1
|
Horstmeier HJ, Bork S, Nagel MF, Keller W, Sproß J, Diepold N, Ruppel M, Kottke T, Niemann HH. The NADH-dependent flavin reductase ThdF follows an ordered sequential mechanism though crystal structures reveal two FAD molecules in the active site. J Biol Chem 2025; 301:108128. [PMID: 39725031 PMCID: PMC11795597 DOI: 10.1016/j.jbc.2024.108128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Two-component flavin-dependent monooxygenases are of great interest as biocatalysts for the production of pharmaceuticals and other relevant molecules, as they catalyze chemically important reactions such as hydroxylation, epoxidation, and halogenation. The monooxygenase components require a separate flavin reductase which provides the necessary reduced flavin cofactor. The tryptophan halogenase Thal from Streptomyces albogriseolus is a well-characterized two-component flavin-dependent halogenase. Thal exhibits some limitations in terms of halogenation efficiency, also caused by unproductive enzyme-substrate complexes with reduced flavin adenine dinucleotide (FAD). Since the reductase components have an important regulatory function for the activity and efficiency of the monooxygenase by controlling the supply of reduced flavin, here, we studied the so far uncharacterized flavin reductase ThdF from the same gene cluster in S. albogriseolus, which potentially cooperates with Thal. A crystal structure of ThdF in complex with both substrates, FAD and NADH, revealed their orientation for hydride transfer. We obtained two further ThdF structures with two FAD molecules bound to the active site, suggesting a ping-pong bi-bi mechanism. In contrast, steady-state enzyme kinetics clearly showed that ThdF catalyzes flavin reduction via an ordered sequential mechanism, with FAD being bound first and FADH2 released last. Compared to related flavin reductases, ThdF has a low kcat and low KM value. The inhibition of ThdF by NAD+ might limit Thal's halogenation activity when the cellular NADH level is low. These results provide first insights into how the efficiency of Thal could be controlled by flavin reduction at the reductase ThdF.
Collapse
Affiliation(s)
- Hendrik J Horstmeier
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Simon Bork
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Marius F Nagel
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Willy Keller
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Jens Sproß
- Industrial Organic Chemistry and Biotechnology - Mass Spectrometry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Niklas Diepold
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany; Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Marie Ruppel
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Tilman Kottke
- Biophysical Chemistry and Diagnostics, Department of Chemistry, Bielefeld University, Bielefeld, Germany; Biophysical Chemistry and Diagnostics, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Hartmut H Niemann
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
2
|
Heiniger M, Vanella R, Walsh-Korb Z, Nash MA. Functionalized Polysaccharides Improve Sensitivity of Tyramide/Peroxidase Proximity Labeling Assays through Electrostatic Interactions. ACS Biomater Sci Eng 2024; 10:5869-5880. [PMID: 39121180 DOI: 10.1021/acsbiomaterials.4c00895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
High-throughput assays that efficiently link genotype and phenotype with high fidelity are key to successful enzyme engineering campaigns. Among these assays, the tyramide/peroxidase proximity labeling method converts the product of an enzymatic reaction of a surface expressed enzyme to a highly reactive fluorescent radical, which labels the cell surface. In this context, maintaining the proximity of the readout reagents to the cell surface is crucial to prevent crosstalk and ensure that short-lived radical species react before diffusing away. Here, we investigated improvements in tyramide/peroxidase proximity labeling for enzyme screening. We modified chitosan (Cs) chains with horseradish peroxidase (HRP) and evaluated the effects of these conjugates on the efficiency of proximity labeling reactions on yeast cells displaying d-amino acid oxidase. By tethering HRP to chitosan through different chemical approaches, we localized the auxiliary enzyme close to the cell surface and enhanced the sensitivity of tyramide-peroxidase labeling reactions. We found that immobilizing HRP onto chitosan through a 5 kDa PEG linker improved labeling sensitivity by over 3.5-fold for substrates processed with a low turnover rate (e.g., d-lysine), while the sensitivity of the labeling for high activity substrates (e.g., d-alanine) was enhanced by over 0.6-fold. Such improvements in labeling efficiency broaden the range of enzymes and conditions that can be studied and screened by tyramide/peroxidase proximity labeling.
Collapse
Affiliation(s)
- Malvina Heiniger
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
| | - Rosario Vanella
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
| | - Zarah Walsh-Korb
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
| | - Michael A Nash
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel 4058, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel 4056, Switzerland
| |
Collapse
|
3
|
Doyle MGJ, Mair BA, Sib A, Bsharat O, Munch M, Derdau V, Rotstein BH, Lundgren RJ. A practical guide for the preparation of C1-labeled α-amino acids using aldehyde catalysis with isotopically labeled CO 2. Nat Protoc 2024; 19:2147-2179. [PMID: 38548937 DOI: 10.1038/s41596-024-00974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/09/2024] [Indexed: 07/10/2024]
Abstract
Isotopically carbon-labeled α-amino acids are valuable synthetic targets that are increasingly needed in pharmacology and medical imaging. Existing preparations rely on early stage introduction of the isotopic label, which leads to prohibitive synthetic costs and time-intensive preparations. Here we describe a protocol for the preparation of C1-labeled α-amino acids using simple aldehyde catalysts in conjunction with [*C]CO2 (* = 14, 13, 11). This late-stage labeling strategy is enabled by the one-pot carboxylate exchange of unprotected α-amino acids with [*C]CO2. The protocol consists of three separate procedures, describing the syntheses of (±)-[1-13C]phenylalanine, (±)-[1-11C]phenylalanine and (±)-[1-14C]phenylalanine from unlabeled phenylalanine. Although the delivery of [*C]CO2 is operationally distinct for each experiment, each procedure relies on the same fundamental chemistry and can be executed by heating the reaction components at 50-90 °C under basic conditions in dimethylsulfoxide. Performed on scales of up to 0.5 mmol, this methodology is amenable to C1-labeling of many proteinogenic α-amino acids and nonnatural derivatives, which is a breakthrough from existing methods. The synthesis of (±)-[1-13C]phenylalanine requires ~2 d, with product typically obtained in a 60-80% isolated yield (n = 3, μ = 71, σ = 8.3) with an isotopic incorporation of 70-88% (n = 18, μ = 72, σ = 9.0). Starting from the preformed imino acid (~3 h preparation time), rapid synthesis of (±)-[1-11C]phenylalanine can be completed in ~1 h with an isolated radiochemical yield of 13%. Finally, (±)-[1-14C]phenylalanine can be accessed in ~2 d with a 51% isolated yield and 11% radiochemical yield.
Collapse
Affiliation(s)
- Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Braeden A Mair
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Anna Sib
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Odey Bsharat
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Maxime Munch
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Wang LY, Tang H, Zhao JQ, Wang MN, Xue YP, Zheng YG. Correlation Analysis of Key Residue Sites between Computational-Aided Design Thermostability d-Amino Acid Oxidase and Ancestral Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20177-20186. [PMID: 38064545 DOI: 10.1021/acs.jafc.3c06865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The d-amino acid oxidase (DAAO) from Rhodotorula taiwanensis has proven to have great potential for applications due to its excellent catalytic kinetic parameters. However, its poor thermal stability has limited its performance in biocatalysis. Herein, starting from the variant SHVG of RtwDAAO, this study employed a comprehensive computational design approach for protein stability engineering, resulting in positive substitutions at specific sites (A43S, T45M, C234L, E195Y). The generated variant combination, SHVG/SMLY, exhibited a significant synergistic effect, leading to an extension of the half-life and Tmapp. The ancestral sequence reconstruction revealed the conservation of the variant sites. The association of the variant sites with the highly stable ancestral enzyme was further explored. After determining the contribution of the variant sites to thermal stability, it was applied to other homologous sequences and validated. Molecular dynamics simulations indicated that the increased hydrophobicity of the variant SHVG/SMLY was a key factor for the increased stability, with strengthened intersubunit interactions playing an important role. In addition, the physical properties of the amino acids themselves were identified as crucial factors for thermal stability generality in homologous enzymes, which is important for the rapid acquisition of a series of stable enzymes.
Collapse
Affiliation(s)
- Liu-Yu Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Heng Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jin-Qiao Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Meng-Nan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
5
|
Wang L, Tang H, Zhu H, Xue Y, Zheng Y. Enhancement of the substrate specificity of D-amino acid oxidase based on tunnel-pocket engineering. Biotechnol Bioeng 2023; 120:3557-3569. [PMID: 37650151 DOI: 10.1002/bit.28541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
D-Amino acid oxidase (DAAO) selectively catalyzes the oxidative deamination of D-amino acids, making it one of the most promising routes for synthesizing optically pure L-amino acids, including L-phosphinothricin ( L-PPT), a chiral herbicide with significant market potential. However, the native DAAOs that have been reported have low activity against unnatural acid substrate D-PPT. Herein, we designed and screened a DAAO from Rhodotorula taiwanensis (RtwDAAO), and improved its catalytic potential toward D-PPT through protein engineering. A semirational design approach was employed to create a mutation library based on the tunnel-pocket engineering. After three rounds of iterative saturation mutagenesis, the optimal variant M3rd -SHVG was obtained, exhibiting a >2000-fold increase in relative activity. The kinetic parameters showed that M3rd -SHVG improved the substrate binding affinity and turnover number. This is the optimal parameter reported so far. Further, molecular dynamics simulation revealed that the M3rd -SHVG reshapes the tunnel-pocket and corrects the direction of enzyme-substrate binding, allowing efficiently catalyze unnatural substrates. Our strategy demonstrates that the redesign of tunnel-pockets is effective in improving the activity and kinetic efficiency of DAAO, which provides a valuable reference for enzymatic catalysis. With the M3rd -SHVG as biocatalyst, 500 mM D, L-PPT was completely converted and the yield reached 98%. The results laid the foundation for further industrial production.
Collapse
Affiliation(s)
- Liuyu Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Heng Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Hongli Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yaping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
6
|
Yildiz I. Computational Insights on the Hydride and Proton Transfer Mechanisms of D-Arginine Dehydrogenase. Chemphyschem 2023; 24:e202300431. [PMID: 37540527 DOI: 10.1002/cphc.202300431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/05/2023]
Abstract
D-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) is an amine oxidase which catalyzes the conversion of D-arginine into iminoarginine. It contains a non-covalent FAD cofactor that is involved in the oxidation mechanism. Based on substrate, solvent, and multiple kinetic isotope effects studies, a stepwise hydride transfer mechanism is proposed. It was shown that D-arginine binds to the active site of enzyme as α-amino group protonated, and it is deprotonated before a hydride ion is transferred from its α-C to FAD. Based on a mutagenesis study, it was concluded that a water molecule is the most likely catalytic base responsible from the deprotonation of α-amino group. In this study, we formulated computational models based on ONIOM method to elucidate the oxidation mechanism of D-arginine into iminoarginine using the crystal structure of enzyme complexed with iminoarginine. The calculations showed that Arg222, Arg305, Tyr249, Glu87, His 48, and two active site water molecules play key roles in binding and catalysis. Model systems showed that the deprotonation step occurs prior to hydride transfer step, and active site water molecule(s) may have participated in the deprotonation process.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Khalifa University, Chemistry Department and Applied Material Chemistry Center (AMCC), PO Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
7
|
Du S, Wey M, Armstrong DW. d-Amino acids in biological systems. Chirality 2023; 35:508-534. [PMID: 37074214 DOI: 10.1002/chir.23562] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 04/20/2023]
Abstract
Investigations on the occurrence and biochemical roles of free D-amino acids and D-amino acid-containing peptides and proteins in living systems have increased in frequency and significance. Their occurrence and roles may vary substantially with progression from microbiotic to evermore advanced macrobiotic systems. We now understand many of the biosynthetic and regulatory pathways, which are outlined herein. Important uses for D-amino acids in plants, invertebrates, and vertebrates are reviewed. Given its importance, a separate section on the occurrence and role of D-amino acids in human disease is presented.
Collapse
Affiliation(s)
- Siqi Du
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Michael Wey
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
8
|
Truong NV, Phan TTT, Hsu TS, Phu Duc P, Lin LY, Wu WG. Action mechanism of snake venom l-amino acid oxidase and its double-edged sword effect on cancer treatment: Role of pannexin 1-mediated interleukin-6 expression. Redox Biol 2023; 64:102791. [PMID: 37385076 PMCID: PMC10331595 DOI: 10.1016/j.redox.2023.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Snake venom l-amino acid oxidases (svLAAOs) have been recognized as promising candidates for anticancer therapeutics. However, multiple aspects of their catalytic mechanism and the overall responses of cancer cells to these redox enzymes remain ambiguous. Here, we present an analysis of the phylogenetic relationships and active site-related residues among svLAAOs and reveal that the previously proposed critical catalytic residue His 223 is highly conserved in the viperid but not the elapid svLAAO clade. To gain further insight into the action mechanism of the elapid svLAAOs, we purify and characterize the structural, biochemical, and anticancer therapeutic potentials of the Thailand elapid snake Naja kaouthia LAAO (NK-LAAO). We find that NK-LAAO, with Ser 223, exhibits high catalytic activity toward hydrophobic l-amino acid substrates. Moreover, NK-LAAO induces substantial oxidative stress-mediated cytotoxicity with the magnitude relying on both the levels of extracellular hydrogen peroxide (H2O2) and intracellular reactive oxygen species (ROS) generated during the enzymatic redox reactions, but not being influenced by the N-linked glycans on its surface. Unexpectedly, we discover a tolerant mechanism deployed by cancer cells to dampen the anticancer activities of NK-LAAO. NK-LAAO treatment amplifies interleukin (IL)-6 expression via the pannexin 1 (Panx1)-directed intracellular calcium (iCa2+) signaling pathway to confer adaptive and aggressive phenotypes on cancer cells. Accordingly, IL-6 silencing renders cancer cells vulnerable to NK-LAAO-induced oxidative stress together with abrogating NK-LAAO-stimulated metastatic acquisition. Collectively, our study urges caution when using svLAAOs in cancer treatment and identifies the Panx1/iCa2+/IL-6 axis as a therapeutic target for improving the effectiveness of svLAAOs-based anticancer therapies.
Collapse
Affiliation(s)
- Nam V Truong
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Trinh T T Phan
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Tzu-Sheng Hsu
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Phan Phu Duc
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC
| | - Lih-Yuan Lin
- Institute of Molecular and Cellular Biology, College of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC.
| | - Wen-Guey Wu
- Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, Hsinchu, 300044, Taiwan, ROC.
| |
Collapse
|
9
|
Sobrado P, Neira JL. Paul F. Fitzpatrick: A life of editorial duties and elucidating the mechanism of enzyme action. Arch Biochem Biophys 2023; 742:109635. [PMID: 37209767 DOI: 10.1016/j.abb.2023.109635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry, Virginia Tech, 360 West Campus Drive, Blacksburg, VA, 24061, USA.
| | - José Luis Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad Mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018, Zaragoza, Spain.
| |
Collapse
|
10
|
Wang YL, Chang CY, Hsu NS, Lo IW, Lin KH, Chen CL, Chang CF, Wang ZC, Ogasawara Y, Dairi T, Maruyama C, Hamano Y, Li TL. N-Formimidoylation/-iminoacetylation modification in aminoglycosides requires FAD-dependent and ligand-protein NOS bridge dual chemistry. Nat Commun 2023; 14:2528. [PMID: 37137912 PMCID: PMC10156733 DOI: 10.1038/s41467-023-38218-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
Oxidized cysteine residues are highly reactive and can form functional covalent conjugates, of which the allosteric redox switch formed by the lysine-cysteine NOS bridge is an example. Here, we report a noncanonical FAD-dependent enzyme Orf1 that adds a glycine-derived N-formimidoyl group to glycinothricin to form the antibiotic BD-12. X-ray crystallography was used to investigate this complex enzymatic process, which showed Orf1 has two substrate-binding sites that sit 13.5 Å apart unlike canonical FAD-dependent oxidoreductases. One site could accommodate glycine and the other glycinothricin or glycylthricin. Moreover, an intermediate-enzyme adduct with a NOS-covalent linkage was observed in the later site, where it acts as a two-scissile-bond linkage facilitating nucleophilic addition and cofactor-free decarboxylation. The chain length of nucleophilic acceptors vies with bond cleavage sites at either N-O or O-S accounting for N-formimidoylation or N-iminoacetylation. The resultant product is no longer sensitive to aminoglycoside-modifying enzymes, a strategy that antibiotic-producing species employ to counter drug resistance in competing species.
Collapse
Affiliation(s)
- Yung-Lin Wang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chin-Yuan Chang
- Department of Biology Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ning-Shian Hsu
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - I-Wen Lo
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuan-Hung Lin
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Liang Chen
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Zhe-Chong Wang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yasushi Ogasawara
- Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Tohru Dairi
- Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Chitose Maruyama
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan
- Fukui Bioincubation Center (FBIC), Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan
| | - Yoshimitsu Hamano
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan.
- Fukui Bioincubation Center (FBIC), Fukui Prefectural University, Eiheiji-cho, Fukui, 910-1195, Japan.
| | - Tsung-Lin Li
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
- Biotechnology Center, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
11
|
Zhao L, Zhang W, Wang Q, Wang H, Gao X, Qin B, Jia X, You S. A novel NADH-dependent leucine dehydrogenase for multi-step cascade synthesis of L-phosphinothricin. Enzyme Microb Technol 2023; 166:110225. [PMID: 36921551 DOI: 10.1016/j.enzmictec.2023.110225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/29/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
L-Phosphinothricin (L-PPT) is the effective constituent in racemic PPT (a high-efficiency and broad-spectrum herbicide), and the exploitation of green and sustainable synthesis route for L-PPT has always been the focus in pesticide industry. In recent years, "one-pot, two-step" enzyme-mediated cascade strategy is a mainstream pathway to obtain L-PPT. Herein, RgDAAO and BsLeuDH were applied to expand "one-pot, two-step" process. Notably, a NADH-dependent leucine dehydrogenase from Bacillus subtilis (BsLeuDH) was firstly characterized and attempted to generate L-PPT, achieving an excellent enantioselectivity (99.9% ee). Meanwhile, a formate dehydrogenase from Pichia pastoris (PpFDH) was utilized to implement NADH cofactor regeneration and only CO2 was by-product. Sufficient amount of the corresponding keto acid precursor PPO was obtained by oxidation of D-PPT relying on a D-amino acid oxidase from Rhodotorula gracilis (RgDAAO) with content conversion (46.1%). L-PPT was ultimately prepared from racemized PPT via oxidative deamination catalyzed by RgDAAO and reductive amination catalyzed by BsLeuDH, achieving 80.3% overall yield and > 99.9% ee value.
Collapse
Affiliation(s)
- Lu Zhao
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Wenhe Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Qi Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Xiao Gao
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Xian Jia
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China.
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China.
| |
Collapse
|
12
|
Xu S, Chu M, Zhang F, Zhao J, Zhang J, Cao Y, He G, Israr M, Zhao B, Ju J. Enhancement in the catalytic efficiency of D-amino acid oxidase from Glutamicibacter protophormiae by multiple amino acid substitutions. Enzyme Microb Technol 2023; 166:110224. [PMID: 36889103 DOI: 10.1016/j.enzmictec.2023.110224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
D-Amino acid oxidase (DAAO) is an imperative oxidoreductase that oxidizes D-amino acids to corresponding keto acids, producing ammonia and hydrogen peroxide. Previously, based on the sequence alignment of DAAO from Glutamicibacter protophormiae (GpDAAO-1) and (GpDAAO-2), 4 residues (E115, N119, T256, T286) at the surface regions of GpDAAO-2, were subjected to site-directed mutagenesis and achieved 4 single-point mutants with enhanced catalytic efficiency (kcat/Km) compared to parental GpDAAO-2. In the present study, to further enhance the catalytic efficiency of GpDAAO-2, a total of 11 (6 double, 4 triple, and 1 quadruple-point) mutants were prepared by the different combinations of 4 single-point mutants. All mutants and wild types were overexpressed, purified and enzymatically characterized. A triple-point mutant E115A/N119D/T286A exhibited the most significant improvement in catalytic efficiency as compared to wild-type GpDAAO-1 and GpDAAO-2. Structural modeling analysis elucidated that residue Y213 in loop region C209-Y219 might act as the active-site lid for controlling substrate access, the residue K256 substituted by threonine (K256T) might change the hydrogen bonding interaction between residue Y213 and the surrounding residues, and switch the conformation of the active-site lid from the closed state to the open state, resulting in the enhancement in substrate accessibility and catalytic efficiency.
Collapse
Affiliation(s)
- Shujing Xu
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Mengqiu Chu
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang 050024, China
| | - Fa Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiawei Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiaqi Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuting Cao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Guangzheng He
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Muhammad Israr
- Department of Biology, The University of Haripur, Haripur 22620, Pakistan.
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang 050024, China.
| |
Collapse
|
13
|
D-Amino Acids and Cancer: Friends or Foes? Int J Mol Sci 2023; 24:ijms24043274. [PMID: 36834677 PMCID: PMC9962368 DOI: 10.3390/ijms24043274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
α-amino acids exist in two configurations, named D-(dextro) and L-(levo) enantiomers. L-amino acids are used in protein synthesis and play a central role in cell metabolism. The effects of the L-amino acid composition of foods and the dietary modifications of this composition on the efficacy of cancer therapies have been widely investigated in relation to the growth and reproduction of cancerous cells. However, less is known about the involvement of D-amino acids. In recent decades, D-amino acids have been identified as natural biomolecules that play interesting and specific roles as common components of the human diet. Here, we focus on recent investigations showing altered D-amino acid levels in specific cancer types and on the various roles proposed for these biomolecules related to cancer cell proliferation, cell protection during therapy, and as putative, innovative biomarkers. Notwithstanding recent progress, the relationship between the presence of D-amino acids, their nutritional value, and cancer cell proliferation and survival represents an underrated scientific issue. Few studies on human samples have been reported to date, suggesting a need for routine analysis of D-amino acid content and an evaluation of the enzymes involved in regulating their levels in clinical samples in the near future.
Collapse
|
14
|
Waldeck-Weiermair M, Yadav S, Spyropoulos F, Krüger C, Pandey AK, Michel T. Dissecting in vivo and in vitro redox responses using chemogenetics. Free Radic Biol Med 2021; 177:360-369. [PMID: 34752919 PMCID: PMC8639655 DOI: 10.1016/j.freeradbiomed.2021.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/08/2021] [Accepted: 11/04/2021] [Indexed: 02/03/2023]
Abstract
Hydrogen peroxide (H2O2) is the most abundant reactive oxygen species (ROS) within mammalian cells. At low concentrations, H2O2 serves as a versatile cell signaling molecule that mediates vital physiological functions. Yet at higher concentrations, H2O2 can be a toxic molecule by promoting pathological oxidative stress in cells and tissues. Within normal cells, H2O2 is differentially distributed in a variety of subcellular locales. Moreover, many redox-active enzymes and their substrates are themselves differentially distributed within cells. Numerous reports have described the biological and biochemical consequences of adding exogenous H2O2 to cultured cells and tissues, but many of these observations are difficult to interpret: the effects of exogenous H2O2 do not necessarily replicate the cellular responses to endogenous H2O2. In recent years, chemogenetic approaches have been developed to dynamically regulate the abundance of H2O2 in specific subcellular locales. Chemogenetic approaches have been applied in multiple experimental systems, ranging from in vitro studies on the intracellular transport and metabolism of H2O2, all the way to in vivo studies that generate oxidative stress in specific organs in living animals. These chemogenetic approaches have exploited a yeast-derived d-amino acid oxidase (DAAO) that synthesizes H2O2 only in the presence of its d-amino acid substrate. DAAO can be targeted to various subcellular locales, and can be dynamically activated by the addition or withdrawal of its d-amino acid substrate. In addition, recent advances in the development of highly sensitive genetically encoded H2O2 biosensors are providing a better understanding of both physiological and pathological oxidative pathways. This review highlights several applications of DAAO as a chemogenetic tool across a wide range of biological systems, from analyses of subcellular H2O2 metabolism in cells to the development of new disease models caused by oxidative stress in vivo.
Collapse
Affiliation(s)
- Markus Waldeck-Weiermair
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA; Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010, Graz, Austria
| | - Shambhu Yadav
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Fotios Spyropoulos
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA; Department of Pediatric Newborn Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, USA
| | - Christina Krüger
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Arvind K Pandey
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Thomas Michel
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Wu Y, Zhang S, Song W, Liu J, Chen X, Hu G, Zhou Y, Liu L, Wu J. Enhanced Catalytic Efficiency of L‐amino Acid Deaminase Achieved by a Shorter Hydride Transfer Distance. ChemCatChem 2021. [DOI: 10.1002/cctc.202101067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yaoyun Wu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Sheng Zhang
- Tianrui Chemical Co. Ltd Department of Chemistry Quzhou 324400 P. R. China
| | - Wei Song
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Guipeng Hu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Yiwen Zhou
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 P. R. China
| | - Jing Wu
- School of Pharmaceutical Science Jiangnan University Wuxi 214122 P. R. China
| |
Collapse
|
16
|
Abstract
L-Amino acid oxidase (LAAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme active on most proteinogenic L-amino acids, catalysing their conversion to α-keto acids by oxidative deamination of the substrate. For this oxidation reaction, molecular oxygen is used as the electron acceptor, generating hydrogen peroxide. LAAO can be used to detect L-amino acids, for the production of hydrogen peroxide as an oxidative agent or antimicrobial agent, and for the production of enantiopure amino acids from racemates. In this work, we characterised a previously reported LAAO from the bacterium Pseudoalteromonas luteoviolacea. The substrate scope and kinetic properties of the enzyme were determined, and the thermostability was evaluated. Additionally, we elucidated the crystal structure of this bacterial LAAO, enabling us to test the role of active site residues concerning their function in catalysis. The obtained insights and ease of expression of this thermostable LAAO provides a solid basis for the development of engineered LAAO variants tuned for biosensing and/or biocatalysis.
Collapse
|
17
|
Abstract
We have structure, a wealth of kinetic data, thousands of chemical ligands and clinical information for the effects of a range of drugs on monoamine oxidase activity in vivo. We have comparative information from various species and mutations on kinetics and effects of inhibition. Nevertheless, there are what seem like simple questions still to be answered. This article presents a brief summary of existing experimental evidence the background and poses questions that remain intriguing for chemists and biochemists researching the chemical enzymology of and drug design for monoamine oxidases (FAD-containing EC 4.1.3.4).
Collapse
|
18
|
Moussa S, Murtas G, Pollegioni L, Mauzeroll J. Enhancing Electrochemical Biosensor Selectivity with Engineered d-Amino Acid Oxidase Enzymes for d-Serine and d-Alanine Quantification. ACS APPLIED BIO MATERIALS 2021; 4:5598-5604. [PMID: 35006748 DOI: 10.1021/acsabm.1c00409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
d-Amino acid oxidase (DAAO) enzymes bind a range of d-amino acids with variable affinity. As such, the design of selective DAAO-based enzymatic biosensors remains a challenge for real-world biosensor application. Herein, a methodology for developing biosensors with varying substrate selectivity is presented. First, we address DAAO-based biosensor selectivity toward d-serine by introducing point mutations into DAAO using rational design. Next, the wild-type yeast DAAO (RgDAAO WT) and variants human DAAO W209R and yeast M213G are characterized for their selectivity and activity toward d-serine and d-alanine, the preferred DAAO substrates. The DAAO enzymes have been immobilized for final biosensor design, where they demonstrate selectivity comparable to free DAAO. The cross-linking procedure impacts on DAAO structure and function and the use of a regeneration strategy allows the biosensor response to be improved.
Collapse
Affiliation(s)
- Siba Moussa
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Giulia Murtas
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi deII'Insubria, via J. H. Dunant 3, 21100 Varese, ltaly
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi deII'Insubria, via J. H. Dunant 3, 21100 Varese, ltaly
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
19
|
Pollegioni L, Molla G, Sacchi S, Murtas G. Human D-aspartate Oxidase: A Key Player in D-aspartate Metabolism. Front Mol Biosci 2021; 8:689719. [PMID: 34250021 PMCID: PMC8260693 DOI: 10.3389/fmolb.2021.689719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
In recent years, the D-enantiomers of amino acids have been recognized as natural molecules present in all kingdoms, playing a variety of biological roles. In humans, d-serine and d-aspartate attracted attention for their presence in the central nervous system. Here, we focus on d-aspartate, which is involved in glutamatergic neurotransmission and the synthesis of various hormones. The biosynthesis of d-aspartate is still obscure, while its degradation is due to the peroxisomal flavin adenine dinucleotide (FAD)-containing enzyme d-aspartate oxidase. d-Aspartate emergence is strictly controlled: levels decrease in brain within the first days of life while increasing in endocrine glands postnatally and through adulthood. The human d-aspartate oxidase (hDASPO) belongs to the d-amino acid oxidase-like family: its tertiary structure closely resembles that of human d-amino acid oxidase (hDAAO), the enzyme that degrades neutral and basic d-amino acids. The structure-function relationships of the physiological isoform of hDASPO (named hDASPO_341) and the regulation of gene expression and distribution and properties of the longer isoform hDASPO_369 have all been recently elucidated. Beyond the substrate preference, hDASPO and hDAAO also differ in kinetic efficiency, FAD-binding affinity, pH profile, and oligomeric state. Such differences suggest that evolution diverged to create two different ways to modulate d-aspartate and d-serine levels in the human brain. Current knowledge about hDASPO is shedding light on the molecular mechanisms underlying the modulation of d-aspartate levels in human tissues and is pushing novel, targeted therapeutic strategies. Now, it has been proposed that dysfunction in NMDA receptor-mediated neurotransmission is caused by disrupted d-aspartate metabolism in the nervous system during the onset of various disorders (such as schizophrenia): the design of suitable hDASPO inhibitors aimed at increasing d-aspartate levels thus represents a novel and useful form of therapy.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
20
|
Ancestral L-amino acid oxidases for deracemization and stereoinversion of amino acids. Commun Chem 2020; 3:181. [PMID: 36703379 PMCID: PMC9814856 DOI: 10.1038/s42004-020-00432-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
L-amino acid oxidases (LAAOs) can be applied to convert racemic amino acids to D-isomers, which are potential precursors of pharmaceuticals. However, this application is hampered by the lack of available stable and structure-determined LAAOs. In this study, we attempt to address this limitation by utilizing two ancestral LAAOs: AncLAAO-N4 and AncLAAO-N5. AncLAAO-N4 has the highest thermal and temporal stabilities among the designed LAAOs that can be used for deracemization and stereoinversion. AncLAAO-N5 can provide X-ray crystal structures, which are helpful to reveal substrate recognition and reaction mechanisms of LAAOs at the molecular level. Next, we attempted to improve activity of AncLAAO-N4 toward L-Val through a semi-rational protein engineering method. Three variants with enhanced activity toward L-Val were obtained. Taken together, we believe that the activity and substrate selectivity of AncLAAOs give them the potential to be key enzymes in various chemoenzymatic reactions.
Collapse
|
21
|
Sobrado P. Role of reduced flavin in dehalogenation reactions. Arch Biochem Biophys 2020; 697:108696. [PMID: 33245912 DOI: 10.1016/j.abb.2020.108696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Halogenated organic compounds are extensively used in the cosmetic, pharmaceutical, and chemical industries. Several naturally occurring halogen-containing natural products are also produced, mainly by marine organisms. These compounds accumulate in the environment due to their chemical stability and lack of biological pathways for their degradation. However, a few enzymes have been identified that perform dehalogenation reactions in specific biological pathways and others have been identified to have secondary activities toward halogenated compounds. Various mechanisms for dehalogenation of I, Cl, Br, and F containing compounds have been elucidated. These have been grouped into reductive, oxidative, and hydrolytic mechanisms. Flavin-dependent enzymes have been shown to catalyze oxidative dehalogenation reactions utilizing the C4a-hydroperoxyflavin intermediate. In addition, flavoenzymes perform reductive dehalogenation, forming transient flavin semiquinones. Recently, flavin-dependent enzymes have also been shown to perform dehalogenation reactions where the reduced form of the flavin produces a covalent intermediate. Here, recent studies on the reactions of flavoenzymes in dehalogenation reactions, with a focus on covalent catalytic dehalogenation mechanisms, are described.
Collapse
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
22
|
Shimekake Y, Hirato Y, Funabashi R, Okazaki S, Goto M, Furuichi T, Suzuki H, Kera Y, Takahashi S. X-ray structure analysis of a unique D-amino-acid oxidase from the thermophilic fungus Rasamsonia emersonii strain YA. Acta Crystallogr F Struct Biol Commun 2020; 76:517-523. [PMID: 33135670 PMCID: PMC7605106 DOI: 10.1107/s2053230x20013333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/05/2020] [Indexed: 11/11/2022] Open
Abstract
D-Amino-acid oxidases (DAAOs) catalyze the oxidative deamination of neutral and basic D-amino acids. The DAAO from the thermophilic fungus Rasamsonia emersonii strain YA (ReDAAO) has a high thermal stability and a unique broad substrate specificity that includes the acidic D-amino acid D-Glu as well as various neutral and basic D-amino acids. In this study, ReDAAO was crystallized by the hanging-drop vapor-diffusion method and its crystal structure was determined at a resolution of 2.00 Å. The crystal structure of the enzyme revealed that unlike other DAAOs, ReDAAO forms a homotetramer and contains an intramolecular disulfide bond (Cys230-Cys285), suggesting that this disulfide bond is involved in the higher thermal stability of ReDAAO. Moreover, the structure of the active site and its vicinity in ReDAAO indicates that Arg97, Lys99, Lys114 and Ser231 are candidates for recognizing the side chain of D-Glu.
Collapse
Affiliation(s)
- Yuya Shimekake
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yuki Hirato
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Rikako Funabashi
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Sayoko Okazaki
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Masaru Goto
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Takehiro Furuichi
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Hideyuki Suzuki
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yoshio Kera
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Shouji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
23
|
Molecular Deceleration Regulates Toxicant Release to Prevent Cell Damage in Pseudomonas putida S16 (DSM 28022). mBio 2020; 11:mBio.02012-20. [PMID: 32873764 PMCID: PMC7468206 DOI: 10.1128/mbio.02012-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The underlying molecular mechanisms of flavin-dependent amine oxidases remain relatively poorly understood, even though many of these enzymes have been reported. The nicotine oxidoreductase NicA2 is a crucial enzyme for the first step of nicotine degradation in Pseudomonas putida S16 (DSM 28022). Here, we present the crystal structure of a ternary complex comprising NicA2 residues 21 to 482, flavin adenine dinucleotide (FAD), and nicotine at 2.25 Å resolution. Unlike other, related structures, NicA2 does not have an associated diacyl glycerophospholipid, wraps its substrate more tightly, and has an intriguing exit passage in which nine bulky amino acid residues occlude the release of its toxic product, pseudooxynicotine (PN). The replacement of these bulky residues by amino acids with small side chains effectively increases the catalytic turnover rate of NicA2. Our results indicate that the passage in wild-type NicA2 effectively controls the rate of PN release and thus prevents its rapid intracellular accumulation. It gives ample time for PN to be converted to less-harmful substances by downstream enzymes such as pseudooxynicotine amine oxidase (Pnao) before its accumulation causes cell damage or even death. The temporal metabolic regulation mode revealed in this study may shed light on the production of cytotoxic compounds.IMPORTANCE Flavin-dependent amine oxidases have received extensive attention because of their importance in drug metabolism, Parkinson's disease, and neurotransmitter catabolism. However, the underlying molecular mechanisms remain relatively poorly understood. Here, combining the crystal structure of NicA2 (an enzyme in the first step of the bacterial nicotine degradation pathway in Pseudomonas putida S16 (DSM 28022)), biochemical analysis, and mutant construction, we found an intriguing exit passage in which bulky amino acid residues occlude the release of the toxic product of NicA2, in contrast to other, related structures. The selective product exportation register for NicA2 has proven to be beneficial to cell growth. Those seeking to produce cytotoxic compounds could greatly benefit from the use of such an export register mechanism.
Collapse
|
24
|
Yasukawa K, Kawahara N, Motojima F, Nakano S, Asano Y. Porcine kidney d-amino acid oxidase-derived R-amine oxidases with new substrate specificities. Enzymes 2020; 47:117-136. [PMID: 32951821 DOI: 10.1016/bs.enz.2020.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An R-stereoselective amine oxidase and variants with markedly altered substrate specificity toward (R)-amines were generated from porcine d-amino acid oxidase (pkDAO), based on the X-ray crystallographic analysis of the wild-type enzyme. The new R-amine oxidase, a pkDAO variant (Y228L/R283G), acted on α-MBA and its derivatives, α-ethylbenzylamine, alkylamine, and cyclic secondary amines, totally losing the activities toward the original substrates, d-amino acids. The variant is enantiocomplementary to the flavin-type S-stereoselective amine oxidase variant from Aspergillus niger. Moreover, we solved the structure of pkDAO variants and successfully applied the obtained information to generate more variants through rational protein engineering, and used them in the synthesis of pharmaceutically attractive chiral compounds. The pkDAO variant Y228L/R283G and a variant I230A/R283G were used to synthesize (S)-amine and (R)-4-CBHA through deracemization, from racemic α-methylbenzylamine and benzhydrylamine, respectively, by selective oxidation of one of the enantiomers in the presence of a chemical reductant such as NaBH4. From a mechanistic point of view, we speculated that the imine intermediate, synthesized by oxidases or dehydrogenases, could be converted into primary α-aminonitrile by nucleophilic addition of cyanide in aqueous solutions. Nitriles and some unnatural amino acids were synthesized through a cascade reaction by oxidative cyanation reaction with the variant and a wide substrate specificity nitrilase.
Collapse
Affiliation(s)
- Kazuyuki Yasukawa
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan; Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, Japan
| | - Nobuhiro Kawahara
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan; Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, Japan
| | - Fumihiro Motojima
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan; Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, Japan
| | - Shogo Nakano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan; Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan; Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, Japan.
| |
Collapse
|
25
|
Xu J, Zhang K, Cao H, Li H, Cheng F, Cao C, Xue YP, Zheng YG. Development of a biocatalytic cascade for synthesis of 2-oxo-4-(hydroxymethylphosphinyl) butyric acid in one pot. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1797697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jianmiao Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Kai Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Huiting Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Heng Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Chenghao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
26
|
Pang B, Chen Y, Gan F, Yan C, Jin L, Gin JW, Petzold CJ, Keasling JD. Investigation of Indigoidine Synthetase Reveals a Conserved Active-Site Base Residue of Nonribosomal Peptide Synthetase Oxidases. J Am Chem Soc 2020; 142:10931-10935. [PMID: 32510939 DOI: 10.1021/jacs.0c04328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonribosomal peptide synthetase (NRPS) oxidase (Ox) domains oxidize protein-bound intermediates to install crucial structural motifs in bioactive natural products. The mechanism of this domain remains elusive. Here, by studying indigoidine synthetase, a single-module NRPS involved in the biosynthesis of indigoidine and several other bacterial secondary metabolites, we demonstrate that its Ox domain utilizes an active-site base residue, tyrosine 665, to deprotonate a protein-bound l-glutaminyl residue. We further validate the generality of this active-site residue among NRPS Ox domains. These findings not only resolve the biosynthetic pathway mediated by indigoidine synthetase but enable mechanistic insight into NRPS Ox domains.
Collapse
Affiliation(s)
- Bo Pang
- QB3 Institute, University of California, Berkeley, Berkeley, California 94720, United States.,Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Fei Gan
- QB3 Institute, University of California, Berkeley, Berkeley, California 94720, United States.,Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chunsheng Yan
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Liyuan Jin
- Joint BioEnergy Institute, Emeryville, California 94608, United States
| | - Jennifer W Gin
- Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D Keasling
- QB3 Institute, University of California, Berkeley, Berkeley, California 94720, United States.,Joint BioEnergy Institute, Emeryville, California 94608, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Chemical & Biomolecular Engineering and Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK 2970 Horsholm, Denmark.,Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen 518055, P. R. China
| |
Collapse
|
27
|
d-Aspartate oxidase: distribution, functions, properties, and biotechnological applications. Appl Microbiol Biotechnol 2020; 104:2883-2895. [DOI: 10.1007/s00253-020-10439-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
|
28
|
Viola RE. The ammonia-lyases: enzymes that use a wide range of approaches to catalyze the same type of reaction. Crit Rev Biochem Mol Biol 2020; 54:467-483. [PMID: 31906712 DOI: 10.1080/10409238.2019.1708261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The paradigm that protein structure determines protein function has been clearly established. What is less clear is whether a specific protein structure is always required to carry out a specific function. Numerous cases are now known where there is no apparent connection between the biological function of a protein and the other members of its structural class, and where functionally related proteins can have quite diverse structures. A set of enzymes with these diverse properties, the ammonia-lyases, will be examined in this review. These are a class of enzymes that catalyze a relatively straightforward deamination reaction. However, the individual enzymes of this class possess a wide variety of different structures, utilize a diverse set of cofactors, and appear to catalyze this related reaction through a range of different mechanisms. This review aims to address a basic question: if there is not a specific protein structure and active site architecture that is both required and sufficient to define a catalyst for a given chemical reaction, then what factor(s) determine the structure and the mechanism that is selected to catalyze a particular reaction?
Collapse
Affiliation(s)
- Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, USA
| |
Collapse
|
29
|
Kiss DJ, Ferenczy GG. A detailed mechanism of the oxidative half-reaction of d-amino acid oxidase: another route for flavin oxidation. Org Biomol Chem 2020; 17:7973-7984. [PMID: 31407761 DOI: 10.1039/c9ob00975b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
d-Amino acid oxidase (DAAO) is a flavoenzyme whose inhibition is expected to have therapeutic potential in schizophrenia. DAAO catalyses hydride transfer from the substrate to the flavin in the reductive half-reaction, and the flavin is reoxidized by O2 in the oxidative half-reaction. Quantum mechanical/molecular mechanical calculations were performed and their results together with available experimental information were used to elucidate the detailed mechanism of the oxidative half-reaction. The reaction starts with a single electron transfer from FAD to O2, followed by triplet-singlet transition. FAD oxidation is completed by a proton coupled electron transfer to the oxygen species and the reaction terminates with H2O2 formation by proton transfer from the oxidized substrate to the oxygen species via a chain of water molecules. The substrate plays a double role by facilitating the first electron transfer and by providing a proton in the last step. The mechanism differs from the oxidative half-reaction of other oxidases.
Collapse
Affiliation(s)
- Dóra Judit Kiss
- Doctoral School of Chemistry, Eötvös Loránd University, Pázmány s 1/A, H-1117, Budapest, Hungary. and Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt 2, H-1117, Budapest, Hungary.
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt 2, H-1117, Budapest, Hungary.
| |
Collapse
|
30
|
Molla G, Chaves‐Sanjuan A, Savinelli A, Nardini M, Pollegioni L. Structure and kinetic properties of humand‐aspartate oxidase, the enzyme‐controllingd‐aspartate levels in brain. FASEB J 2019; 34:1182-1197. [DOI: 10.1096/fj.201901703r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Gianluca Molla
- Dipartimento di Biotecnologie e Scienze della Vita Università degli studi dell’Insubria Varese Italy
| | | | - Antonio Savinelli
- Dipartimento di Biotecnologie e Scienze della Vita Università degli studi dell’Insubria Varese Italy
| | - Marco Nardini
- Dipartimento di Bioscienze Università degli studi di Milano Milano Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita Università degli studi dell’Insubria Varese Italy
| |
Collapse
|
31
|
Ayikpoe RS, Latham JA. MftD Catalyzes the Formation of a Biologically Active Redox Center in the Biosynthesis of the Ribosomally Synthesized and Post-translationally Modified Redox Cofactor Mycofactocin. J Am Chem Soc 2019; 141:13582-13591. [PMID: 31381312 DOI: 10.1021/jacs.9b06102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mycofactocin (MFT) is a putative ribosomally synthesized and post-translationally modified (RiPP) redox cofactor. The biosynthesis of MFT is encoded by the gene cluster mftABCDEF. While processing of the precursor peptide by MftB, MftC, and MftE has been shown to result in the formation of the small molecule 3-amino-5-[(p-hydroxyphenyl)methyl]-4,4-dimethyl-2-pyrrolidinone (AHDP), no activity has been shown for the putative dehydrogenase MftD and the putative glycosyltransferase MftF. In addition, evidence demonstrating that MFT is a redox cofactor has only been limited to the requirement of mft genes for ethanol assimilation in Mycobacterium smegmatis mc2155. Here, we demonstrate that MftD catalyzes the oxidative deamination of AHDP, forming an α-keto moiety on the resulting molecule, which we call pre-mycofactocin (PMFT). We characterize PMFT by 1D and 2D NMR spectroscopy techniques and by high-resolution mass spectrometry data to solve its structure. We further characterized PMFT by cyclic voltammetry and found its midpoint potential to be ∼255 mV. Lastly, we demonstrate that PMFT is a biologically active redox cofactor that oxidizes NADH bound by M. smegmatis carveol dehydrogenase (MsCDH) and can be used by MsCDH in the oxidation of carveol. These data demonstrate for the first time that PMFT functions as a biologically active redox mediator and provides the most direct evidence to date that MFT is a RiPP-derived redox cofactor.
Collapse
Affiliation(s)
- Richard S Ayikpoe
- Department of Chemistry and Biochemistry , University of Denver , Denver , Colorado 80210 , United States
| | - John A Latham
- Department of Chemistry and Biochemistry , University of Denver , Denver , Colorado 80210 , United States
| |
Collapse
|
32
|
Kawasaki D, Chisuga T, Miyanaga A, Kudo F, Eguchi T. Structural Analysis of the Glycine Oxidase Homologue CmiS2 Reveals a Unique Substrate Recognition Mechanism for Formation of a β-Amino Acid Starter Unit in Cremimycin Biosynthesis. Biochemistry 2019; 58:2706-2709. [PMID: 31154757 DOI: 10.1021/acs.biochem.9b00444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The flavin adenine dinucleotide-dependent oxidase CmiS2 catalyzes the oxidation of N-carboxymethyl-3-aminononanoic acid to produce a 3-aminononanoic acid starter unit for the biosynthesis of cremimycin, a macrolactam polyketide. Although the sequence of CmiS2 is similar with that of the well-characterized glycine oxidase ThiO, the chemical structure of the substrate of CmiS2 is different from that of ThiO substrate glycine. Here, we present the biochemical and structural characterization of CmiS2. Kinetic analysis revealed that CmiS2 has a strong preference for N-carboxymethyl-3-aminononanoic acid over other substrates such as N-carboxymethyl-3-aminobutanoic acid and glycine, suggesting that CmiS2 recognizes the nonanoic acid moiety of the substrate as well as the glycine moiety. We determined the crystal structure of CmiS2 in complex with a substrate analogue, namely, S-carboxymethyl-3-thiononanoic acid, which enabled the identification of key amino acid residues involved in substrate recognition. We discovered that Asn49, Arg243, and Arg334 interact with the carboxyl group of the nonanoic acid moiety, while Pro46, Leu52, and Ile335 recognize the alkyl chain of the nonanoic acid moiety via hydrophobic interaction. These residues are highly conserved in CmiS2 homologues involved in the biosynthesis of related macrolactam polyketides but are not conserved in glycine oxidases such as ThiO. These results suggest that CmiS2-type enzymes employ a distinct mechanism of substrate recognition for the synthesis of β-amino acids.
Collapse
Affiliation(s)
- Daisuke Kawasaki
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Taichi Chisuga
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Akimasa Miyanaga
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Fumitaka Kudo
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Tadashi Eguchi
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| |
Collapse
|
33
|
Pollegioni L, Sacchi S, Murtas G. Human D-Amino Acid Oxidase: Structure, Function, and Regulation. Front Mol Biosci 2018; 5:107. [PMID: 30547037 PMCID: PMC6279847 DOI: 10.3389/fmolb.2018.00107] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022] Open
Abstract
D-Amino acid oxidase (DAAO) is an FAD-containing flavoenzyme that catalyzes with absolute stereoselectivity the oxidative deamination of all natural D-amino acids, the only exception being the acidic ones. This flavoenzyme plays different roles during evolution and in different tissues in humans. Its three-dimensional structure is well conserved during evolution: minute changes are responsible for the functional differences between enzymes from microorganism sources and those from humans. In recent years several investigations focused on human DAAO, mainly because of its role in degrading the neuromodulator D-serine in the central nervous system. D-Serine is the main coagonist of N-methyl D-aspartate receptors, i.e., excitatory amino acid receptors critically involved in main brain functions and pathologic conditions. Human DAAO possesses a weak interaction with the FAD cofactor; thus, in vivo it should be largely present in the inactive, apoprotein form. Binding of active-site ligands and the substrate stabilizes flavin binding, thus pushing the acquisition of catalytic competence. Interestingly, the kinetic efficiency of the enzyme on D-serine is very low. Human DAAO interacts with various proteins, in this way modulating its activity, targeting, and cell stability. The known properties of human DAAO suggest that its activity must be finely tuned to fulfill a main physiological function such as the control of D-serine levels in the brain. At present, studies are focusing on the epigenetic modulation of human DAAO expression and the role of post-translational modifications on its main biochemical properties at the cellular level.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Giulia Murtas
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| |
Collapse
|
34
|
Ball J, Gannavaram S, Gadda G. Structural determinants for substrate specificity of flavoenzymes oxidizing d-amino acids. Arch Biochem Biophys 2018; 660:87-96. [PMID: 30312594 DOI: 10.1016/j.abb.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/26/2022]
Abstract
The oxidation of d-amino acids is relevant to neurodegenerative diseases, detoxification, and nutrition in microorganisms and mammals. It is also important for the resolution of racemic amino acid mixtures and the preparation of chiral building blocks for the pharmaceutical and food industry. Considerable biochemical and structural knowledge has been accrued in recent years on the enzymes that carry out the oxidation of the Cα-N bond of d-amino acids. These enzymes contain FAD as a required coenzyme, share similar overall three-dimensional folds and highly conserved active sites, but differ in their specificity for substrates with neutral, anionic, or cationic side-chains. Here, we summarize the current biochemical and structural knowledge regarding substrate specificity on d-amino acid oxidase, d-aspartate oxidase, and d-arginine dehydrogenase for which a wealth of biochemical and structural studies is available.
Collapse
Affiliation(s)
- Jacob Ball
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Swathi Gannavaram
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Giovanni Gadda
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA; Departments of Biology, Georgia State University, Atlanta, GA, 30302-3965, USA; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, 30302-3965, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302-3965, USA.
| |
Collapse
|
35
|
Szilágyi B, Ferenczy GG, Keserű GM. Drug discovery strategies and the preclinical development of D-amino-acid oxidase inhibitors as antipsychotic therapies. Expert Opin Drug Discov 2018; 13:973-982. [DOI: 10.1080/17460441.2018.1524459] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Bence Szilágyi
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György G. Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - György M. Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
36
|
Subramanian K, Góra A, Spruijt R, Mitusińska K, Suarez-Diez M, Martins dos Santos V, Schaap PJ. Modulating D-amino acid oxidase (DAAO) substrate specificity through facilitated solvent access. PLoS One 2018; 13:e0198990. [PMID: 29906280 PMCID: PMC6003678 DOI: 10.1371/journal.pone.0198990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/30/2018] [Indexed: 11/28/2022] Open
Abstract
D-amino acid oxidase (DAAO) degrades D-amino acids to produce α-ketoacids, hydrogen peroxide and ammonia. DAAO has often been investigated and engineered for industrial and clinical applications. We combined information from literature with a detailed analysis of the structure to engineer mammalian DAAOs. The structural analysis was complemented with molecular dynamics simulations to characterize solvent accessibility and product release mechanisms. We identified non-obvious residues located on the loops on the border between the active site and the secondary binding pocket essential for pig and human DAAO substrate specificity and activity. We engineered DAAOs by mutating such critical residues and characterised the biochemical activity of the resulting variants. The results highlight the importance of the selected residues in modulating substrate specificity, product egress and enzyme activity, suggesting further steps of DAAO re-engineering towards desired clinical and industrial applications.
Collapse
Affiliation(s)
- Kalyanasundaram Subramanian
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng WE, Wageningen, The Netherlands
| | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego, Gliwice, Poland
| | - Ruud Spruijt
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng WE, Wageningen, The Netherlands
| | - Karolina Mitusińska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, ul. Krzywoustego, Gliwice, Poland
- Department of Chemistry, Silesian University of Technology, ks. Marcina Strzody, Gliwice, Poland
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng WE, Wageningen, The Netherlands
| | - Vitor Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng WE, Wageningen, The Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng WE, Wageningen, The Netherlands
| |
Collapse
|
37
|
Sacchi S, Cappelletti P, Murtas G. Biochemical Properties of Human D-amino Acid Oxidase Variants and Their Potential Significance in Pathologies. Front Mol Biosci 2018; 5:55. [PMID: 29946548 PMCID: PMC6005901 DOI: 10.3389/fmolb.2018.00055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022] Open
Abstract
The stereoselective flavoenzyme D-amino acid oxidase (DAAO) catalyzes the oxidative deamination of neutral and polar D-amino acids producing the corresponding α-keto acids, ammonia, and hydrogen peroxide. Despite its peculiar and atypical substrates, DAAO is widespread expressed in most eukaryotic organisms. In mammals (and humans in particular), DAAO is involved in relevant physiological processes ranging from D-amino acid detoxification in kidney to neurotransmission in the central nervous system, where DAAO is responsible of the catabolism of D-serine, a key endogenous co-agonist of N-methyl-D-aspartate receptors. Recently, structural and functional studies have brought to the fore the distinctive biochemical properties of human DAAO (hDAAO). It appears to have evolved to allow a strict regulation of its activity, so that the enzyme can finely control the concentration of substrates (such as D-serine in the brain) without yielding to an excessive production of hydrogen peroxide, a potentially toxic reactive oxygen species (ROS). Indeed, dysregulation in D-serine metabolism, likely resulting from altered levels of hDAAO expression and activity, has been implicated in several pathologies, ranging from renal disease to neurological, neurodegenerative, and psychiatric disorders. Only one mutation in DAO gene was unequivocally associated to a human disease. However, several single nucleotide polymorphisms (SNPs) are reported in the database and the biochemical characterization of the corresponding recombinant hDAAO variants is of great interest for investigating the effect of mutations. Here we reviewed recently published data focusing on the modifications of the structural and functional properties induced by amino acid substitutions encoded by confirmed SNPs and on their effect on D-serine cellular levels. The potential significance of the different hDAAO variants in human pathologies will be also discussed.
Collapse
Affiliation(s)
- Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli Studi dell'Insubria, Milan, Italy
| | - Pamela Cappelletti
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli Studi dell'Insubria, Milan, Italy
| | - Giulia Murtas
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| |
Collapse
|
38
|
Zhang N, Tian M, Liu X, Yang L. Enzyme assay for d -amino acid oxidase using optically gated capillary electrophoresis-laser induced fluorescence detection. J Chromatogr A 2018; 1548:83-91. [DOI: 10.1016/j.chroma.2018.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
39
|
|
40
|
Tan KK, Bay BH, Gopalakrishnakone P. L-amino acid oxidase from snake venom and its anticancer potential. Toxicon 2018; 144:7-13. [DOI: 10.1016/j.toxicon.2018.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/22/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
|
41
|
Rosini E, Caldinelli L, Piubelli L. Assays of D-Amino Acid Oxidase Activity. Front Mol Biosci 2018; 4:102. [PMID: 29404340 PMCID: PMC5785730 DOI: 10.3389/fmolb.2017.00102] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/28/2017] [Indexed: 11/13/2022] Open
Abstract
D-amino acid oxidase (DAAO) is a well-known flavoenzyme that catalyzes the oxidative FAD-dependent deamination of D-amino acids. As a result of the absolute stereoselectivity and broad substrate specificity, microbial DAAOs have been employed as industrial biocatalysts in the production of semi-synthetic cephalosporins and enantiomerically pure amino acids. Moreover, in mammals, DAAO is present in specific brain areas and degrades D-serine, an endogenous coagonist of the N-methyl-D-aspartate receptors (NMDARs). Dysregulation of D-serine metabolism due to an altered DAAO functionality is related to pathological NMDARs dysfunctions such as in amyotrophic lateral sclerosis and schizophrenia. In this protocol paper, we describe a variety of direct assays based on the determination of molecular oxygen consumption, reduction of alternative electron acceptors, or α-keto acid production, of coupled assays to detect the hydrogen peroxide or the ammonium production, and an indirect assay of the α-keto acid production based on a chemical derivatization. These analytical assays allow the determination of DAAO activity both on recombinant enzyme preparations, in cells, and in tissue samples.
Collapse
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milan and University of Insubria, Milan, Italy
| | - Laura Caldinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milan and University of Insubria, Milan, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- The Protein Factory Research Center, Politecnico of Milan and University of Insubria, Milan, Italy
| |
Collapse
|
42
|
Melis R, Rosini E, Pirillo V, Pollegioni L, Molla G. In vitro evolution of an l-amino acid deaminase active on l-1-naphthylalanine. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01380b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
l-Amino acid deaminase from Proteus myxofaciens (PmaLAAD) is a promising biocatalyst for enantioselective biocatalysis that can be exploited to produce optically pure d-amino acids or α-keto acids.
Collapse
Affiliation(s)
- Roberta Melis
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
| | - Elena Rosini
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
| | - Valentina Pirillo
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
| | - Gianluca Molla
- Dipartimento di Biotecnologie e Scienze della Vita
- Università degli Studi dell'Insubria
- 21100 Varese
- Italy
| |
Collapse
|
43
|
Molla G. Competitive Inhibitors Unveil Structure/Function Relationships in Human D-Amino Acid Oxidase. Front Mol Biosci 2017; 4:80. [PMID: 29250527 PMCID: PMC5715370 DOI: 10.3389/fmolb.2017.00080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023] Open
Abstract
D-amino acid oxidase (DAAO) catalyzes the oxidative deamination of several neutral D-amino acids and is the enzyme mainly responsible (together with serine racemase) for degrading D-serine (D-Ser) in the central nervous system of mammals. This D-amino acid, which binds the coagonist site of the N-methyl-D-aspartate receptor, is thus a key neuromodulator of glutamatergic neurotransmission. Altered D-Ser metabolism results in several pathological conditions (e.g., amylotrophic lateral sclerosis or schizophrenia, SZ) for which effective "broad spectrum" pharmaceutical drugs are not yet available. In particular, the correlation between reduced D-Ser concentration and SZ led to a renaissance of biochemical interest in human DAAO (hDAAO). In the last 10 years, public and corporate research laboratories undertook huge efforts to study the structural, enzymatic, and physiological properties of the human flavoenzyme and to identify novel effective inhibitors which, acting as pharmaceutical drugs, could decrease hDAAO activity, thus restoring the physiological concentration of D-Ser. Although, none of the identified hDAAO inhibitors has reached the market yet, from a biochemical point of view, these compounds turned out to be invaluable for gaining a detailed understanding of the structure/function relationships at the molecular level in the mammalian DAAO, in particular of the interaction between ligand and the enzyme. This detailed knowledge, together with several recent studies concerning the interaction of the human enzyme with other protein regulative partners, its subcellular localization, and in vivo degradation, contributed to gaining comprehensive knowledge of the structure, function, and physiopathological role of this important human enzyme.
Collapse
Affiliation(s)
- Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.,The Protein Factory Research Center, Politecnico of Milano and University of Insubria, Milan, Italy
| |
Collapse
|
44
|
Rosini E, Melis R, Molla G, Tessaro D, Pollegioni L. Deracemization and Stereoinversion of α-Amino Acids byl-Amino Acid Deaminase. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700806] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elena Rosini
- Department of Biotechnology and Life Sciences; Università degli Studi dell'Insubria; via J.H. Dunant 3 21100 Varese Italy
- The Protein Factory; Politecnico di Milano and Università degli Studi dell'Insubria; via Mancinelli 7 20131 Milano Italy
| | - Roberta Melis
- Department of Biotechnology and Life Sciences; Università degli Studi dell'Insubria; via J.H. Dunant 3 21100 Varese Italy
- The Protein Factory; Politecnico di Milano and Università degli Studi dell'Insubria; via Mancinelli 7 20131 Milano Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences; Università degli Studi dell'Insubria; via J.H. Dunant 3 21100 Varese Italy
- The Protein Factory; Politecnico di Milano and Università degli Studi dell'Insubria; via Mancinelli 7 20131 Milano Italy
| | - Davide Tessaro
- The Protein Factory; Politecnico di Milano and Università degli Studi dell'Insubria; via Mancinelli 7 20131 Milano Italy
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; p.zza Leonardo da Vinci 32 20133 Milano Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences; Università degli Studi dell'Insubria; via J.H. Dunant 3 21100 Varese Italy
- The Protein Factory; Politecnico di Milano and Università degli Studi dell'Insubria; via Mancinelli 7 20131 Milano Italy
| |
Collapse
|
45
|
Molla G, Melis R, Pollegioni L. Breaking the mirror: l-Amino acid deaminase, a novel stereoselective biocatalyst. Biotechnol Adv 2017; 35:657-668. [DOI: 10.1016/j.biotechadv.2017.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/04/2017] [Accepted: 07/30/2017] [Indexed: 12/27/2022]
|
46
|
Chow C, Hegde S, Blanchard JS. Mechanistic Characterization of Escherichia coli l-Aspartate Oxidase from Kinetic Isotope Effects. Biochemistry 2017; 56:4044-4052. [PMID: 28700220 DOI: 10.1021/acs.biochem.7b00307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
l-Aspartate oxidase, encoded by the nadB gene, is the first enzyme in the de novo synthesis of NAD+ in bacteria. This FAD-dependent enzyme catalyzes the oxidation of l-aspartate to generate iminoaspartate and reduced flavin. Distinct from most amino acid oxidases, it can use either molecular oxygen or fumarate to reoxidize the reduced enzyme. Sequence alignments and the three-dimensional crystal structure have revealed that the overall fold and catalytic residues of NadB closely resemble those of the succinate dehydrogenase/fumarate reductase family rather than those of the prototypical d-amino acid oxidases. This suggests that the enzyme can catalyze amino acid oxidation via typical amino acid oxidase chemistry, involving the removal of protons from the α-amino group and the transfer of the hydride from C2, or potentially deprotonation at C3 followed by transfer of the hydride from C2, similar to chemistry occurring during succinate oxidation. We have investigated this potential mechanistic ambiguity using a combination of primary, solvent, and multiple deuterium kinetic isotope effects in steady state experiments. Our results indicate that the chemistry is similar to that of typical amino acid oxidases in which the transfer of the hydride from C2 of l-aspartate to FAD is rate-limiting and occurs in a concerted manner with respect to deprotonation of the α-amine. Together with previous kinetic and structural data, we propose that NadB has structurally evolved from succinate dehydrogenase/fumarate reductase-type enzymes to gain the new functionality of oxidizing amino acids while retaining the ability to reduce fumarate.
Collapse
Affiliation(s)
- Carmen Chow
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Subray Hegde
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
47
|
Brausemann A, Gemmecker S, Koschmieder J, Ghisla S, Beyer P, Einsle O. Structure of Phytoene Desaturase Provides Insights into Herbicide Binding and Reaction Mechanisms Involved in Carotene Desaturation. Structure 2017; 25:1222-1232.e3. [PMID: 28669634 DOI: 10.1016/j.str.2017.06.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 11/16/2022]
Abstract
Cyanobacteria and plants synthesize carotenoids via a poly-cis pathway starting with phytoene, a membrane-bound C40 hydrocarbon. Phytoene desaturase (PDS) introduces two double bonds and concomitantly isomerizes two neighboring double bonds from trans to cis. PDS assembles into homo-tetramers that interact monotopically with membranes. A long hydrophobic tunnel is proposed to function in the sequential binding of phytoene and the electron acceptor plastoquinone. The herbicidal inhibitor norflurazon binds at a plastoquinone site thereby blocking reoxidation of FADred. Comparison with the sequence-dissimilar bacterial carotene desaturase CRTI reveals substantial similarities in the overall protein fold, defining both as members of the GR2 family of flavoproteins. However, the PDS active center architecture is unprecedented: no functional groups are found in the immediate flavin vicinity that might participate in dehydrogenation and isomerization. This suggests that the isoalloxazine moiety is sufficient for catalysis. Despite mechanistic differences, an ancient evolutionary relation of PDS and CRTI is apparent.
Collapse
Affiliation(s)
- Anton Brausemann
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Sandra Gemmecker
- Faculty of Biology, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Julian Koschmieder
- Faculty of Biology, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Sandro Ghisla
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Peter Beyer
- Faculty of Biology, Albert-Ludwigs Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
48
|
PH-Dependent Enantioselectivity of D-amino Acid Oxidase in Aqueous Solution. Sci Rep 2017; 7:2994. [PMID: 28592826 PMCID: PMC5462808 DOI: 10.1038/s41598-017-03177-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/26/2017] [Indexed: 11/30/2022] Open
Abstract
D-amino acid oxidases (DAAO) are stereospecific enzymes which are generally almost inactive towards L-enantiomer in neutral solution when L-, D-amino acids are supplied as substrates. In this paper, the D-amino acid oxidase can catalytic oxidize L-amino acids by modulating pH of aqueous solution. With L-Pro as substrate, the catalytic rate (kcat) and the affinity (Km) of DAAO were 6.71 s−1 and 33 mM at pH 8.0, respectively, suggesting that optimal pH condition enhanced the activity of DAAO towards L-Pro. Similar results were obtained when L-Ala (pH 9.8), L-Arg (pH 6.5), L-Phe (pH 9.0), L-Thr (pH 9.4), and L-Val (pH 8.5) were catalyzed by DAAO at various pH values. The racemization of the L-amino acids was not found by capillary electrophoresis analysis during oxidation, and quantification analysis of L-amino acids before and after catalytic reaction was performed, which confirmed that the modulation of enantioselectivity of DAAO resulted from the oxidation of L-amino acids rather than D-amino acids by changing pH. A mechanistic model was proposed to explain enhanced activity of DAAO towards L-amino acids under optimal pH condition.
Collapse
|
49
|
Feliciano PR, Rustiguel JK, Soares ROS, Sampaio SV, Cristina Nonato M. Crystal structure and molecular dynamics studies of L-amino acid oxidase from Bothrops atrox. Toxicon 2017; 128:50-59. [PMID: 28137621 DOI: 10.1016/j.toxicon.2017.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 11/26/2022]
Abstract
L-amino acid oxidases (LAAOs) are dimeric flavoproteins that catalyze the deamination of L-amino acid to α-keto acid, producing ammonia and hydrogen peroxide. In this study, we report the crystal structure and molecular dynamics simulations of LAAO from the venom of Bothrops atrox (BatroxLAAO). BatroxLAAO presents several biological and pharmacological properties with promising biomedical applications. BatroxLAAO structure contains the highly conserved structural pattern of LAAOs comprising a FAD-binding domain, substrate-binding domain and helical domain, and a dimeric arrangement that can be stabilized by zinc. Also, molecular dynamics results show an asymmetric behavior, and a direct communication between FAD- and substrate-binding domains of counterpart subunits. These findings shed light on the structural role of dimerization to catalytic mechanism of SV-LAAOs.
Collapse
Affiliation(s)
- Patricia R Feliciano
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Joane K Rustiguel
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo O S Soares
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Suely V Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - M Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
50
|
An extended N-H bond, driven by a conserved second-order interaction, orients the flavin N5 orbital in cholesterol oxidase. Sci Rep 2017; 7:40517. [PMID: 28098177 PMCID: PMC5241826 DOI: 10.1038/srep40517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
The protein microenvironment surrounding the flavin cofactor in flavoenzymes is key to the efficiency and diversity of reactions catalysed by this class of enzymes. X-ray diffraction structures of oxidoreductase flavoenzymes have revealed recurrent features which facilitate catalysis, such as a hydrogen bond between a main chain nitrogen atom and the flavin redox center (N5). A neutron diffraction study of cholesterol oxidase has revealed an unusual elongated main chain nitrogen to hydrogen bond distance positioning the hydrogen atom towards the flavin N5 reactive center. Investigation of the structural features which could cause such an unusual occurrence revealed a positively charged lysine side chain, conserved in other flavin mediated oxidoreductases, in a second shell away from the FAD cofactor acting to polarize the peptide bond through interaction with the carbonyl oxygen atom. Double-hybrid density functional theory calculations confirm that this electrostatic arrangement affects the N-H bond length in the region of the flavin reactive center. We propose a novel second-order partial-charge interaction network which enables the correct orientation of the hydride receiving orbital of N5. The implications of these observations for flavin mediated redox chemistry are discussed.
Collapse
|