1
|
Meyer K, Huang B, Weiner OD. Emerging roles of transcriptional condensates as temporal signal integrators. Nat Rev Genet 2025:10.1038/s41576-025-00837-y. [PMID: 40240649 DOI: 10.1038/s41576-025-00837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Transcription factors relay information from the external environment to gene regulatory networks that control cell physiology. To confer signalling specificity, robustness and coordination, these signalling networks use temporal communication codes, such as the amplitude, duration or frequency of signals. Although much is known about how temporal information is encoded, a mechanistic understanding of how gene regulatory networks decode signalling dynamics is lacking. Recent advances in our understanding of phase separation of transcriptional condensates provide new biophysical frameworks for both temporal encoding and decoding mechanisms. In this Perspective, we summarize the mechanisms by which transcriptional condensates could enable temporal decoding through signal adaptation, memory and persistence. We further outline methods to probe and manipulate dynamic communication codes of transcription factors and condensates to rationally control gene activation.
Collapse
Affiliation(s)
- Kirstin Meyer
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Bo Huang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Ghosh P, Ajagbe SO, Gozem S. The Photophysical Path to the Triplet State in Light-Oxygen-Voltage (LOV) Domains. Chemistry 2025; 31:e202500117. [PMID: 40035420 DOI: 10.1002/chem.202500117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Upon blue-light absorption, LOV domains efficiently undergo intersystem crossing (ISC) to the triplet state. Several factors potentially contribute to this efficiency. One often proposed in the literature is the heavy atom effect of the nearby (and eventually adduct-forming) cysteine. However, some LOV domain derivatives that lack the cysteine residue also undergo ISC efficiently. Using hybrid multireference quantum mechanical/molecular mechanical (QM / MM) models, we investigated the effect of the electrostatic environment in a prototypal LOV domain, Arabidopsis thaliana Phototropin 1 LOV2 (AtLOV2), compared to the effect of the dielectric of an aqueous solution. We find that the electrostatic environment of AtLOV2 is especially well tuned to stabilize a triplet( n N , π * ) ${(n_{\rm{N}}, \pi ^{\ast} )}$ state, which we posit is the state involved in the ISC step. Other low-lying triplet states that have( π , π * ) ${(\pi, \pi ^{\ast} )}$ and( n O , π * ) ${(n_{\rm{O}}, \pi ^{\ast} )}$ character are ruled out on the basis of energetics and/or their orbital character. The mechanistic picture that emerges from the calculations is one that involves the ISC of photoexcited flavin to a triplet( n N , π * ) ${(n_{\rm{N}}, \pi ^{\ast} )}$ state followed by rapid internal conversion to a triplet( π , π * ) ${(\pi, \pi ^{\ast} )}$ state, which is the state detected spectroscopically. This insight into the ISC mechanism can provide guidelines for tuning flavin's photophysics through mutations that alter the protein electrostatic environment and potentially helps to explain why ISC (and subsequent flavin photochemistry) does not occur readily in many classes of flavin-binding enzymes.
Collapse
Affiliation(s)
- Paulami Ghosh
- Department of Chemistry, Georgia State University, Atlanta, USA
| | | | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, USA
| |
Collapse
|
3
|
Zhou Y, Wei Y, Li L, Yan T, Ye H. Optogenetics in medicine: innovations and therapeutic applications. Curr Opin Biotechnol 2025; 92:103262. [PMID: 39842144 DOI: 10.1016/j.copbio.2025.103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Optogenetics, an innovative approach integrating photonics and genetic engineering, enables precise control over molecular and cellular processes, opening up exciting new opportunities for precision-guided medicine. In this review, we highlight recent advances in optogenetic tools and their applications across a range of medical conditions, including vision restoration in retinitis pigmentosa via light-activated ion channels, precise immune response modulation in cancer immunotherapy, and blood glucose management in diabetes through controllable drug release. Optogenetics also plays a critical role in bioelectronic medicine, enabling seamless communication between electronic systems and biological tissues to enhance therapeutic precision. Finally, we discuss the challenges and potential transition of optogenetics from experimental models to clinical therapies, emphasizing its immense potential to transform future medical treatments.
Collapse
Affiliation(s)
- Yang Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Wuhu Hospital, Health Science Center, East China Normal University, Wuhu 241001, China
| | - Yu Wei
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lei Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tao Yan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Wuhu Hospital, Health Science Center, East China Normal University, Wuhu 241001, China; Shanghai Academy of Natural Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
4
|
Chen Y, Wang S, Zhang L, Peng D, Huang K, Ji B, Fu J, Xu Y. POT, an optogenetics-based endogenous protein degradation system. Commun Biol 2025; 8:455. [PMID: 40102608 PMCID: PMC11920400 DOI: 10.1038/s42003-025-07919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Precise regulation of protein abundance is critical for cellular homeostasis, whose dysfunction may directly lead to human diseases. Optogenetics allows rapid and reversible control of precisely defined cellular processes, which has the potential to be utilized for regulation of protein dynamics at various scales. Here, we developed a novel optogenetics-based protein degradation system, namely Peptide-mediated OptoTrim-Away (POT) which employs expressed small peptides to effectively target endogenous and unmodified proteins. By engineering the light-induced oligomerization of the E3 ligase TRIM21, POT can rapidly trigger protein degradation via the proteasomal pathway. Our results showed that the developed POT-PI3K and POT-GPX4 modules, which used the iSH2 and FUNDC1 domains to specifically target phosphoinositide 3-kinase (PI3K) and glutathione peroxidase 4 (GPX4) respectively, were able to potently induce the degradation of these endogenous proteins by light. Both live-cell imaging and biochemical experiments validated the potency of these tools in downregulating cancer cell migration, proliferation, and even promotion of cell apoptosis. Therefore, we believe the POT offers an alternative and practical solution for rapid manipulation of endogenous protein levels, and it could potentially be employed to dissect complex signaling pathways in cell and for targeted cellular therapies.
Collapse
Affiliation(s)
- Yunyue Chen
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
| | - Siyifei Wang
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luhao Zhang
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Dandan Peng
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China
| | - Ke Huang
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China
| | - Baohua Ji
- Department of Engineering Mechanics, Biomechanics and Biomaterials Laboratory, Zhejiang University, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China
| | - Yingke Xu
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, Zhejiang, China.
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Singh N, Giri MK, Chattopadhyay D. Lighting the path: how light signaling regulates stomatal movement and plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:769-786. [PMID: 39673781 DOI: 10.1093/jxb/erae475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Stomata, the small pores on the surfaces of plant leaves and stems, are crucial for gas exchange and also play a role in defense against pathogens. Stomatal movement is influenced not only by surrounding light conditions but also by the presence of foliar pathogens. Certain light wavelengths such as blue or high irradiance red light cause stomatal opening, making it easier for bacteria to enter through opened stomata and causing disease progression in plants. Illumination with blue or intense red light autophosphorylates phototropin, a blue light photoreceptor protein kinase, that in turn activates a signaling cascade to open the stomata. Undoubtedly stomatal defense is a fascinating aspect of plant immunology, especially in plant-foliar pathogen interactions. During these interactions, stomata fundamentally serve as entry points for intrusive pathogens and initiate the plant defense signaling cascade. This review highlights how light-activated photoreceptors such as cryptochromes (CRYs), phytochromes (phys), and UV-receptors (UVRs) influence stomatal movement and defense signaling after foliar pathogen intrusion. It also explores the link between stomatal defense, light signaling, and plant immunity, which is vital for safeguarding crops against pathogens.
Collapse
Affiliation(s)
- Nidhi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Mrunmay Kumar Giri
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar-751024, Odisha,India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
6
|
Schmidt A, Ayekoi A, Illarionov B, Fischer M, Bacher A, Weber S. Transient 19F photo-CIDNP: A practical tool to distinguish intermediate radical species and determine isotropic hyperfine coupling constants of 19F nuclei. J Chem Phys 2025; 162:054204. [PMID: 39907138 DOI: 10.1063/5.0246273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Fluorine-containing flavin derivatives can be used as probes in flavin-binding proteins forming radical pairs to exploit the photo-chemically induced dynamic nuclear polarization (photo-CIDNP) effect. Knowledge of the hyperfine structure is crucial for studying the mechanism of intramolecular radical-pair formation in proteins. Transient 19F photo-CIDNP NMR has so far not been used to determine the isotropic hyperfine coupling constants of 19F nuclei. Here, we show that this method provides reliable results by studying three monofluorinated flavin mononucleotide (FMN) derivatives in conjunction with 6-fluoro-tryptophan. Combining this method with transient 1H photo-CIDNP spectroscopy leads to a more accurate interpretation of the intermediate radical species forming a radical pair. The gathered information can be used to identify the most promising FMN derivative for usage as a probe for formation of radical pairs in proteins.
Collapse
Affiliation(s)
- Anton Schmidt
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Audrey Ayekoi
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| | - Boris Illarionov
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, 20146 Hamburg, Germany
| | | | - Stefan Weber
- Institute of Physical Chemistry, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Mahapatra K, Dwivedi S, Mukherjee A, Pradhan AA, Rao KV, Singh D, Bhagavatula L, Datta S. Interplay of light and abscisic acid signaling to modulate plant development. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:730-745. [PMID: 38660968 DOI: 10.1093/jxb/erae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Exogenous light cues and the phytohormone abscisic acid (ABA) regulate several aspects of plant growth and development. In recent years, the role of crosstalk between the light and ABA signaling pathways in regulating different physiological processes has become increasingly evident. This includes regulation of germination and early seedling development, control of stomatal development and conductance, growth, and development of roots, buds, and branches, and regulation of flowering. Light and ABA signaling cascades have various convergence points at both DNA and protein levels. The molecular crosstalk involves several light signaling factors such as HY5, COP1, PIFs, and BBXs that integrate with ABA signaling components such as the PYL receptors and ABI5. In particular, ABI5 and PIF4 promoters are key 'hotspots' for integrating these two pathways. Plants acquired both light and ABA signaling pathways before they colonized land almost 500 million years ago. In this review, we discuss recent advances in the interplay of light and ABA signaling regulating plant development and provide an overview of the evolution of these two pathways.
Collapse
Affiliation(s)
- Kalyan Mahapatra
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Shubhi Dwivedi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Arpan Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Ajar Anupam Pradhan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Kavuri Venkateswara Rao
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | - Deeksha Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| | | | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal-462066, Madhya Pradesh, India
| |
Collapse
|
8
|
Jha A, Chandra A, Farahani P, Toettcher J, Haugh JM, Waterman CM. CD44 and Ezrin restrict EGF receptor mobility to generate a novel spatial arrangement of cytoskeletal signaling modules driving bleb-based migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630838. [PMID: 39803565 PMCID: PMC11722407 DOI: 10.1101/2024.12.31.630838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb. Protein activity biosensors revealed a unique EGFR/PI3K activity gradient decreasing from rear-to-front, promoting PIP3 and Rac1-GTP accumulation at the bleb rear, with its antagonists PIP2 and RhoA-GTP concentrated at the bleb tip, opposite to the front-to-rear organization of these signaling modules in integrin-mediated mesenchymal migration. Optogenetic experiments showed that disrupting this gradient caused bleb retraction, underscoring the role of this signaling gradient in bleb stability. Mathematical modeling and experiments identified a mechanism where, as the bleb initiates, CD44 and ERM proteins restrict EGFR mobility in a membrane-apposed cortical actin meshwork in the bleb rear, establishing a rear-to-front EGFR-PI3K-Rac activity gradient. Thus, our study reveals the biophysical and molecular underpinnings of cell polarity in bleb-based migration of metastatic cells in non-adhesive confinement, and underscores how alternative spatial arrangements of migration signaling modules can mediate different migration modes according to the local microenvironment.
Collapse
Affiliation(s)
- Ankita Jha
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ankit Chandra
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, United States
| | - Payam Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Jared Toettcher
- Department of Molecular Biology, Princeton University, Princeton, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, United States
| | - Jason M. Haugh
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, United States
| | - Clare M. Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
9
|
Huang J, Fussenegger M. Programming mammalian cell behaviors by physical cues. Trends Biotechnol 2025; 43:16-42. [PMID: 39179464 DOI: 10.1016/j.tibtech.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 48, CH-4056 Basel, Switzerland.
| |
Collapse
|
10
|
Kaya SG, Hovan A, Fraaije MW. Engineering of LOV-domains for their use as protein tags. Arch Biochem Biophys 2025; 763:110228. [PMID: 39592071 DOI: 10.1016/j.abb.2024.110228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Light-Oxygen-Voltage (LOV) domains are the protein-based light switches used in nature to trigger and regulate various processes. They allow light signals to be converted into metabolic signaling cascades. Various LOV-domain proteins have been characterized in the last few decades and have been used to develop light-sensitive tools in cell biology research. LOV-based applications exploit the light-driven regulation of effector elements to activate signaling pathways, activate genes, or locate proteins within cells. A relatively new application of an engineered small LOV-domain protein called miniSOG (mini singlet oxygen generator) is based on the light-induced formation of reactive oxygen species (ROS). The first miniSOG was engineered from a LOV domain from Arabidopsis thaliana. This engineered 14 kDa light-responsive flavin-containing protein can be exploited as protein tag for the light-triggered localized production of ROS. Such tunable ROS production by miniSOG or similarly redesigned LOV-domains can be of use in studies focused on subcellular phenomena but may also allow new light-fueled catalytic processes. This review provides an overview of the discovery of LOV domains and their development into tools for cell biology. It also highlights recent advancements in engineering LOV domains for various biotechnological applications and cell biology studies.
Collapse
Affiliation(s)
- Saniye G Kaya
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands
| | - Andrej Hovan
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, 252 41, Dolní Břežany, Czech Republic; Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54, Košice, Slovakia
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 3, 9747AG, Groningen, the Netherlands.
| |
Collapse
|
11
|
Sharma S, Gautam AK, Singh R, Gourinath S, Kateriya S. Unusual photodynamic characteristics of the light-oxygen-voltage domain of phototropin linked to terrestrial adaptation of Klebsormidium nitens. FEBS J 2024. [PMID: 39344087 DOI: 10.1111/febs.17284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
Phototropin (Phot), a blue light-sensing LOV domain protein, mediates blue light responses and is evolutionarily conserved across the green lineage. Klebsormidium nitens, a green terrestrial alga, presents a valuable opportunity to study adaptive responses from aquatic to land habitat transitions. We determined the crystal structure of Klebsormidium nitens Phot LOV1 domain (KnLOV1) in the dark and engineered different mutations (R60K, Q122N, and D33N) to modulate the lifetime of the photorecovery cycle. We observed unusual, slow recovery kinetics in the wild-type KnLOV1 domain (τ = 41 ± 3 min) compared to different mutants (R60K: τ = 2.0 ± 0.1 min, Q122N: τ = 1.7 ± 0.1 min, D33N: τ = 9.6 ± 0.1 min). Crystal structures of wild-type KnLOV1 and mutants revealed subtle but critical changes near the protein chromophore that is responsible for modulating protein dark recovery time. Our findings shed light on the unique structural and biochemical characteristics of the newly studied KnLOV1 and its evolutionary importance for phototropin-mediated physiology.
Collapse
Affiliation(s)
- Sunita Sharma
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Avinash Kumar Gautam
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rajani Singh
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
12
|
Kabir M, Ghosh P, Gozem S. Electronic Structure Methods for Simulating Flavin's Spectroscopy and Photophysics: Comparison of Multi-reference, TD-DFT, and Single-Reference Wave Function Methods. J Phys Chem B 2024; 128:7545-7557. [PMID: 39074870 PMCID: PMC11317985 DOI: 10.1021/acs.jpcb.4c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
The use of flavins and flavoproteins in photocatalytic, sensing, and biotechnological applications has led to a growing interest in computationally modeling the excited-state electronic structure and photophysics of flavin. However, there is limited consensus regarding which computational methods are appropriate for modeling flavin's photophysics. We compare the energies of low-lying excited states of flavin computed with time-dependent density functional theory (TD-DFT), equation-of-motion coupled cluster (EOM-EE-CCSD), scaled opposite-spin configuration interaction [SOS-CIS(D)], multiconfiguration pair-density functional theory (MC-PDFT), and several multireference perturbation theory (MR-PT2) methods. In the first part, we focus on excitation energies of the first singlet excited state (S1) of five different redox and protonation states of flavin, with the goal of finding a suitable active space for MR-PT2 calculations. In the second part, we construct two sets of one-dimensional potential energy surfaces connecting the S0 and S1 equilibrium geometries (S0-S1 path) and the S1 (π,π*) and S2 (n,π*) equilibrium geometries (S1-S2 path). The first path therefore follows a Franck-Condon active mode of flavin while the second path maps crossings points between low-lying singlet and triplet states in flavin. We discuss the similarities and differences in the TD-DFT, EOM-EE-CCSD, SOS-CIS(D), MC-PDFT and MR-PT2 energy profiles along these paths. We find that (TD-)DFT methods are suitable for applications such as simulating the spectra of flavins but are inconsistent with several other methods when used for some geometry optimizations and when describing the energetics of dark (n,π*) states. MR-PT2 methods show promise for the simulation of flavin's low-lying excited states, but the selection of orbitals for the active space and the number of roots used for state averaging must be done carefully to avoid artifacts. Some properties, such as the intersystem crossing geometry and energy between the S1 (π,π*) and T2 (n,π*) states, may require additional benchmarking before they can be determined quantitatively.
Collapse
Affiliation(s)
- Mohammad
Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Paulami Ghosh
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
13
|
Effiong UM, Khairandish H, Ramirez-Velez I, Wang Y, Belardi B. Turn-on protein switches for controlling actin binding in cells. Nat Commun 2024; 15:5840. [PMID: 38992021 PMCID: PMC11239668 DOI: 10.1038/s41467-024-49934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP's influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality and multiplexing. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into structures to control cell and tissue shape and behavior.
Collapse
Affiliation(s)
- Unyime M Effiong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hannah Khairandish
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yanran Wang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
14
|
Knutson SD, Buksh BF, Huth SW, Morgan DC, MacMillan DWC. Current advances in photocatalytic proximity labeling. Cell Chem Biol 2024; 31:1145-1161. [PMID: 38663396 PMCID: PMC11193652 DOI: 10.1016/j.chembiol.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 03/29/2024] [Indexed: 06/23/2024]
Abstract
Understanding the intricate network of biomolecular interactions that govern cellular processes is a fundamental pursuit in biology. Over the past decade, photocatalytic proximity labeling has emerged as one of the most powerful and versatile techniques for studying these interactions as well as uncovering subcellular trafficking patterns, drug mechanisms of action, and basic cellular physiology. In this article, we review the basic principles, methodologies, and applications of photocatalytic proximity labeling as well as examine its modern development into currently available platforms. We also discuss recent key studies that have successfully leveraged these technologies and importantly highlight current challenges faced by the field. Together, this review seeks to underscore the potential of photocatalysis in proximity labeling for enhancing our understanding of cell biology while also providing perspective on technological advances needed for future discovery.
Collapse
Affiliation(s)
- Steve D Knutson
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Benito F Buksh
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Danielle C Morgan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, NJ 08544, USA; Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
15
|
Schuhmacher L, Heck S, Pitz M, Mathey E, Lamparter T, Blumhofer A, Leister K, Fischer R. The LOV-domain blue-light receptor LreA of the fungus Alternaria alternata binds predominantly FAD as chromophore and acts as a light and temperature sensor. J Biol Chem 2024; 300:107238. [PMID: 38552736 PMCID: PMC11061223 DOI: 10.1016/j.jbc.2024.107238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 05/04/2024] Open
Abstract
Light and temperature sensing are important features of many organisms. Light may provide energy but may also be used by non-photosynthetic organisms for orientation in the environment. Recent evidence suggests that plant and fungal phytochrome and plant phototropin serve dual functions as light and temperature sensors. Here we characterized the fungal LOV-domain blue-light receptor LreA of Alternaria alternata and show that it predominantly contains FAD as chromophore. Blue-light illumination induced ROS production followed by protein agglomeration in vitro. In vivo ROS may control LreA activity. LreA acts as a blue-light photoreceptor but also triggers temperature-shift-induced gene expression. Both responses required the conserved amino acid cysteine 421. We therefore propose that temperature mimics the photoresponse, which could be the ancient function of the chromoprotein. Temperature-dependent gene expression control with LreA was distinct from the response with phytochrome suggesting fine-tuned, photoreceptor-specific gene regulation.
Collapse
Affiliation(s)
- Lars Schuhmacher
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Steffen Heck
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Michael Pitz
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Elena Mathey
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Tilman Lamparter
- Joseph Kölreuter Institute for Plant Research, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Alexander Blumhofer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Kai Leister
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT) - South Campus, Karlsruhe, Germany.
| |
Collapse
|
16
|
Yong LK, Keino I, Kanna Y, Noguchi M, Fujisawa M, Kodama Y. Functional comparison of phototropin from the liverworts Apopellia endiviifolia and Marchantia polymorpha. Photochem Photobiol 2024; 100:782-792. [PMID: 37882095 DOI: 10.1111/php.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
Phototropin (phot) is a blue light (BL) receptor and thermosensor that mediates chloroplast movements in plants. Liverworts, as early-diverging plant species, have a single copy of PHOT gene, and the phot protein in each liverwort activates the signaling pathway adapted to its specific growing environment. In this study, we functionally compared phot from two different liverworts species: Apopellia endiviifolia (Aephot) and Marchantia polymorpha (Mpphot). The BL-dependent photochemical activity of Aephot was similar to that of Mpphot, whereas the thermochemical activity of Aephot was lower than that of Mpphot. Therefore, the phot-mediated signaling pathways of the two plant species may differ more in response to temperature than to BL. Furthermore, we analyzed the functional compatibility of Aephot and Mpphot in chloroplast movements by transiently expressing AePHOT or MpPHOT. The transient expression of AePHOT did not mediate chloroplast movement in M. polymorpha, showing the incompatibility of Aephot with the signaling pathway of M. polymorpha. By contrast, the transient expression of MpPHOT mediated chloroplast movement in A. endiviifolia, indicating the compatibility of Mpphot with the signaling pathway of A. endiviifolia. Our findings reveal both functional similarities and differences between Aephot and Mpphot proteins from the closely related liverworts.
Collapse
Affiliation(s)
- Lee-Kien Yong
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Issei Keino
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi, Japan
| | - Yui Kanna
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi, Japan
| | - Minoru Noguchi
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi, Japan
| | - Mami Fujisawa
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Graduate School of Regional Development and Creativity, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
17
|
Krut' VG, Kalinichenko AL, Maltsev DI, Jappy D, Shevchenko EK, Podgorny OV, Belousov VV. Optogenetic and chemogenetic approaches for modeling neurological disorders in vivo. Prog Neurobiol 2024; 235:102600. [PMID: 38548126 DOI: 10.1016/j.pneurobio.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions. In recent years, novel animal models recapitulating neuropathologies in humans have been introduced. These animal models are based on synthetic biology approaches: opto- and chemogenetics. In this paper, we review recent opto- and chemogenetics-based animal models of human neurological disorders. These models allow for the creation of pathological states by disrupting specific processes at the cellular level. The artificial pathological states mimic a range of human neurological disorders, such as aging-related dementia, Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, and ataxias. Opto- and chemogenetics provide new opportunities unavailable with other animal models of human neurological disorders. These techniques enable researchers to induce neuropathological states varying in severity and ranging from acute to chronic. We also discuss future directions for the development and application of synthetic biology approaches for modeling neurological disorders.
Collapse
Affiliation(s)
- Viktoriya G Krut'
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Andrei L Kalinichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry I Maltsev
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Evgeny K Shevchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Oleg V Podgorny
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Vsevolod V Belousov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow 143025, Russia.
| |
Collapse
|
18
|
He Y, Collado JT, Iuliano JN, Woroniecka HA, Hall CR, Gil AA, Laptenok SP, Greetham GM, Illarionov B, Bacher A, Fischer M, French JB, Lukacs A, Meech SR, Tonge PJ. Elucidating the Signal Transduction Mechanism of the Blue-Light-Regulated Photoreceptor YtvA: From Photoactivation to Downstream Regulation. ACS Chem Biol 2024; 19:696-706. [PMID: 38385342 PMCID: PMC10949197 DOI: 10.1021/acschembio.3c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The blue-light photoreceptor YtvA from Bacillus subtilis has an N-terminal flavin mononucleotide (FMN)-binding light-oxygen-voltage (LOV) domain that is fused to a C-terminal sulfate transporter and anti-σ factor antagonist (STAS) output domain. To interrogate the signal transduction pathway that leads to photoactivation, the STAS domain was replaced with a histidine kinase, so that photoexcitation of the flavin could be directly correlated with biological activity. N94, a conserved Asn that is hydrogen bonded to the FMN C2═O group, was replaced with Ala, Asp, and Ser residues to explore the role of this residue in triggering the structural dynamics that activate the output domain. Femtosecond to millisecond time-resolved multiple probe spectroscopy coupled with a fluorescence polarization assay revealed that the loss of the hydrogen bond between N94 and the C2═O group decoupled changes in the protein structure from photoexcitation. In addition, alterations in N94 also decreased the stability of the Cys-FMN adduct formed in the light-activated state by up to a factor of ∼25. Collectively, these studies shed light on the role of the hydrogen bonding network in the LOV β-scaffold in signal transduction.
Collapse
Affiliation(s)
- YongLe He
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | | | - James N. Iuliano
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Helena A. Woroniecka
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Christopher R. Hall
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Agnieszka A. Gil
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | | | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Boris Illarionov
- Institut
für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | - Adelbert Bacher
- Institut
für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
- TUM School
of Natural Sciences, Technical University
of Munich, 85747 Garching, Germany
| | - Markus Fischer
- Institut
für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | - Jarrod B. French
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Andras Lukacs
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
- Department
of Biophysics, Medical School, University
of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Stephen R. Meech
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Peter J. Tonge
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
19
|
Flores-Ibarra A, Maia RNA, Olasz B, Church JR, Gotthard G, Schapiro I, Heberle J, Nogly P. Light-Oxygen-Voltage (LOV)-sensing Domains: Activation Mechanism and Optogenetic Stimulation. J Mol Biol 2024; 436:168356. [PMID: 37944792 DOI: 10.1016/j.jmb.2023.168356] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The light-oxygen-voltage (LOV) domains of phototropins emerged as essential constituents of light-sensitive proteins, helping initiate blue light-triggered responses. Moreover, these domains have been identified across all kingdoms of life. LOV domains utilize flavin nucleotides as co-factors and undergo structural rearrangements upon exposure to blue light, which activates an effector domain that executes the final output of the photoreaction. LOV domains are versatile photoreceptors that play critical roles in cellular signaling and environmental adaptation; additionally, they can noninvasively sense and control intracellular processes with high spatiotemporal precision, making them ideal candidates for use in optogenetics, where a light signal is linked to a cellular process through a photoreceptor. The ongoing development of LOV-based optogenetic tools, driven by advances in structural biology, spectroscopy, computational methods, and synthetic biology, has the potential to revolutionize the study of biological systems and enable the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Flores-Ibarra
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Raiza N A Maia
- Department of Chemistry, The University of Texas at Austin, 78712-1224 Austin, TX, USA
| | - Bence Olasz
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Jonathan R Church
- Institute of Chemistry, The Hebrew University of Jerusalem, 91905 Jerusalem, Israel
| | | | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, 91905 Jerusalem, Israel
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Przemyslaw Nogly
- Dioscuri Center for Structural Dynamics of Receptors, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| |
Collapse
|
20
|
Chowdhury G, Biswas S, Dholey Y, Panja P, Das S, Adak S. Importance of aspartate 4 in the Mg 2+ dependent regulation of Leishmania major PAS domain-containing phosphoglycerate kinase. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140964. [PMID: 37726028 DOI: 10.1016/j.bbapap.2023.140964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Magnesium is an important divalent cation for the regulation of catalytic activity. Recently, we have described that the Mg2+ binding through the PAS domain inhibits the phosphoglycerate kinase (PGK) activity in PAS domain-containing PGK from Leishmania major (LmPAS-PGK) at neutral pH 7.5, but PGK activity is derepressed at acidic pH 5.5. The acidic residue within the PAS domain of LmPAS-PGK is expected to bind the cofactor Mg2+ ion at neutral pH, but which specific acidic residue(s) is/are responsible for the Mg2+ binding is still unknown. To identify the residues, we exploited mutational studies of all acidic (twelve Asp/Glu) residues in the PAS domain for plausible Mg2+ binding. Mg2+ ion-dependent repression at pH 7.5 is withdrawn by substitution of Asp-4 with Ala, whereas other acidic residue mutants (D16A, D22A, D24A, D29A, D43A, D44A, D60A, D63A, D77A, D87A, and E107A) showed similar features compared to the wild-type protein. Fluorescence spectroscopic studies and isothermal titration calorimetry analysis showed that the Asp-4 is crucial for Mg2+ binding in the absence of both PGK's substrates. These results suggest that Asp-4 residue in the regulatory (PAS) domain of wild type enzymes is required for Mg2+ dependent repressed state of the catalytic PGK domain at neutral pH.
Collapse
Affiliation(s)
- Gaurab Chowdhury
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Saroj Biswas
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Yuthika Dholey
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Puja Panja
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Sumit Das
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Subrata Adak
- Division of Structural Biology & Bio-informatics, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
21
|
Marcus DJ, Bruchas MR. Optical Approaches for Investigating Neuromodulation and G Protein-Coupled Receptor Signaling. Pharmacol Rev 2023; 75:1119-1139. [PMID: 37429736 PMCID: PMC10595021 DOI: 10.1124/pharmrev.122.000584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Despite the fact that roughly 40% of all US Food and Drug Administration (FDA)-approved pharmacological therapeutics target G protein-coupled receptors (GPCRs), there remains a gap in our understanding of the physiologic and functional role of these receptors at the systems level. Although heterologous expression systems and in vitro assays have revealed a tremendous amount about GPCR signaling cascades, how these cascades interact across cell types, tissues, and organ systems remains obscure. Classic behavioral pharmacology experiments lack both the temporal and spatial resolution to resolve these long-standing issues. Over the past half century, there has been a concerted effort toward the development of optical tools for understanding GPCR signaling. From initial ligand uncaging approaches to more recent development of optogenetic techniques, these strategies have allowed researchers to probe longstanding questions in GPCR pharmacology both in vivo and in vitro. These tools have been employed across biologic systems and have allowed for interrogation of everything from specific intramolecular events to pharmacology at the systems level in a spatiotemporally specific manner. In this review, we present a historical perspective on the motivation behind and development of a variety of optical toolkits that have been generated to probe GPCR signaling. Here we highlight how these tools have been used in vivo to uncover the functional role of distinct populations of GPCRs and their signaling cascades at a systems level. SIGNIFICANCE STATEMENT: G protein-coupled receptors (GPCRs) remain one of the most targeted classes of proteins for pharmaceutical intervention, yet we still have a limited understanding of how their unique signaling cascades effect physiology and behavior at the systems level. In this review, we discuss a vast array of optical techniques that have been devised to probe GPCR signaling both in vitro and in vivo.
Collapse
Affiliation(s)
- David J Marcus
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain and Emotion (D.J.M., M.R.B.), Department of Anesthesiology and Pain Medicine (D.J.M., M.R.B.), Department of Pharmacology (M.R.B.), and Department of Bioengineering (M.R.B.), University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Meyer K, Lammers NC, Bugaj LJ, Garcia HG, Weiner OD. Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation. Nat Commun 2023; 14:6929. [PMID: 37903793 PMCID: PMC10616176 DOI: 10.1038/s41467-023-42643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023] Open
Abstract
YAP is a transcriptional regulator that controls pluripotency, cell fate, and proliferation. How cells ensure the selective activation of YAP effector genes is unknown. This knowledge is essential to rationally control cellular decision-making. Here we leverage optogenetics, live-imaging of transcription, and cell fate analysis to understand and control gene activation and cell behavior. We reveal that cells decode the steady-state concentrations and timing of YAP activation to control proliferation, cell fate, and expression of the pluripotency regulators Oct4 and Nanog. While oscillatory YAP inputs induce Oct4 expression and proliferation optimally at frequencies that mimic native dynamics, cellular differentiation requires persistently low YAP levels. We identify the molecular logic of the Oct4 dynamic decoder, which acts through an adaptive change sensor. Our work reveals how YAP levels and dynamics enable multiplexing of information transmission for the regulation of developmental decision-making and establishes a platform for the rational control of these behaviors.
Collapse
Affiliation(s)
- Kirstin Meyer
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas C Lammers
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA, USA
- Department of Physics, University of California at Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Orion D Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
23
|
Effiong UM, Khairandish H, Ramirez-Velez I, Wang Y, Belardi B. Turn-On Protein Switches for Controlling Actin Binding in Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.561921. [PMID: 37961502 PMCID: PMC10634840 DOI: 10.1101/2023.10.26.561921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP's influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into new structures to control cell and tissue shape and behavior.
Collapse
Affiliation(s)
- Unyime M. Effiong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Hannah Khairandish
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Yanran Wang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
24
|
Aarabi F, Ghigi A, Ahchige MW, Bulut M, Geigenberger P, Neuhaus HE, Sampathkumar A, Alseekh S, Fernie AR. Genome-wide association study unveils ascorbate regulation by PAS/LOV PROTEIN during high light acclimation. PLANT PHYSIOLOGY 2023; 193:2037-2054. [PMID: 37265123 PMCID: PMC10602610 DOI: 10.1093/plphys/kiad323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
Varying light conditions elicit metabolic responses as part of acclimation with changes in ascorbate levels being an important component. Here, we adopted a genome-wide association-based approach to characterize the response in ascorbate levels on high light (HL) acclimation in a panel of 315 Arabidopsis (Arabidopsis thaliana) accessions. These studies revealed statistically significant SNPs for total and reduced ascorbate under HL conditions at a locus in chromosome 2. Ascorbate levels under HL and the region upstream and within PAS/LOV PROTEIN (PLP) were strongly associated. Intriguingly, subcellular localization analyses revealed that the PLPA and PLPB splice variants co-localized with VITAMIN C DEFECTIVE2 (VTC2) and VTC5 in both the cytosol and nucleus. Yeast 2-hybrid and bimolecular fluorescence complementation analyses revealed that PLPA and PLPB interact with VTC2 and that blue light diminishes this interaction. Furthermore, PLPB knockout mutants were characterized by 1.5- to 1.7-fold elevations in their ascorbate levels, whereas knockout mutants of the cry2 cryptochromes displayed 1.2- to 1.3-fold elevations compared to WT. Our results collectively indicate that PLP plays a critical role in the elevation of ascorbate levels, which is a signature response of HL acclimation. The results strongly suggest that this is achieved via the release of the inhibitory effect of PLP on VTC2 upon blue light illumination, as the VTC2-PLPB interaction is stronger under darkness. The conditional importance of the cryptochrome receptors under different environmental conditions suggests a complex hierarchy underpinning the environmental control of ascorbate levels. However, the data we present here clearly demonstrate that PLP dominates during HL acclimation.
Collapse
Affiliation(s)
- Fayezeh Aarabi
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Andrea Ghigi
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Micha Wijesingha Ahchige
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Mustafa Bulut
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Arun Sampathkumar
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Crop Quantitative Genetics, Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Alisdair R Fernie
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Crop Quantitative Genetics, Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| |
Collapse
|
25
|
Marchetti M, Ronda L, Cozzi M, Bettati S, Bruno S. Genetically Encoded Biosensors for the Fluorescence Detection of O 2 and Reactive O 2 Species. SENSORS (BASEL, SWITZERLAND) 2023; 23:8517. [PMID: 37896609 PMCID: PMC10611200 DOI: 10.3390/s23208517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
The intracellular concentrations of oxygen and reactive oxygen species (ROS) in living cells represent critical information for investigating physiological and pathological conditions. Real-time measurement often relies on genetically encoded proteins that are responsive to fluctuations in either oxygen or ROS concentrations. The direct binding or chemical reactions that occur in their presence either directly alter the fluorescence properties of the binding protein or alter the fluorescence properties of fusion partners, mostly consisting of variants of the green fluorescent protein. Oxygen sensing takes advantage of several mechanisms, including (i) the oxygen-dependent hydroxylation of a domain of the hypoxia-inducible factor-1, which, in turn, promotes its cellular degradation along with fluorescent fusion partners; (ii) the naturally oxygen-dependent maturation of the fluorophore of green fluorescent protein variants; and (iii) direct oxygen binding by proteins, including heme proteins, expressed in fusion with fluorescent partners, resulting in changes in fluorescence due to conformational alterations or fluorescence resonance energy transfer. ROS encompass a group of highly reactive chemicals that can interconvert through various chemical reactions within biological systems, posing challenges for their selective detection through genetically encoded sensors. However, their general reactivity, and particularly that of the relatively stable oxygen peroxide, can be exploited for ROS sensing through different mechanisms, including (i) the ROS-induced formation of disulfide bonds in engineered fluorescent proteins or fusion partners of fluorescent proteins, ultimately leading to fluorescence changes; and (ii) conformational changes of naturally occurring ROS-sensing domains, affecting the fluorescence properties of fusion partners. In this review, we will offer an overview of these genetically encoded biosensors.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Monica Cozzi
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.M.); (L.R.); (M.C.)
- Institute of Biophysics, Italian National Research Council (CNR), 56124 Pisa, Italy
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy;
| |
Collapse
|
26
|
Mim MS, Knight C, Zartman JJ. Quantitative insights in tissue growth and morphogenesis with optogenetics. Phys Biol 2023; 20:061001. [PMID: 37678266 PMCID: PMC10594237 DOI: 10.1088/1478-3975/acf7a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/15/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Cells communicate with each other to jointly regulate cellular processes during cellular differentiation and tissue morphogenesis. This multiscale coordination arises through the spatiotemporal activity of morphogens to pattern cell signaling and transcriptional factor activity. This coded information controls cell mechanics, proliferation, and differentiation to shape the growth and morphogenesis of organs. While many of the molecular components and physical interactions have been identified in key model developmental systems, there are still many unresolved questions related to the dynamics involved due to challenges in precisely perturbing and quantitatively measuring signaling dynamics. Recently, a broad range of synthetic optogenetic tools have been developed and employed to quantitatively define relationships between signal transduction and downstream cellular responses. These optogenetic tools can control intracellular activities at the single cell or whole tissue scale to direct subsequent biological processes. In this brief review, we highlight a selected set of studies that develop and implement optogenetic tools to unravel quantitative biophysical mechanisms for tissue growth and morphogenesis across a broad range of biological systems through the manipulation of morphogens, signal transduction cascades, and cell mechanics. More generally, we discuss how optogenetic tools have emerged as a powerful platform for probing and controlling multicellular development.
Collapse
Affiliation(s)
- Mayesha Sahir Mim
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Caroline Knight
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Jeremiah J Zartman
- Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, United States of America
| |
Collapse
|
27
|
Spivak M, Stone JE, Ribeiro J, Saam J, Freddolino L, Bernardi RC, Tajkhorshid E. VMD as a Platform for Interactive Small Molecule Preparation and Visualization in Quantum and Classical Simulations. J Chem Inf Model 2023; 63:4664-4678. [PMID: 37506321 PMCID: PMC10516160 DOI: 10.1021/acs.jcim.3c00658] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Modeling and simulation of small molecules such as drugs and biological cofactors have been both a major focus of computational chemistry for decades and a growing need among computational biophysicists who seek to investigate the interaction of different types of ligands with biomolecules. Of particular interest in this regard are quantum mechanical (QM) calculations that are used to more accurately describe such small molecules, which can be of heterogeneous structures and chemistry, either in purely QM calculations or in hybrid QM/molecular mechanics (MM) simulations. QM programs are also used to develop MM force field parameters for small molecules to be used along with established force fields for biomolecules in classical simulations. With this growing need in mind, here we report a set of software tools developed and closely integrated within the broadly used molecular visualization/analysis program, VMD, that allow the user to construct, modify, and parametrize small molecules and prepare them for QM, hybrid QM/MM, or classical simulations. The tools also provide interactive analysis and visualization capabilities in an easy-to-use and integrated environment. In this paper, we briefly report on these tools and their major features and capabilities, along with examples of how they can facilitate molecular research in computational biophysics that might be otherwise prohibitively complex.
Collapse
Affiliation(s)
- Mariano Spivak
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - John E Stone
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - João Ribeiro
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jan Saam
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Rafael C Bernardi
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, Auburn University, Auburn, Alabama 36849, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, Center for Biophyics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Jung JH, Seo PJ, Oh E, Kim J. Temperature perception by plants. TRENDS IN PLANT SCIENCE 2023; 28:924-940. [PMID: 37045740 DOI: 10.1016/j.tplants.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Plants constantly face fluctuating ambient temperatures and must adapt to survive under stressful conditions. Temperature affects many aspects of plant growth and development through a complex network of transcriptional responses. Although temperature sensing is a crucial primary step in initiating transcriptional responses via Ca2+ and/or reactive oxygen species signaling, an understanding of how plants perceive temperature has remained elusive. However, recent studies have yielded breakthroughs in our understanding of temperature sensors and thermosensation mechanisms. We review recent findings on potential temperature sensors and emerging thermosensation mechanisms, including biomolecular condensate formation through phase separation in plants. We also compare the temperature perception mechanisms of plants with those of other organisms to provide insights into understanding temperature sensing by plants.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
29
|
Bournonville C, Mori K, Deslous P, Decros G, Blomeier T, Mauxion JP, Jorly J, Gadin S, Cassan C, Maucourt M, Just D, Brès C, Rothan C, Ferrand C, Fernandez-Lochu L, Bataille L, Miura K, Beven L, Zurbriggen MD, Pétriacq P, Gibon Y, Baldet P. Blue light promotes ascorbate synthesis by deactivating the PAS/LOV photoreceptor that inhibits GDP-L-galactose phosphorylase. THE PLANT CELL 2023; 35:2615-2634. [PMID: 37052931 PMCID: PMC10291033 DOI: 10.1093/plcell/koad108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Ascorbate (vitamin C) is an essential antioxidant in fresh fruits and vegetables. To gain insight into the regulation of ascorbate metabolism in plants, we studied mutant tomato plants (Solanum lycopersicum) that produce ascorbate-enriched fruits. The causal mutation, identified by a mapping-by-sequencing strategy, corresponded to a knock-out recessive mutation in a class of photoreceptor named PAS/LOV protein (PLP), which acts as a negative regulator of ascorbate biosynthesis. This trait was confirmed by CRISPR/Cas9 gene editing and further found in all plant organs, including fruit that accumulated 2 to 3 times more ascorbate than in the WT. The functional characterization revealed that PLP interacted with the 2 isoforms of GDP-L-galactose phosphorylase (GGP), known as the controlling step of the L-galactose pathway of ascorbate synthesis. The interaction with GGP occurred in the cytoplasm and the nucleus, but was abolished when PLP was truncated. These results were confirmed by a synthetic approach using an animal cell system, which additionally demonstrated that blue light modulated the PLP-GGP interaction. Assays performed in vitro with heterologously expressed GGP and PLP showed that PLP is a noncompetitive inhibitor of GGP that is inactivated after blue light exposure. This discovery provides a greater understanding of the light-dependent regulation of ascorbate metabolism in plants.
Collapse
Affiliation(s)
- Céline Bournonville
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Kentaro Mori
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Paul Deslous
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Guillaume Decros
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Tim Blomeier
- Institute of Synthetic Biology—CEPLAS—Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, Dusseldorf 40225, Germany
| | - Jean-Philippe Mauxion
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Joana Jorly
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Stéphanie Gadin
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Cédric Cassan
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Mickael Maucourt
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Daniel Just
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Cécile Brès
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Christophe Rothan
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Carine Ferrand
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Lucie Fernandez-Lochu
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Laure Bataille
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Kenji Miura
- Tsukuba Innovation Plant Research Center, University of Tsukuba, 1-1-1 Tennodai, 305-8577 Ibaraki, Tsukuba, Japan
| | - Laure Beven
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Matias D Zurbriggen
- Institute of Synthetic Biology—CEPLAS—Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität Düsseldorf, Dusseldorf 40225, Germany
| | - Pierre Pétriacq
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| | - Pierre Baldet
- UMR 1332 Biologie du Fruit et Pathologie, Univ. Bordeaux, INRAE,33883 Villenave d'Ornon, France
| |
Collapse
|
30
|
Sadhanasatish T, Augustin K, Windgasse L, Chrostek-Grashoff A, Rief M, Grashoff C. A molecular optomechanics approach reveals functional relevance of force transduction across talin and desmoplakin. SCIENCE ADVANCES 2023; 9:eadg3347. [PMID: 37343090 DOI: 10.1126/sciadv.adg3347] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Many mechanobiological processes that govern development and tissue homeostasis are regulated on the level of individual molecular linkages, and a number of proteins experiencing piconewton-scale forces in cells have been identified. However, under which conditions these force-bearing linkages become critical for a given mechanobiological process is often still unclear. Here, we established an approach to revealing the mechanical function of intracellular molecules using molecular optomechanics. When applied to the integrin activator talin, the technique provides direct evidence that its role as a mechanical linker is indispensable for the maintenance of cell-matrix adhesions and overall cell integrity. Applying the technique to desmoplakin shows that mechanical engagement of desmosomes to intermediate filaments is expendable under homeostatic conditions yet strictly required for preserving cell-cell adhesion under stress. These results reveal a central role of talin and desmoplakin as mechanical linkers in cell adhesion structures and demonstrate that molecular optomechanics is a powerful tool to investigate the molecular details of mechanobiological processes.
Collapse
Affiliation(s)
- Tanmay Sadhanasatish
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster D-48149, Germany
| | - Katharina Augustin
- Center for Protein Assemblies and Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Lukas Windgasse
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster D-48149, Germany
| | - Anna Chrostek-Grashoff
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster D-48149, Germany
| | - Matthias Rief
- Center for Protein Assemblies and Department of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Carsten Grashoff
- University of Münster, Institute of Integrative Cell Biology and Physiology, Münster D-48149, Germany
| |
Collapse
|
31
|
Cai R, He W, Zhang J, Liu R, Yin Z, Zhang X, Sun C. Blue light promotes zero-valent sulfur production in a deep-sea bacterium. EMBO J 2023; 42:e112514. [PMID: 36946144 PMCID: PMC10267690 DOI: 10.15252/embj.2022112514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Increasing evidence has shown that light exists in a diverse range of deep-sea environments. We unexpectedly found that blue light is necessary to produce excess zero-valent sulfur (ZVS) in Erythrobacter flavus 21-3, a bacterium that has been recently isolated from a deep-sea cold seep. E. flavus 21-3 is able to convert thiosulfate to ZVS using a novel thiosulfate oxidation pathway comprising a thiosulfate dehydrogenase (TsdA) and a thiosulfohydrolase (SoxB). Using proteomic, bacterial two-hybrid and heterologous expression assays, we found that the light-oxygen-voltage histidine kinase LOV-1477 responds to blue light and activates the diguanylate cyclase DGC-2902 to produce c-di-GMP. Subsequently, the PilZ domain-containing protein mPilZ-1753 binds to c-di-GMP and activates TsdA through direct interaction. Finally, Raman spectroscopy and gene knockout results verified that TsdA and two SoxB homologs cooperate to regulate ZVS production. As ZVS is an energy source for E. flavus 21-3, we propose that deep-sea blue light provides E. flavus 21-3 with a selective advantage in the cold seep, suggesting a previously unappreciated relationship between light-sensing pathways and sulfur metabolism in a deep-sea microorganism.
Collapse
Affiliation(s)
- Ruining Cai
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Wanying He
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Jing Zhang
- School of Life SciencesHebei UniversityBaodingChina
| | - Rui Liu
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| | - Ziyu Yin
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Xin Zhang
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
- CAS Key Laboratory of Marine Geology and Environment & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Chaomin Sun
- CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of OceanologyChinese Academy of SciencesQingdaoChina
- Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
- College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
- Center of Ocean Mega‐ScienceChinese Academy of SciencesQingdaoChina
| |
Collapse
|
32
|
Zavafer A, Mancilla C, Jolley G, Murakami K. On the concepts and correct use of radiometric quantities for assessing the light environment and their application to plant research. Biophys Rev 2023; 15:385-400. [PMID: 37396445 PMCID: PMC10310645 DOI: 10.1007/s12551-023-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Light is one of the most important factors for photosynthetic organisms to grow. Historically, the amount of light in plant sciences has been referred to as light intensity, irradiance, photosynthetic active radiation, photon flux, photon flux density, etc. On occasion, all these terms are used interchangeably, yet they refer to different physical units and each metric offers distinct information. Even for experts in the fields of plant photobiology, the use of these terms is confusing, and there is a loose implementation of each concept. This makes the use of radiometric units even more confusing to non-experts when looking for ways to measure light, since they could easily feel overwhelmed by the specialized literature. The use of scientific concepts must be accurate, as ambiguity in the use of radiometric quantities can lead to inconsistencies in analysis, thus decreasing the comparability between experiments and to the formulation of incorrect experimental designs. In this review, we provide a simple yet comprehensive view of the use of radiometric quantities in an effort to clarify their meaning and applications. To facilitate understanding, we adopt a minimum amount of mathematical expressions and provide a historical summary of the use of radiometry (with emphasis on plant sciences), examples of uses, and a review of the available instrumentation for radiometric measurements.
Collapse
Affiliation(s)
- Alonso Zavafer
- Department of Engineering, Brock University, St. Catharines, ON Canada
| | - Cristian Mancilla
- Department of Engineering, Brock University, St. Catharines, ON Canada
| | - Gregory Jolley
- Research School of Chemistry, The Australian National University, Canberra, ACT 2600 Australia
| | - Keach Murakami
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Sapporo, Japan
| |
Collapse
|
33
|
Waksman T, Suetsugu N, Hermanowicz P, Ronald J, Sullivan S, Łabuz J, Christie JM. Phototropin phosphorylation of ROOT PHOTOTROPISM 2 and its role in mediating phototropism, leaf positioning, and chloroplast accumulation movement in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:390-402. [PMID: 36794876 PMCID: PMC10953443 DOI: 10.1111/tpj.16144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/08/2023] [Indexed: 05/10/2023]
Abstract
Directional movements impact the ability of plants to respond and adjust their growth accordingly to the prevailing light environment. The plasma-membrane associated protein, ROOT PHOTOTROPISM 2 (RPT2) is a key signalling component involved in chloroplast accumulation movement, leaf positioning, and phototropism, all of which are regulated redundantly by the ultraviolet/blue light-activated AGC kinases phototropin 1 and 2 (phot1 and phot2). We recently demonstrated that members of the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3)/RPT2-like (NRL) family in Arabidopsis thaliana, including RPT2, are directly phosphorylated by phot1. However, whether RPT2 is a substrate for phot2, and the biological significance of phot phosphorylation of RPT2 remains to be determined. Here, we show that RPT2 is phosphorylated by both phot1 and phot2 at a conserved serine residue (S591) within the C-terminal region of the protein. Blue light triggered the association of 14-3-3 proteins with RPT2 consistent with S591 acting as a 14-3-3 binding site. Mutation of S591 had no effect on the plasma membrane localization of RPT2 but reduced its functionality for leaf positioning and phototropism. Moreover, our findings indicate that S591 phosphorylation within the C-terminus of RPT2 is required for chloroplast accumulation movement to low level blue light. Taken together, these findings further highlight the importance of the C-terminal region of NRL proteins and how its phosphorylation contributes to phot receptor signalling in plants.
Collapse
Affiliation(s)
- Thomas Waksman
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
| | - Noriyuki Suetsugu
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
- Graduate School of Arts and SciencesThe University of TokyoTokyo153‐8902Japan
| | - Pawel Hermanowicz
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakówPoland
| | - James Ronald
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
| | - Stuart Sullivan
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
| | - Justyna Łabuz
- Malopolska Centre of BiotechnologyJagiellonian UniversityGronostajowa 7A30‐387KrakówPoland
| | - John M. Christie
- School of Molecular BiosciencesCollege of Medical, Veterinary and Life Sciences, University of GlasgowBower BuildingGlasgowG12 8QQUK
| |
Collapse
|
34
|
Alloggia FP, Bafumo RF, Ramirez DA, Maza MA, Camargo AB. Brassicaceae microgreens: A novel and promissory source of sustainable bioactive compounds. Curr Res Food Sci 2023; 6:100480. [PMID: 36969565 PMCID: PMC10030908 DOI: 10.1016/j.crfs.2023.100480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Microgreens are novel foods with high concentrations of bioactive compounds and can be grown easily and sustainably. Among all the microgreens genera produced, Brassicaceae stand out because of the wide evidence about their beneficial effects on human health attributed to phenolic compounds, vitamins, and particularly glucosinolates and their breakdown products, isothiocyanates and indoles. The phytochemical profile of each species is affected by the growing conditions in a different manner. The agronomic practices that involve these factors can be used as tools to modulate and enhance the concentration of certain compounds of interest. In this sense, the present review summarizes the impact of substrates, artificial lighting, and fertilization on bioactive compound profiles among species. Since Brassicaceae microgreens, rich in bioactive compounds, can be considered functional foods, we also included a discussion about the health benefits associated with microgreens' consumption reported in the literature, as well as their bioaccessibility and human absorption. Therefore, the present review aimed to analyze and systematize cultivation conditions of microgreens, in terms of their effects on phytochemical profiles, to provide possible strategies to enhance the functionality and health benefits of Brassicaceae microgreens.
Collapse
Affiliation(s)
- Florencia P. Alloggia
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Roberto F. Bafumo
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Daniela A. Ramirez
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
- Cátedra de Química Analítica, Facultad de Ciencias Agrarias, UNCuyo, Mendoza, Argentina Institución, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Marcos A. Maza
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
- Cátedra de Enología I, Facultad de Ciencias Agrarias, UNCuyo, Mendoza, Argentina Institución, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Alejandra B. Camargo
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
- Cátedra de Química Analítica, Facultad de Ciencias Agrarias, UNCuyo, Mendoza, Argentina Institución, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina
- Corresponding author. Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET y Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Alte. Brown 500, Chacras de Coria, Mendoza, Argentina.
| |
Collapse
|
35
|
Kabir MP, Ouedraogo D, Orozco-Gonzalez Y, Gadda G, Gozem S. Alternative Strategy for Spectral Tuning of Flavin-Binding Fluorescent Proteins. J Phys Chem B 2023; 127:1301-1311. [PMID: 36740810 PMCID: PMC9940217 DOI: 10.1021/acs.jpcb.2c06475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
iLOV is an engineered flavin-binding fluorescent protein (FbFP) with applications for in vivo cellular imaging. To expand the range of applications of FbFPs for multicolor imaging and FRET-based biosensing, it is desirable to understand how to modify their absorption and emission wavelengths (i.e., through spectral tuning). There is particular interest in developing FbFPs that absorb and emit light at longer wavelengths, which has proven challenging thus far. Existing spectral tuning strategies that do not involve chemical modification of the flavin cofactor have focused on placing positively charged amino acids near flavin's C4a and N5 atoms. Guided by previously reported electrostatic spectral tunning maps (ESTMs) of the flavin cofactor and by quantum mechanical/molecular mechanical (QM/MM) calculations reported in this work, we suggest an alternative strategy: placing a negatively charged amino acid near flavin's N1 atom. We predict that a single-point mutant, iLOV-Q430E, has a slightly red-shifted absorption and fluorescence maximum wavelength relative to iLOV. To validate our theoretical prediction, we experimentally expressed and purified iLOV-Q430E and measured its spectral properties. We found that the Q430E mutation results in a slight change in absorption and a 4-8 nm red shift in the fluorescence relative to iLOV, in good agreement with the computational predictions. Molecular dynamics simulations showed that the carboxylate side chain of the glutamate in iLOV-Q430E points away from the flavin cofactor, which leads to a future expectation that further red shifting may be achieved by bringing the side chain closer to the cofactor.
Collapse
|
36
|
Breen S, McLellan H, Birch PRJ, Gilroy EM. Tuning the Wavelength: Manipulation of Light Signaling to Control Plant Defense. Int J Mol Sci 2023; 24:ijms24043803. [PMID: 36835216 PMCID: PMC9958957 DOI: 10.3390/ijms24043803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The growth-defense trade-off in plants is a phenomenon whereby plants must balance the allocation of their resources between developmental growth and defense against attack by pests and pathogens. Consequently, there are a series of points where growth signaling can negatively regulate defenses and where defense signaling can inhibit growth. Light perception by various photoreceptors has a major role in the control of growth and thus many points where it can influence defense. Plant pathogens secrete effector proteins to manipulate defense signaling in their hosts. Evidence is emerging that some of these effectors target light signaling pathways. Several effectors from different kingdoms of life have converged on key chloroplast processes to take advantage of regulatory crosstalk. Moreover, plant pathogens also perceive and react to light in complex ways to regulate their own growth, development, and virulence. Recent work has shown that varying light wavelengths may provide a novel way of controlling or preventing disease outbreaks in plants.
Collapse
Affiliation(s)
- Susan Breen
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Hazel McLellan
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Paul R. J. Birch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Eleanor M. Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
- Correspondence: ; Tel.: +44-1382568827
| |
Collapse
|
37
|
Van Galen CJ, Pauszek RF, Koder RL, Stanley RJ. Flavin Charge Redistribution upon Optical Excitation Is Independent of Solvent Polarity. J Phys Chem B 2023; 127:661-672. [PMID: 36649202 DOI: 10.1021/acs.jpcb.2c07266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Flavin absorption spectra encode molecular details of the flavin's local environment through coupling of local electric fields with the chromophore's charge redistribution upon optical excitation. Translating experimentally measured field-tuned transition energies to local electric field magnitudes and directions across a wide range of field magnitudes requires that the charge redistribution be independent of the local field. We have measured the charge redistribution upon optical excitation of the derivatized flavin TPARF in the non-hydrogen-bonding, nonpolar solvent toluene, with and without a tridentate hydrogen-bonding ligand, DBAP, using electronic Stark spectroscopy. These measurements were interpreted using TD-DFT finite field and difference density calculations. In comparing our present results to previous Stark spectroscopic analyses of flavin in more polar solvents, we conclude that flavin charge redistribution upon optical excitation is independent of solvent polarity, indicating that dependence of flavin transition energies on local field magnitude is linear with local field magnitude.
Collapse
Affiliation(s)
- Cornelius J Van Galen
- Department of Chemistry, Temple University, 1901 N. 13th St., 250B Beury Hall, Philadelphia, Pennsylvania19122, United States
| | - Raymond F Pauszek
- Department of Chemistry, Temple University, 1901 N. 13th St., 250B Beury Hall, Philadelphia, Pennsylvania19122, United States
| | - Ronald L Koder
- Department of Physics, The City College of New York, 1.308 CDI Bldg., 85 St. Nicholas Terrace, New York, New York10031, United States
| | - Robert J Stanley
- Department of Chemistry, Temple University, 1901 N. 13th St., 250B Beury Hall, Philadelphia, Pennsylvania19122, United States
| |
Collapse
|
38
|
Hemmer S, Schulte M, Knieps-Grünhagen E, Granzin J, Willbold D, Jaeger KE, Batra-Safferling R, Panwalkar V, Krauss U. Residue alterations within a conserved hydrophobic pocket influence light, oxygen, voltage photoreceptor dark recovery. Photochem Photobiol Sci 2022; 22:713-727. [PMID: 36480084 DOI: 10.1007/s43630-022-00346-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022]
Abstract
AbstractLight, oxygen, voltage (LOV) photoreceptors are widely distributed throughout all kingdoms of life, and have in recent years, due to their modular nature, been broadly used as sensor domains for the construction of optogenetic tools. For understanding photoreceptor function as well as for optogenetic tool design and fine-tuning, a detailed knowledge of the photophysics, photochemistry, and structural changes underlying the LOV signaling paradigm is instrumental. Mutations that alter the lifetime of the photo-adduct signaling state represent a convenient handle to tune LOV sensor on/off kinetics and, thus, steady-state on/off equilibria of the photoreceptor (or optogenetic switch). Such mutations, however, should ideally only influence sensor kinetics, while being benign with regard to the nature of the structural changes that are induced by illumination, i.e., they should not result in a disruption of signal transduction. In the present study, we identify a conserved hydrophobic pocket for which mutations have a strong impact on the adduct-state lifetime across different LOV photoreceptor families. Using the slow cycling bacterial short LOV photoreceptor PpSB1-LOV, we show that the I48T mutation within this pocket, which accelerates adduct rupture, is otherwise structurally and mechanistically benign, i.e., light-induced structural changes, as probed by NMR spectroscopy and X-ray crystallography, are not altered in the variant. Additional mutations within the pocket of PpSB1-LOV and the introduction of homologous mutations in the LOV photoreceptor YtvA of Bacillus subtilis and the Avena sativa LOV2 domain result in similarly altered kinetics. Given the conserved nature of the corresponding structural region, the here identified mutations should find application in dark-recovery tuning of optogenetic tools and LOV photoreceptors, alike.
Graphical abstract
Collapse
Affiliation(s)
- Stefanie Hemmer
- Institut Für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- IBG-1: Biotechnology IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Marianne Schulte
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institut Für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Esther Knieps-Grünhagen
- Institut Für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Joachim Granzin
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Dieter Willbold
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institut Für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institut Für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- IBG-1: Biotechnology IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Renu Batra-Safferling
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Vineet Panwalkar
- IBI-7: Structural Biochemistry, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institut Für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Biozentrum University of Basel, CH-4056, Basel, Switzerland
| | - Ulrich Krauss
- Institut Für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- IBG-1: Biotechnology IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
39
|
Łabuz J, Sztatelman O, Hermanowicz P. Molecular insights into the phototropin control of chloroplast movements. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6034-6051. [PMID: 35781490 DOI: 10.1093/jxb/erac271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Chloroplast movements are controlled by ultraviolet/blue light through phototropins. In Arabidopsis thaliana, chloroplast accumulation at low light intensities and chloroplast avoidance at high light intensities are observed. These responses are controlled by two homologous photoreceptors, the phototropins phot1 and phot2. Whereas chloroplast accumulation is triggered by both phototropins in a partially redundant manner, sustained chloroplast avoidance is elicited only by phot2. Phot1 is able to trigger only a small, transient chloroplast avoidance, followed by the accumulation phase. The source of this functional difference is not fully understood at either the photoreceptor or the signalling pathway levels. In this article, we review current understanding of phototropin functioning and try to dissect the differences that result in signalling to elicit two distinct chloroplast responses. First, we focus on phototropin structure and photochemical and biochemical activity. Next, we analyse phototropin expression and localization patterns. We also summarize known photoreceptor systems controlling chloroplast movements. Finally, we focus on the role of environmental stimuli in controlling phototropin activity. All these aspects impact the signalling to trigger chloroplast movements and raise outstanding questions about the mechanism involved.
Collapse
Affiliation(s)
- Justyna Łabuz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego, Warszawa, Poland
| | - Paweł Hermanowicz
- Laboratory of Photobiology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa, Kraków, Poland
| |
Collapse
|
40
|
Ribeiro IMA, Eßbauer W, Kutlesa R, Borst A. Spatial and temporal control of expression with light-gated LOV-LexA. G3 GENES|GENOMES|GENETICS 2022; 12:6649684. [PMID: 35876796 PMCID: PMC9526042 DOI: 10.1093/g3journal/jkac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022]
Abstract
The ability to drive expression of exogenous genes in different tissues and cell types, under the control of specific enhancers, has been crucial for discovery in biology. While many enhancers drive expression broadly, several genetic tools were developed to obtain access to isolated cell types. Studies of spatially organized neuropiles in the central nervous system of fruit flies have raised the need for a system that targets subsets of cells within a single neuronal type, a feat currently dependent on stochastic flip-out methods. To access the same cells within a given expression pattern consistently across fruit flies, we developed the light-gated expression system LOV-LexA. We combined the bacterial LexA transcription factor with the plant-derived light, oxygen, or voltage photosensitive domain and a fluorescent protein. Exposure to blue light uncages a nuclear localizing signal in the C-terminal of the light, oxygen, or voltage domain and leads to the translocation of LOV-LexA to the nucleus, with the subsequent initiation of transcription. LOV-LexA enables spatial and temporal control of expression of transgenes under LexAop sequences in larval fat body and pupal and adult neurons with blue light. The LOV-LexA tool is ready to use with GAL4 and Split-GAL4 drivers in its current form and constitutes another layer of intersectional genetics that provides light-controlled genetic access to specific cells across flies.
Collapse
Affiliation(s)
- Inês M A Ribeiro
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Wolfgang Eßbauer
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Romina Kutlesa
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Alexander Borst
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| |
Collapse
|
41
|
Shikata H, Denninger P. Plant optogenetics: Applications and perspectives. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102256. [PMID: 35780691 DOI: 10.1016/j.pbi.2022.102256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
To understand cell biological processes, like signalling pathways, protein movements, or metabolic processes, precise tools for manipulation are desired. Optogenetics allows to control cellular processes by light and can be applied at a high temporal and spatial resolution. In the last three decades, various optogenetic applications have been developed for animal, fungal, and prokaryotic cells. However, using optogenetics in plants has been difficult due to biological and technical issues, like missing cofactors, the presence of endogenous photoreceptors, or the necessity of light for photosynthesis, which potentially activates optogenetic tools constitutively. Recently developed tools overcome these limitations, making the application of optogenetics feasible also in plants. Here, we highlight the most useful recent applications in plants and give a perspective for future optogenetic approaches in plants science.
Collapse
Affiliation(s)
- Hiromasa Shikata
- Division of Plant Environmental Responses, National Institute for Basic Biology, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Japan.
| | - Philipp Denninger
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Emil-Ramann-Strasse 8, 85354 Freising, Germany.
| |
Collapse
|
42
|
Genomewide Identification and Characterization of the Genes Involved in the Flowering of Cotton. Int J Mol Sci 2022; 23:ijms23147940. [PMID: 35887288 PMCID: PMC9323069 DOI: 10.3390/ijms23147940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 01/27/2023] Open
Abstract
Flowering is a prerequisite for flowering plants to complete reproduction, and flowering time has an important effect on the high and stable yields of crops. However, there are limited reports on flowering-related genes at the genomic level in cotton. In this study, genomewide analysis of the evolutionary relationship of flowering-related genes in different cotton species shows that the numbers of flowering-related genes in the genomes of tetraploid cotton species Gossypium hirsutum and Gossypium barbadense were similar, and that these numbers were approximately twice as much as the number in diploid cotton species Gossypium arboretum. The classification of flowering-related genes shows that most of them belong to the photoperiod and circadian clock flowering pathway. The distribution of flowering-related genes on the chromosomes of the At and Dt subgenomes was similar, with no subgenomic preference detected. In addition, most of the flowering-related core genes in Arabidopsis thaliana had homologs in the cotton genome, but the copy numbers and expression patterns were disparate; moreover, flowering-related genes underwent purifying selection throughout the evolutionary and selection processes. Although the differentiation and reorganization of many key genes of the cotton flowering regulatory network occurred throughout the evolutionary and selection processes, most of them, especially those involved in the important flowering regulatory networks, have been relatively conserved and preferentially selected.
Collapse
|
43
|
Seth K, Kumawat G, Vyas P, Harish. The structure and functional mechanism of eyespot in Chlamydomonas. J Basic Microbiol 2022; 62:1169-1178. [PMID: 35778815 DOI: 10.1002/jobm.202200249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/11/2022] [Accepted: 06/18/2022] [Indexed: 11/05/2022]
Abstract
Light plays a crucial role in photosynthesis, photoperiodism, and photomorphogenesis. Algae have a specialized visual system to perceive the light signal known as eyespot. A typical eyespot is an orange-colored, membranous structure packed with pigmented granules. In algae, the eyespot membrane bears a specialized type of photoreceptors, which shows similarity with animal rhodopsin photoreceptors. This light-sensing receptor is responsible for the photo-mobility response known as phototaxis. In this, light acts as a signal for onset and cascade of downstream signal transduction pathway leading to a conformational change in photoreceptor. This induces the continuous influx of calcium ions through the opening of calcium ion channels leading to membrane depolarization, and beating of flagella which is responsible for phototaxis. Mutational studies have assisted the discovery of eyespot genes, which are involved in eyespot development, assembly, size control, and functioning in Chlamydomonas. These genes belong to photoreceptors (cop1-12, acry, pcry, cry-dash1, cry-dash2, phot, uvr8), eyeless mutants (eye2, eye3), miniature-eyespot mutants (min1, min2), multiple eyespot mutants (mlt1, mlt2). This review discusses the structural biology of eyespots with special reference to Chlamydomonas, molecular insights, related genes, and proteins responsible for its proper functioning.
Collapse
Affiliation(s)
- Kunal Seth
- Department of Botany, Govt. Science College, Pardi Valsad, Gujarat, India
| | - Geetanjali Kumawat
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Pallavi Vyas
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Harish
- Plant Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
44
|
Månsson LK, Pitenis AA, Wilson MZ. Extracellular Optogenetics at the Interface of Synthetic Biology and Materials Science. Front Bioeng Biotechnol 2022; 10:903982. [PMID: 35774061 PMCID: PMC9237228 DOI: 10.3389/fbioe.2022.903982] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 11/15/2022] Open
Abstract
We review fundamental mechanisms and applications of OptoGels: hydrogels with light-programmable properties endowed by photoswitchable proteins (“optoproteins”) found in nature. Light, as the primary source of energy on earth, has driven evolution to develop highly-tuned functionalities, such as phototropism and circadian entrainment. These functions are mediated through a growing family of optoproteins that respond to the entire visible spectrum ranging from ultraviolet to infrared by changing their structure to transmit signals inside of cells. In a recent series of articles, engineers and biochemists have incorporated optoproteins into a variety of extracellular systems, endowing them with photocontrollability. While other routes exist for dynamically controlling material properties, light-sensitive proteins have several distinct advantages, including precise spatiotemporal control, reversibility, substrate selectivity, as well as biodegradability and biocompatibility. Available conjugation chemistries endow OptoGels with a combinatorially large design space determined by the set of optoproteins and polymer networks. These combinations result in a variety of tunable material properties. Despite their potential, relatively little of the OptoGel design space has been explored. Here, we aim to summarize innovations in this emerging field and highlight potential future applications of these next generation materials. OptoGels show great promise in applications ranging from mechanobiology, to 3D cell and organoid engineering, and programmable cell eluting materials.
Collapse
Affiliation(s)
- Lisa K. Månsson
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Angela A. Pitenis
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, United States
- Center for BioEngineering, University of California, Santa Barbara, Santa Barbara, CA, United States
- *Correspondence: Angela A. Pitenis, ; Maxwell Z. Wilson,
| | - Maxwell Z. Wilson
- Center for BioEngineering, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- *Correspondence: Angela A. Pitenis, ; Maxwell Z. Wilson,
| |
Collapse
|
45
|
Guan N, Gao X, Ye H. Engineering of optogenetic devices for biomedical applications in mammalian synthetic biology. ENGINEERING BIOLOGY 2022; 6:35-49. [PMID: 36969102 PMCID: PMC9996731 DOI: 10.1049/enb2.12022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
Gene- and cell-based therapies are the next frontiers in the field of medicine. Both are transformative and innovative therapies; however, a lack of safety data limits the translation of such promising technologies to the clinic. Improving the safety and promoting the clinical translation of these therapies can be achieved by tightly regulating the release and delivery of therapeutic outputs. In recent years, the rapid development of optogenetic technology has provided opportunities to develop precision-controlled gene- and cell-based therapies, in which light is introduced to precisely and spatiotemporally manipulate the behaviour of genes and cells. This review focuses on the development of optogenetic tools and their applications in biomedicine, including photoactivated genome engineering and phototherapy for diabetes and tumours. The prospects and challenges of optogenetic tools for future clinical applications are also discussed.
Collapse
Affiliation(s)
- Ningzi Guan
- Synthetic Biology and Biomedical Engineering LaboratoryBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Xianyun Gao
- Synthetic Biology and Biomedical Engineering LaboratoryBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering LaboratoryBiomedical Synthetic Biology Research CenterShanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| |
Collapse
|
46
|
Shankar U, Lenka SK, Leigh Ackland M, Callahan DL. Review of the structures and functions of algal photoreceptors to optimize bioproduct production with novel bioreactor designs for strain improvement. Biotechnol Bioeng 2022; 119:2031-2045. [PMID: 35441370 DOI: 10.1002/bit.28116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/11/2022]
Abstract
Microalgae are important renewable feedstock to produce biodiesel and high-value chemicals. Different wavelengths of light influence the growth and metabolic activities of algae. Recent research has identified the light-sensing proteins called photoreceptors that respond to blue or red light. Structural elucidations of algal photoreceptors have gained momentum over recent years. These include channelrhodopsins, PHOT proteins, animal-like cryptochromes, blue-light sensors utilizing flavin-adenine dinucleotide (BLUF) proteins. Pulsing light has also been investigated as a means to optimize energy inputs into bioreactors. This review summarizes the current structural and functional basis of photoreceptor modulation to optimize the growth, production of carotenoids and other high-value metabolites from microalgae. The review also encompasses novel photobioreactor designs that implement different light regimes including light wavelengths and time to optimize algal growth and desired metabolite profiles for high-value products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Uttara Shankar
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Sangram K Lenka
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - M Leigh Ackland
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Damien L Callahan
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| |
Collapse
|
47
|
Li X, Liang T, Liu H. How plants coordinate their development in response to light and temperature signals. THE PLANT CELL 2022; 34:955-966. [PMID: 34904672 PMCID: PMC8894937 DOI: 10.1093/plcell/koab302] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/06/2021] [Indexed: 05/12/2023]
Abstract
Light and temperature change constantly under natural conditions and profoundly affect plant growth and development. Light and warmer temperatures promote flowering, higher light intensity inhibits hypocotyl and petiole elongation, and warmer temperatures promote hypocotyl and petiole elongation. Moreover, exogenous light and temperature signals must be integrated with endogenous signals to fine-tune phytohormone metabolism and plant morphology. Plants perceive and respond to light and ambient temperature using common sets of factors, such as photoreceptors and multiple light signal transduction components. These highly structured signaling networks are critical for plant survival and adaptation. This review discusses how plants respond to variable light and temperature conditions using common elements to coordinate their development. Future directions for research on light and temperature signaling pathways are also discussed.
Collapse
Affiliation(s)
- Xu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tong Liang
- Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Author for correspondence:
| |
Collapse
|
48
|
Naqvi S, He Q, Trusch F, Qiu H, Pham J, Sun Q, Christie JM, Gilroy EM, Birch PRJ. Blue-light receptor phototropin 1 suppresses immunity to promote Phytophthora infestans infection. THE NEW PHYTOLOGIST 2022; 233:2282-2293. [PMID: 34923631 PMCID: PMC9255860 DOI: 10.1111/nph.17929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Blue-light (BL) phototropin receptors (phot1 and phot2) regulate plant growth by activating NPH3/RPT2-like (NRL) family members. Little is known about roles for BL and phots in regulating plant immunity. We showed previously that Phytophthora infestans RXLR effector Pi02860 targets potato (St)NRL1, promoting its ability to enhance susceptibility by facilitating proteasome-mediated degradation of the immune regulator StSWAP70. This raises the question: do BL and phots negatively regulate immunity? We employed coimmunoprecipitation, virus-induced gene silencing, transient overexpression and targeted mutation to investigate contributions of phots to regulating immunity. Whereas transient overexpression of Stphot1 and Stphot2 enhances P. infestans colonization of Nicotiana benthamiana, silencing endogenous Nbphot1 or Nbphot2 reduces infection. Stphot1, but not Stphot2, suppressed the INF1-triggered cell death (ICD) immune response in a BL- and NRL1-dependent manner. Stphot1, when coexpressed with StNRL1, promotes degradation of StSWAP70, whereas Stphot2 does not. Kinase-dead Stphot1 fails to suppress ICD, enhance P. infestans colonization or promote StSWAP70 degradation. Critically, BL enhances P. infestans infection, which probably involves phots but not other BL receptors such as cryptochromes and F-box proteins ZTL1 and FKF1. We demonstrate that Stphot1 and Stphot2 play different roles in promoting susceptibility, and Stphot1 kinase activity is required for BL- and StNRL1-mediated immune suppression.
Collapse
Affiliation(s)
- Shaista Naqvi
- Division of Plant SciencesJames Hutton InstituteUniversity of Dundee School of Life SciencesErrol RdInvergowrie, DundeeDD2 5DAUK
| | - Qin He
- Division of Plant SciencesJames Hutton InstituteUniversity of Dundee School of Life SciencesErrol RdInvergowrie, DundeeDD2 5DAUK
- Key Laboratory of Horticultural Plant Biology (HZAU)Ministry of EducationKey Laboratory of Potato Biology and Biotechnology (HZAU)Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanHubei430070China
| | - Franziska Trusch
- Division of Plant SciencesJames Hutton InstituteUniversity of Dundee School of Life SciencesErrol RdInvergowrie, DundeeDD2 5DAUK
| | - Huishan Qiu
- Key Laboratory of Horticultural Plant Biology (HZAU)Ministry of EducationKey Laboratory of Potato Biology and Biotechnology (HZAU)Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanHubei430070China
| | - Jasmine Pham
- Division of Plant SciencesJames Hutton InstituteUniversity of Dundee School of Life SciencesErrol RdInvergowrie, DundeeDD2 5DAUK
| | - Qingguo Sun
- Key Laboratory of Horticultural Plant Biology (HZAU)Ministry of EducationKey Laboratory of Potato Biology and Biotechnology (HZAU)Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanHubei430070China
| | - John M. Christie
- Institute of Molecular, Cell and Systems BiologyCollege of Medical, Veterinary, and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Eleanor M. Gilroy
- Cell and Molecular ScienceJames Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| | - Paul R. J. Birch
- Division of Plant SciencesJames Hutton InstituteUniversity of Dundee School of Life SciencesErrol RdInvergowrie, DundeeDD2 5DAUK
- Cell and Molecular ScienceJames Hutton InstituteInvergowrie, DundeeDD2 5DAUK
| |
Collapse
|
49
|
Zhu D, Johnson HJ, Chen J, Schaffer DV. Optogenetic Application to Investigating Cell Behavior and Neurological Disease. Front Cell Neurosci 2022; 16:811493. [PMID: 35273478 PMCID: PMC8902366 DOI: 10.3389/fncel.2022.811493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cells reside in a dynamic microenvironment that presents them with regulatory signals that vary in time, space, and amplitude. The cell, in turn, interprets these signals and accordingly initiates downstream processes including cell proliferation, differentiation, migration, and self-organization. Conventional approaches to perturb and investigate signaling pathways (e.g., agonist/antagonist addition, overexpression, silencing, knockouts) are often binary perturbations that do not offer precise control over signaling levels, and/or provide limited spatial or temporal control. In contrast, optogenetics leverages light-sensitive proteins to control cellular signaling dynamics and target gene expression and, by virtue of precise hardware control over illumination, offers the capacity to interrogate how spatiotemporally varying signals modulate gene regulatory networks and cellular behaviors. Recent studies have employed various optogenetic systems in stem cell, embryonic, and somatic cell patterning studies, which have addressed fundamental questions of how cell-cell communication, subcellular protein localization, and signal integration affect cell fate. Other efforts have explored how alteration of signaling dynamics may contribute to neurological diseases and have in the process created physiologically relevant models that could inform new therapeutic strategies. In this review, we focus on emerging applications within the expanding field of optogenetics to study gene regulation, cell signaling, neurodevelopment, and neurological disorders, and we comment on current limitations and future directions for the growth of the field.
Collapse
Affiliation(s)
- Danqing Zhu
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, United States
| | - Hunter J. Johnson
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
- Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, United States
- Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Jun Chen
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, United States
| | - David V. Schaffer
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: David V. Schaffer
| |
Collapse
|
50
|
Temperature-responsive optogenetic probes of cell signaling. Nat Chem Biol 2022; 18:152-160. [PMID: 34937907 PMCID: PMC9252025 DOI: 10.1038/s41589-021-00917-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
We describe single-component optogenetic probes whose activation dynamics depend on both light and temperature. We used the BcLOV4 photoreceptor to stimulate Ras and phosphatidyl inositol-3-kinase signaling in mammalian cells, allowing activation over a large dynamic range with low basal levels. Surprisingly, we found that BcLOV4 membrane translocation dynamics could be tuned by both light and temperature such that membrane localization spontaneously decayed at elevated temperatures despite constant illumination. Quantitative modeling predicted BcLOV4 activation dynamics across a range of light and temperature inputs and thus provides an experimental roadmap for BcLOV4-based probes. BcLOV4 drove strong and stable signal activation in both zebrafish and fly cells, and thermal inactivation provided a means to multiplex distinct blue-light sensitive tools in individual mammalian cells. BcLOV4 is thus a versatile photosensor with unique light and temperature sensitivity that enables straightforward generation of broadly applicable optogenetic tools.
Collapse
|