1
|
Abeywansha T, Huang W, Ye X, Nawrocki A, Lan X, Jankowsky E, Taylor DJ, Zhang Y. The structural basis of tRNA recognition by arginyl-tRNA-protein transferase. Nat Commun 2023; 14:2232. [PMID: 37076488 PMCID: PMC10115844 DOI: 10.1038/s41467-023-38004-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Arginyl-tRNA-protein transferase 1 (ATE1) is a master regulator of protein homeostasis, stress response, cytoskeleton maintenance, and cell migration. The diverse functions of ATE1 arise from its unique enzymatic activity to covalently attach an arginine onto its protein substrates in a tRNA-dependent manner. However, how ATE1 (and other aminoacyl-tRNA transferases) hijacks tRNA from the highly efficient ribosomal protein synthesis pathways and catalyzes the arginylation reaction remains a mystery. Here, we describe the three-dimensional structures of Saccharomyces cerevisiae ATE1 with and without its tRNA cofactor. Importantly, the putative substrate binding domain of ATE1 adopts a previously uncharacterized fold that contains an atypical zinc-binding site critical for ATE1 stability and function. The unique recognition of tRNAArg by ATE1 is coordinated through interactions with the major groove of the acceptor arm of tRNA. Binding of tRNA induces conformational changes in ATE1 that helps explain the mechanism of substrate arginylation.
Collapse
Affiliation(s)
- Thilini Abeywansha
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xuan Ye
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Allison Nawrocki
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Xin Lan
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Eckhard Jankowsky
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Derek J Taylor
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Yi Zhang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Didychuk AL, Gates SN, Gardner MR, Strong LM, Martin A, Glaunsinger BA. A pentameric protein ring with novel architecture is required for herpesviral packaging. eLife 2021; 10:e62261. [PMID: 33554858 PMCID: PMC7889075 DOI: 10.7554/elife.62261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Genome packaging in large double-stranded DNA viruses requires a powerful molecular motor to force the viral genome into nascent capsids, which involves essential accessory factors that are poorly understood. Here, we present structures of two such accessory factors from the oncogenic herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV; ORF68) and Epstein-Barr virus (EBV; BFLF1). These homologous proteins form highly similar homopentameric rings with a positively charged central channel that binds double-stranded DNA. Mutation of individual positively charged residues within but not outside the channel ablates DNA binding, and in the context of KSHV infection, these mutants fail to package the viral genome or produce progeny virions. Thus, we propose a model in which ORF68 facilitates the transfer of newly replicated viral genomes to the packaging motor.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Stephanie N Gates
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Matthew R Gardner
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
| | - Lisa M Strong
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Andreas Martin
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| | - Britt A Glaunsinger
- Department of Plant and Microbial Biology, University of California, BerkeleyBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
3
|
Park S, Doherty EE, Xie Y, Padyana AK, Fang F, Zhang Y, Karki A, Lebrilla CB, Siegel JB, Beal PA. High-throughput mutagenesis reveals unique structural features of human ADAR1. Nat Commun 2020; 11:5130. [PMID: 33046702 PMCID: PMC7550611 DOI: 10.1038/s41467-020-18862-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 09/11/2020] [Indexed: 01/06/2023] Open
Abstract
Adenosine Deaminases that act on RNA (ADARs) are enzymes that catalyze adenosine to inosine conversion in dsRNA, a common form of RNA editing. Mutations in the human ADAR1 gene are known to cause disease and recent studies have identified ADAR1 as a potential therapeutic target for a subset of cancers. However, efforts to define the mechanistic effects for disease associated ADAR1 mutations and the rational design of ADAR1 inhibitors are limited by a lack of structural information. Here, we describe the combination of high throughput mutagenesis screening studies, biochemical characterization and Rosetta-based structure modeling to identify unique features of ADAR1. Importantly, these studies reveal a previously unknown zinc-binding site on the surface of the ADAR1 deaminase domain which is important for ADAR1 editing activity. Furthermore, we present structural models that explain known properties of this enzyme and make predictions about the role of specific residues in a surface loop unique to ADAR1.
Collapse
Affiliation(s)
- SeHee Park
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Erin E Doherty
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | | | | | - Yue Zhang
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Agya Karki
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| | - Peter A Beal
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Zhang B, Liu X, Zhao G, Mao X, Li A, Jing R. Molecular characterization and expression analysis of Triticum aestivum squamosa-promoter binding protein-box genes involved in ear development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:571-81. [PMID: 24386921 PMCID: PMC4239008 DOI: 10.1111/jipb.12153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/26/2013] [Indexed: 05/20/2023]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops in the world. Squamosa-promoter binding protein (SBP)-box genes play a critical role in regulating flower and fruit development. In this study, 10 novel SBP-box genes (TaSPL genes) were isolated from wheat ((Triticum aestivum L.) cultivar Yanzhan 4110). Phylogenetic analysis classified the TaSPL genes into five groups (G1-G5). The motif combinations and expression patterns of the TaSPL genes varied among the five groups with each having own distinctive characteristics: TaSPL20/21 in G1 and TaSPL17 in G2 mainly expressed in the shoot apical meristem and the young ear, and their expression levels responded to development of the ear; TaSPL6/15 belonging to G3 were upregulated and TaSPL1/23 in G4 were downregulated during grain development; the gene in G5 (TaSPL3) expressed constitutively. Thus, the consistency of the phylogenetic analysis, motif compositions, and expression patterns of the TaSPL genes revealed specific gene structures and functions. On the other hand, the diverse gene structures and different expression patterns suggested that wheat SBP-box genes have a wide range of functions. The results also suggest a potential role for wheat SBP-box genes in ear development. This study provides a significant beginning of functional analysis of SBP-box genes in wheat.
Collapse
Affiliation(s)
- Bin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural SciencesBeijing, 100081, China
- a These authors contributed equally
| | - Xia Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural SciencesBeijing, 100081, China
- College of Bioengineering, Shanxi UniversityTaiyuan, 030006, China
- a These authors contributed equally
| | - Guangyao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural SciencesBeijing, 100081, China
| | - Xinguo Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural SciencesBeijing, 100081, China
| | - Ang Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural SciencesBeijing, 100081, China
| | - Ruilian Jing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, the Chinese Academy of Agricultural SciencesBeijing, 100081, China
- * Correspondence:
| |
Collapse
|
5
|
Rodríguez JM, Salas ML. African swine fever virus transcription. Virus Res 2012; 173:15-28. [PMID: 23041356 DOI: 10.1016/j.virusres.2012.09.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
Abstract
African swine fever virus (ASFV), a large, enveloped, icosahedral dsDNA virus, is currently the only known DNA-containing arbovirus and the only recognized member of the family Asfarviridae. Its genome encodes more than 150 open reading frames that are densely distributed, separated by short intergenic regions. ASFV gene expression follows a complex temporal programming. Four classes of mRNAs have been identified by its distinctive accumulation kinetics. Gene transcription is coordinated with DNA replication that acts as the main switch on ASFV gene expression. Immediate early and early genes are expressed before the onset of DNA replication, whereas intermediate and late genes are expressed afterwards. ASFV mRNAs have a cap 1 structure at its 5'-end and a short poly(A) tail on its 3'-end. Transcription initiation and termination occurs at very precise positions within the genome, producing transcripts of definite length throughout the expression program. ASFV devotes approximately 20% of its genome to encode the 20 genes currently considered to be involved in the transcription and modification of its mRNAs. This transcriptional machinery gives to ASFV a remarkable independence from its host and an accurate positional and temporal control of its gene expression. Here, we review the components of the ASFV transcriptional apparatus, its expression strategies and the relevant data about the transcriptional cis-acting control sequences.
Collapse
Affiliation(s)
- Javier M Rodríguez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km 2.2, Majadahonda, 28220 Madrid, Spain.
| | | |
Collapse
|
6
|
Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner F, Buchen C, Damsma GE, Dengl S, Geiger SR, Jasiak AJ, Jawhari A, Jennebach S, Kamenski T, Kettenberger H, Kuhn CD, Lehmann E, Leike K, Sydow JF, Vannini A. Structure of eukaryotic RNA polymerases. Annu Rev Biophys 2008; 37:337-52. [PMID: 18573085 DOI: 10.1146/annurev.biophys.37.032807.130008] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eukaryotic RNA polymerases Pol I, Pol II, and Pol III are the central multiprotein machines that synthesize ribosomal, messenger, and transfer RNA, respectively. Here we provide a catalog of available structural information for these three enzymes. Most structural data have been accumulated for Pol II and its functional complexes. These studies have provided insights into many aspects of the transcription mechanism, including initiation at promoter DNA, elongation of the mRNA chain, tunability of the polymerase active site, which supports RNA synthesis and cleavage, and the response of Pol II to DNA lesions. Detailed structural studies of Pol I and Pol III were reported recently and showed that the active center region and core enzymes are similar to Pol II and that strong structural differences on the surfaces account for gene class-specific functions.
Collapse
Affiliation(s)
- P Cramer
- Gene Center Munich and Center for Integrated Protein Science CIPSM, Department of Chemistry and Biochemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Söll D, Van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 2004; 186:6956-69. [PMID: 15466049 PMCID: PMC522202 DOI: 10.1128/jb.186.20.6956-6969.2004] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.
Collapse
Affiliation(s)
- E L Hendrickson
- University of Washington, Dept. of Microbiology, Box 357242, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Dixit V, Bini E, Drozda M, Blum P. Mercury inactivates transcription and the generalized transcription factor TFB in the archaeon Sulfolobus solfataricus. Antimicrob Agents Chemother 2004; 48:1993-9. [PMID: 15155190 PMCID: PMC415588 DOI: 10.1128/aac.48.6.1993-1999.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 12/16/2003] [Accepted: 02/19/2004] [Indexed: 11/20/2022] Open
Abstract
Mercury has a long history as an antimicrobial agent effective against eukaryotic and prokaryotic organisms. Despite its prolonged use, the basis for mercury toxicity in prokaryotes is not well understood. Archaea, like bacteria, are prokaryotes but they use a simplified version of the eukaryotic transcription apparatus. This study examined the mechanism of mercury toxicity to the archaeal prokaryote Sulfolobus solfataricus. In vivo challenge with mercuric chloride instantaneously blocked cell division, eliciting a cytostatic response at submicromolar concentrations and a cytocidal response at micromolar concentrations. The cytostatic response was accompanied by a 70% reduction in bulk RNA synthesis and elevated rates of degradation of several transcripts, including tfb-1, tfb-2, and lacS. Whole-cell extracts prepared from mercuric chloride-treated cells or from cell extracts treated in vitro failed to support in vitro transcription of 16S rRNAp and lacSp promoters. Extract-mixing experiments with treated and untreated extracts excluded the occurrence of negative-acting factors in the mercury-treated cell extracts. Addition of transcription factor B (TFB), a general transcription factor homolog of eukaryotic TFIIB, to mercury-treated cell extracts restored >50% of in vitro transcription activity. Consistent with this finding, mercuric ion treatment of TFB in vitro inactivated its ability to restore the in vitro transcription activity of TFB-immunodepleted cell extracts. These findings indicate that the toxicity of mercuric ion in S. solfataricus is in part the consequence of transcription inhibition due to TFB-1 inactivation.
Collapse
MESH Headings
- Animals
- Archaeal Proteins/genetics
- Archaeal Proteins/immunology
- Blotting, Northern
- Colony Count, Microbial
- DNA, Bacterial/drug effects
- DNA, Bacterial/genetics
- Mercury/toxicity
- Mice
- RNA, Bacterial/analysis
- RNA, Bacterial/biosynthesis
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/biosynthesis
- Recombinant Proteins/genetics
- Sulfolobus/drug effects
- Sulfolobus/genetics
- Sulfolobus/growth & development
- Transcription Factor TFIIB/genetics
- Transcription Factor TFIIB/immunology
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Vidula Dixit
- George Beadle Center for Genetics, School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0666, USA
| | | | | | | |
Collapse
|
9
|
Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E, Ishizuka Y, Terada T, Shirouzu M, Osanai T, Tanaka A, Seki M, Shinozaki K, Yokoyama S. A Novel Zinc-binding Motif Revealed by Solution Structures of DNA-binding Domains of Arabidopsis SBP-family Transcription Factors. J Mol Biol 2004; 337:49-63. [PMID: 15001351 DOI: 10.1016/j.jmb.2004.01.015] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 01/09/2004] [Accepted: 01/14/2004] [Indexed: 11/30/2022]
Abstract
SQUAMOSA promoter binding proteins (SBPs) form a major family of plant-specific transcription factors related to flower development. Although SBPs are heterogeneous in primary structure, they share a highly conserved DNA-binding domain (DBD) that has been suggested to be zinc binding. Here we report the NMR solution structures of DBDs of two SBPs of Arabidopsis thaliana, SPL4 and SPL7. The two share essentially the same structural features. Each structure contains two zinc-binding sites consisting of eight Cys or His residues in a Cys3HisCys2HisCys or Cys6HisCys sequence motif in which the first four residues coordinate to one zinc and the last four coordinate to the other. These structures are dissimilar to other known zinc-binding structures, and thus represent a novel type of zinc-binding motif. The electrostatic profile on the surface suggested that a continuous region, including all the conserved basic residues, is involved in the DNA binding, the mode of which is likely to be novel as well.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Age Dimension Research Center, National Insitute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, 81377 Munich, Germany
| |
Collapse
|
11
|
Zhou J, Xu Z. Structural determinants of SecB recognition by SecA in bacterial protein translocation. Nat Struct Mol Biol 2003; 10:942-7. [PMID: 14517549 DOI: 10.1038/nsb980] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 07/31/2003] [Indexed: 11/09/2022]
Abstract
SecB is a bacterial chaperone involved in directing pre-protein to the translocation pathway by its specific interaction with the peripheral membrane ATPase SecA. The SecB-binding site on SecA is located at its C terminus and consists of a stretch of highly conserved residues. The crystal structure of SecB in complex with the C-terminal 27 amino acids of SecA from Haemophilus influenzae shows that the SecA peptide is structured as a CCCH zinc-binding motif. One SecB tetramer is bound by two SecA peptides, and the interface involves primarily salt bridges and hydrogen bonding interactions. The structure explains the importance of the zinc-binding motif and conserved residues at the C terminus of SecA in its high-affinity binding with SecB. It also suggests a model of SecB-SecA interaction and its implication for the mechanism of pre-protein transfer in bacterial protein translocation.
Collapse
Affiliation(s)
- Jiahai Zhou
- Department of Biological Chemistry and Life Sciences Institute, University of Michigan Medical School, Ann Arbor 48109-0606, USA
| | | |
Collapse
|
12
|
Abstract
Helitrons, a novel class of eukaryote mobile genetic elements, are distinguished from other transposable elements by encoding a 'rolling circle' replication (RCR) protein (Rep) and a helicase. Helitrons have recently been described from Arabidopsis, rice and the nematode Caenorhabditis. We now report the discovery of Helitron-like elements in vertebrates, specifically in the genomes of the fish Danio rerio and Sphoeroides nephelus. We also describe Helitrons from the white rot fungus Phanerochaete chrysosporium and from the Anopheles genome. Many of the fish Helitrons have an uncorrupted open reading frame encoding both the RCR Rep protein and a helicase. These fish elements are of particular interest because they also encode, within the single open reading frame, an apurinic-apyrimidinic (AP) endonuclease most closely related to those of certain non-long terminal repeat retrotransposons. As they invariably carry an endonuclease and also form a very distinct clade, we have named these vertebrate elements 'helentrons'. It is likely that these helentrons are still active.
Collapse
Affiliation(s)
- Russell T M Poulter
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | | |
Collapse
|
13
|
Yee A, Pardee K, Christendat D, Savchenko A, Edwards AM, Arrowsmith CH. Structural proteomics: toward high-throughput structural biology as a tool in functional genomics. Acc Chem Res 2003; 36:183-9. [PMID: 12641475 DOI: 10.1021/ar010126g] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural proteomics is the determination of atomic resolution three-dimensional protein structures on a genome-wide scale in order to better understand the relationship between protein sequence, structure, and function. Here we describe our ongoing structural proteomics project on the nonmembrane proteins of the archeaon, Methanobacterium thermoautotrophicum. This article provides a snapshot of an ongoing pilot project in an emerging area of multidisciplinary research that involves bioinformatics, molecular biology, biochemistry, and instrumental methods such as NMR spectroscopy and X-ray crystallography. An assessment of the technical challenges in this type of large-scale project along with a comparison of the efficiency of sample production for both X-ray crystallography and NMR spectroscopy will be discussed. Examples of new insights into protein function and the relationship between structure and sequence will also be presented.
Collapse
Affiliation(s)
- Adelinda Yee
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 200 Elizabeth Street, ON, Canada M5G 2C4
| | | | | | | | | | | |
Collapse
|
14
|
Lee GM, Edwards AM, Arrowsmith CH, McIntosh LP. NMR-based structure of the conserved protein MTH865 from the archaeon Methanobacterium thermoautotrophicum. JOURNAL OF BIOMOLECULAR NMR 2001; 21:63-66. [PMID: 11693569 DOI: 10.1023/a:1011928105928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
15
|
Abstract
Following the complete genome sequencing of an increasing number of organisms, structural biology is engaging in a systematic approach of high-throughput structure determination called structural genomics to create a complete inventory of protein folds/structures that will help predict functions for all proteins. First results show that structural genomics will be highly effective in finding functional annotations for proteins of unknown function.
Collapse
Affiliation(s)
- P R Mittl
- Institute of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
16
|
Teichmann SA, Murzin AG, Chothia C. Determination of protein function, evolution and interactions by structural genomics. Curr Opin Struct Biol 2001; 11:354-63. [PMID: 11406387 DOI: 10.1016/s0959-440x(00)00215-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The genome sequencing projects and knowledge of the entire protein repertoires of many organisms have prompted new procedures and techniques for the large-scale determination of protein structure, function and interactions. Recently, new work has been carried out on the determination of the function and evolutionary relationships of proteins by experimental structural genomics, and the discovery of protein-protein interactions by computational structural genomics.
Collapse
Affiliation(s)
- S A Teichmann
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, WC1E 6BT, London, UK.
| | | | | |
Collapse
|
17
|
Abstract
The archaeal basal transcription machinery resembles the core components of the eucaryal RNA polymerase II apparatus. Thus, studies of the archaeal basal machinery over the last few years have shed light on fundamentally conserved aspects of the mechanisms of transcription pre-initiation complex assembly in both eucarya and archaea. Intriguingly, it has become increasingly apparent that regulators of archaeal transcription resemble regulators initially identified in bacteria. The presence of these shared bacterial-archaeal regulators has given insight into the evolution of gene regulatory processes in all three domains of life.
Collapse
Affiliation(s)
- S D Bell
- Wellcome Trust and Cancer Research Campaign Institute of Cancer and Developmental Biology and Department of Zoology, University of Cambridge, Tennis Court Road, CB2 1QR, Cambridge, UK.
| | | |
Collapse
|
18
|
Laity JH, Lee BM, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 2001; 11:39-46. [PMID: 11179890 DOI: 10.1016/s0959-440x(00)00167-6] [Citation(s) in RCA: 1072] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zinc finger proteins are among the most abundant proteins in eukaryotic genomes. Their functions are extraordinarily diverse and include DNA recognition, RNA packaging, transcriptional activation, regulation of apoptosis, protein folding and assembly, and lipid binding. Zinc finger structures are as diverse as their functions. Structures have recently been reported for many new zinc finger domains with novel topologies, providing important insights into structure/function relationships. In addition, new structural studies of proteins containing the classical Cys(2)His(2) zinc finger motif have led to novel insights into mechanisms of DNA binding and to a better understanding of their broader functions in transcriptional regulation.
Collapse
Affiliation(s)
- J H Laity
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
19
|
Werner F, Eloranta JJ, Weinzierl RO. Archaeal RNA polymerase subunits F and P are bona fide homologs of eukaryotic RPB4 and RPB12. Nucleic Acids Res 2000; 28:4299-305. [PMID: 11058130 PMCID: PMC113124 DOI: 10.1093/nar/28.21.4299] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The archaeal and eukaryotic evolutionary domains diverged from each other approximately 2 billion years ago, but many of the core components of their transcriptional and translational machineries still display a readily recognizable degree of similarity in their primary structures. The F and P subunits present in archaeal RNA polymerases were only recently identified in a purified archaeal RNA polymerase preparation and, on the basis of localized sequence homologies, tentatively identified as archaeal versions of the eukaryotic RPB4 and RPB12 RNA polymerase subunits, respectively. We prepared recombinant versions of the F and P subunits from Methanococcus jannaschii and used them in in vitro and in vivo protein interaction assays to demonstrate that they interact with other archaeal subunits in a manner predicted from their eukaryotic counterparts. The overall structural conservation of the M. jannaschii F subunit, although not readily recognizable on the primary amino acid sequence level, is sufficiently high to allow the formation of an archaeal-human F-RPB7 hybrid complex.
Collapse
Affiliation(s)
- F Werner
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, Exhibition Road, London SW7 2AY, UK
| | | | | |
Collapse
|