (M.I.); (S.H.); (K.K.)
- Correspondence: ; Tel.: +81-(0)77-561-2732
| |
Collapse
|
6
|
Orian L, Flohé L. Selenium-Catalyzed Reduction of Hydroperoxides in Chemistry and Biology. Antioxidants (Basel) 2021; 10:1560. [PMID: 34679695 PMCID: PMC8533274 DOI: 10.3390/antiox10101560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 01/23/2023] Open
Abstract
Among the chalcogens, selenium is the key element for catalyzed H2O2 reduction. In organic synthesis, catalytic amounts of organo mono- and di-selenides are largely used in different classes of oxidations, in which H2O2 alone is poorly efficient. Biological hydroperoxide metabolism is dominated by peroxidases and thioredoxin reductases, which balance hydroperoxide challenge and contribute to redox regulation. When their selenocysteine is replaced by cysteine, the cellular antioxidant defense system is impaired. Finally, classes of organoselenides have been synthesized with the aim of mimicking the biological strategy of glutathione peroxidases, but their therapeutic application has so far been limited. Moreover, their therapeutic use may be doubted, because H2O2 is not only toxic but also serves as an important messenger. Therefore, over-optimization of H2O2 reduction may lead to unexpected disturbances of metabolic regulation. Common to all these systems is the nucleophilic attack of selenium to one oxygen of the peroxide bond promoting its disruption. In this contribution, we revisit selected examples from chemistry and biology, and, by using results from accurate quantum mechanical modelling, we provide an accurate unified picture of selenium's capacity of reducing hydroperoxides. There is clear evidence that the selenoenzymes remain superior in terms of catalytic efficiency.
Collapse
Affiliation(s)
- Laura Orian
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| | - Leopold Flohé
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, 35121 Padova, Italy
- Departamento de Bioquimica, Universidad de la Republica, Montevideo 11800, Uruguay
| |
Collapse
|
7
|
Schomburg L. Selenium Deficiency Due to Diet, Pregnancy, Severe Illness, or COVID-19-A Preventable Trigger for Autoimmune Disease. Int J Mol Sci 2021; 22:8532. [PMID: 34445238 PMCID: PMC8395178 DOI: 10.3390/ijms22168532] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The trace element selenium (Se) is an essential part of the human diet; moreover, increased health risks have been observed with Se deficiency. A sufficiently high Se status is a prerequisite for adequate immune response, and preventable endemic diseases are known from areas with Se deficiency. Biomarkers of Se status decline strongly in pregnancy, severe illness, or COVID-19, reaching critically low concentrations. Notably, these conditions are associated with an increased risk for autoimmune disease (AID). Positive effects on the immune system are observed with Se supplementation in pregnancy, autoimmune thyroid disease, and recovery from severe illness. However, some studies reported null results; the database is small, and randomized trials are sparse. The current need for research on the link between AID and Se deficiency is particularly obvious for rheumatoid arthritis and type 1 diabetes mellitus. Despite these gaps in knowledge, it seems timely to realize that severe Se deficiency may trigger AID in susceptible subjects. Improved dietary choices or supplemental Se are efficient ways to avoid severe Se deficiency, thereby decreasing AID risk and improving disease course. A personalized approach is needed in clinics and during therapy, while population-wide measures should be considered for areas with habitual low Se intake. Finland has been adding Se to its food chain for more than 35 years-a wise and commendable decision, according to today's knowledge. It is unfortunate that the health risks of Se deficiency are often neglected, while possible side effects of Se supplementation are exaggerated, leading to disregard for this safe and promising preventive and adjuvant treatment options. This is especially true in the follow-up situations of pregnancy, severe illness, or COVID-19, where massive Se deficiencies have developed and are associated with AID risk, long-lasting health impairments, and slow recovery.
Collapse
Affiliation(s)
- Lutz Schomburg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Hessische Straße 3-4, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
8
|
Wells M, Basu P, Stolz JF. The physiology and evolution of microbial selenium metabolism. Metallomics 2021; 13:6261189. [PMID: 33930157 DOI: 10.1093/mtomcs/mfab024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Selenium is an essential trace element whose compounds are widely metabolized by organisms from all three domains of life. Moreover, phylogenetic evidence indicates that selenium species, along with iron, molybdenum, tungsten, and nickel, were metabolized by the last universal common ancestor of all cellular lineages, primarily for the synthesis of the 21st amino acid selenocysteine. Thus, selenium metabolism is both environmentally ubiquitous and a physiological adaptation of primordial life. Selenium metabolic reactions comprise reductive transformations both for assimilation into macromolecules and dissimilatory reduction of selenium oxyanions and elemental selenium during anaerobic respiration. This review offers a comprehensive overview of the physiology and evolution of both assimilatory and dissimilatory selenium metabolism in bacteria and archaea, highlighting mechanisms of selenium respiration. This includes a thorough discussion of our current knowledge of the physiology of selenocysteine synthesis and incorporation into proteins in bacteria obtained from structural biology. Additionally, this is the first comprehensive discussion in a review of the incorporation of selenium into the tRNA nucleoside 5-methylaminomethyl-2-selenouridine and as an inorganic cofactor in certain molybdenum hydroxylase enzymes. Throughout, conserved mechanisms and derived features of selenium metabolism in both domains are emphasized and discussed within the context of the global selenium biogeochemical cycle.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
9
|
Evans RM, Krahn N, Murphy BJ, Lee H, Armstrong FA, Söll D. Selective cysteine-to-selenocysteine changes in a [NiFe]-hydrogenase confirm a special position for catalysis and oxygen tolerance. Proc Natl Acad Sci U S A 2021; 118:e2100921118. [PMID: 33753519 PMCID: PMC8020662 DOI: 10.1073/pnas.2100921118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In [NiFe]-hydrogenases, the active-site Ni is coordinated by four cysteine-S ligands (Cys; C), two of which are bridging to the Fe(CO)(CN)2 fragment. Substitution of a single Cys residue by selenocysteine (Sec; U) occurs occasionally in nature. Using a recent method for site-specific Sec incorporation into proteins, each of the four Ni-coordinating cysteine residues in the oxygen-tolerant Escherichia coli [NiFe]-hydrogenase-1 (Hyd-1) has been replaced by U to identify its importance for enzyme function. Steady-state solution activity of each Sec-substituted enzyme (on a per-milligram basis) is lowered, although this may reflect the unquantified presence of recalcitrant inactive/immature/misfolded forms. Protein film electrochemistry, however, reveals detailed kinetic data that are independent of absolute activities. Like native Hyd-1, the variants have low apparent KMH2 values, do not produce H2 at pH 6, and display the same onset overpotential for H2 oxidation. Mechanistically important differences were identified for the C576U variant bearing the equivalent replacement found in native [NiFeSe]-hydrogenases, its extreme O2 tolerance (apparent KMH2 and Vmax [solution] values relative to native Hyd-1 of 0.13 and 0.04, respectively) implying the importance of a selenium atom in the position cis to the site where exogenous ligands (H-, H2, O2) bind. Observation of the same unusual electrocatalytic signature seen earlier for the proton transfer-defective E28Q variant highlights the direct role of the chalcogen atom (S/Se) at position 576 close to E28, with the caveat that Se is less effective than S in facilitating proton transfer away from the Ni during H2 oxidation by this enzyme.
Collapse
Affiliation(s)
- Rhiannon M Evans
- Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | - Bonnie J Murphy
- Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Harrison Lee
- Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Fraser A Armstrong
- Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom;
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511;
- Department of Chemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
10
|
Ali RB, Omrani R, Akacha AB, Dziri C, El May MV. Development and validation of a colorimetric method for the quantitative analysis of thioamide derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 220:117154. [PMID: 31132665 DOI: 10.1016/j.saa.2019.117154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Thioamides (Thm) have diverse biological activities. This work presents the development and validation of simple, rapid and accurate spectrophotometric method for the analysis of Thm derivatives in pure form and in plasma. This spectrophotometric method has not been used before for determination of Thm. A review of the literature revealed that the monitoring of S- group assay is based on the reaction with DTNB according to the Ellman method to form a yellow complex which absorbs at 412 nm. To assay the thioamides according to this method it is necessary to make the basic medium have S- to react with the DTNB. Experimental conditions affecting the color development were studied and optimized. The proposed spectrophotometric procedures were effectively validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curves of the formed colored product with DTNB showed good linear relationships over the concentration ranges (0, 50, 100, 500, 1000, 1500 mg/L). The proposed method was successfully applied to the assay of Thm monitoring with good accuracy. The principal advantages of the proposed method were rapidity and suitability for the routine quality control assay of the drug alone and in monitoring form without interference.
Collapse
Affiliation(s)
- Ridha Ben Ali
- Experimental Medicine Unit, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia; Histology, Embryology and Cell Biology Laboratory, Unit Research N° 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia.
| | - Rania Omrani
- Laboratory Selective Organic & Heterocyclic Synthesis Biological Activity Evaluation, Department of Chemistry, Faculty of Sciences, University of Tunis El Manar, 2092 Tunis, Tunisia.
| | - Azaiez Ben Akacha
- Laboratory Selective Organic & Heterocyclic Synthesis Biological Activity Evaluation, Department of Chemistry, Faculty of Sciences, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Chadli Dziri
- Experimental Medicine Unit, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia
| | - Michèle Véronique El May
- Experimental Medicine Unit, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunisia; Histology, Embryology and Cell Biology Laboratory, Unit Research N° 17/ES/13, Faculty of Medicine of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| |
Collapse
|
11
|
Na J, Jung J, Bang J, Lu Q, Carlson BA, Guo X, Gladyshev VN, Kim J, Hatfield DL, Lee BJ. Selenophosphate synthetase 1 and its role in redox homeostasis, defense and proliferation. Free Radic Biol Med 2018; 127:190-197. [PMID: 29715549 DOI: 10.1016/j.freeradbiomed.2018.04.577] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/26/2022]
Abstract
Selenophosphate synthetase (SEPHS) synthesizes selenophosphate, the active selenium donor, using ATP and selenide as substrates. SEPHS was initially identified and isolated from bacteria and has been characterized in many eukaryotes and archaea. Two SEPHS paralogues, SEPHS1 and SEPHS2, occur in various eukaryotes, while prokaryotes and archaea have only one form of SEPHS. Between the two isoforms in eukaryotes, only SEPHS2 shows catalytic activity during selenophosphate synthesis. Although SEPHS1 does not contain any significant selenophosphate synthesis activity, it has been reported to play an essential role in regulating cellular physiology. Prokaryotic SEPHS contains a cysteine or selenocysteine (Sec) at the catalytic domain. However, in eukaryotes, SEPHS1 contains other amino acids such as Thr, Arg, Gly, or Leu at the catalytic domain, and SEPHS2 contains only a Sec. Sequence comparisons, crystal structure analyses, and ATP hydrolysis assays suggest that selenophosphate synthesis occurs in two steps. In the first step, ATP is hydrolyzed to produce ADP and gamma-phosphate. In the second step, ADP is further hydrolyzed and selenophosphate is produced using gamma-phosphate and selenide. Both SEPHS1 and SEPHS2 have ATP hydrolyzing activities, but Cys or Sec is required in the catalytic domain for the second step of reaction. The gene encoding SEPHS1 is divided by introns, and five different splice variants are produced by alternative splicing in humans. SEPHS1 mRNA is abundant in rapidly proliferating cells such as embryonic and cancer cells and its expression is induced by various stresses including oxidative stress and salinity stress. The disruption of the SEPHS1 gene in mice or Drosophila leads to the inhibition of cell proliferation, embryonic lethality, and morphological changes in the embryos. Targeted removal of SEPHS1 mRNA in insect, mouse, and human cells also leads to common phenotypic changes similar to those observed by in vivo gene knockout: the inhibition of cell growth/proliferation, the accumulation of hydrogen peroxide in mammals and an unidentified reactive oxygen species (ROS) in Drosophila, and the activation of a defense system. Hydrogen peroxide accumulation in SEPHS1-deficient cells is mainly caused by the down-regulation of genes involved in ROS scavenging, and leads to the inhibition of cell proliferation and survival. However, the mechanisms underlying SEPHS1 regulation of redox homeostasis are still not understood.
Collapse
Affiliation(s)
- Jiwoon Na
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisu Jung
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeyoung Bang
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Qiao Lu
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Bradley A Carlson
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jinhong Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Dolph L Hatfield
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Byeong Jae Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Rother M, Quitzke V. Selenoprotein synthesis and regulation in Archaea. Biochim Biophys Acta Gen Subj 2018; 1862:2451-2462. [DOI: 10.1016/j.bbagen.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/23/2023]
|
13
|
Tobe R, Mihara H. Delivery of selenium to selenophosphate synthetase for selenoprotein biosynthesis. Biochim Biophys Acta Gen Subj 2018; 1862:2433-2440. [PMID: 29859962 DOI: 10.1016/j.bbagen.2018.05.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Selenophosphate, the key selenium donor for the synthesis of selenoprotein and selenium-modified tRNA, is produced by selenophosphate synthetase (SPS) from ATP, selenide, and H2O. Although free selenide can be used as the in vitro selenium substrate for selenophosphate synthesis, the precise physiological system that donates in vivo selenium substrate to SPS has not yet been characterized completely. SCOPE OF REVIEW In this review, we discuss selenium metabolism with respect to the delivery of selenium to SPS in selenoprotein biosynthesis. MAJOR CONCLUSIONS Glutathione, selenocysteine lyase, cysteine desulfurase, and selenium-binding proteins are the candidates of selenium delivery system to SPS. The thioredoxin system is also implicated in the selenium delivery to SPS in Escherichia coli. GENERAL SIGNIFICANCE Selenium delivered via a protein-bound selenopersulfide intermediate emerges as a central element not only in achieving specific selenoprotein biosynthesis but also in preventing the occurrence of toxic free selenide in the cell. This article is part of a Special Issue entitled "Selenium research in biochemistry and biophysics - 200 year anniversary".
Collapse
Affiliation(s)
- Ryuta Tobe
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
14
|
Fu X, Söll D, Sevostyanova A. Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli. RNA Biol 2018; 15:461-470. [PMID: 29447106 DOI: 10.1080/15476286.2018.1440876] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Selenocysteine (Sec), a rare genetically encoded amino acid with unusual chemical properties, is of great interest for protein engineering. Sec is synthesized on its cognate tRNA (tRNASec) by the concerted action of several enzymes. While all other aminoacyl-tRNAs are delivered to the ribosome by the elongation factor Tu (EF-Tu), Sec-tRNASec requires a dedicated factor, SelB. Incorporation of Sec into protein requires recoding of the stop codon UGA aided by a specific mRNA structure, the SECIS element. This unusual biogenesis restricts the use of Sec in recombinant proteins, limiting our ability to study the properties of selenoproteins. Several methods are currently available for the synthesis selenoproteins. Here we focus on strategies for in vivo Sec insertion at any position(s) within a recombinant protein in a SECIS-independent manner: (i) engineering of tRNASec for use by EF-Tu without the SECIS requirement, and (ii) design of a SECIS-independent SelB route.
Collapse
Affiliation(s)
- Xian Fu
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| | - Dieter Söll
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA.,b Department of Chemistry , Yale University , New Haven , CT , USA
| | - Anastasia Sevostyanova
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA
| |
Collapse
|
15
|
Kamada S, Okugochi T, Asano K, Tobe R, Mihara H, Nemoto M, Inagaki K, Tamura T. A non-radioactive assay for selenophosphate synthetase activity using recombinant pyruvate pyrophosphate dikinase from Thermus thermophilus HB8. Biosci Biotechnol Biochem 2016; 80:1970-2. [PMID: 27405844 DOI: 10.1080/09168451.2016.1200458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Biosynthesis of selenocysteine-containing proteins requires monoselenophosphate, a selenium-donor intermediate generated by selenophosphate synthetase (Sephs). A non-radioactive assay was developed as an alternative to the standard [8-(14)C] AMP-quantifying assay. The product, AMP, was measured using a recombinant pyruvate pyrophosphate dikinase from Thermus thermophilus HB8. The KM and kcat for Sephs2-Sec60Cys were determined to be 26 μM and 0.352 min(-1), respectively.
Collapse
Affiliation(s)
- Saho Kamada
- a Graduate School of Life and Environmental Science , Okayama University , Okayama , Japan
| | - Takahiro Okugochi
- a Graduate School of Life and Environmental Science , Okayama University , Okayama , Japan
| | - Kaori Asano
- a Graduate School of Life and Environmental Science , Okayama University , Okayama , Japan
| | - Ryuta Tobe
- b College of Life Sciences , Ritsumeikan University , Kusatsu , Japan
| | - Hisaaki Mihara
- b College of Life Sciences , Ritsumeikan University , Kusatsu , Japan
| | - Michiko Nemoto
- a Graduate School of Life and Environmental Science , Okayama University , Okayama , Japan
| | - Kenji Inagaki
- a Graduate School of Life and Environmental Science , Okayama University , Okayama , Japan
| | - Takashi Tamura
- a Graduate School of Life and Environmental Science , Okayama University , Okayama , Japan
| |
Collapse
|
16
|
Abstract
The authors were asked by the Editors of ACS Chemical Biology to write an article titled "Why Nature Chose Selenium" for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jöns Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173-1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result, selenium is a better nucleophile and will react with reactive oxygen species faster than sulfur, but the resulting lack of π-bond character in the Se-O bond means that the Se-oxide can be much more readily reduced in comparison to S-oxides. The combination of these properties means that replacement of sulfur with selenium in nature results in a selenium-containing biomolecule that resists permanent oxidation. Multiple examples of this gain of function behavior from the literature are discussed.
Collapse
Affiliation(s)
- Hans J. Reich
- University of Wisconsin—Madison, Department of Chemistry, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Robert J. Hondal
- University of Vermont, Department of Biochemistry, 89 Beaumont Ave, Given Laboratory, Room B413, Burlington, Vermont 05405, United States
| |
Collapse
|
17
|
Abstract
Selenophosphate synthetase, the selD gene product from Escherichia coli, is one of the enzymes required for the synthesis and specific insertion of selenocysteine into proteins directed by the TGA codon. Selenophosphate synthetases have been isolated from or are thought to be present in most organisms; however, the best characterized selenophosphate synthetase is from E. coli, in which both in vivo and in vitro studies have been performed. Leinfelder and coworkers showed that an E. coli mutant lacking an intact selD gene fails to incorporate Se into both the selenocysteine-containing enzyme formate dehydrogenase (FDH) and tRNA species that normally contain 2-selenouridine residues at the wobble position. Thus, this study strongly implicated selenophosphate as playing a major role in E. coli selenium metabolic pathways. The selenophosphate synthetase reaction requires some form of reduced selenium such as hydrogen selenide (HSe-) and ATP as substrates to generate a stoichiometric amount of SePO3, AMP, and orthophosphate. Studies of selenophosphate inhibition have provided further insight into the mechanism of selenophosphate synthetase. An assay by which AMP formation is measured in the absence of selenide showed that selenophosphate synthetase catalyzes hydrolysis of ATP to AMP and two orthophosphates in an uncoupled reaction. The sequencing of selenophosphate synthetase genes from various organisms reveals several conserved regions in the gene product. Recent investigations into the mechanism of selenophosphate synthetase have revealed a property of selenophosphate synthetase not previously observed. In samples of purified selenophosphate synthetase, an unusual optical absorption spectrum is seen.
Collapse
|
18
|
Marino M, Stoilova T, Giorgi C, Bachi A, Cattaneo A, Auricchio A, Pinton P, Zito E. SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Hum Mol Genet 2014; 24:1843-55. [PMID: 25452428 DOI: 10.1093/hmg/ddu602] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Selenoprotein N (SEPN1) is a broadly expressed resident protein of the endoplasmic reticulum (ER) whose loss-of-function inexplicably leads to human muscle disease. We found that SEPN1 levels parallel those of endoplamic reticulum oxidoreductin 1 (ERO1), an ER protein thiol oxidase, and that SEPN1's redox activity defends the ER from ERO1-generated peroxides. Moreover, we have defined the redox-regulated interactome of SEPN1 and identified the ER calcium import SERCA2 pump as a redox-partner of SEPN1. SEPN1 enhances SERCA2 activity by reducing luminal cysteines that are hyperoxidized by ERO1-generated peroxides. Cells lacking SEPN1 are hypersensitive to ERO1 overexpression and conspicuously defective in ER calcium re-uptake. After being muscle-transduced with an adeno-associated virus driving ERO1α, SEPN1 knockout mice unmasks a myopathy that resembles the dense core disease due to human mutations in SEPN1, whereas the combined attenuation of ERO1α and SEPN1 enhances cell fitness. These observations reveal the involvement of SEPN1 in ER redox and calcium homeostasis and that an ERO1 inhibitor, restoring redox-dependent calcium homeostasis, may ameliorate the myopathy of SEPN1 deficiency.
Collapse
Affiliation(s)
- Marianna Marino
- Dulbecco Telethon Institute at IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Tatiana Stoilova
- Dulbecco Telethon Institute at IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Carlotta Giorgi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | | | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, and Medical Genetics, Department of Translational Medicine, Federico II University, Naples, Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ester Zito
- Dulbecco Telethon Institute at IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy,
| |
Collapse
|
19
|
Collins R, Johansson AL, Karlberg T, Markova N, van den Berg S, Olesen K, Hammarström M, Flores A, Schüler H, Schiavone LH, Brzezinski P, Arnér ESJ, Högbom M. Biochemical discrimination between selenium and sulfur 1: a single residue provides selenium specificity to human selenocysteine lyase. PLoS One 2012; 7:e30581. [PMID: 22295093 PMCID: PMC3266270 DOI: 10.1371/journal.pone.0030581] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/19/2011] [Indexed: 11/24/2022] Open
Abstract
Selenium and sulfur are two closely related basic elements utilized in nature for a vast array of biochemical reactions. While toxic at higher concentrations, selenium is an essential trace element incorporated into selenoproteins as selenocysteine (Sec), the selenium analogue of cysteine (Cys). Sec lyases (SCLs) and Cys desulfurases (CDs) catalyze the removal of selenium or sulfur from Sec or Cys and generally act on both substrates. In contrast, human SCL (hSCL) is specific for Sec although the only difference between Sec and Cys is the identity of a single atom. The chemical basis of this selenium-over-sulfur discrimination is not understood. Here we describe the X-ray crystal structure of hSCL and identify Asp146 as the key residue that provides the Sec specificity. A D146K variant resulted in loss of Sec specificity and appearance of CD activity. A dynamic active site segment also provides the structural prerequisites for direct product delivery of selenide produced by Sec cleavage, thus avoiding release of reactive selenide species into the cell. We thus here define a molecular determinant for enzymatic specificity discrimination between a single selenium versus sulfur atom, elements with very similar chemical properties. Our findings thus provide molecular insights into a key level of control in human selenium and selenoprotein turnover and metabolism.
Collapse
Affiliation(s)
- Ruairi Collins
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ann-Louise Johansson
- Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences C4, Stockholm University, Stockholm, Sweden
| | - Tobias Karlberg
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Natalia Markova
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Susanne van den Berg
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Kenneth Olesen
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Martin Hammarström
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Alex Flores
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Herwig Schüler
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Lovisa Holmberg Schiavone
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Peter Brzezinski
- Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences C4, Stockholm University, Stockholm, Sweden
| | - Elias S. J. Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Högbom
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
- Stockholm Center for Biomembrane Research, Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences C4, Stockholm University, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
20
|
Selenite reduction by the thioredoxin system: kinetics and identification of protein-bound selenide. Biosci Biotechnol Biochem 2011; 75:1184-7. [PMID: 21670519 DOI: 10.1271/bbb.100847] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Selenite (SeO(3)(2-)) assimilation into a bacterial selenoprotein depends on thioredoxin (trx) reductase in Esherichia coli, but the molecular mechanism has not been elucidated. The mineral-oil overlay method made it possible to carry out anaerobic enzyme assay, which demonstrated an initial lag-phase followed by time-dependent steady NADPH consumption with a positive cooperativity toward selenite and trx. SDS-PAGE/autoradiography using (75)Se-labeled selenite as substrate revealed the formation of trx-bound selenium in the reaction mixture. The protein-bound selenium has metabolic significance in being stabilized in the divalent state, and it also produced the selenopersulfide (-S-SeH) form by the catalysis of E. coli trx reductase (TrxB).
Collapse
|
21
|
Preabrazhenskaya YV, Kim IY, Stadtman TC. Binding of ATP and its derivatives to selenophosphate synthetase from Escherichia coli. BIOCHEMISTRY (MOSCOW) 2009; 74:910-6. [PMID: 19817692 DOI: 10.1134/s0006297909080136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanistically similar selenophosphate synthetases (SPS) have been isolated from different organisms. SPS from Escherichia coli is an ATP-dependent enzyme with a C-terminal glycine-rich Walker sequence that has been assumed to take part in the first step of ATP binding. Three C-terminally truncated mutants of SPS, containing the N-terminal 238 (SPS(238)), 262 (SPS(262)), and 332 (SPS(332)) amino acids of the 348-amino-acid protein, have been extracted from cell pellets, and two of these (SPS(262) and SPS(332)) have been purified to homogeneity. SPS(238) has been obtained in a highly purified form. Binding of the fluorescent ATP-derivative TNP-ATP and Mn-ATP to the proteins was examined for all truncated mutants of SPS and a catalytically inactive C17S mutant. It has been shown that TNP-ATP can be used as a structural probe for ATP-binding sites of SPS. We observed two TNP-ATP binding sites per molecule of enzyme for wild-type SPS and SPS(332) mutant and one TNP-ATP binding site for SPS(238) mutant. The stoichiometry of Mn-ATP-binding was 2 mol of ATP per mol of protein determined with [(14)C]ATP by HPLC gel-filtration column chromatography under saturating conditions. The binding stoichiometries for SPS(332), SPS(262), and SPS(238) were 2, 1.6, and 1, respectively. The C17S mutant exhibits about one third of wild type SPS TNP-ATP-binding ability and converts 12% of ATP in the ATPase reaction to ADP in the absence of selenide. The C-terminus contributes two thirds to the TNP-ATP binding; SPS(238) likely has one ATP-binding site removed by truncation.
Collapse
Affiliation(s)
- Y V Preabrazhenskaya
- Laboratory of Biochemistry, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
22
|
Wang KT, Wang J, Li LF, Su XD. Crystal structures of catalytic intermediates of human selenophosphate synthetase 1. J Mol Biol 2009; 390:747-59. [PMID: 19477186 DOI: 10.1016/j.jmb.2009.05.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 05/09/2009] [Accepted: 05/16/2009] [Indexed: 10/20/2022]
Abstract
Selenophosphate synthetase catalyzes the synthesis of the highly active selenium donor molecule selenophosphate, a key intermediate in selenium metabolism. We have determined the high-resolution crystal structure of human selenophosphate synthetase 1 (hSPS1). An unexpected reaction intermediate, with a tightly bound phosphate and ADP at the active site has been captured in the structure. An enzymatic assay revealed that hSPS1 possesses low ADP hydrolysis activity in the presence of phosphate. Our structural and enzymatic results suggest that consuming the second high-energy phosphoester bond of ATP could protect the labile product selenophosphate during catalytic reaction. We solved another hSPS1 structure with potassium ions at the active sites. Comparing the two structures, we were able to define the monovalent cation-binding site of the enzyme. The detailed mechanism of the ADP hydrolysis step and the exact function of the monovalent cation for hSPS1 catalytic reaction are proposed.
Collapse
Affiliation(s)
- Kai-Tuo Wang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, P.R. China
| | | | | | | |
Collapse
|
23
|
Itoh Y, Sekine SI, Matsumoto E, Akasaka R, Takemoto C, Shirouzu M, Yokoyama S. Structure of selenophosphate synthetase essential for selenium incorporation into proteins and RNAs. J Mol Biol 2008; 385:1456-69. [PMID: 18773910 DOI: 10.1016/j.jmb.2008.08.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 08/15/2008] [Accepted: 08/19/2008] [Indexed: 11/25/2022]
Abstract
Selenophosphate synthetase (SPS) catalyzes the activation of selenide with adenosine 5'-triphosphate (ATP) to generate selenophosphate, the essential reactive selenium donor for the formation of selenocysteine (Sec) and 2-selenouridine residues in proteins and RNAs, respectively. Many SPS are themselves Sec-containing proteins, in which Sec replaces Cys in the catalytically essential position (Sec/Cys). We solved the crystal structures of Aquifex aeolicus SPS and its complex with adenosine 5'-(alpha,beta-methylene) triphosphate (AMPCPP). The ATP-binding site is formed at the subunit interface of the homodimer. Four Asp residues coordinate four metal ions to bind the phosphate groups of AMPCPP. In the free SPS structure, the two loop regions in the ATP-binding site are not ordered, and no enzyme-associated metal is observed. This suggests that ATP binding, metal binding, and the formation of their binding sites are interdependent. To identify the amino-acid residues that contribute to SPS activity, we prepared six mutants of SPS and examined their selenide-dependent ATP consumption. Mutational analyses revealed that Sec/Cys13 and Lys16 are essential. In SPS.AMPCPP, the N-terminal loop, including the two residues, assumes different conformations ("open" and "closed") between the two subunits. The AMPCPP gamma-phosphate group is solvent-accessible, suggesting that a putative nucleophile could attack the ATP gamma-phosphate group to generate selenophosphate and adenosine 5'-diphosphate (ADP). Selenide attached to Sec/Cys13 as -Se-Se(-)/-S-Se(-) could serve as the nucleophile in the "closed" conformation. A water molecule, fixed close to the beta-phosphate group, could function as the nucleophile in subsequent ADP hydrolysis to orthophosphate and adenosine 5'-monophosphate.
Collapse
Affiliation(s)
- Yuzuru Itoh
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Matsumoto E, Sekine SI, Akasaka R, Otta Y, Katsura K, Inoue M, Kaminishi T, Terada T, Shirouzu M, Yokoyama S. Structure of an N-terminally truncated selenophosphate synthetase from Aquifex aeolicus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:453-8. [PMID: 18540050 PMCID: PMC2496870 DOI: 10.1107/s1744309108012074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 04/25/2008] [Indexed: 11/10/2022]
Abstract
Selenophosphate synthetase (SPS) catalyzes the activation of selenide with ATP to synthesize selenophosphate, the reactive selenium donor for biosyntheses of both the 21st amino acid selenocysteine and 2-selenouridine nucleotides in tRNA anticodons. The crystal structure of an N-terminally (25 residues) truncated fragment of SPS (SPS-DeltaN) from Aquifex aeolicus has been determined at 2.0 A resolution. The structure revealed SPS to be a two-domain alpha/beta protein, with domain folds that are homologous to those of PurM-superfamily proteins. In the crystal, six monomers of SPS-DeltaN form a hexamer of 204 kDa, whereas the molecular weight estimated by ultracentrifugation was approximately 63 kDa, which is comparable to the calculated weight of the dimer (68 kDa).
Collapse
Affiliation(s)
- Eiko Matsumoto
- Systems and Structural Biology Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shun-ichi Sekine
- Systems and Structural Biology Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryogo Akasaka
- Systems and Structural Biology Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Yumi Otta
- Systems and Structural Biology Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kazushige Katsura
- Systems and Structural Biology Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mio Inoue
- Systems and Structural Biology Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Tatsuya Kaminishi
- Systems and Structural Biology Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takaho Terada
- Systems and Structural Biology Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- Systems and Structural Biology Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Shigeyuki Yokoyama
- Systems and Structural Biology Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
25
|
Cardey B, Enescu M. Selenocysteine versus cysteine reactivity: a theoretical study of their oxidation by hydrogen peroxide. J Phys Chem A 2007; 111:673-8. [PMID: 17249758 DOI: 10.1021/jp0658445] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cysteine and selenocysteine oxidation by H2O2 in vacuo and in aqueous solution was studied using the integrated molecular orbital + molecular orbital (IMOMO) method combining the quadratic configuration method QCISD(T) and the spin projection of second-order perturbation theory PMP2. It is shown that including in the model system of cysteine (selenocysteine) residue up to 20 atoms has significant consequences upon the calculated reaction energy barrier. On the other hand, it is demonstrated that free cysteine and selenocysteine have very similar reaction energy barriers, 77-79 kJ mol(-1) in aqueous solution. It is thus concluded that the high experimental reaction rate constant reported for the oxidation of the selenocysteine residue in the glutathione peroxidase (GPx) active center is due to an important interaction between selenocysteine and its molecular environment. The sensitivity of the calculated energy barrier to the dielectric constant of the molecular environment observed for both cysteine and selenocysteine as well as the catalytic effect of the NH group emphasized in the case of cysteine supports this hypothesis.
Collapse
Affiliation(s)
- Bruno Cardey
- University of Franche-Comte, Laboratoire de Microanalyses Nucleaires, UMR CEA E4, 16 route de Gray, 25030 Besancon, France
| | | |
Collapse
|
26
|
Cardey B, Enescu M. A Computational Study of Thiolate and Selenolate Oxidation by Hydrogen Peroxide. Chemphyschem 2005; 6:1175-80. [PMID: 15883994 DOI: 10.1002/cphc.200400568] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ab initio molecular orbital calculations have been used to study the effects of the molecular environment on the oxidation of thiolate and selenolate by hydrogen peroxide. The reaction was first examined in vacuo at the QCISD(T)/6-311+G(2df,2pd)//MP2/6-311+G(d,p) level of theory. It was found for both thiolate and selenolate that a reactant aggregate is formed, which has a dissociation rate constant comparable to the activation rate constant (about 10(-3) s(-1) for thiolate and 10(-1) s(-1) for selenolate). Using the polarizable continuum model (PCM) it was then found that the dissociation barrier energy decreases dramatically in water giving a dissociation rate constant of the order of 10(9) s(-1). In this case, the predicted overall rate constant of the thiolate reaction was about 10.2 mol(-1) dm3 s(-1), which is in good agreement with the experimental rate constant of cysteine oxidation in aqueous solution. The calculated rate constant for the selenolate reaction was somewhat higher (about 35.4 mol(-1) dm3 s(-1)). However, this value is several orders of magnitude smaller than the experimental value reported for the oxidation of selenocysteine in glutathione peroxidase. By considering the effect of the PCM dielectric constant on the reaction rate constant it was concluded that the high reactivity of the selenocysteine in glutathione peroxidase, as compared with cysteine, could be mainly due to the molecular environment of the selenocysteine residue.
Collapse
Affiliation(s)
- Bruno Cardey
- Université de Franche-Comté, UFR Sciences et Techniques, Laboratoire de Microanalyses Nucléaires, 16 route de Gray, 25000 Besançon, France
| | | |
Collapse
|
27
|
Ogasawara Y, Lacourciere GM, Ishii K, Stadtman TC. Characterization of potential selenium-binding proteins in the selenophosphate synthetase system. Proc Natl Acad Sci U S A 2005; 102:1012-6. [PMID: 15653770 PMCID: PMC545862 DOI: 10.1073/pnas.0409042102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selenophosphate, an activated form of selenium that can serve as a selenium donor, is generated by the selD gene product, selenophosphate synthetase (SPS). Selenophosphate is required by several bacteria and by mammals for the specific synthesis of Secys-tRNA, the precursor of selenocysteine in selenoenzymes. Although free selenide can be used in vitro for synthesis of selenophosphate, the physiological system that donates selenium to SPS is incompletely characterized. To detect potential selenium-delivery proteins, two known sulfurtransferases and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12) were analyzed for ability to bind and transfer selenium. Rhodanese (EC 2.8.1.1) was shown to bind selenium tightly, with only part of the selenium being available as substrate for SPS in the presence of added reductant. 3-Mercaptopyruvate sulfurtransferase (3-MST; EC 2.8.1.2) and GAPDH also bound selenium supplied as selenodiglutathione formed from SeO3(2-) and glutathione. Selenium bound to 3-MST and GAPDH was released more readily than that from rhodanese and also was more available as a substrate for SPS. Although rhodanese retained tightly bound selenium under aerobic conditions, the protein gradually became insoluble, whereas GAPDH containing bound selenium was stable at neutral pH for a long period. These results indicate that 3-MST and GAPDH have more suitable potentials as a physiological selenium-delivery protein than rhodanese. In the presence of a selenium-binding protein, a low level of selenodiglutathione formed from SeO3(2-) and glutathione could effectively replace the high concentrations of selenide routinely used as substrate in the SPS in vitro assays.
Collapse
Affiliation(s)
- Yuki Ogasawara
- Department of Environmental Biology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Nishitokyo, Tokyo 204-8588, Japan.
| | | | | | | |
Collapse
|
28
|
Chasteen TG, Bentley R. Biomethylation of selenium and tellurium: microorganisms and plants. Chem Rev 2003; 103:1-25. [PMID: 12517179 DOI: 10.1021/cr010210+] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas G Chasteen
- Department of Chemistry, Sam Houston State University, Huntsville, Texas 77341, USA.
| | | |
Collapse
|
29
|
Abstract
The biochemistry of selenium-containing natural products, including selenoproteins, is reviewed up to May 2002. Particular emphasis is placed on the assimilation of selenium from inorganic and organic selenium sources for selenoprotein synthesis, the catalytic role of selenium in enzymes, and medical implications of an unbalanced selenium supply. The review contains 393 references on key discoveries and recent progress.
Collapse
Affiliation(s)
- Marc Birringer
- Dept. of Vitamins and Atherosclerosis, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, D-14558 Bergholz-Rehbrücke, Germany
| | | | | |
Collapse
|
30
|
Lacourciere GM. Selenium is mobilized in vivo from free selenocysteine and is incorporated specifically into formate dehydrogenase H and tRNA nucleosides. J Bacteriol 2002; 184:1940-6. [PMID: 11889101 PMCID: PMC134910 DOI: 10.1128/jb.184.7.1940-1946.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Selenophosphate synthetase (SPS), the selD gene product from Escherichia coli, catalyzes the biosynthesis of monoselenophosphate, AMP, and orthophosphate in a 1:1:1 ratio from selenide and ATP. It was recently demonstrated that selenium delivered from selenocysteine by an E. coli NifS-like protein could replace free selenide in the in vitro SPS assay for selenophosphate formation (G. M. Lacourciere, H. Mihara, T. Kurihara, N. Esaki, and T. C. Stadtman, J. Biol. Chem. 275:23769-23773, 2000). During growth of E. coli in the presence of 0.1 microM (75)SeO(3)(2-) and increasing amounts of L-selenocysteine, a concomitant decrease in (75)Se incorporation into formate dehydrogenase H and nucleosides of bulk tRNA was observed. This is consistent with the mobilization of selenium from L-selenocysteine in vivo and its use in selenophosphate formation. The ability of E. coli to utilize selenocysteine as a selenium source for selenophosphate biosynthesis in vivo supports the participation of the NifS-like proteins in selenium metabolism.
Collapse
Affiliation(s)
- Gerard M Lacourciere
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
31
|
Ogasawara Y, Lacourciere G, Stadtman TC. Formation of a selenium-substituted rhodanese by reaction with selenite and glutathione: possible role of a protein perselenide in a selenium delivery system. Proc Natl Acad Sci U S A 2001; 98:9494-8. [PMID: 11493708 PMCID: PMC55480 DOI: 10.1073/pnas.171320998] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2001] [Indexed: 11/18/2022] Open
Abstract
Selenophosphate is the active selenium-donor compound required by bacteria and mammals for the specific synthesis of Secys-tRNA, the precursor of selenocysteine in selenoenzymes. Although free selenide can be used in vitro for the synthesis of selenophosphate, the actual physiological selenium substrate has not been identified. Rhodanese (EC ) normally occurs as a persulfide of a critical cysteine residue and is believed to function as a sulfur-delivery protein. Also, it has been demonstrated that a selenium-substituted rhodanese (E-Se form) can exist in vitro. In this study, we have prepared and characterized an E-Se rhodanese. Persulfide-free bovine-liver rhodanese (E form) did not react with SeO(3)(2-) directly, but in the presence of reduced glutathione (GSH) and SeO(3)(2-) E-Se rhodanese was generated. These results indicate that the intermediates produced from the reaction of GSH with SeO(3)(2-) are required for the formation of a selenium-substituted rhodanese. E-Se rhodanese was stable in the presence of excess GSH at neutral pH at 37 degrees C. E-Se rhodanese could effectively replace the high concentrations of selenide normally used in the selenophosphate synthetase in vitro assay in which the selenium-dependent hydrolysis of ATP is measured. These results show that a selenium-bound rhodanese could be used as the selenium donor in the in vitro selenophosphate synthetase assay.
Collapse
Affiliation(s)
- Y Ogasawara
- Department of Environmental Biology, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | | | | |
Collapse
|
32
|
Rother M, Resch A, Gardner WL, Whitman WB, Böck A. Heterologous expression of archaeal selenoprotein genes directed by the SECIS element located in the 3' non-translated region. Mol Microbiol 2001; 40:900-8. [PMID: 11401697 DOI: 10.1046/j.1365-2958.2001.02433.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous in silico analysis of selenoprotein genes in Archaea revealed that the selenocysteine insertion (SECIS) motif necessary to recode UGA with selenocysteine was not adjacent to the UGA codon as is found in Bacteria. Rather, paralogous stem-loop structures are located in the 3' untranslated region (3' UTR), reminiscent of the situation in Eukarya. To assess the function of such putative SECIS elements, the Methanococcus jannaschii MJ0029 (fruA, which encodes the A subunit of the coenzyme F420-reducing hydrogenase) mRNA was mapped in vivo and probed enzymatically in vitro. It was shown that the SECIS element is indeed transcribed as part of the respective mRNA and that its secondary structure corresponds to that predicted by RNA folding programs. Its ability to direct selenocysteine insertion in vivo was demonstrated by the heterologous expression of MJ0029 in Methanococcus maripaludis, resulting in the synthesis of an additional selenoprotein, as analysed by 75Se labelling. The selective advantage of moving the SECIS element in the untranslated region may confer the ability to insert more than one selenocysteine into a single polypeptide. Evidence for this assumption was provided by the finding that the M. maripaludis genome contains an open reading frame with two in frame TGA codons, followed by a stem-loop structure in the 3' UTR of the mRNA that corresponds to the archaeal SECIS element.
Collapse
Affiliation(s)
- M Rother
- Lehrstuhl für Mikrobiologie der Universität München, Maria-Ward-Strasse 1a, D-80638 München, Germany
| | | | | | | | | |
Collapse
|
33
|
Lacourciere GM, Stadtman TC. Utilization of selenocysteine as a source of selenium for selenophosphate biosynthesis. Biofactors 2001; 14:69-74. [PMID: 11568442 DOI: 10.1002/biof.5520140110] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Selenophosphate synthetase (SPS), the selD gene product from Escherichia coli, catalyzes the biosynthesis of monoselenophosphate from selenide and ATP. Characterization of selenophosphate synthetase revealed the determined K(m) value for selenide is far above the optimal concentration needed for growth and approached levels which are toxic. Selenocysteine lyase enzymes, which decompose selenocysteine to elemental selenium (Se(0)) and alanine, were considered as candidates for the control of free selenium levels in vivo. The ability of a lyase protein to generate Se(0) in the proximity of SPS maybe an attractive solution to selenium toxicity as well as the high K(m) value for selenide. Recently, three E. coli NifS-like proteins, CsdB, CSD, and IscS, were characterized. All three proteins exhibit lyase activity on L-cysteine and L-selenocysteine and produce sulfane sulfur, S(0), or Se(0) respectively. Each lyase can effectively mobilize Se(0) from L-selenocysteine for selenophosphate biosynthesis.
Collapse
Affiliation(s)
- G M Lacourciere
- Laboratory of Biochemistry, National Institutes of Health, NHLBI, 50 South Drive, Room 2126, Bethesda, MD 20892, USA.
| | | |
Collapse
|
34
|
Köhrl J, Brigelius-Flohé R, Böck A, Gärtner R, Meyer O, Flohé L. Selenium in biology: facts and medical perspectives. Biol Chem 2000; 381:849-64. [PMID: 11076017 DOI: 10.1515/bc.2000.107] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several decades after the discovery of selenium as an essential trace element in vertebrates approximately 20 eukaryotic and more than 15 prokaryotic selenoproteins containing the 21st proteinogenic amino acid, selenocysteine, have been identified, partially characterized or cloned from several species. Many of these proteins are involved in redox reactions with selenocysteine acting as an essential component of the catalytic cycle. Enzyme activities have been assigned to the glutathione peroxidase family, to the thioredoxin reductases, which were recently identified as selenoproteins, to the iodothyronine deiodinases, which metabolize thyroid hormones, and to the selenophosphate synthetase 2, which is involved in selenoprotein biosynthesis. Prokaryotic selenoproteins catalyze redox reactions and formation of selenoethers in (stress-induced) metabolism and energy production of E. coli, of the clostridial cluster XI and of other prokaryotes. Apart from the specific and complex biosynthesis of selenocysteine, selenium also reversibly binds to proteins, is incorporated into selenomethionine in bacteria, yeast and higher plants, or posttranslationally modifies a catalytically essential cysteine residue of CO dehydrogenase. Expression of individual eukaryotic selenoproteins exhibits high tissue specificity, depends on selenium availability, in some cases is regulated by hormones, and if impaired contributes to several pathological conditions. Disturbance of selenoprotein expression or function is associated with deficiency syndromes (Keshan and Kashin-Beck disease), might contribute to tumorigenesis and atherosclerosis, is altered in several bacterial and viral infections, and leads to infertility in male rodents.
Collapse
Affiliation(s)
- J Köhrl
- University of Würzburg, Division Molecular Internal Medicine, Medizinische Poliklinik, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Lacourciere GM, Mihara H, Kurihara T, Esaki N, Stadtman TC. Escherichia coli NifS-like proteins provide selenium in the pathway for the biosynthesis of selenophosphate. J Biol Chem 2000; 275:23769-73. [PMID: 10829016 DOI: 10.1074/jbc.m000926200] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenophosphate synthetase (SPS), the selD gene product from Escherichia coli, catalyzes the biosynthesis of monoselenophosphate, AMP, and orthophosphate in a 1:1:1 ratio from selenide and ATP. Kinetic characterization revealed the K(m) value for selenide approached levels that are toxic to the cell. Our previous demonstration that a Se(0)-generating system consisting of l-selenocysteine and the Azotobacter vinelandii NifS protein can replace selenide for selenophosphate biosynthesis in vitro suggested a mechanism whereby cells can overcome selenide toxicity. Recently, three E. coli NifS-like proteins, CsdB, CSD, and IscS, have been overexpressed and characterized. All three enzymes act on selenocysteine and cysteine to produce Se(0) and S(0), respectively. In the present study, we demonstrate the ability of each E. coli NifS-like protein to function as a selenium delivery protein for the in vitro biosynthesis of selenophosphate by E. coli wild-type SPS. Significantly, the SPS (C17S) mutant, which is inactive in the standard in vitro assay with selenide as substrate, was found to exhibit detectable activity in the presence of CsdB, CSD, or IscS and l-selenocysteine. Taken together the ability of the NifS-like proteins to generate a selenium substrate for SPS and the activation of the SPS (C17S) mutant suggest a selenium delivery function for the proteins in vivo.
Collapse
Affiliation(s)
- G M Lacourciere
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|