1
|
Amoah DP, Hussein SK, Johnson JL, LaPointe P. Ordered ATP hydrolysis in the Hsp90 chaperone is regulated by Aha1 and a conserved post-translational modification. Protein Sci 2025; 34:e5255. [PMID: 39665290 PMCID: PMC11635476 DOI: 10.1002/pro.5255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
Hsp90 is a dimeric molecular chaperone that is important for the folding, stabilization, activation, and maturation of hundreds of protein substrates called "clients" in cells. Dozens of co-chaperones and hundreds of post-translational modifications (PTMs) regulate the ATP-dependent client activation cycle. The Aha1 co-chaperone is the most potent stimulator of the ATPase cycle of Hsp90 and phosphorylation of threonine 22 in Hsp90 can regulate the recruitment of Aha1 in cells. We report here that phosphorylation of threonine 22 regulates specific aspects of Aha1 function after recruitment occurs. The phosphomimetic substitution, T22E, neutralizes the action of the Aha1 NxNNWHW motif. Moreover, this substitution can exert this effect from only one protomer of the Hsp90 dimer. This work sheds light on how asymmetric modifications in the Hsp90 dimer can functionalize individual protomers and fine-tune the Hsp90 cycle.
Collapse
Affiliation(s)
- Desmond Prah Amoah
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Solomon K. Hussein
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
| | - Jill L. Johnson
- Department of Biological Sciences and the Center for Reproductive BiologyUniversity of IdahoMoscowIdahoUSA
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & DentistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
2
|
Fulton MD, Yama DJ, Dahl E, Johnson JL. Hsp90 and cochaperones have two genetically distinct roles in regulating eEF2 function. PLoS Genet 2024; 20:e1011508. [PMID: 39652595 DOI: 10.1371/journal.pgen.1011508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 12/17/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Protein homeostasis relies on the accurate translation and folding of newly synthesized proteins. Eukaryotic elongation factor 2 (eEF2) promotes GTP-dependent translocation of the ribosome during translation. eEF2 folding was recently shown to be dependent on Hsp90 as well as the cochaperones Hgh1, Cns1, and Cpr7. We examined the requirement for Hsp90 and cochaperones more closely and found that Hsp90 and cochaperones have two distinct roles in regulating eEF2 function. Yeast expressing one group of Hsp90 mutations or one group of cochaperone mutations had reduced steady-state levels of eEF2. The growth of Hsp90 mutants that affected eEF2 accumulation was also negatively affected by deletion of the gene encoding Hgh1. Further, mutations in yeast eEF2 that mimic disease-associated mutations in human eEF2 were negatively impacted by loss of Hgh1 and growth of one mutant was partially rescued by overexpression of Hgh1. In contrast, yeast expressing different groups of Hsp90 mutations or a different cochaperone mutation had altered sensitivity to diphtheria toxin, which is dictated by a unique posttranslational modification on eEF2. Our results provide further evidence that Hsp90 contributes to proteostasis not just by assisting protein folding, but also by enabling accurate translation of newly synthesized proteins. In addition, these results provide further evidence that yeast Hsp90 mutants have distinct in vivo effects that correlate with defects in subsets of cochaperones.
Collapse
Affiliation(s)
- Melody D Fulton
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Danielle J Yama
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ella Dahl
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
3
|
Hussein SK, Bhat R, Overduin M, LaPointe P. Recruitment of Ahsa1 to Hsp90 is regulated by a conserved peptide that inhibits ATPase stimulation. EMBO Rep 2024; 25:3532-3546. [PMID: 38937628 PMCID: PMC11316058 DOI: 10.1038/s44319-024-00193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Hsp90 is a molecular chaperone that acts on its clients through an ATP-dependent and conformationally dynamic functional cycle. The cochaperone Accelerator of Hsp90 ATPase, or Ahsa1, is the most potent stimulator of Hsp90 ATPase activity. Ahsa1 stimulates the rate of Hsp90 ATPase activity through a conserved motif, NxNNWHW. Metazoan Ahsa1, but not yeast, possesses an additional 20 amino acid peptide preceding the NxNNWHW motif that we have called the intrinsic chaperone domain (ICD). The ICD of Ahsa1 diminishes Hsp90 ATPase stimulation by interfering with the function of the NxNNWHW motif. Furthermore, the NxNNWHW modulates Hsp90's apparent affinity to Ahsa1 and ATP. Lastly, the ICD controls the regulated recruitment of Hsp90 in cells and its deletion results in the loss of interaction with Hsp90 and the glucocorticoid receptor. This work provides clues to how Ahsa1 conserved regions modulate Hsp90 kinetics and how they may be coupled to client folding status.
Collapse
Affiliation(s)
- Solomon K Hussein
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Rakesh Bhat
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Michael Overduin
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
4
|
Rios EI, Hunsberger IL, Johnson JL. Insights into Hsp90 mechanism and in vivo functions learned from studies in the yeast, Saccharomyces cerevisiae. Front Mol Biosci 2024; 11:1325590. [PMID: 38389899 PMCID: PMC10881880 DOI: 10.3389/fmolb.2024.1325590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
The molecular chaperone Hsp90 (Heat shock protein, 90 kDa) is an abundant and essential cytosolic protein required for the stability and/or folding of hundreds of client proteins. Hsp90, along with helper cochaperone proteins, assists client protein folding in an ATP-dependent pathway. The laboratory of Susan Lindquist, in collaboration with other researchers, was the first to establish the yeast Saccharomyces cerevisiae as a model organism to study the functional interaction between Hsp90 and clients. Important insights from studies in her lab were that Hsp90 is essential, and that Hsp90 functions and cochaperone interactions are highly conserved between yeast and mammalian cells. Here, we describe key mechanistic insights into the Hsp90 folding cycle that were obtained using the yeast system. We highlight the early contributions of the laboratory of Susan Lindquist and extend our analysis into the broader use of the yeast system to analyze the understanding of the conformational cycle of Hsp90 and the impact of altered Hsp90 function on the proteome.
Collapse
Affiliation(s)
| | | | - Jill L. Johnson
- Department of Biological Sciences and Center for Reproductive Biology, University of Idaho, Moscow, ID, United States
| |
Collapse
|
5
|
Backe SJ, Mollapour M, Woodford MR. Saccharomyces cerevisiae as a tool for deciphering Hsp90 molecular chaperone function. Essays Biochem 2023; 67:781-795. [PMID: 36912239 PMCID: PMC10497724 DOI: 10.1042/ebc20220224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 03/14/2023]
Abstract
Yeast is a valuable model organism for their ease of genetic manipulation, rapid growth rate, and relative similarity to higher eukaryotes. Historically, Saccharomyces cerevisiae has played a major role in discovering the function of complex proteins and pathways that are important for human health and disease. Heat shock protein 90 (Hsp90) is a molecular chaperone responsible for the stabilization and activation of hundreds of integral members of the cellular signaling network. Much important structural and functional work, including many seminal discoveries in Hsp90 biology are the direct result of work carried out in S. cerevisiae. Here, we have provided a brief overview of the S. cerevisiae model system and described how this eukaryotic model organism has been successfully applied to the study of Hsp90 chaperone function.
Collapse
Affiliation(s)
- Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| | - Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
6
|
Mercier R, Yama D, LaPointe P, Johnson JL. Hsp90 mutants with distinct defects provide novel insights into cochaperone regulation of the folding cycle. PLoS Genet 2023; 19:e1010772. [PMID: 37228112 PMCID: PMC10246838 DOI: 10.1371/journal.pgen.1010772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/07/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Molecular chaperones play a key role in maintaining proteostasis and cellular health. The abundant, essential, cytosolic Hsp90 (Heat shock protein, 90 kDa) facilitates the folding and activation of hundreds of newly synthesized or misfolded client proteins in an ATP-dependent folding pathway. In a simplified model, Hsp70 first helps load client onto Hsp90, ATP binding results in conformational changes in Hsp90 that result in the closed complex, and then less defined events result in nucleotide hydrolysis, client release and return to the open state. Cochaperones bind and assist Hsp90 during this process. We previously identified a series of yeast Hsp90 mutants that appear to disrupt either the 'loading', 'closing' or 'reopening' events, and showed that the mutants had differing effects on activity of some clients. Here we used those mutants to dissect Hsp90 and cochaperone interactions. Overexpression or deletion of HCH1 had dramatically opposing effects on the growth of cells expressing different mutants, with a phenotypic shift coinciding with formation of the closed conformation. Hch1 appears to destabilize Hsp90-nucleotide interaction, hindering formation of the closed conformation, whereas Cpr6 counters the effects of Hch1 by stabilizing the closed conformation. Hch1 and the homologous Aha1 share some functions, but the role of Hch1 in inhibiting progression through the early stages of the folding cycle is unique. Sensitivity to the Hsp90 inhibitor NVP-AUY922 also correlates with the conformational cycle, with mutants defective in the loading phase being most sensitive and those defective in the reopening phase being most resistant to the drug. Overall, our results indicate that the timing of transition into and out of the closed conformation is tightly regulated by cochaperones. Further analysis will help elucidate additional steps required for progression through the Hsp90 folding cycle and may lead to new strategies for modulating Hsp90 function.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, the University of Alberta, Edmonton, Alberta, Canada
| | - Danielle Yama
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, the University of Alberta, Edmonton, Alberta, Canada
| | - Jill L. Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
7
|
p23 and Aha1: Distinct Functions Promote Client Maturation. Subcell Biochem 2023; 101:159-187. [PMID: 36520307 DOI: 10.1007/978-3-031-14740-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hsp90 is a conserved molecular chaperone regulating the folding and activation of a diverse array of several hundreds of client proteins. The function of Hsp90 in client processing is fine-tuned by a cohort of co-chaperones that modulate client activation in a client-specific manner. They affect the Hsp90 ATPase activity and the recruitment of client proteins and can in addition affect chaperoning in an Hsp90-independent way. p23 and Aha1 are central Hsp90 co-chaperones that regulate Hsp90 in opposing ways. While p23 inhibits the Hsp90 ATPase and stabilizes a client-bound Hsp90 state, Aha1 accelerates ATP hydrolysis and competes with client binding to Hsp90. Even though both proteins have been intensively studied for decades, research of the last few years has revealed intriguing new aspects of these co-chaperones that expanded our perception of how they regulate client activation. Here, we review the progress in understanding p23 and Aha1 as promoters of client processing. We highlight the structures of Aha1 and p23, their interaction with Hsp90, and how their association with Hsp90 affects the conformational cycle of Hsp90 in the context of client maturation.
Collapse
|
8
|
Crunden JL, Diezmann S. Hsp90 interaction networks in fungi-tools and techniques. FEMS Yeast Res 2021; 21:6413543. [PMID: 34718512 PMCID: PMC8599792 DOI: 10.1093/femsyr/foab054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
Heat-shock protein 90 (Hsp90) is a central regulator of cellular proteostasis. It stabilizes numerous proteins that are involved in fundamental processes of life, including cell growth, cell-cycle progression and the environmental response. In addition to stabilizing proteins, Hsp90 governs gene expression and controls the release of cryptic genetic variation. Given its central role in evolution and development, it is important to identify proteins and genes that interact with Hsp90. This requires sophisticated genetic and biochemical tools, including extensive mutant collections, suitable epitope tags, proteomics approaches and Hsp90-specific pharmacological inhibitors for chemogenomic screens. These usually only exist in model organisms, such as the yeast Saccharomyces cerevisiae. Yet, the importance of other fungal species, such as Candida albicans and Cryptococcus neoformans, as serious human pathogens accelerated the development of genetic tools to study their virulence and stress response pathways. These tools can also be exploited to map Hsp90 interaction networks. Here, we review tools and techniques for Hsp90 network mapping available in different fungi and provide a summary of existing mapping efforts. Mapping Hsp90 networks in fungal species spanning >500 million years of evolution provides a unique vantage point, allowing tracking of the evolutionary history of eukaryotic Hsp90 networks.
Collapse
Affiliation(s)
- Julia L Crunden
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Stephanie Diezmann
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
9
|
Biebl MM, Riedl M, Buchner J. Hsp90 Co-chaperones Form Plastic Genetic Networks Adapted to Client Maturation. Cell Rep 2021; 32:108063. [PMID: 32846121 DOI: 10.1016/j.celrep.2020.108063] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/01/2020] [Accepted: 08/03/2020] [Indexed: 11/18/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone regulating the activity of diverse client proteins together with a plethora of different co-chaperones. Whether these functionally cooperate has remained enigmatic. We analyze all double mutants of 11 Saccharomyces cerevisiae Hsp90 co-chaperones in vivo concerning effects on cell physiology and the activation of specific client proteins. We find that client activation is supported by a genetic network with weak epistasis between most co-chaperones and a few modules with strong genetic interactions. These include an epistatic module regulating protein translation and dedicated epistatic networks for specific clients. For kinases, the bridging of Hsp70 and Hsp90 by Sti1/Hop is essential for activation, whereas for steroid hormone receptors, an epistatic module regulating their dwell time on Hsp90 is crucial, highlighting the specific needs of different clients. Thus, the Hsp90 system is characterized by plastic co-chaperone networks fine-tuning the conformational processing in a client-specific manner.
Collapse
Affiliation(s)
- Maximilian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Maximilian Riedl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
10
|
LaPointe P, Mercier R, Wolmarans A. Aha-type co-chaperones: the alpha or the omega of the Hsp90 ATPase cycle? Biol Chem 2020; 401:423-434. [DOI: 10.1515/hsz-2019-0341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/27/2019] [Indexed: 11/15/2022]
Abstract
AbstractHeat shock protein 90 (Hsp90) is a dimeric molecular chaperone that plays an essential role in cellular homeostasis. It functions in the context of a structurally dynamic ATP-dependent cycle to promote conformational changes in its clientele to aid stability, maturation, and activation. The client activation cycle is tightly regulated by a cohort of co-chaperone proteins that display specific binding preferences for certain conformations of Hsp90, guiding Hsp90 through its functional ATPase cycle. Aha-type co-chaperones are well-known to robustly stimulate the ATPase activity of Hsp90 but other roles in regulating the functional cycle are being revealed. In this review, we summarize the work done on the Aha-type co-chaperones since the 1990s and highlight recent discoveries with respect to the complexity of Hsp90 cycle regulation.
Collapse
Affiliation(s)
- Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Annemarie Wolmarans
- Department of Biology, The King’s University, Edmonton T6B 2H3, Alberta, Canada
| |
Collapse
|
11
|
Ibuot A, Dean AP, Pittman JK. Multi-genomic analysis of the cation diffusion facilitator transporters from algae. Metallomics 2020; 12:617-630. [PMID: 32195517 DOI: 10.1039/d0mt00009d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Metal transport processes are relatively poorly understood in algae in comparison to higher plants and other eukaryotes. A screen of genomes from 33 taxonomically diverse algal species was conducted to identify members of the Cation Diffusion Facilitator (CDF) family of metal ion transporter. All algal genomes contained at least one CDF gene with four species having >10 CDF genes (median of 5 genes per genome), further confirming that this is a ubiquitous gene family. Phylogenetic analysis suggested a CDF gene organisation of five groups, which includes Zn-CDF, Fe/Zn-CDF and Mn-CDF groups, consistent with previous phylogenetic analyses, and two functionally undefined groups. One of these undefined groups was algal specific although excluded chlorophyte and rhodophyte sequences. The majority of sequences (22 out of 26 sequences) from this group had a putative ion binding site motif within transmembrane domain 2 and 5 that was distinct from other CDF proteins, such that alanine or serine replaced the conserved histidine residue. The phylogenetic grouping was supported by sequence cluster analysis. Yeast heterologous expression of CDF proteins from Chlamydomonas reinhardtii indicated Zn2+ and Co2+ transport function by CrMTP1, and Mn2+ transport function by CrMTP2, CrMTP3 and CrMTP4, which validated the phylogenetic prediction. However, the Mn-CDF protein CrMTP3 was also able to provide zinc and cobalt tolerance to the Zn- and Co-sensitive zrc1 cot1 yeast strain. There is wide diversity of CDF transporters within the algae lineage, and some of these genes may be attractive targets for future applications of metal content engineering in plants or microorganisms.
Collapse
Affiliation(s)
- Aniefon Ibuot
- Department of Science Technology, Akwa Ibom State Polytechnic, P.M.B. 1200 Ikot Ekpene, Ikot Osurua, Akwa Ibom State, Nigeria
| | | | | |
Collapse
|
12
|
Schopf FH, Huber EM, Dodt C, Lopez A, Biebl MM, Rutz DA, Mühlhofer M, Richter G, Madl T, Sattler M, Groll M, Buchner J. The Co-chaperone Cns1 and the Recruiter Protein Hgh1 Link Hsp90 to Translation Elongation via Chaperoning Elongation Factor 2. Mol Cell 2019; 74:73-87.e8. [PMID: 30876805 DOI: 10.1016/j.molcel.2019.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/17/2018] [Accepted: 02/07/2019] [Indexed: 12/31/2022]
Abstract
The Hsp90 chaperone machinery in eukaryotes comprises a number of distinct accessory factors. Cns1 is one of the few essential co-chaperones in yeast, but its structure and function remained unknown. Here, we report the X-ray structure of the Cns1 fold and NMR studies on the partly disordered, essential segment of the protein. We demonstrate that Cns1 is important for maintaining translation elongation, specifically chaperoning the elongation factor eEF2. In this context, Cns1 interacts with the novel co-factor Hgh1 and forms a quaternary complex together with eEF2 and Hsp90. The in vivo folding and solubility of eEF2 depend on the presence of these proteins. Chaperoning of eEF2 by Cns1 is essential for yeast viability and requires a defined subset of the Hsp90 machinery as well as the identified eEF2 recruiting factor Hgh1.
Collapse
Affiliation(s)
- Florian H Schopf
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Eva M Huber
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Christopher Dodt
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Abraham Lopez
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Maximilian M Biebl
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Daniel A Rutz
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Moritz Mühlhofer
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Gesa Richter
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria
| | - Tobias Madl
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Gottfried Schatz Research Center, Medical University of Graz, 8036 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria
| | - Michael Sattler
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany.
| |
Collapse
|
13
|
Mercier R, Wolmarans A, Schubert J, Neuweiler H, Johnson JL, LaPointe P. The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation. Nat Commun 2019; 10:1273. [PMID: 30894538 PMCID: PMC6426937 DOI: 10.1038/s41467-019-09299-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 03/01/2019] [Indexed: 01/19/2023] Open
Abstract
Hsp90 is a dimeric molecular chaperone that is essential for the folding and activation of hundreds of client proteins. Co-chaperone proteins regulate the ATP-driven Hsp90 client activation cycle. Aha-type co-chaperones are the most potent stimulators of the Hsp90 ATPase activity but the relationship between ATPase regulation and in vivo activity is poorly understood. We report here that the most strongly conserved region of Aha-type co-chaperones, the N terminal NxNNWHW motif, modulates the apparent affinity of Hsp90 for nucleotide substrates. The ability of yeast Aha-type co-chaperones to act in vivo is ablated when the N terminal NxNNWHW motif is removed. This work suggests that nucleotide exchange during the Hsp90 functional cycle may be more important than rate of catalysis.
Collapse
Affiliation(s)
- Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Annemarie Wolmarans
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Jonathan Schubert
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, 97074, Germany
| | - Hannes Neuweiler
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, 97074, Germany
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844, USA
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
14
|
Kritzer JA, Freyzon Y, Lindquist S. Yeast can accommodate phosphotyrosine: v-Src toxicity in yeast arises from a single disrupted pathway. FEMS Yeast Res 2018; 18:4931722. [PMID: 29546391 PMCID: PMC6454501 DOI: 10.1093/femsyr/foy027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
Tyrosine phosphorylation is a key biochemical signal that controls growth and differentiation in multicellular organisms. Saccharomyces cerevisiae and nearly all other unicellular eukaryotes lack intact phosphotyrosine signaling pathways. However, many of these organisms have primitive phosphotyrosine-binding proteins and tyrosine phosphatases, leading to the assumption that the major barrier for emergence of phosphotyrosine signaling was the negative consequences of promiscuous tyrosine kinase activity. In this work, we reveal that the classic oncogene v-Src, which phosphorylates many dozens of proteins in yeast, is toxic because it disrupts a specific spore wall remodeling pathway. Using genetic selections, we find that expression of a specific cyclic peptide, or overexpression of SMK1, a MAP kinase that controls spore wall assembly, both lead to robust growth despite a continuous high level of phosphotyrosine in the yeast proteome. Thus, minimal genetic manipulations allow yeast to tolerate high levels of phosphotyrosine. These results indicate that the introduction of tyrosine kinases within single-celled organisms may not have been a major obstacle to the evolution of phosphotyrosine signaling.
Collapse
Affiliation(s)
- Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford MA 02155, USA
| | - Yelena Freyzon
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| |
Collapse
|
15
|
Cox MB, Johnson JL. Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding. Methods Mol Biol 2018; 1709:397-422. [PMID: 29177674 DOI: 10.1007/978-1-4939-7477-1_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes such as protein translation, translocation, and disassembly of protein complexes. Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso and the Border Biomedical Research Center, El Paso, TX, 79968, USA
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
16
|
Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
17
|
Zuehlke AD, Reidy M, Lin C, LaPointe P, Alsomairy S, Lee DJ, Rivera-Marquez GM, Beebe K, Prince T, Lee S, Trepel JB, Xu W, Johnson J, Masison D, Neckers L. An Hsp90 co-chaperone protein in yeast is functionally replaced by site-specific posttranslational modification in humans. Nat Commun 2017; 8:15328. [PMID: 28537252 PMCID: PMC5458067 DOI: 10.1038/ncomms15328] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/21/2017] [Indexed: 01/03/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is an essential eukaryotic molecular chaperone. To properly chaperone its clientele, Hsp90 proceeds through an ATP-dependent conformational cycle influenced by posttranslational modifications (PTMs) and assisted by a number of co-chaperone proteins. Although Hsp90 conformational changes in solution have been well-studied, regulation of these complex dynamics in cells remains unclear. Phosphorylation of human Hsp90α at the highly conserved tyrosine 627 has previously been reported to reduce client interaction and Aha1 binding. Here we report that these effects are due to a long-range conformational impact inhibiting Hsp90α N-domain dimerization and involving a region of the middle domain/carboxy-terminal domain interface previously suggested to be a substrate binding site. Although Y627 is not phosphorylated in yeast, we demonstrate that the non-conserved yeast co-chaperone, Hch1, similarly affects yeast Hsp90 (Hsp82) conformation and function, raising the possibility that appearance of this PTM in higher eukaryotes represents an evolutionary substitution for HCH1.
Collapse
Affiliation(s)
- Abbey D Zuehlke
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Coney Lin
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Sarah Alsomairy
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - D Joshua Lee
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Genesis M Rivera-Marquez
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Kristin Beebe
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Thomas Prince
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Wanping Xu
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| | - Jill Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, Idaho 83844, USA
| | - Daniel Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 225, 8 Center Drive, Bethesda, Maryland 20892, USA
| | - Len Neckers
- Urologic Oncologic Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, Maryland 20892, USA
| |
Collapse
|
18
|
Wolmarans A, Lee B, Spyracopoulos L, LaPointe P. The Mechanism of Hsp90 ATPase Stimulation by Aha1. Sci Rep 2016; 6:33179. [PMID: 27615124 PMCID: PMC5018835 DOI: 10.1038/srep33179] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022] Open
Abstract
Hsp90 is a dimeric molecular chaperone responsible for the folding, maturation, and activation of hundreds of substrate proteins called ‘clients’. Numerous co-chaperone proteins regulate progression through the ATP-dependent client activation cycle. The most potent stimulator of the Hsp90 ATPase activity is the co-chaperone Aha1p. Only one molecule of Aha1p is required to fully stimulate the Hsp90 dimer despite the existence of two, presumably identical, binding sites for this regulator. Using ATPase assays with Hsp90 heterodimers, we find that Aha1p stimulates ATPase activity by a three-step mechanism via the catalytic loop in the middle domain of Hsp90. Binding of the Aha1p N domain to the Hsp90 middle domain exerts a small stimulatory effect but also drives a separate conformational rearrangement in the Hsp90 N domains. This second event drives a rearrangement in the N domain of the opposite subunit and is required for the stimulatory action of the Aha1p C domain. Furthermore, the second event can be blocked by a mutation in one subunit of the Hsp90 dimer but not the other. This work provides a foundation for understanding how post-translational modifications regulate co-chaperone engagement with the Hsp90 dimer.
Collapse
Affiliation(s)
- Annemarie Wolmarans
- Department of Cell Biology, 514 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Brian Lee
- Department of Biochemistry, 416 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Leo Spyracopoulos
- Department of Biochemistry, 416 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Paul LaPointe
- Department of Cell Biology, 514 Medical Sciences Building, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
19
|
Pearl LH. Review: The HSP90 molecular chaperone-an enigmatic ATPase. Biopolymers 2016; 105:594-607. [PMID: 26991466 PMCID: PMC4879513 DOI: 10.1002/bip.22835] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 12/16/2022]
Abstract
The HSP90 molecular chaperone is involved in the activation and cellular stabilization of a range of 'client' proteins, of which oncogenic protein kinases and nuclear steroid hormone receptors are of particular biomedical significance. Work over the last two decades has revealed a conformational cycle critical to the biological function of HSP90, coupled to an inherent ATPase activity that is regulated and manipulated by many of the co-chaperones proteins with which it collaborates. Pharmacological inhibition of HSP90 ATPase activity results in degradation of client proteins in vivo, and is a promising target for development of new cancer therapeutics. Despite this, the actual function that HSP90s conformationally-coupled ATPase activity provides in its biological role as a molecular chaperone remains obscure. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 594-607, 2016.
Collapse
Affiliation(s)
- Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QR, UK
| |
Collapse
|
20
|
Melchionda M, Pittman JK, Mayor R, Patel S. Ca2+/H+ exchange by acidic organelles regulates cell migration in vivo. J Cell Biol 2016; 212:803-13. [PMID: 27002171 PMCID: PMC4810305 DOI: 10.1083/jcb.201510019] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/19/2016] [Indexed: 11/22/2022] Open
Abstract
A vertebrate Ca2+/H+ exchanger (CAX), which is part of a widespread conserved family in animals, localizes to acidic organelles, tempers evoked Ca2+ signals, and regulates cell-matrix adhesion during neural crest cell migration. Increasing evidence implicates Ca2+ in the control of cell migration. However, the underlying mechanisms are incompletely understood. Acidic Ca2+ stores are fast emerging as signaling centers. But how Ca2+ is taken up by these organelles in metazoans and the physiological relevance for migration is unclear. Here, we identify a vertebrate Ca2+/H+ exchanger (CAX) as part of a widespread family of homologues in animals. CAX is expressed in neural crest cells and required for their migration in vivo. It localizes to acidic organelles, tempers evoked Ca2+ signals, and regulates cell-matrix adhesion during migration. Our data provide new molecular insight into how Ca2+ is handled by acidic organelles and link this to migration, thereby underscoring the role of noncanonical Ca2+ stores in the control of Ca2+-dependent function.
Collapse
Affiliation(s)
- Manuela Melchionda
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Jon K Pittman
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| |
Collapse
|
21
|
Zhang L, Hao J, Bao M, Hasi A, Niu Y. Cloning and characterization of a Ca(2+)/H(+) exchanger from the halophyte Salicornia europaea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:321-328. [PMID: 26332662 DOI: 10.1016/j.plaphy.2015.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 06/05/2023]
Abstract
The calcium ion (Ca(2+)), which functions as a second messenger, plays an important role in plants' responses to various abiotic stresses, and Ca(2+)/H(+) exchangers (CAXs) are an important part of this process. In this study, we isolated and characterized a putative Ca(2+)/H(+) exchanger gene (SeCAX3) from Salicornia europaea L., a succulent, leafless euhalophyte. The SeCAX3 open reading frame was 1368 bp long and encoded a 455-amino-acid polypeptide that showed 67.9% similarity to AtCAX3. SeCAX3 was expressed in the shoots and roots of S. europaea. Expression of SeCAX3 was up-regulated by Ca(2+), Na(+), sorbitol, Li(+), abscisic acid, and cold treatments in shoots, but down-regulated by Ca(2+), sorbitol, abscisic acid, and cold treatments in roots. When SeCAX3 was transformed into a Ca-sensitive yeast strain, the transformed cells were able to grow in the presence of 200 mM Ca(2+). Furthermore, SeCAX3 conferred drought, salt, and cold tolerance in yeast. Compared with the control strains, the yeast transformants expressing SeCAX3 were able to grow well in the presence of 30 mM Li(+), 150 mM Mg(2+), or 6 mM Ba(2+). These results showed that the expression of SeCAX3 in yeast suppressed its Ca(2+) hypersensitivity and conferred tolerance to Mg(2+) and Ba(2+). Together, these findings suggest that SeCAX3 might be a Ca(2+) transporter that plays a role in regulating cation tolerance and the responses of S. europaea to various abiotic stresses.
Collapse
Affiliation(s)
- Liquan Zhang
- Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010021, PR China
| | - Jinfeng Hao
- Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010021, PR China
| | - Mulan Bao
- Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010021, PR China
| | - Agula Hasi
- Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010021, PR China
| | - Yiding Niu
- Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
22
|
Tenge VR, Zuehlke AD, Shrestha N, Johnson JL. The Hsp90 cochaperones Cpr6, Cpr7, and Cns1 interact with the intact ribosome. EUKARYOTIC CELL 2015; 14:55-63. [PMID: 25380751 PMCID: PMC4279014 DOI: 10.1128/ec.00170-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/05/2014] [Indexed: 01/02/2023]
Abstract
The abundant molecular chaperone Hsp90 is essential for the folding and stabilization of hundreds of distinct client proteins. Hsp90 is assisted by multiple cochaperones that modulate Hsp90's ATPase activity and/or promote client interaction, but the in vivo functions of many of these cochaperones are largely unknown. We found that Cpr6, Cpr7, and Cns1 interact with the intact ribosome and that Saccharomyces cerevisiae lacking CPR7 or containing mutations in CNS1 exhibited sensitivity to the translation inhibitor hygromycin. Cpr6 contains a peptidyl-prolyl isomerase (PPIase) domain and a tetratricopeptide repeat (TPR) domain flanked by charged regions. Truncation or alteration of basic residues near the carboxy terminus of Cpr6 disrupted ribosome interaction. Cns1 contains an amino-terminal TPR domain and a poorly characterized carboxy-terminal domain. The isolated carboxy-terminal domain was able to interact with the ribosome. Although loss of CPR6 does not cause noticeable growth defects, overexpression of CPR6 results in enhanced growth defects in cells expressing the temperature-sensitive cns1-G90D mutation (the G-to-D change at position 90 encoded by cns1). Cpr6 mutants that exhibit reduced ribosome interaction failed to cause growth defects, indicating that ribosome interaction is required for in vivo functions of Cpr6. Together, these results represent a novel link between the Hsp90 molecular-chaperone machine and protein synthesis.
Collapse
Affiliation(s)
- Victoria R Tenge
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Abbey D Zuehlke
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Neelima Shrestha
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jill L Johnson
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
23
|
Abstract
Hsp90 is a conserved molecular chaperone and is responsible for the folding and activation of several hundred client proteins, involved in various cellular processes. The large number and the diversity of these client proteins demand a high adaptiveness of Hsp90 towards the need of the individual client. This adaptiveness is amongst others mediated by more than 20 so-called cochaperones that differ in their actions towards Hsp90. Some of these cochaperones are able to modulate the ATPase activity of Hsp90 and/or its client protein binding, folding and activation. p23 and Aha1 are two prominent examples with opposing effects on the ATPase activity of Hsp90. p23 is able to inhibit the ATP turnover while Aha1 is the strongest known activator of the ATPase activity of Hsp90. Even though both cochaperones are conserved from yeast to man and have been studied for years, some Hsp90-related as well as Hsp90-independent functions are still enigmatic and under current investigation. In this chapter, we first introduce the ATPase cycle of Hsp90 and then focus on the two cochaperones integrating them in the Hsp90 cycle.
Collapse
|
24
|
Synoradzki K, Bieganowski P. Middle domain of human Hsp90 isoforms differentially binds Aha1 in human cells and alters Hsp90 activity in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:445-52. [PMID: 25486457 DOI: 10.1016/j.bbamcr.2014.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 11/28/2022]
Abstract
Hsp90 is an essential chaperone for more than 200 client proteins in eukaryotic cells. The human genome encodes two highly similar cytosolic Hsp90 proteins called Hsp90α and Hsp90β. Most of the client proteins can interact with either Hsp90 protein; however, only a handful client proteins and one co-chaperone that interact specifically with one of the Hsp90 isoforms were identified. Structural differences underlying these isoform-specific interactions were not studied. Here we report for the first time that the Hsp90 co-chaperone Aha1 interacts preferentially with Hsp90α. The distinction depends on the middle domain of Hsp90. The middle domain of Hsp90α is also responsible for the slow growth phenotype of yeasts that express this isoform as a sole source of Hsp90. These results suggest that differences in the middle domain of Hsp90α and Hsp90β may be responsible for the isoform-specific interactions with selected proteins. Also shown here within, we determine that preferential chaperoning of cIAP1 by Hsp90β is mediated by the N-terminal domain of this isoform.
Collapse
Affiliation(s)
- Kamil Synoradzki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., Warsaw 02-106, Poland
| | - Pawel Bieganowski
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego St., Warsaw 02-106, Poland.
| |
Collapse
|
25
|
Horvat NK, Armstrong H, Lee BL, Mercier R, Wolmarans A, Knowles J, Spyracopoulos L, LaPointe P. A mutation in the catalytic loop of Hsp90 specifically impairs ATPase stimulation by Aha1p, but not Hch1p. J Mol Biol 2014; 426:2379-92. [PMID: 24726918 DOI: 10.1016/j.jmb.2014.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/17/2014] [Accepted: 04/02/2014] [Indexed: 12/12/2022]
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that plays a central role in maintaining cellular homeostasis by facilitating activation of a large number of client proteins. ATP-dependent client activation by Hsp90 is tightly regulated by a host of co-chaperone proteins that control progression through the activation cycle. ATPase stimulation of Hsp90 by Aha1p requires a conserved RKxK motif that interacts with the catalytic loop of Hsp90. In this study, we explore the role of this RKxK motif in the biological and biochemical properties of Hch1p. We found that this motif is required for Hch1p-mediated ATPase stimulation in vitro, but mutations that block stimulation do not impair the action of Hch1p in vivo. This suggests that the biological function of Hch1p is not directly linked to ATPase stimulation. Moreover, a mutation in the catalytic loop of Hsp90 specifically impairs ATPase stimulation by Aha1p but not by Hch1p. Our work here suggests that both Hch1p and Aha1p regulate Hsp90 function through interaction with the catalytic loop but do so in different ways.
Collapse
Affiliation(s)
- Natalie K Horvat
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Heather Armstrong
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Brian L Lee
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Annemarie Wolmarans
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Jacob Knowles
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Leo Spyracopoulos
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| |
Collapse
|
26
|
Leach MD, Klipp E, Cowen LE, Brown AJP. Fungal Hsp90: a biological transistor that tunes cellular outputs to thermal inputs. Nat Rev Microbiol 2012; 10:693-704. [PMID: 22976491 DOI: 10.1038/nrmicro2875] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heat shock protein 90 (HSP90) is an essential, abundant and ubiquitous eukaryotic chaperone that has crucial roles in protein folding and modulates the activities of key regulators. The fungal Hsp90 interactome, which includes numerous client proteins such as receptors, protein kinases and transcription factors, displays a surprisingly high degree of plasticity that depends on environmental conditions. Furthermore, although fungal Hsp90 levels increase following environmental challenges, Hsp90 activity is tightly controlled via post-translational regulation and an autoregulatory loop involving heat shock transcription factor 1 (Hsf1). In this Review, we discuss the roles and regulation of fungal Hsp90. We propose that Hsp90 acts as a biological transistor that modulates the activity of fungal signalling networks in response to environmental cues via this Hsf1-Hsp90 autoregulatory loop.
Collapse
Affiliation(s)
- Michelle D Leach
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
27
|
Armstrong H, Wolmarans A, Mercier R, Mai B, LaPointe P. The co-chaperone Hch1 regulates Hsp90 function differently than its homologue Aha1 and confers sensitivity to yeast to the Hsp90 inhibitor NVP-AUY922. PLoS One 2012; 7:e49322. [PMID: 23166640 PMCID: PMC3498168 DOI: 10.1371/journal.pone.0049322] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/10/2012] [Indexed: 12/23/2022] Open
Abstract
Hsp90 is a dimeric ATPase responsible for the activation or maturation of a specific set of substrate proteins termed 'clients'. This molecular chaperone acts in the context of a structurally dynamic and highly regulated cycle involving ATP, co-chaperone proteins and clients. Co-chaperone proteins regulate conformational transitions that may be impaired in mutant forms of Hsp90. We report here that the in vivo impairment of commonly studied Hsp90 variants harbouring the G313S or A587T mutation are exacerbated by the co-chaperone Hch1p. Deletion of HCH1, but not AHA1, mitigates the temperature sensitive phenotype and high sensitivity to Hsp90 inhibitor drugs observed in Saccharomyces cerevisiae that express either of these two Hsp90 variants. Moreover, the deletion of HCH1 results in high resistance to Hsp90 inhibitors in yeast that express wildtype Hsp90. Conversely, the overexpression of Hch1p greatly increases sensitivity to Hsp90 inhibition in yeast expressing wildtype Hsp90. We conclude that despite the similarity between these two co-chaperones, Hch1p and Aha1p regulate Hsp90 function in distinct ways and likely independent of their roles as ATPase stimulators. We further conclude that Hch1p plays a critical role in regulating Hsp90 inhibitor drug sensitivity in yeast.
Collapse
Affiliation(s)
- Heather Armstrong
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Annemarie Wolmarans
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - BaoChan Mai
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
28
|
Characterization of the interaction of Aha1 with components of the Hsp90 chaperone machine and client proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1092-101. [DOI: 10.1016/j.bbamcr.2012.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/19/2012] [Accepted: 03/26/2012] [Indexed: 01/30/2023]
|
29
|
Samant RS, Clarke PA, Workman P. The expanding proteome of the molecular chaperone HSP90. Cell Cycle 2012; 11:1301-8. [PMID: 22421145 DOI: 10.4161/cc.19722] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The molecular chaperone HSP90 maintains the activity and stability of a diverse set of "client" proteins that play key roles in normal and disease biology. Around 20 HSP90 inhibitors that deplete the oncogenic clientele have entered clinical trials for cancer. However, the full extent of the HSP90-dependent proteome, which encompasses not only clients but also proteins modulated by downstream transcriptional responses, is still incompletely characterized and poorly understood. Earlier large-scale efforts to define the HSP90 proteome have been valuable but are incomplete because of limited technical sensitivity. Here we discuss previous large-scale surveys of proteome perturbations induced by HSP90 inhibitors in light of a significant new study using state-of-the-art SILAC technology combined with more sensitive high-resolution mass spectrometry (MS) that extends the catalog of proteomic changes in inhibitor-treated cancer cells. Among wide-ranging changes, major functional responses include downregulation of protein kinase activity and the DNA damage response alongside upregulation of the protein degradation machinery. Despite this improved proteomic coverage, there was surprisingly little overlap with previous studies. This may be due in part to technical issues but is likely also due to the variability of the HSP90 proteome with the inhibitor conditions used, the cancer cell type and the genetic status of client proteins. We suggest future proteomic studies to address these factors, to help distinguish client protein components from indirect transcriptional components and to address other key questions in fundamental and translational HSP90 research. Such studies should also reveal new biomarkers for patient selection and novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rahul S Samant
- Signal Transduction and Molecular Pharmacology Team, Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, Haddow Laboratories, Sutton, Surrey, UK
| | | | | |
Collapse
|
30
|
Abstract
Hsp90 is a highly abundant and ubiquitous molecular chaperone which plays an essential role in many cellular processes including cell cycle control, cell survival, hormone and other signalling pathways. It is important for the cell's response to stress and is a key player in maintaining cellular homeostasis. In the last ten years, it has become a major therapeutic target for cancer, and there has also been increasing interest in it as a therapeutic target in neurodegenerative disorders, and in the development of anti-virals and anti-protozoan infections. The focus of this review is the structural and mechanistic studies which have been performed in order to understand how this important chaperone acts on a wide variety of different proteins (its client proteins) and cellular processes. As with many of the other classes of molecular chaperone, Hsp90 has a critical ATPase activity, and ATP binding and hydrolysis known to modulate the conformational dynamics of the protein. It also uses a host of cochaperones which not only regulate the ATPase activity and conformational dynamics but which also mediate interactions with Hsp90 client proteins. The system is also regulated by post-translational modifications including phosphorylation and acetylation. This review discusses all these aspects of Hsp90 structure and function.
Collapse
|
31
|
Franzosa EA, Albanèse V, Frydman J, Xia Y, McClellan AJ. Heterozygous yeast deletion collection screens reveal essential targets of Hsp90. PLoS One 2011; 6:e28211. [PMID: 22140548 PMCID: PMC3227642 DOI: 10.1371/journal.pone.0028211] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/03/2011] [Indexed: 02/01/2023] Open
Abstract
Hsp90 is an essential eukaryotic chaperone with a role in folding specific “client” proteins such as kinases and hormone receptors. Previously performed homozygous diploid yeast deletion collection screens uncovered broad requirements for Hsp90 in cellular transport and cell cycle progression. These screens also revealed that the requisite cellular functions of Hsp90 change with growth temperature. We present here for the first time the results of heterozygous deletion collection screens conducted at the hypothermic stress temperature of 15°C. Extensive bioinformatic analyses were performed on the resulting data in combination with data from homozygous and heterozygous screens previously conducted at normal (30°C) and hyperthermic stress (37°C) growth temperatures. Our resulting meta-analysis uncovered extensive connections between Hsp90 and (1) general transcription, (2) ribosome biogenesis and (3) GTP binding proteins. Predictions from bioinformatic analyses were tested experimentally, supporting a role for Hsp90 in ribosome stability. Importantly, the integrated analysis of the 15°C heterozygous deletion pool screen with previously conducted 30°C and 37°C screens allows for essential genetic targets of Hsp90 to emerge. Altogether, these novel contributions enable a more complete picture of essential Hsp90 functions.
Collapse
Affiliation(s)
- Eric A. Franzosa
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Véronique Albanèse
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Yu Xia
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Chemistry, Boston University, Boston, Massachusetts, United States of America
| | - Amie J. McClellan
- Division of Natural Sciences and Mathematics, Bennington College, Bennington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
32
|
Chua CS, Low H, Lehming N, Sim TS. Molecular analysis of Plasmodium falciparum co-chaperone Aha1 supports its interaction with and regulation of Hsp90 in the malaria parasite. Int J Biochem Cell Biol 2011; 44:233-45. [PMID: 22100910 DOI: 10.1016/j.biocel.2011.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/14/2011] [Accepted: 10/25/2011] [Indexed: 11/24/2022]
Abstract
The recent recognition of Plasmodium falciparum Hsp90 (PfHsp90) as a promising anti-malaria drug target has sparked interest in identifying factors that regulate its function and drug-interaction. Co-chaperones are well-known regulators of Hsp90's chaperone function, and certain members have been implicated in conferring protection against lethal cellular effects of Hsp90-specific inhibitors. In this context, studies on PfHsp90's co-chaperones are imperative to gain insight into the regulation of the chaperone in the malaria parasite. In this study, a putative co-chaperone P. falciparum Aha1 (PfAha1) was identified and investigated for its interaction and regulation of PfHsp90. A previous genome-wide yeast two-hybrid study failed to identify PfAha1's association with PfHsp90, which prompted us to use a directed assay to investigate their interaction. PfAha1 was shown to interact with PfHsp90 via the in vivo split-ubiquitin assay and the association was confirmed in vitro by GST pull-down experiments. The GST pull-down assay further revealed PfAha1's interaction with PfHsp90 to be dependent on MgCl(2) and ATP, and was competed by co-chaperone Pfp23 that binds PfHsp90 under the same condition. In addition, the PfHsp90-PfAha1 complex was found to be sensitive to disruption by high salt, indicating a polar interaction between them. Using bio-computational modelling coupled with site-directed mutagenesis, the polar residue N108 in PfAha1 was found to be strategically located and essential for PfHsp90 interaction. The functional significance of PfAha1's interaction was clearly that of exerting a stimulatory effect on the ATPase activity of PfHsp90, likely to be essential for promoting the activation of PfHsp90's client proteins.
Collapse
Affiliation(s)
- Chun Song Chua
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
33
|
Hartson SD, Matts RL. Approaches for defining the Hsp90-dependent proteome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:656-67. [PMID: 21906632 DOI: 10.1016/j.bbamcr.2011.08.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 10/17/2022]
Abstract
Hsp90 is the target of ongoing drug discovery studies seeking new compounds to treat cancer, neurodegenerative diseases, and protein folding disorders. To better understand Hsp90's roles in cellular pathologies and in normal cells, numerous studies have utilized proteomics assays and related high-throughput tools to characterize its physical and functional protein partnerships. This review surveys these studies, and summarizes the strengths and limitations of the individual attacks. We also include downloadable spreadsheets compiling all of the Hsp90-interacting proteins identified in more than 23 studies. These tools include cross-references among gene aliases, human homologues of yeast Hsp90-interacting proteins, hyperlinks to database entries, summaries of canonical pathways that are enriched in the Hsp90 interactome, and additional bioinformatic annotations. In addition to summarizing Hsp90 proteomics studies performed to date and the insights they have provided, we identify gaps in our current understanding of Hsp90-mediated proteostasis. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Steven D Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | | |
Collapse
|
34
|
Manohar M, Shigaki T, Mei H, Park S, Marshall J, Aguilar J, Hirschi KD. Characterization of Arabidopsis Ca2+/H+ exchanger CAX3. Biochemistry 2011; 50:6189-95. [PMID: 21657244 DOI: 10.1021/bi2003839] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plant calcium (Ca(2+)) gradients, millimolar levels in the vacuole and micromolar levels in the cytoplasm, are regulated in part by high-capacity vacuolar cation/H(+) exchangers (CAXs). Several CAX transporters, including CAX1, appear to contain an approximately 40-amino acid N-terminal regulatory region (NRR) that modulates transport through N-terminal autoinhibition. Deletion of the NRR from several CAXs (sCAX) enhances function in plant and yeast expression assays; however, to date, there are no functional assays for CAX3 (or sCAX3), which is 77% identical and 91% similar in sequence to CAX1. In this report, we create a series of truncations in the CAX3 NRR and demonstrate activation of CAX3 in both yeast and plants by truncating a large portion (up to 90 amino acids) of the NRR. Experiments with endomembrane-enriched vesicles isolated from yeast expressing activated CAX3 demonstrate that the gene encodes Ca(2+)/H(+) exchange with properties distinct from those of CAX1. The phenotypes produced by activated CAX3-expressing in transgenic tobacco lines are also distinct from those produced by sCAX1-expressing plants. These studies demonstrate shared and unique aspects of CAX1 and CAX3 transport and regulation.
Collapse
Affiliation(s)
- Murli Manohar
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Street, Houston, Texas 77030, United States
| | | | | | | | | | | | | |
Collapse
|
35
|
Cheng NH, Zhang W, Chen WQ, Jin J, Cui X, Butte NF, Chan L, Hirschi KD. A mammalian monothiol glutaredoxin, Grx3, is critical for cell cycle progression during embryogenesis. FEBS J 2011; 278:2525-2539. [PMID: 21575136 DOI: 10.1111/j.1742-4658.2011.08178.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glutaredoxins (Grxs) have been shown to be critical in maintaining redox homeostasis in living cells. Recently, an emerging subgroup of Grxs with one cysteine residue in the putative active motif (monothiol Grxs) has been identified. However, the biological and physiological functions of this group of proteins have not been well characterized. Here, we characterize a mammalian monothiol Grx (Grx3, also termed TXNL2/PICOT) with high similarity to yeast ScGrx3/ScGrx4. In yeast expression assays, mammalian Grx3s were localized to the nuclei and able to rescue growth defects of grx3grx4 cells. Furthermore, Grx3 inhibited iron accumulation in yeast grx3gxr4 cells and suppressed the sensitivity of mutant cells to exogenous oxidants. In mice, Grx3 mRNA was ubiquitously expressed in developing embryos, adult tissues and organs, and was induced during oxidative stress. Mouse embryos absent of Grx3 grew smaller with morphological defects and eventually died at 12.5 days of gestation. Analysis in mouse embryonic fibroblasts revealed that Grx3(-/-) cells had impaired growth and cell cycle progression at the G(2) /M phase, whereas the DNA replication during the S phase was not affected by Grx3 deletion. Furthermore, Grx3-knockdown HeLa cells displayed a significant delay in mitotic exit and had a higher percentage of binucleated cells. Therefore, our findings suggest that the mammalian Grx3 has conserved functions in protecting cells against oxidative stress and deletion of Grx3 in mice causes early embryonic lethality which could be due to defective cell cycle progression during late mitosis.
Collapse
Affiliation(s)
- Ning-Hui Cheng
- United States Department of Agriculture / Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Wei Zhang
- Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Wei-Qin Chen
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jianping Jin
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xiaojiang Cui
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, CA, USA
| | - Nancy F Butte
- United States Department of Agriculture / Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Lawrence Chan
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Kendal D Hirschi
- United States Department of Agriculture / Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
36
|
Shigaki T, Mei H, Marshall J, Li X, Manohar M, Hirschi KD. The expression of the open reading frame of Arabidopsis CAX1, but not its cDNA, confers metal tolerance in yeast. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:935-9. [PMID: 21061745 DOI: 10.1111/j.1438-8677.2010.00368.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The biochemical properties and regulation of several plant CAX (CAtion eXchanger)-type vacuolar Ca2+/H+ exchangers have been extensively analysed in yeast expression assays. In the present study, we compare and contrast the phenotypes of yeast cells expressing the CAX1 cDNA and open reading frame (ORF). We report that the CAX1 ORF, but not the cDNA containing the 3′-untranslated region (UTR), was able to confer Ca2+ tolerance when expressed in a Ca2+-sensitive yeast mutant. Additionally, only yeasts expressing the N-terminal truncated CAX1 ORF were able to grow on high Mn2+ media, suggesting that removal of the 3′-UTR altered activity. However, removal of the 3′-UTR from another CAX did not alter the yeast phenotypes. Expression studies demonstrated that expressing the CAX1 ORF in yeast elevates CAX1 RNA and protein levels. Our results suggest that the 3′-UTR modulates expression of CAX1 in yeast.
Collapse
Affiliation(s)
- T Shigaki
- United States Department of Agriculture ⁄Agricultural Research Service Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Manohar M, Mei H, Franklin AJ, Sweet EM, Shigaki T, Riley BB, MacDiarmid CW, Hirschi K. Zebrafish (Danio rerio) Endomembrane Antiporter Similar to a Yeast Cation/H+ Transporter Is Required for Neural Crest Development. Biochemistry 2010; 49:6557-66. [DOI: 10.1021/bi100362k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Murli Manohar
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77845
- United States Department of Agriculture/Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Hui Mei
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77845
| | - Andrew J. Franklin
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Elly M. Sweet
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Toshiro Shigaki
- United States Department of Agriculture/Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Bruce B. Riley
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Colin W. MacDiarmid
- Department of Nutritional Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53562
| | - Kendal Hirschi
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77845
- United States Department of Agriculture/Agricultural Research Service, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
38
|
Retzlaff M, Hagn F, Mitschke L, Hessling M, Gugel F, Kessler H, Richter K, Buchner J. Asymmetric activation of the hsp90 dimer by its cochaperone aha1. Mol Cell 2010; 37:344-54. [PMID: 20159554 DOI: 10.1016/j.molcel.2010.01.006] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 08/14/2009] [Accepted: 12/07/2009] [Indexed: 01/01/2023]
Abstract
The chaperone Hsp90 is an ATP-dependent, dimeric molecular machine regulated by several cochaperones, including inhibitors and the unique ATPase activator Aha1. Here, we analyzed the mechanism of the Aha1-mediated acceleration of Hsp90 ATPase activity and identified the interaction surfaces of both proteins using multidimensional NMR techniques. For maximum activation of Hsp90, the two domains of Aha1 bind to sites in the middle and N-terminal domains of Hsp90 in a sequential manner. This binding induces the kinetically unfavored N terminally dimerized state of Hsp90, which primes for the hydrolysis-competent conformation. Surprisingly, this activation mechanism is asymmetric. The presence of one Aha1 molecule per Hsp90 dimer is sufficient to bridge the two subunits and to fully stimulate Hsp90 ATPase activity. This seems to functionalize the two subunits of the Hsp90 dimer in different ways, in that one subunit can be used for conformational ATPase regulation and the other for substrate protein processing.
Collapse
Affiliation(s)
- Marco Retzlaff
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, D-85747 Garching, Germany
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ran F, Gadura N, Michels CA. Hsp90 cochaperone Aha1 is a negative regulator of the Saccharomyces MAL activator and acts early in the chaperone activation pathway. J Biol Chem 2010; 285:13850-62. [PMID: 20177068 DOI: 10.1074/jbc.m109.040600] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aha1 is a ubiquitous cochaperone of the Hsp90/Hsp70 chaperone machine. It binds the middle domain of Hsp90 and stimulates ATPase activity, suggesting a function late in the chaperone pathway. Saccharomyces Mal63 MAL activator is a DNA-binding transcription factor and Hsp90 client protein. This study utilizes several MAL activator mutants to investigate Aha1 function in vivo. Deletion of AHA1 enhances induced Mal63-dependent maltase activity levels 2-fold, whereas overproduction of Aha1 represses expression. Maltase expression in strains carrying constitutive and super-inducible mutant activators with alterations near the C terminus (particularly residues 433-463) is unaffected by either aha1Delta or Aha1 overproduction. However, another constitutive activator with alterations outside of this C-terminal region is sensitive to Aha1 regulation. Previously, we showed that in the absence of inducer, Mal63 forms a stable intermediate complex with Hsp70, Hsp90, and Sti1, whereas noninducible mutant activators bind only with Hsp70 in an apparent early complex. Here, we find that triple Myc-tagged Aha1/Myc3 copurifies with all noninducible Mal63 mutant activators tested. Aha1/Myc3 association with inducible Mal63 is observed only in a sti1Delta strain, in which Hsp90 binding and intermediate complex formation are defective. Constitutive and super-inducible mutant activators with C-terminal alterations do not bind Aha1 even in a sti1Delta strain. Mal63 binding to Hsp90 and Hsp70 is enhanced 3-fold by loss of Aha1. These results suggest an interaction between Aha1 and residues near the C terminus of Mal63 thereby regulating Hsp90 association. A novel mechanism for the negative regulation of the MAL activator by Aha1 cochaperone is proposed.
Collapse
Affiliation(s)
- Fulai Ran
- Biology Department, Queens College-City University of New York, Flushing, New York 11367, USA
| | | | | |
Collapse
|
40
|
Zhao J, Connorton JM, Guo Y, Li X, Shigaki T, Hirschi KD, Pittman JK. Functional studies of split Arabidopsis Ca2+/H+ exchangers. J Biol Chem 2009; 284:34075-83. [PMID: 19819871 PMCID: PMC2797178 DOI: 10.1074/jbc.m109.070235] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Indexed: 11/06/2022] Open
Abstract
In plants, high capacity tonoplast cation/H(+) antiport is mediated in part by a family of cation exchanger (CAX) transporters. Functional association between CAX1 and CAX3 has previously been shown. In this study we further examine the interactions between CAX protein domains through the use of nonfunctional halves of CAX transporters. We demonstrate that a protein coding for an N-terminal half of an activated variant of CAX1 (sCAX1) can associate with the C-terminal half of either CAX1 or CAX3 to form a functional transporter that may exhibit unique transport properties. Using yeast split ubiquitin, in planta bimolecular fluorescence complementation, and gel shift experiments, we demonstrate a physical interaction among the half proteins. Moreover, the half-proteins both independently localized to the same yeast endomembrane. Co-expressing variants of N- and C-terminal halves of CAX1 and CAX3 in yeast suggested that the N-terminal region mediates Ca(2+) transport, whereas the C-terminal half defines salt tolerance phenotypes. Furthermore, in yeast assays, auto-inhibited CAX1 could be differentially activated by CAX split proteins. The N-terminal half of CAX1 when co-expressed with CAX1 activated Ca(2+) transport, whereas co-expressing C-terminal halves of CAX variants with CAX1 conferred salt tolerance but no apparent Ca(2+) transport. These findings demonstrate plasticity through hetero-CAX complex formation as well as a novel means to engineer CAX transport.
Collapse
Affiliation(s)
- Jian Zhao
- From the United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030-2600
| | - James M. Connorton
- the Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom, and
| | - YingQing Guo
- From the United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030-2600
| | - Xiangkai Li
- From the United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030-2600
| | - Toshiro Shigaki
- From the United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030-2600
| | - Kendal D. Hirschi
- From the United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030-2600
- the Vegetable and Fruit Improvement Center, Texas A & M University, College Station, Texas 77845
| | - Jon K. Pittman
- the Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom, and
| |
Collapse
|
41
|
Johnson JL, Brown C. Plasticity of the Hsp90 chaperone machine in divergent eukaryotic organisms. Cell Stress Chaperones 2009; 14:83-94. [PMID: 18636345 PMCID: PMC2673905 DOI: 10.1007/s12192-008-0058-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 12/29/2022] Open
Abstract
Hsp90 is critical for the regulation and activation of numerous client proteins critical for diverse functions such as cell growth, differentiation, and reproduction. Cytosolic Hsp90 function is dependent on a battery of co-chaperone proteins that regulate the ATPase activity of Hsp90 function or direct Hsp90 to interact with specific client proteins. Little is known about how Hsp90 complexes vary between different organisms and how this affects the scope of clients that are activated by Hsp90. This study determined whether ten distinct Hsp90 co-chaperones were encoded by genes in 19 disparate eukaryotic organisms. Surprisingly, none of the co-chaperones were present in all organisms. The co-chaperone Hop/Sti1 was most widely dispersed (18 out of 19 species), while orthologs of Cdc37, which is critical for the stability and activation of diverse protein kinases in yeast and mammals, were identified in only nine out of 19 species examined. The organism with the smallest proteome, Encephalitozoon cuniculi, contained only three of these co-chaperones, suggesting a correlation between client diversity and the complexity of the Hsp90 co-chaperone machine. Our results suggest co-chaperones are critical for cytosolic Hsp90 function in vivo, but that the composition of Hsp90 complexes varies depending on the specialized protein folding requirements of divergent species.
Collapse
Affiliation(s)
- Jill L Johnson
- Department of Microbiology, Molecular Biology and Biochemistry and the Center for Reproductive Biology, Moscow, ID 83844-3052, USA.
| | | |
Collapse
|
42
|
Morris J, Tian H, Park S, Sreevidya CS, Ward JM, Hirschi KD. AtCCX3 is an Arabidopsis endomembrane H+ -dependent K+ transporter. PLANT PHYSIOLOGY 2008; 148:1474-86. [PMID: 18775974 PMCID: PMC2577254 DOI: 10.1104/pp.108.118810] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 08/30/2008] [Indexed: 05/18/2023]
Abstract
The Arabidopsis (Arabidopsis thaliana) cation calcium exchangers (CCXs) were recently identified as a subfamily of cation transporters; however, no plant CCXs have been functionally characterized. Here, we show that Arabidopsis AtCCX3 (At3g14070) and AtCCX4 (At1g54115) can suppress yeast mutants defective in Na(+), K(+), and Mn(2+) transport. We also report high-capacity uptake of (86)Rb(+) in tonoplast-enriched vesicles from yeast expressing AtCCX3. Cation competition studies showed inhibition of (86)Rb(+) uptake in AtCCX3 cells by excess Na(+), K(+), and Mn(2+). Functional epitope-tagged AtCCX3 fusion proteins were localized to endomembranes in plants and yeast. In Arabidopsis, AtCCX3 is primarily expressed in flowers, while AtCCX4 is expressed throughout the plant. Quantitative polymerase chain reaction showed that expression of AtCCX3 increased in plants treated with NaCl, KCl, and MnCl(2). Insertional mutant lines of AtCCX3 and AtCCX4 displayed no apparent growth defects; however, overexpression of AtCCX3 caused increased Na(+) accumulation and increased (86)Rb(+) transport. Uptake of (86)Rb(+) increased in tonoplast-enriched membranes isolated from Arabidopsis lines expressing CCX3 driven by the cauliflower mosaic virus 35S promoter. Overexpression of AtCCX3 in tobacco (Nicotiana tabacum) produced lesions in the leaves, stunted growth, and resulted in the accumulation of higher levels of numerous cations. In summary, these findings suggest that AtCCX3 is an endomembrane-localized H(+)-dependent K(+) transporter with apparent Na(+) and Mn(2+) transport properties distinct from those of previously characterized plant transporters.
Collapse
Affiliation(s)
- Jay Morris
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77845, USA
| | | | | | | | | | | |
Collapse
|
43
|
Chen LS, Emmert-Streib F, Storey JD. Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biol 2008; 8:R219. [PMID: 17931418 PMCID: PMC2246293 DOI: 10.1186/gb-2007-8-10-r219] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 07/24/2007] [Accepted: 10/11/2007] [Indexed: 11/25/2022] Open
Abstract
An approach is developed that utilizes randomized genotypes to rigorously infer causal regulatory relationships among genes at the transcriptional level. The approach is applied to an experiment in yeast, yielding new insights into the topology of the yeast transcriptional regulatory network. We develop an approach utilizing randomized genotypes to rigorously infer causal regulatory relationships among genes at the transcriptional level, based on experiments in which genotyping and expression profiling are performed. This approach can be used to build transcriptional regulatory networks and to identify putative regulators of genes. We apply the method to an experiment in yeast, in which genes known to be in the same processes and functions are recovered in the resulting transcriptional regulatory network.
Collapse
Affiliation(s)
- Lin S Chen
- Department of Biostatistics, University of Washington, 1705 NE Pacific St, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
44
|
Te J, Jia L, Rogers J, Miller A, Hartson SD. Novel subunits of the mammalian Hsp90 signal transduction chaperone. J Proteome Res 2007; 6:1963-73. [PMID: 17348703 DOI: 10.1021/pr060595i] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As one of the major cellular chaperones, Hsp90 plays diverse roles in supporting and regulating wild-type and oncogenic signal transduction proteins. Hsp90 function itself is regulated by its various nonsubstrate subunits. To define Hsp90's predominant in vivo functions and the mechanisms for regulating this function, the human Hsp90 interactome was characterized using gel-based proteomics techniques. Results show that Hsp90's most prominent association is its previously described interaction with Hsp70, a primary chaperone capable of recognizing and binding hydrophobic peptide segments. Additionally, novel human proteins discovered in this study reveal that several newly described Hsp90 associations in yeast are conserved in the human cytoplasm. Additionally, other new Hsp90 subunits imply that a great deal of Hsp90 function may be directed to the assembly, regulation, or exploitation of the tubulin-based cytoskeleton network, particularly the mitotic spindle.
Collapse
Affiliation(s)
- Jeannie Te
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078-3035, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone essential for activating many signaling proteins in the eukaryotic cell. Biochemical and structural analysis of Hsp90 has revealed a complex mechanism of ATPase-coupled conformational changes and interactions with cochaperone proteins, which facilitate activation of Hsp90's diverse "clientele." Despite recent progress, key aspects of the ATPase-coupled mechanism of Hsp90 remain controversial, and the nature of the changes, engendered by Hsp90 in client proteins, is largely unknown. Here, we discuss present knowledge of Hsp90 structure and function gleaned from crystallographic studies of individual domains and recent progress in obtaining a structure for the ATP-bound conformation of the intact dimeric chaperone. Additionally, we describe the roles of the plethora of cochaperones with which Hsp90 cooperates and growing insights into their biochemical mechanisms, which come from crystal structures of Hsp90 cochaperone complexes.
Collapse
Affiliation(s)
- Laurence H Pearl
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, London SW3 6JB, United Kingdom.
| | | |
Collapse
|
46
|
Cheng NH, Liu JZ, Brock A, Nelson RS, Hirschi KD. AtGRXcp, an Arabidopsis chloroplastic glutaredoxin, is critical for protection against protein oxidative damage. J Biol Chem 2006; 281:26280-8. [PMID: 16829529 DOI: 10.1074/jbc.m601354200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaredoxins (Grxs) are ubiquitous small heat-stable disulfide oxidoreductases and members of the thioredoxin (Trx) fold protein family. In bacterial, yeast, and mammalian cells, Grxs appear to be involved in maintaining cellular redox homeostasis. However, in plants, the physiological roles of Grxs have not been fully characterized. Recently, an emerging subgroup of Grxs with one cysteine residue in the putative active motif (monothiol Grxs) has been identified but not well characterized. Here we demonstrate that a plant protein, AtGRXcp, is a chloroplast-localized monothiol Grx with high similarity to yeast Grx5. In yeast expression assays, AtGRXcp localized to the mitochondria and suppressed the sensitivity of yeast grx5 cells to H2O2 and protein oxidation. AtGRXcp expression can also suppress iron accumulation and partially rescue the lysine auxotrophy of yeast grx5 cells. Analysis of the conserved monothiol motif suggests that the cysteine residue affects AtGRXcp expression and stability. In planta, AtGRXcp expression was elevated in young cotyledons, green tissues, and vascular bundles. Analysis of atgrxcp plants demonstrated defects in early seedling growth under oxidative stresses. In addition, atgrxcp lines displayed increased protein carbonylation within chloroplasts. Thus, this work describes the initial functional characterization of a plant monothiol Grx and suggests a conserved biological function in protecting cells against protein oxidative damage.
Collapse
Affiliation(s)
- Ning-Hui Cheng
- Plant Physiology Group, United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | |
Collapse
|
47
|
Howes R, Barril X, Dymock BW, Grant K, Northfield CJ, Robertson AGS, Surgenor A, Wayne J, Wright L, James K, Matthews T, Cheung KM, McDonald E, Workman P, Drysdale MJ. A fluorescence polarization assay for inhibitors of Hsp90. Anal Biochem 2006; 350:202-13. [PMID: 16460658 DOI: 10.1016/j.ab.2005.12.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 12/12/2005] [Accepted: 12/16/2005] [Indexed: 11/19/2022]
Abstract
Hsp90 encodes a ubiquitous molecular chaperone protein conserved among species which acts on multiple substrates, many of which are important cell-signaling proteins. Inhibition of Hsp90 function has been promoted as a mechanism to degrade client proteins involved in tumorigenesis and disease progression. Several assays to monitor inhibition of Hsp90 function currently exist but are limited in their use for a drug discovery campaign. Using data from the crystal structure of an initial hit compound, we have developed a fluorescence polarization assay to monitor binding of compounds to the ATP-binding site of Hsp90. This assay is very robust (Z' > 0.9) and can detect affinity of compounds with IC50s to 40 nM. We have used this assay in conjunction with cocrystal structures of small molecules to drive a structure-based design program aimed at the discovery and optimization of a novel class of potent Hsp90 inhibitors.
Collapse
Affiliation(s)
- R Howes
- Vernalis (Cambridge), Granta Park, Great Abington, Cambridge CB1 6GB, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yang XX, Maurer KCT, Molanus M, Mager WH, Siderius M, van der Vies SM. The molecular chaperone Hsp90 is required for high osmotic stress response in Saccharomyces cerevisiae. FEMS Yeast Res 2006; 6:195-204. [PMID: 16487343 DOI: 10.1111/j.1567-1364.2006.00026.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Exposure of Saccharomyces cerevisiae to high osmotic stress evokes a number of adaptive changes that are necessary for its survival. These adaptive responses are mediated via multiple mitogen-activated protein kinase pathways, of which the high-osmolarity glycerol (HOG) pathway has been studied most extensively. Yeast strains that bear the hsp82T22I or hsp82G81S mutant alleles are osmosensitive. Interestingly, the osmosensitive phenotype is not due to inappropriate functioning of the HOG pathway, as Hog1p phosphorylation and downstream responses including glycerol accumulation are not affected. Rather, the hsp82 mutants display features that are characteristic for cell-wall mutants, i.e. resistance to Zymolyase and sensitivity to Calcofluor White. The osmosensitivity of the hsp82T22I or hsp82G81S strains is suppressed by over-expression of the Hsp90 co-chaperone Cdc37p but not by other co-chaperones. Hsp90 is shown to be required for proper adaptation to high osmolarity via a novel signal transduction pathway that operates parallel to the HOG pathway and requires Cdc37p.
Collapse
Affiliation(s)
- Xiao-Xian Yang
- Department of Biochemistry and Molecular Biology, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
49
|
Park S, Cheng NH, Pittman JK, Yoo KS, Park J, Smith RH, Hirschi KD. Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. PLANT PHYSIOLOGY 2005; 139:1194-206. [PMID: 16244156 PMCID: PMC1283758 DOI: 10.1104/pp.105.066266] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Here we demonstrate that fruit from tomato (Lycopersicon esculentum) plants expressing Arabidopsis (Arabidopsis thaliana) H(+)/cation exchangers (CAX) have more calcium (Ca2+) and prolonged shelf life when compared to controls. Previously, using the prototypical CAX1, it has been demonstrated that, in yeast (Saccharomyces cerevisiae) cells, CAX transporters are activated when the N-terminal autoinhibitory region is deleted, to give an N-terminally truncated CAX (sCAX), or altered through specific manipulations. To continue to understand the diversity of CAX function, we used yeast assays to characterize the putative transport properties of CAX4 and N-terminal variants of CAX4. CAX4 variants can suppress the Ca2+ hypersensitive yeast phenotypes and also appear to be more specific Ca2+ transporters than sCAX1. We then compared the phenotypes of sCAX1- and CAX4-expressing tomato lines. The sCAX1-expressing tomato lines demonstrate increased vacuolar H(+)/Ca2+ transport, when measured in root tissue, elevated fruit Ca2+ level, and prolonged shelf life but have severe alterations in plant development and morphology, including increased incidence of blossom-end rot. The CAX4-expressing plants demonstrate more modest increases in Ca2+ levels and shelf life but no deleterious effects on plant growth. These findings suggest that CAX expression may fortify plants with Ca2+ and may serve as an alternative to the application of CaCl2 used to extend the shelf life of numerous agriculturally important commodities. However, judicious regulation of CAX transport is required to assure optimal plant growth.
Collapse
Affiliation(s)
- Sunghun Park
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, TX 77845, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Pittman JK, Cheng NH, Shigaki T, Kunta M, Hirschi KD. Functional dependence on calcineurin by variants of the Saccharomyces cerevisiae vacuolar Ca2+/H+ exchanger Vcx1p. Mol Microbiol 2005; 54:1104-16. [PMID: 15522090 DOI: 10.1111/j.1365-2958.2004.04332.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Ca(2+)-dependent protein phosphatase calcineurin is an important regulator of ion transporters from many organisms, including the Saccharomyces cerevisiae vacuolar Ca(2+)/H(+) exchanger Vcx1p. In yeast and plants, cation/H(+) exchangers are important in shaping cytosolic Ca(2+) levels involved in signal transduction and providing tolerance to potentially toxic concentrations of cations such as Ca(2+), Mn(2+) and Cd(2+). Previous genetic evidence suggested Vcx1p is negatively regulated by calcineurin. By utilizing direct transport measurements into vacuolar membrane vesicles, we demonstrate that Vcx1p is a low-affinity Ca(2+) transporter and may also function in Cd(2+) transport, but cannot transport Mn(2+). Furthermore, direct Ca(2+) transport by Vcx1p is calcineurin sensitive. Using a yeast growth assay, a mutant allele of VCX1 (VCX1-S204A/L208P), termed VCX1-M1, was previously found to confer strong Mn(2+) tolerance. Here we demonstrate that this Mn(2+) tolerance is independent of the Ca(2+)/Mn(2+)-ATPase Pmr1p and results from Mn(2+)-specific vacuolar transport activity of Vcx1-M1p. This Mn(2+) transport by Vcx1-M1p is calcineurin dependent, although the localization of Vcx1-M1p to the vacuole appears to be calcineurin independent. Additionally, we demonstrate that mutation of L208P alone is enough to confer calcineurin-dependent Mn(2+) tolerance. This study demonstrates that calcineurin can positively regulate the transport of cations by VCX1-M1p.
Collapse
Affiliation(s)
- Jon K Pittman
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|