1
|
Lehmann P, Katoh-Kurasawa M, Kundert P, Shaulsky G. Going against the family: Perturbation of a greenbeard pathway leads to falsebeard cheating. iScience 2024; 27:111125. [PMID: 39502291 PMCID: PMC11536038 DOI: 10.1016/j.isci.2024.111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Greenbeards facilitate cooperation by encoding a perceptible signal, the ability to detect it, and a tendency to help others that display it. Falsebeards are hypothetical cheaters that display the signal without being altruistic. Despite many examples of greenbeards, evidence for falsebeards is scarce. The Dictyostelium discoideum tgrB1-tgrC1 allorecognition pathway encodes a greenbeard. It allows development, which yields fruiting bodies with altruistic stalks that increase spore dispersal. Here we show that cells lacking rapgapB, a tgrB1-tgrC1 signaling element, cheat by avoiding the stalk fate and generating more spores in chimeras than in pure populations. rapgapB - cells cheat only on partners with compatible tgrB1-tgrC1 allotypes, suggesting that beard display and recognition are intact but decoupled from altruism. The rapgapB - falsebeard provides a model to study greenbeard maintenance and subversion.
Collapse
Affiliation(s)
- Peter Lehmann
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Kundert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Katoh-Kurasawa M, Lehmann P, Shaulsky G. The greenbeard gene tgrB1 regulates altruism and cheating in Dictyostelium discoideum. Nat Commun 2024; 15:3984. [PMID: 38734736 PMCID: PMC11088635 DOI: 10.1038/s41467-024-48380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Greenbeard genetic elements encode rare perceptible signals, signal recognition ability, and altruism towards others that display the same signal. Putative greenbeards have been described in various organisms but direct evidence for all the properties in one system is scarce. The tgrB1-tgrC1 allorecognition system of Dictyostelium discoideum encodes two polymorphic membrane proteins which protect cells from chimerism-associated perils. During development, TgrC1 functions as a ligand-signal and TgrB1 as its receptor, but evidence for altruism has been indirect. Here, we show that mixing wild-type and activated tgrB1 cells increases wild-type spore production and relegates the mutants to the altruistic stalk, whereas mixing wild-type and tgrB1-null cells increases mutant spore production and wild-type stalk production. The tgrB1-null cells cheat only on partners that carry the same tgrC1-allotype. Therefore, TgrB1 activation confers altruism whereas TgrB1 inactivation causes allotype-specific cheating, supporting the greenbeard concept and providing insight into the relationship between allorecognition, altruism, and exploitation.
Collapse
Affiliation(s)
- Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peter Lehmann
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Medina J, Larsen T, Queller DC, Strassmann JE. In the social amoeba Dictyostelium discoideum, shortened stalks may limit obligate cheater success even when exploitable partners are available. PeerJ 2024; 12:e17118. [PMID: 38562996 PMCID: PMC10984163 DOI: 10.7717/peerj.17118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Cooperation is widespread across life, but its existence can be threatened by exploitation. The rise of obligate social cheaters that are incapable of contributing to a necessary cooperative function can lead to the loss of that function. In the social amoeba Dictyostelium discoideum, obligate social cheaters cannot form dead stalk cells and in chimeras instead form living spore cells. This gives them a competitive advantage within chimeras. However, obligate cheaters of this kind have thus far not been found in nature, probably because they are often enough in clonal populations that they need to retain the ability to produce stalks. In this study we discovered an additional cost to obligate cheaters. Even when there are wild-type cells to parasitize, the chimeric fruiting bodies that result have shorter stalks and these are disadvantaged in spore dispersal. The inability of obligate cheaters to form fruiting bodies when they are on their own combined with the lower functionality of fruiting bodies when they are not represent limits on obligate social cheating as a strategy.
Collapse
Affiliation(s)
- James Medina
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Tyler Larsen
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
4
|
Walker LM, Sherpa RN, Ivaturi S, Brock DA, Larsen TJ, Walker JR, Strassmann JE, Queller DC. Parallel evolution of the G protein-coupled receptor GrlG and the loss of fruiting body formation in the social amoeba Dictyostelium discoideum evolved under low relatedness. G3 (BETHESDA, MD.) 2023; 14:jkad235. [PMID: 37832511 PMCID: PMC10755179 DOI: 10.1093/g3journal/jkad235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 07/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Aggregative multicellularity relies on cooperation among formerly independent cells to form a multicellular body. Previous work with Dictyostelium discoideum showed that experimental evolution under low relatedness profoundly decreased cooperation, as indicated by the loss of fruiting body formation in many clones and an increase of cheaters that contribute proportionally more to spores than to the dead stalk. Using whole-genome sequencing and variant analysis of these lines, we identified 38 single nucleotide polymorphisms in 29 genes. Each gene had 1 variant except for grlG (encoding a G protein-coupled receptor), which had 10 unique SNPs and 5 structural variants. Variants in the 5' half of grlG-the region encoding the signal peptide and the extracellular binding domain-were significantly associated with the loss of fruiting body formation; the association was not significant in the 3' half of the gene. These results suggest that the loss of grlG was adaptive under low relatedness and that at least the 5' half of the gene is important for cooperation and multicellular development. This is surprising given some previous evidence that grlG encodes a folate receptor involved in predation, which occurs only during the single-celled stage. However, non-fruiting mutants showed little increase in a parallel evolution experiment where the multicellular stage was prevented from happening. This shows that non-fruiting mutants are not generally selected by any predation advantage but rather by something-likely cheating-during the multicellular stage.
Collapse
Affiliation(s)
- Laura M Walker
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rintsen N Sherpa
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sindhuri Ivaturi
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Debra A Brock
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tyler J Larsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jason R Walker
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
5
|
Larsen TJ, Jahan I, Brock DA, Strassmann JE, Queller DC. Reduced social function in experimentally evolved Dictyostelium discoideum implies selection for social conflict in nature. Proc Biol Sci 2023; 290:20231722. [PMID: 38113942 PMCID: PMC10730294 DOI: 10.1098/rspb.2023.1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Many microbes interact with one another, but the difficulty of directly observing these interactions in nature makes interpreting their adaptive value complicated. The social amoeba Dictyostelium discoideum forms aggregates wherein some cells are sacrificed for the benefit of others. Within chimaeric aggregates containing multiple unrelated lineages, cheaters can gain an advantage by undercontributing, but the extent to which wild D. discoideum has adapted to cheat is not fully clear. In this study, we experimentally evolved D. discoideum in an environment where there were no selective pressures to cheat or resist cheating in chimaeras. Dictyostelium discoideum lines grown in this environment evolved reduced competitiveness within chimaeric aggregates and reduced ability to migrate during the slug stage. By contrast, we did not observe a reduction in cell number, a trait for which selection was not relaxed. The observed loss of traits that our laboratory conditions had made irrelevant suggests that these traits were adaptations driven and maintained by selective pressures D. discoideum faces in its natural environment. Our results suggest that D. discoideum faces social conflict in nature, and illustrate a general approach that could be applied to searching for social or non-social adaptations in other microbes.
Collapse
Affiliation(s)
- Tyler J. Larsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Israt Jahan
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Debra A. Brock
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
6
|
Forget M, Adiba S, De Monte S. Single-cell phenotypic plasticity modulates social behavior in Dictyostelium discoideum. iScience 2023; 26:106783. [PMID: 37235054 PMCID: PMC10206496 DOI: 10.1016/j.isci.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/09/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
In Dictyostelium chimeras, "cheaters" are strains that positively bias their contribution to the pool of spores, i.e., the reproductive cells resulting from development. On evolutionary time scales, the selective advantage; thus, gained by cheaters is predicted to undermine collective functions whenever social behaviors are genetically determined. Genotypes; however, are not the sole determinant of spore bias, but the relative role of genetic and plastic differences in evolutionary success is unclear. Here, we study chimeras composed of cells harvested in different phases of population growth. We show that such heterogeneity induces frequency-dependent, plastic variation in spore bias. In genetic chimeras, the magnitude of such variation is not negligible and can even reverse the classification of a strain's social behavior. Our results suggest that differential cell mechanical properties can underpin, through biases emerging during aggregation, a "lottery" in strains' reproductive success that may counter the evolution of cheating.
Collapse
Affiliation(s)
- Mathieu Forget
- Institut de Biologie de l’Ecole Normale Supérieure, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plőn, Germany
| | - Sandrine Adiba
- Institut de Biologie de l’Ecole Normale Supérieure, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Silvia De Monte
- Institut de Biologie de l’Ecole Normale Supérieure, Département de Biologie, Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
- Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plőn, Germany
| |
Collapse
|
7
|
Weltzer ML, Wall D. Social Diversification Driven by Mobile Genetic Elements. Genes (Basel) 2023; 14:648. [PMID: 36980919 PMCID: PMC10047993 DOI: 10.3390/genes14030648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Social diversification in microbes is an evolutionary process where lineages bifurcate into distinct populations that cooperate with themselves but not with other groups. In bacteria, this is frequently driven by horizontal transfer of mobile genetic elements (MGEs). Here, the resulting acquisition of new genes changes the recipient's social traits and consequently how they interact with kin. These changes include discriminating behaviors mediated by newly acquired effectors. Since the producing cell is protected by cognate immunity factors, these selfish elements benefit from selective discrimination against recent ancestors, thus facilitating their proliferation and benefiting the host. Whether social diversification benefits the population at large is less obvious. The widespread use of next-generation sequencing has recently provided new insights into population dynamics in natural habitats and the roles MGEs play. MGEs belong to accessory genomes, which often constitute the majority of the pangenome of a taxon, and contain most of the kin-discriminating loci that fuel rapid social diversification. We further discuss mechanisms of diversification and its consequences to populations and conclude with a case study involving myxobacteria.
Collapse
Affiliation(s)
- Michael L Weltzer
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
8
|
Mathavarajah S, VanIderstine C, Dellaire G, Huber RJ. Cancer and the breakdown of multicellularity: What Dictyostelium discoideum, a social amoeba, can teach us. Bioessays 2021; 43:e2000156. [PMID: 33448043 DOI: 10.1002/bies.202000156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/01/2023]
Abstract
Ancient pathways promoting unicellularity and multicellularity are associated with cancer, the former being pro-oncogenic and the latter acting to suppress oncogenesis. However, there are only a limited number of non-vertebrate models for studying these pathways. Here, we review Dictyostelium discoideum and describe how it can be used to understand these gene networks. D. discoideum has a unicellular and multicellular life cycle, making it possible to study orthologs of cancer-associated genes in both phases. During development, differentiated amoebae form a fruiting body composed of a mass of spores that are supported atop a stalk. A portion of the cells sacrifice themselves to become non-reproductive stalk cells. Cheating disrupts the principles of multicellularity, as cheater cells alter their cell fate to preferentially become spores. Importantly, D. discoideum has gene networks and several strategies for maintaining multicellularity. Therefore, D. discoideum can help us better understand how conserved genes and pathways involved in multicellularity also influence cancer development, potentially identifying new therapeutic avenues.
Collapse
Affiliation(s)
- Sabateeshan Mathavarajah
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carter VanIderstine
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Graham Dellaire
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
9
|
Abstract
Cooperation has been essential to the evolution of biological complexity, but many societies struggle to overcome internal conflicts and divisions. Dictyostelium discoideum, or the social amoeba, has been a useful model system for exploring these conflicts and how they can be resolved. When starved, these cells communicate, gather into groups, and build themselves into a multicellular fruiting body. Some cells altruistically die to form the rigid stalk, while the remainder sit atop the stalk, become spores, and disperse. Evolutionary theory predicts that conflict will arise over which cells die to form the stalk and which cells become spores and survive. The power of the social amoeba lies in the ability to explore how cooperation and conflict work across multiple levels, ranging from proximate mechanisms (how does it work?) to ultimate evolutionary answers (why does it work?). Recent studies point to solutions to the problem of ensuring fairness, such as the ability to suppress selfishness and to recognize and avoid unrelated individuals. This work confirms a central role for kin selection, but also suggests new explanations for how social amoebae might enforce cooperation. New approaches based on genomics are also enabling researchers to decipher for the first time the evolutionary history of cooperation and conflict and to determine its role in shaping the biology of multicellular organisms.
Collapse
Affiliation(s)
- Elizabeth A Ostrowski
- School of Natural and Computational Sciences, Massey University, Auckland, New Zealand.
| |
Collapse
|
10
|
Noh S, Christopher L, Strassmann JE, Queller DC. Wild Dictyostelium discoideum social amoebae show plastic responses to the presence of nonrelatives during multicellular development. Ecol Evol 2020; 10:1119-1134. [PMID: 32076502 PMCID: PMC7029077 DOI: 10.1002/ece3.5924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 11/11/2022] Open
Abstract
When multiple strains of microbes form social groups, such as the multicellular fruiting bodies of Dictyostelium discoideum, conflict can arise regarding cell fate. Both fixed and plastic differences among strains can contribute to cell fate, and plastic responses may be particularly important if social environments frequently change. We used RNA-sequencing and photographic time series analysis to detect possible conflict-induced plastic differences between wild D. discoideum aggregates formed by single strains compared with mixed pairs of strains (chimeras). We found one hundred and two differentially expressed genes that were enriched for biological processes including cytoskeleton organization and cyclic AMP response (up-regulated in chimeras), and DNA replication and cell cycle (down-regulated in chimeras). In addition, our data indicate that in reference to a time series of multicellular development in the laboratory strain AX4, chimeras may be slightly behind clonal aggregates in their development. Finally, phenotypic analysis supported slower splitting of aggregates and a nonsignificant trend for larger group sizes in chimeras. The transcriptomic comparison and phenotypic analyses support discoordination among aggregate group members due to social conflict. These results are consistent with previously observed factors that affect cell fate decision in D. discoideum and provide evidence for plasticity in cAMP signaling and phenotypic coordination during development in response to social conflict in D. discoideum and similar microbial social groups.
Collapse
Affiliation(s)
- Suegene Noh
- Department of BiologyColby CollegeWatervilleMEUSA
| | | | | | - David C. Queller
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| |
Collapse
|
11
|
Rubin M, Miller AD, Katoh-Kurasawa M, Dinh C, Kuspa A, Shaulsky G. Cooperative predation in the social amoebae Dictyostelium discoideum. PLoS One 2019; 14:e0209438. [PMID: 30625171 PMCID: PMC6326426 DOI: 10.1371/journal.pone.0209438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/05/2018] [Indexed: 12/05/2022] Open
Abstract
The eukaryotic amoeba Dictyostelium discoideum is commonly used to study sociality. The amoebae cooperate during development, exhibiting altruism, cheating, and kin-discrimination, but growth while preying on bacteria has been considered asocial. Here we show that Dictyostelium are cooperative predators. Using mutants that grow poorly on Gram-negative bacteria but grow well on Gram-positive bacteria, we show that growth depends on cell-density and on prey type. We also found synergy, by showing that pairwise mixes of different mutants grow well on live Gram-negative bacteria. Moreover, wild-type amoebae produce diffusible factors that facilitate mutant growth and some mutants exploit the wild type in mixed cultures. Finding cooperative predation in D. discoideum should facilitate studies of this fascinating phenomenon, which has not been amenable to genetic analysis before.
Collapse
Affiliation(s)
- Michelle Rubin
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States of America
| | - Amber D. Miller
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Christopher Dinh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Adam Kuspa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
12
|
|
13
|
Chang ES, Orive ME, Cartwright P. Nonclonal coloniality: Genetically chimeric colonies through fusion of sexually produced polyps in the hydrozoan Ectopleura larynx. Evol Lett 2018; 2:442-455. [PMID: 30283694 PMCID: PMC6121865 DOI: 10.1002/evl3.68] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/18/2018] [Indexed: 12/20/2022] Open
Abstract
Hydrozoans typically develop colonies through asexual budding of polyps. Although colonies of Ectopleura are similar to other hydrozoans in that they consist of multiple polyps physically connected through continuous epithelia and shared gastrovascular cavity, Ectopleura larynx does not asexually bud polyps indeterminately. Instead, after an initial phase of limited budding in a young colony, E. larynx achieves its large colony size through the aggregation and fusion of sexually (nonclonally) produced polyps. The apparent chimerism within a physiologically integrated colony presents a potential source of conflict between distinct genetic lineages, which may vary in their ability to access the germline. To determine the extent to which the potential for genetic conflict exists, we characterized the types of genetic relationships between polyps within colonies, using a RAD‐Seq approach. Our results indicate that E. larynx colonies are indeed comprised of polyps that are clones and sexually reproduced siblings and offspring, consistent with their life history. In addition, we found that colonies also contain polyps that are genetically unrelated, and that estimates of genome‐wide relatedness suggests a potential for conflict within a colony. Taken together, our data suggest that there are distinct categories of relationships in colonies of E. larynx, likely achieved through a range of processes including budding, regeneration, and fusion of progeny and unrelated polyps, with the possibility for a genetic conflict resolution mechanism. Together these processes contribute to the reevolution of the ecologically important trait of coloniality in E. larynx.
Collapse
Affiliation(s)
- E Sally Chang
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas 66045
| | - Maria E Orive
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas 66045
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology University of Kansas Lawrence Kansas 66045
| |
Collapse
|
14
|
Abstract
Sex in social amoebae (or dictyostelids) has a number of striking features. Dictyostelid zygotes do not proliferate but grow to a large size by feeding on other cells of the same species, each zygote ultimately forming a walled structure called a macrocyst. The diploid macrocyst nucleus undergoes meiosis, after which a single meiotic product survives to restart haploid vegetative growth. Meiotic recombination is generally initiated by the Spo11 enzyme, which introduces DNA double-strand breaks. Uniquely, as far as is known among sexual eukaryotes, dictyostelids lack a SPO11 gene. Despite this, recombination occurs at high frequencies during meiosis in dictyostelids, through unknown mechanisms. The molecular processes underlying these events, and the evolutionary drivers that brought them into being, may shed light on the genetic conflicts that occur within and between genomes, and how they can be resolved.
Collapse
|
15
|
Maurya R, Kumar R, Saran S. Dictyostelium AMPKα regulates aggregate size and cell-type patterning. Open Biol 2018; 7:rsob.170055. [PMID: 28701378 PMCID: PMC5541345 DOI: 10.1098/rsob.170055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/08/2017] [Indexed: 01/28/2023] Open
Abstract
Starved Dictyostelium cells aggregate into groups of nearly 105 cells. AMPK is a highly conserved serine/threonine protein kinase consisting of a catalytic and two regulatory subunits. As multi-cellular development in Dictyostelium is initiated upon starvation, we explored the role of the energy sensor, AMPK, which shows significant similarity to human AMPK and is expressed throughout development. Deletion of the ampkα gene results in the formation of numerous small-sized aggregates that develop asynchronously to form few fruiting bodies with small sori and long stalks. On the other hand, ampkαOE cells form fruiting bodies with small stalks and large sori when compared with wild-type, Ax2. A minimum of 5% ampkα− cells in a chimaera with Ax2 cells was sufficient to reduce the aggregate size. Also, the conditioned media collected from ampkα− cells triggered Ax2 cells to form smaller aggregates. The starved ampkα− cells showed low glucose levels and formed large aggregates when glucose was supplied exogenously. Interestingly, ampkα− cells exhibit abnormal cell-type patterning with increased prestalk region and a concomitant reduction of prespore region. In addition, there was a loss of distinct prestalk/prespore boundary in the slugs.
Collapse
Affiliation(s)
- Ranjana Maurya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shweta Saran
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
16
|
Genetic signatures of microbial altruism and cheating in social amoebas in the wild. Proc Natl Acad Sci U S A 2018; 115:3096-3101. [PMID: 29507206 DOI: 10.1073/pnas.1720324115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many microbes engage in social interactions. Some of these have come to play an important role in the study of cooperation and conflict, largely because, unlike most animals, they can be genetically manipulated and experimentally evolved. However, whereas animal social behavior can be observed and assessed in natural environments, microbes usually cannot, so we know little about microbial social adaptations in nature. This has led to some difficult-to-resolve controversies about social adaptation even for well-studied traits such as bacterial quorum sensing, siderophore production, and biofilms. Here we use molecular signatures of population genetics and molecular evolution to address controversies over the existence of altruism and cheating in social amoebas. First, we find signatures of rapid adaptive molecular evolution that are consistent with social conflict being a significant force in nature. Second, we find population-genetic signatures of purifying selection to support the hypothesis that the cells that form the sterile stalk evolve primarily through altruistic kin selection rather than through selfish direct reproduction. Our results show how molecular signatures can provide insight into social adaptations that cannot be observed in their natural context, and they support the hypotheses that social amoebas in the wild are both altruists and cheaters.
Collapse
|
17
|
Pergolizzi B, Bozzaro S, Bracco E. G-Protein Dependent Signal Transduction and Ubiquitination in Dictyostelium. Int J Mol Sci 2017; 18:ijms18102180. [PMID: 29048338 PMCID: PMC5666861 DOI: 10.3390/ijms18102180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022] Open
Abstract
Signal transduction through G-protein-coupled receptors (GPCRs) is central for the regulation of virtually all cellular functions, and it has been widely implicated in human diseases. These receptors activate a common molecular switch that is represented by the heterotrimeric G-protein generating a number of second messengers (cAMP, cGMP, DAG, IP3, Ca2+ etc.), leading to a plethora of diverse cellular responses. Spatiotemporal regulation of signals generated by a given GPCR is crucial for proper signalling and is accomplished by a series of biochemical modifications. Over the past few years, it has become evident that many signalling proteins also undergo ubiquitination, a posttranslational modification that typically leads to protein degradation, but also mediates processes such as protein-protein interaction and protein subcellular localization. The social amoeba Dictyostelium discoideum has proven to be an excellent model to investigate signal transduction triggered by GPCR activation, as cAMP signalling via GPCR is a major regulator of chemotaxis, cell differentiation, and multicellular morphogenesis. Ubiquitin ligases have been recently involved in these processes. In the present review, we will summarize the most significant pathways activated upon GPCRs stimulation and discuss the role played by ubiquitination in Dictyostelium cells.
Collapse
Affiliation(s)
- Barbara Pergolizzi
- Department of Clinical and Biological Sciences, University of Turin, AOUS. Luigi, 10043 Orbassano TO, Italy.
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, AOUS. Luigi, 10043 Orbassano TO, Italy.
| | - Enrico Bracco
- Department of Oncology, University of Turin, AOU S. Luigi, 10043 Orbassano TO, Italy.
| |
Collapse
|
18
|
Inglis RF, Ryu E, Asikhia O, Strassmann JE, Queller DC. Does high relatedness promote cheater-free multicellularity in synthetic lifecycles? J Evol Biol 2017; 30:985-993. [PMID: 28294448 DOI: 10.1111/jeb.13067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022]
Abstract
The evolution of multicellularity is one of the key transitions in evolution and requires extreme levels of cooperation between cells. However, even when cells are genetically identical, noncooperative cheating mutants can arise that cause a breakdown in cooperation. How then, do multicellular organisms maintain cooperation between cells? A number of mechanisms that increase relatedness amongst cooperative cells have been implicated in the maintenance of cooperative multicellularity including single-cell bottlenecks and kin recognition. In this study, we explore how relatively simple biological processes such as growth and dispersal can act to increase relatedness and promote multicellular cooperation. Using experimental populations of pseudo-organisms, we found that manipulating growth and dispersal of clones of a social amoeba to create high levels of relatedness was sufficient to prevent the spread of cheating mutants. By contrast, cheaters were able to spread under low-relatedness conditions. Most surprisingly, we saw the largest increase in cheating mutants under an experimental treatment that should create intermediate levels of relatedness. This is because one of the factors raising relatedness, structured growth, also causes high vulnerability to growth rate cheaters.
Collapse
Affiliation(s)
- R F Inglis
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - E Ryu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - O Asikhia
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - J E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - D C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
19
|
smith J, Strassmann JE, Queller DC. Fine-scale spatial ecology drives kin selection relatedness among cooperating amoebae. Evolution 2016; 70:848-59. [DOI: 10.1111/evo.12895] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 12/29/2022]
Affiliation(s)
- jeff smith
- Department of Biology; Washington University in St. Louis; Saint Louis Missouri 63130
| | - Joan E. Strassmann
- Department of Biology; Washington University in St. Louis; Saint Louis Missouri 63130
| | - David C. Queller
- Department of Biology; Washington University in St. Louis; Saint Louis Missouri 63130
| |
Collapse
|
20
|
Strassmann JE. Kin Discrimination in
Dictyostelium
Social Amoebae. J Eukaryot Microbiol 2016; 63:378-83. [DOI: 10.1111/jeu.12307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/05/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Joan E. Strassmann
- Department of Biology Washington University in St. Louis CB1137 St. Louis Missouri 63130‐4899
| |
Collapse
|
21
|
Temporal regulation of kin recognition maintains recognition-cue diversity and suppresses cheating. Nat Commun 2015; 6:7144. [PMID: 26018043 PMCID: PMC4448137 DOI: 10.1038/ncomms8144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/10/2015] [Indexed: 01/26/2023] Open
Abstract
Kin recognition, the ability to distinguish kin from non-kin, can facilitate cooperation between relatives. Evolutionary theory predicts that polymorphism in recognition cues, which is essential for effective recognition, would be unstable. Individuals carrying rare recognition cues would benefit less from social interactions than individuals with common cues, leading to loss of the genetic-cue diversity. We test this evolutionary hypothesis in Dictyostelium discoideum, which forms multicellular fruiting bodies by aggregation and utilizes two polymorphic membrane proteins to facilitate preferential cooperation. Surprisingly, we find that rare recognition variants are tolerated and maintain their frequencies among incompatible majority during development. Although the rare variants are initially excluded from the aggregates, they subsequently rejoin the aggregate and produce spores. Social cheating is also refrained in late development, thus limiting the cost of chimerism. Our results suggest a potential mechanism to sustain the evolutionary stability of kin-recognition genes and to suppress cheating. It is unclear how variation in cues that enable recognition of kin and facilitate cooperation is maintained. Here, the authors show that rare variants of Dictyostelium discoideum are excluded from aggregates when the potential for social cheating is high, but subsequently rejoin the aggregate and produce spores.
Collapse
|
22
|
Levin SR, Brock DA, Queller DC, Strassmann JE. Concurrent coevolution of intra-organismal cheaters and resisters. J Evol Biol 2015; 28:756-65. [PMID: 25772340 DOI: 10.1111/jeb.12618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 12/01/2022]
Abstract
The evolution of multicellularity is a major transition that is not yet fully understood. Specifically, we do not know whether there are any mechanisms by which multicellularity can be maintained without a single-cell bottleneck or other relatedness-enhancing mechanisms. Under low relatedness, cheaters can evolve that benefit from the altruistic behaviour of others without themselves sacrificing. If these are obligate cheaters, incapable of cooperating, their spread can lead to the demise of multicellularity. One possibility, however, is that cooperators can evolve resistance to cheaters. We tested this idea in a facultatively multicellular social amoeba, Dictyostelium discoideum. This amoeba usually exists as a single cell but, when stressed, thousands of cells aggregate to form a multicellular organism in which some of the cells sacrifice for the good of others. We used lineages that had undergone experimental evolution at very low relatedness, during which time obligate cheaters evolved. Unlike earlier experiments, which found resistance to cheaters that were prevented from evolving, we competed cheaters and noncheaters that evolved together, and cheaters with their ancestors. We found that noncheaters can evolve resistance to cheating before cheating sweeps through the population and multicellularity is lost. Our results provide insight into cheater-resister coevolutionary dynamics, in turn providing experimental evidence for the maintenance of at least a simple form of multicellularity by means other than high relatedness.
Collapse
Affiliation(s)
- S R Levin
- Department of Zoology, University of Oxford, Oxford, UK; Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | |
Collapse
|
23
|
Li SI, Buttery NJ, Thompson CRL, Purugganan MD. Sociogenomics of self vs. non-self cooperation during development of Dictyostelium discoideum. BMC Genomics 2014; 15:616. [PMID: 25048306 PMCID: PMC4118049 DOI: 10.1186/1471-2164-15-616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022] Open
Abstract
Background Dictyostelium discoideum, a microbial model for social evolution, is known to distinguish self from non-self and show genotype-dependent behavior during chimeric development. Aside from a small number of cell-cell recognition genes, however, little is known about the genetic basis of self/non-self recognition in this species. Based on the key hypothesis that there should be differential expression of genes if D. discoideum cells were interacting with non-clone mates, we performed transcriptomic profiling study in this species during clonal vs. chimeric development. The transcriptomic profiles of D. discoideum cells in clones vs. different chimeras were compared at five different developmental stages using a customized microarray. Effects of chimerism on global transcriptional patterns associated with social interactions were observed. Results We find 1,759 genes significantly different between chimera and clone, 1,144 genes associated significant strain differences, and 6,586 genes developmentally regulated over time. Principal component analysis showed a small amount of the transcriptional variance to chimerism-related factors (Chimerism: 0.18%, Chimerism × Timepoint: 0.03%). There are 162 genes specifically regulated under chimeric development, with continuous small differences between chimera vs. clone over development. Almost 60% of chimera-associated differential genes were differentially expressed at the 4 h aggregate stage, which corresponds to the initial transition of D. discoideum from solitary life to a multicellular phase. Conclusions A relatively small proportion of over-all variation in gene expression is explained by differences between chimeric and clonal development. The relatively small modifications in gene expression associated with chimerism is compatible with the high level of cooperation observed among different strains of D. discoideum; cells of distinct genetic backgrounds will co-aggregate indiscriminately and co-develop into fruiting bodies. Chimeric development may involve re-programming of the transcriptome through small modifications of the developmental genetic network, which may also indicate that response to social interaction involves many genes with individually small transcriptional effect. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-616) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
| |
Collapse
|
24
|
Unterweger D, Miyata ST, Bachmann V, Brooks TM, Mullins T, Kostiuk B, Provenzano D, Pukatzki S. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun 2014; 5:3549. [PMID: 24686479 PMCID: PMC3988814 DOI: 10.1038/ncomms4549] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 03/05/2014] [Indexed: 01/03/2023] Open
Abstract
Vibrio cholerae is a Gram-negative bacterial pathogen that consists of over 200 serogroups with differing pathogenic potential. Only strains that express the virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) are capable of pandemic spread of cholera diarrhoea. Regardless, all V. cholerae strains sequenced to date harbour genes for the type VI secretion system (T6SS) that translocates effectors into neighbouring eukaryotic and prokaryotic cells. Here we report that the effectors encoded within these conserved gene clusters differ widely among V. cholerae strains, and that immunity proteins encoded immediately downstream from the effector genes protect their host from neighbouring bacteria producing corresponding effectors. As a consequence, strains with matching effector-immunity gene sets can coexist, while strains with different sets compete against each other. Thus, the V. cholerae T6SS contributes to the competitive behaviour of this species. Some strains of the pathogen Vibrio cholerae can kill each other by injecting effector proteins that are toxic in the absence of cognate ‘immunity’ proteins. Here, the authors show that strains with high pathogenic potential possess matching effector-immunity sets and can coexist.
Collapse
Affiliation(s)
- Daniel Unterweger
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| | - Sarah T Miyata
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| | - Verena Bachmann
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| | - Teresa M Brooks
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| | - Travis Mullins
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| | - Benjamin Kostiuk
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| | - Daniele Provenzano
- 1] Department of Biological Sciences, University of Texas Brownsville, Brownsville, Texas 78520, USA [2] Department of Biomedical Sciences, University of Texas Brownsville, Brownsville, Texas 78520, USA
| | - Stefan Pukatzki
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| |
Collapse
|
25
|
Ho HI, Hirose S, Kuspa A, Shaulsky G. Kin recognition protects cooperators against cheaters. Curr Biol 2013; 23:1590-5. [PMID: 23910661 DOI: 10.1016/j.cub.2013.06.049] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/20/2013] [Accepted: 06/18/2013] [Indexed: 10/26/2022]
Abstract
The evolution of sociality and altruism is enigmatic because cooperators are constantly threatened by cheaters who benefit from cooperation without incurring its full cost [1, 2]. Kin recognition is the ability to recognize and cooperate with genetically close relatives. It has also been proposed as a potential mechanism that limits cheating [3, 4], but there has been no direct experimental support for that possibility. Here we show that kin recognition protects cooperators against cheaters. The social amoebae Dictyostelium discoideum cooperate by forming multicellular aggregates that develop into fruiting bodies of viable spores and dead stalk cells. Cheaters preferentially differentiate into spores while their victims die as stalk cells in chimeric aggregates. We engineered syngeneic cheaters and victims that differed only in their kin-recognition genes, tgrB1 and tgrC1, and in a single cheater allele and found that the victims escaped exploitation by different types of nonkin cheaters. This protection depends on kin-recognition-mediated segregation because it is compromised when we disrupt strain segregation. These findings provide direct evidence for the role of kin recognition in cheater control and suggest a mechanism for the maintenance of stable cooperative systems.
Collapse
Affiliation(s)
- Hsing-I Ho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
26
|
The rate and effects of spontaneous mutation on fitness traits in the social amoeba, Dictyostelium discoideum. G3-GENES GENOMES GENETICS 2013; 3:1115-27. [PMID: 23665876 PMCID: PMC3704240 DOI: 10.1534/g3.113.005934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We performed a mutation accumulation (MA) experiment in the social amoeba Dictyostelium discoideum to estimate the rate and distribution of effects of spontaneous mutations affecting eight putative fitness traits. We found that the per-generation mutation rate for most fitness components is 0.0019 mutations per haploid genome per generation or larger. This rate is an order of magnitude higher than estimates for fitness components in the unicellular eukaryote Saccharomyces cerevisiae, even though the base-pair substitution rate is two orders of magnitude lower. The high rate of fitness-altering mutations observed in this species may be partially explained by a large mutational target relative to S. cerevisiae. Fitness-altering mutations also may occur primarily at simple sequence repeats, which are common throughout the genome, including in coding regions, and may represent a target that is particularly likely to give fitness effects upon mutation. The majority of mutations had deleterious effects on fitness, but there was evidence for a substantial fraction, up to 40%, being beneficial for some of the putative fitness traits. Competitive ability within the multicellular slug appears to be under weak directional selection, perhaps reflecting the fact that slugs are sometimes, but not often, comprised of multiple clones in nature. Evidence for pleiotropy among fitness components across MA lines was absent, suggesting that mutations tend to act on single fitness components.
Collapse
|
27
|
Santorelli LA, Kuspa A, Shaulsky G, Queller DC, Strassmann JE. A new social gene in Dictyostelium discoideum, chtB. BMC Evol Biol 2013; 13:4. [PMID: 23298336 PMCID: PMC3559258 DOI: 10.1186/1471-2148-13-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 11/29/2012] [Indexed: 11/10/2022] Open
Abstract
Background Competitive social interactions are ubiquitous in nature, but their genetic basis is difficult to determine. Much can be learned from single gene knockouts in a eukaryote microbe. The mutants can be competed with the parent to discern the social impact of that specific gene. Dictyostelium discoideum is a social amoeba that exhibits cooperative behavior in the construction of a multicellular fruiting body. It is a good model organism to study the genetic basis of cooperation since it has a sequenced genome and it is amenable to genetic manipulation. When two strains of D. discoideum are mixed, a cheater strain can exploit its social partner by differentiating more spore than its fair share relative to stalk cells. Cheater strains can be generated in the lab or found in the wild and genetic analyses have shown that cheating behavior can be achieved through many pathways. Results We have characterized the knockout mutant chtB, which was isolated from a screen for cheater mutants that were also able to form normal fruiting bodies on their own. When mixed in equal proportions with parental strain cells, chtB mutants contributed almost 60% of the total number of spores. To do so, chtB cells inhibit wild type cells from becoming spores, as indicated by counts and by the wild type cells’ reduced expression of the prespore gene, cotB. We found no obvious fitness costs (morphology, doubling time in liquid medium, spore production, and germination efficiency) associated with the cheating ability of the chtB knockout. Conclusions In this study we describe a new gene in D. discoideum, chtB, which when knocked out inhibits the parental strain from producing spores. Moreover, under lab conditions, we did not detect any fitness costs associated with this behavior.
Collapse
Affiliation(s)
- Lorenzo A Santorelli
- Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
Dictyostelium has become a model organism for the study of social evolution because of the stage in its life cycle where thousands of independent amoebae together form a fruiting body. Some individuals die to form a stalk that holds aloft the remaining cells for dispersal to new environments as spores. Different genotypes can aggregate together, creating opportunities for exploitation by cheaters that contribute a smaller proportion of cells to the stalk. Clustering of genotypes into separate fruiting bodies reduces the opportunities for cheating. Some genotypes achieve this by segregating after aggregation. Here we describe techniques for assaying cheating and segregation in D. discoideum. We cover how to grow and maintain cells, fluorescently label genotypes, design experiments for accuracy and precision, calculate fitness and segregation, and interpret the results.
Collapse
|
29
|
|
30
|
Zhang D, van der Wel H, Johnson JM, West CM. Skp1 prolyl 4-hydroxylase of dictyostelium mediates glycosylation-independent and -dependent responses to O2 without affecting Skp1 stability. J Biol Chem 2011; 287:2006-16. [PMID: 22128189 DOI: 10.1074/jbc.m111.314021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic prolyl 4-hydroxylases (PHDs) have a primary role in O(2) sensing in animals via modification of the transcriptional factor subunit HIFα, resulting in its polyubiquitination by the E3(VHL)ubiquitin (Ub) ligase and degradation in the 26 S proteasome. Previously thought to be restricted to animals, a homolog (P4H1) of HIFα-type PHDs is expressed in the social amoeba Dictyostelium where it also exhibits characteristics of an O(2) sensor for development. Dictyostelium lacks HIFα, and P4H1 modifies a different protein, Skp1, an adaptor of the SCF class of E3-Ub ligases related to the E3(VHL)Ub ligase that targets animal HIFα. Normally, the HO-Skp1 product of the P4H1 reaction is capped by a GlcNAc sugar that can be subsequently extended to a pentasaccharide by novel glycosyltransferases. To analyze the role of glycosylation, the Skp1 GlcNAc-transferase locus gnt1 was modified with a missense mutation to block catalysis or a stop codon to truncate the protein. Despite the accumulation of the hydroxylated form of Skp1, Skp1 was not destabilized based on metabolic labeling. However, hydroxylation alone allowed for partial correction of the high O(2) requirement of P4H1-null cells, therefore revealing both glycosylation-independent and glycosylation-dependent roles for hydroxylation. Genetic complementation of the latter function required an enzymatically active form of Gnt1. Because the effect of the gnt1 deficiency depended on P4H1, and Skp1 was the only protein labeled when the GlcNAc-transferase was restored to mutant extracts, Skp1 apparently mediates the cellular functions of both P4H1 and Gnt1. Although Skp1 stability itself is not affected by hydroxylation, its modification may affect the stability of targets of Skp1-dependent Ub ligases.
Collapse
Affiliation(s)
- Dongmei Zhang
- Department of Biochemistry and Molecular Biology, 975 NE 10th St., BRC 417, OUHSC, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
31
|
Douglas TE, Kronforst MR, Queller DC, Strassmann JE. Genetic diversity in the social amoeba Dictyostelium discoideum: Population differentiation and cryptic species. Mol Phylogenet Evol 2011; 60:455-62. [DOI: 10.1016/j.ympev.2011.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 11/29/2022]
|
32
|
Strassmann JE, Queller DC. Evolution of cooperation and control of cheating in a social microbe. Proc Natl Acad Sci U S A 2011; 108 Suppl 2:10855-62. [PMID: 21690338 PMCID: PMC3131822 DOI: 10.1073/pnas.1102451108] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Much of what we know about the evolution of altruism comes from animals. Here, we show that studying a microbe has yielded unique insights, particularly in understanding how social cheaters are controlled. The social stage of Dictylostelium discoideum occurs when the amoebae run out of their bacterial prey and aggregate into a multicellular, motile slug. This slug forms a fruiting body in which about a fifth of cells die to form a stalk that supports the remaining cells as they form hardy dispersal-ready spores. Because this social stage forms from aggregation, it is analogous to a social group, or a chimeric multicellular organism, and is vulnerable to internal conflict. Advances in cell labeling, microscopy, single-gene knockouts, and genomics, as well as the results of decades of study of D. discoideum as a model for development, allow us to explore the genetic basis of social contests and control of cheaters in unprecedented detail. Cheaters are limited from exploiting other clones by high relatedness, kin discrimination, pleiotropy, noble resistance, and lottery-like role assignment. The active nature of these limits is reflected in the elevated rates of change in social genes compared with nonsocial genes. Despite control of cheaters, some conflict is still expressed in chimeras, with slower movement of slugs, slightly decreased investment in stalk compared with spore cells, and differential contributions to stalk and spores. D. discoideum is rapidly becoming a model system of choice for molecular studies of social evolution.
Collapse
Affiliation(s)
- Joan E Strassmann
- Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA.
| | | |
Collapse
|
33
|
Blagg SL, Battom SE, Annesley SJ, Keller T, Parkinson K, Wu JMF, Fisher PR, Thompson CRL. Cell type-specific filamin complex regulation by a novel class of HECT ubiquitin ligase is required for normal cell motility and patterning. Development 2011; 138:1583-93. [PMID: 21389049 PMCID: PMC3062426 DOI: 10.1242/dev.063800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2011] [Indexed: 11/20/2022]
Abstract
Differential cell motility, which plays a key role in many developmental processes, is perhaps most evident in examples of pattern formation in which the different cell types arise intermingled before sorting out into discrete tissues. This is thought to require heterogeneities in responsiveness to differentiation-inducing signals that result in the activation of cell type-specific genes and 'salt and pepper' patterning. How differential gene expression results in cell sorting is poorly defined. Here we describe a novel gene (hfnA) that provides the first mechanistic link between cell signalling, differential gene expression and cell type-specific sorting in Dictyostelium. HfnA defines a novel group of evolutionarily conserved HECT ubiquitin ligases with an N-terminal filamin domain (HFNs). HfnA expression is induced by the stalk differentiation-inducing factor DIF-1 and is restricted to a subset of prestalk cells (pstO). hfnA(-) pstO cells differentiate but their sorting out is delayed. Genetic interactions suggest that this is due to misregulation of filamin complex activity. Overexpression of filamin complex members phenocopies the hfnA(-) pstO cell sorting defect, whereas disruption of filamin complex function in a wild-type background results in pstO cells sorting more strongly. Filamin disruption in an hfnA(-) background rescues pstO cell localisation. hfnA(-) cells exhibit altered slug phototaxis phenotypes consistent with filamin complex hyperactivity. We propose that HfnA regulates filamin complex activity and cell type-specific motility through the breakdown of filamin complexes. These findings provide a novel mechanism for filamin regulation and demonstrate that filamin is a crucial mechanistic link between responses to differentiation signals and cell movement in patterning based on 'salt and pepper' differentiation and sorting out.
Collapse
Affiliation(s)
- Simone L. Blagg
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Suzanne E. Battom
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Sarah J. Annesley
- Department of Microbiology, La Trobe University, VIC 3086, Australia
| | - Thomas Keller
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Katie Parkinson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Jasmine M. F. Wu
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Paul R. Fisher
- Department of Microbiology, La Trobe University, VIC 3086, Australia
| | - Christopher R. L. Thompson
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
34
|
Protein kinase B gene homologue pkbR1 performs one of its roles at first finger stage of Dictyostelium. EUKARYOTIC CELL 2011; 10:512-20. [PMID: 21335531 DOI: 10.1128/ec.00200-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dictyostelium discoideum has protein kinases AKT/PKBA and PKBR1 that belong to the AGC family of kinases. The protein kinase B-related kinase (PKBR1) has been studied with emphasis on its role in chemotaxis, but its roles in late development remained obscure. The pkbR1 null mutant stays in the first finger stage for about 16 h or longer. Only a few aggregates continue to the migrating slug stage; however, the slugs immediately go back probably to the previous first finger stage and stay there for approximately 37 h. Finally, the mutant fingers diversify into various multicellular bodies. The expression of the pkbR1 finger protein probably is required for development to the slug stage and to express ecmB, which is first observed in migrating slugs. The mutant also showed no ST-lacZ expression, which is of the earliest step in differentiation to one of the stalk cell subtypes. The pkbR1 null mutant forms a small number of aberrant fruiting bodies, but in the presence of 10% of wild-type amoebae the mutant preferentially forms viable spores, driving the wild type to form nonviable stalk cells. These results suggest that the mutant has defects in a system that changes the physiological dynamics in the prestalk cell region of a finger. We suggest that the arrest of its development is due to the loss of the second wave of expression of a protein kinase A catalytic subunit gene (pkaC) only in the prestalk region of the pkbR1 null mutant.
Collapse
|
35
|
The cooperative amoeba: Dictyostelium as a model for social evolution. Trends Genet 2011; 27:48-54. [DOI: 10.1016/j.tig.2010.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 11/20/2022]
|
36
|
Rosengarten RD, Moreno MA, Lakkis FG, Buss LW, Dellaporta SL. Genetic diversity of the allodeterminant alr2 in Hydractinia symbiolongicarpus. Mol Biol Evol 2011; 28:933-47. [PMID: 20966116 PMCID: PMC3108555 DOI: 10.1093/molbev/msq282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hydractinia symbiolongicarpus, a colonial cnidarian (class Hydrozoa) epibiont on hermit crab shells, is well established as a model for genetic studies of allorecognition. Recently, two linked loci, allorecognition (alr) 1 and alr2, were identified by positional cloning and shown to be major determinants of histocompatibility. Both genes encode putative transmembrane proteins with hypervariable extracellular domains similar to immunoglobulin (Ig)-like domains. We sought to characterize the naturally occurring variation at the alr2 locus and to understand the origins of this molecular diversity. We examined full-length cDNA coding sequences derived from a sample of 21 field-collected colonies, including 18 chosen haphazardly and two laboratory reference strains. Of the 35 alleles recovered from the 18 unbiased samples, 34 encoded unique gene products. We identified two distinct structural classes of alleles that varied over a large central region of the gene but both possessed highly polymorphic extracellular domains I, similar to an Ig-like V-set domain. The discovery of structurally chimeric alleles provided evidence that interallelic recombination may contribute to alr2 variation. Comparisons of the genomic region encompassing alr2 from two field-derived haplotypes and one laboratory reference sequence revealed a history of structural variation at the haplotype level as well. Maintenance of large numbers of equally rare alleles in a natural population is a hallmark of negative frequency-dependent selection and is expected to produce high levels of heterozygosity. The observed alr2 allelic diversity is comparable with that found in immune recognition molecules such as human leukocyte antigens, B cell Igs, or natural killer cell Ig-like receptors.
Collapse
Affiliation(s)
- Rafael D Rosengarten
- Department of Molecular, Cellular and Developmental Biology, Yale University, Yale, CN, USA.
| | | | | | | | | |
Collapse
|
37
|
Abstract
Any established or aspiring model organism must justify itself using two criteria: does the model organism offer experimental advantages not offered by competing systems? And will any discoveries made using the model be of wider relevance? This review addresses these issues for the social amoeba Dictyostelium and highlights some of the organisms more recent applications. These cover a remarkably wide gamut, ranging from sociobiological to medical research with much else in between.
Collapse
|
38
|
Wang ZA, Singh D, van der Wel H, West CM. Prolyl hydroxylation- and glycosylation-dependent functions of Skp1 in O2-regulated development of Dictyostelium. Dev Biol 2010; 349:283-95. [PMID: 20969846 DOI: 10.1016/j.ydbio.2010.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/15/2010] [Accepted: 10/11/2010] [Indexed: 11/28/2022]
Abstract
O(2) regulates multicellular development of the social amoeba Dictyostelium, suggesting it may serve as an important cue in its native soil environment. Dictyostelium expresses an HIFα-type prolyl 4-hydroxylase (P4H1) whose levels affect the O(2)-threshold for culmination implicating it as a direct O(2)-sensor, as in animals. But Dictyostelium lacks HIFα, a mediator of animal prolyl 4-hydroxylase signaling, and P4H1 can hydroxylate Pro143 of Skp1, a subunit of E3(SCF)ubiquitin-ligases. Skp1 hydroxyproline then becomes the target of five sequential glycosyltransferase reactions that modulate the O(2)-signal. Here we show that genetically induced changes in Skp1 levels also affect the O(2)-threshold, in opposite direction to that of the modification enzymes suggesting that the latter reduce Skp1 activity. Consistent with this, overexpressed Skp1 is poorly hydroxylated and Skp1 is the only P4H1 substrate detectable in extracts. Effects of Pro143 mutations, and of combinations of Skp1 and enzyme level perturbations, are consistent with pathway modulation of Skp1 activity. However, some effects were not mirrored by changes in modification of the bulk Skp1 pool, implicating a Skp1 subpopulation and possibly additional unknown factors. Altered Skp1 levels also affected other developmental transitions in a modification-dependent fashion. Whereas hydroxylation of animal HIFα results in its polyubiquitination and proteasomal degradation, Dictyostelium Skp1 levels were little affected by its modification status. These data indicate that Skp1 and possibly E3(SCF)ubiquitin-ligase activity modulate O(2)-dependent culmination and other developmental processes, and at least partially mediate the action of the hydroxylation/glycosylation pathway in O(2)-sensing.
Collapse
Affiliation(s)
- Zhuo A Wang
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
39
|
Sathe S, Kaushik S, Lalremruata A, Aggarwal RK, Cavender JC, Nanjundiah V. Genetic heterogeneity in wild isolates of cellular slime mold social groups. MICROBIAL ECOLOGY 2010; 60:137-148. [PMID: 20179919 DOI: 10.1007/s00248-010-9635-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 12/26/2009] [Indexed: 05/28/2023]
Abstract
This study addresses the issues of spatial distribution, dispersal, and genetic heterogeneity in social groups of the cellular slime molds (CSMs). The CSMs are soil amoebae with an unusual life cycle that consists of alternating solitary and social phases. Because the social phase involves division of labor with what appears to be an extreme form of "altruism", the CSMs raise interesting evolutionary questions regarding the origin and maintenance of sociality. Knowledge of the genetic structure of social groups in the wild is necessary for answering these questions. We confirm that CSMs are widespread in undisturbed forest soil from South India. They are dispersed over long distances via the dung of a variety of large mammals. Consistent with this mode of dispersal, most social groups in the two species examined for detailed study, Dictyostelium giganteum and Dictyostelium purpureum, are multi-clonal.
Collapse
Affiliation(s)
- Santosh Sathe
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India.
| | | | | | | | | | | |
Collapse
|
40
|
Indispensable role for the eukaryotic-like ankyrin domains of the ankyrin B effector of Legionella pneumophila within macrophages and amoebae. Infect Immun 2010; 78:2079-88. [PMID: 20194593 DOI: 10.1128/iai.01450-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Dot/Icm-translocated ankyrin B (AnkB) effector of Legionella pneumophila exhibits molecular mimicry of eukaryotic F-box proteins and is essential for intracellular replication in macrophages and protozoa. In addition to two eukaryotic-like ankyrin (ANK) domains, AnkB harbors a conserved eukaryotic F-box domain, which is involved in polyubiquitination of proteins throughout the eukaryotic kingdom. We have recently shown that the F-box domain of the AnkB effector is essential for decoration of the Legionella-containing vacuole (LCV) with polyubiquitinated proteins within macrophages and protozoan hosts. To decipher the role of the two ANK domains in the function of AnkB, we have constructed in-frame deletion of either or both of the ANK domain-encoding regions (ankB Delta A1, ankB Delta A2, and ankB Delta A1A2) to trans-complement the ankB null mutant. Deletion of the ANK domains results in defects in intracellular proliferation and decoration of the LCV with polyubiquitinated proteins. Export of the truncated variants of AnkB was reduced, and this may account for the observed defects. However, while full-length AnkB ectopically expressed in mammalian cells trans-rescues the ankB null mutant for intracellular proliferation, ectopic expression of AnkB Delta A1, AnkB Delta A2, and AnkB Delta A1A2 fails to trans-rescue the ankB null mutant. Importantly, ectopically expressed full-length AnkB is targeted to the host cell plasma membrane, where it recruits polyubiquitinated proteins. In contrast, AnkB Delta A1, AnkB Delta A2, and AnkB Delta A1A2 are diffusely distributed throughout the cytosol and fail to recruit polyubiquitinated proteins. We conclude that the two eukaryotic-like ANK domains of AnkB are essential for intracellular proliferation, for targeting AnkB to the host membranes, and for decoration of the LCV with polyubiquitinated proteins.
Collapse
|
41
|
Khare A, Shaulsky G. Cheating by exploitation of developmental prestalk patterning in Dictyostelium discoideum. PLoS Genet 2010; 6:e1000854. [PMID: 20195510 PMCID: PMC2829058 DOI: 10.1371/journal.pgen.1000854] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/23/2010] [Indexed: 11/25/2022] Open
Abstract
The cooperative developmental system of the social amoeba Dictyostelium discoideum is susceptible to exploitation by cheaters—strains that make more than their fair share of spores in chimerae. Laboratory screens in Dictyostelium have shown that the genetic potential for facultative cheating is high, and field surveys have shown that cheaters are abundant in nature, but the cheating mechanisms are largely unknown. Here we describe cheater C (chtC), a strong facultative cheater mutant that cheats by affecting prestalk differentiation. The chtC gene is developmentally regulated and its mRNA becomes stalk-enriched at the end of development. chtC mutants are defective in maintaining the prestalk cell fate as some of their prestalk cells transdifferentiate into prespore cells, but that defect does not affect gross developmental morphology or sporulation efficiency. In chimerae between wild-type and chtC mutant cells, the wild-type cells preferentially give rise to prestalk cells, and the chtC mutants increase their representation in the spore mass. Mixing chtC mutants with other cell-type proportioning mutants revealed that the cheating is directly related to the prestalk-differentiation propensity of the victim. These findings illustrate that a cheater can victimize cooperative strains by exploiting an established developmental pathway. Cooperative systems are susceptible to exploitation by cheaters who enjoy the benefits of cooperation without paying the costs. Such conflict is seen in biological systems at every level from individual genes within a cell to individuals within societies. The social amoebae Dictyostelium discoideum have a unique cooperative system in which large numbers of individual cells aggregate to form fruiting bodies with reproductive spores, and dead stalk cells that may help the survival and dispersal of the spores. Fruiting bodies can contain several genotypes, and hence can be exploited by cheater cells that preferentially form spores without contributing fairly to the stalk. We have studied a mutant, cheater C (chtC), which is defective in forming certain stalk cells, but is still able to form fruiting bodies on its own. However, when wild-type cells are mixed with chtC cells, the wild-type cells compensate for the stalk-forming defect of chtC and form more of the stalk cells. In that way, chtC cells cheat by taking advantage of developmental processes that normally regulate cell-type proportions. This study shows that existing mechanisms of developmental regulation can be exploited by cheater mutants, and the social amoebae offer a good system to study such mechanisms.
Collapse
Affiliation(s)
- Anupama Khare
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
42
|
Queller DC, Strassmann JE. Beyond society: the evolution of organismality. Philos Trans R Soc Lond B Biol Sci 2010; 364:3143-55. [PMID: 19805423 DOI: 10.1098/rstb.2009.0095] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The evolution of organismality is a social process. All organisms originated from groups of simpler units that now show high cooperation among the parts and are nearly free of conflicts. We suggest that this near-unanimous cooperation be taken as the defining trait of organisms. Consistency then requires that we accept some unconventional organisms, including some social insect colonies, some microbial groups and viruses, a few sexual partnerships and a number of mutualistic associations. Whether we call these organisms or not, a major task is to explain such cooperative entities, and our survey suggests that many of the traits commonly used to define organisms are not essential. These non-essential traits include physical contiguity, indivisibility, clonality or high relatedness, development from a single cell, short-term and long-term genetic cotransmission, germ-soma separation and membership in the same species.
Collapse
Affiliation(s)
- David C Queller
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 777005, USA.
| | | |
Collapse
|
43
|
Price CT, Al-Khodor S, Al-Quadan T, Santic M, Habyarimana F, Kalia A, Kwaik YA. Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog 2009; 5:e1000704. [PMID: 20041211 PMCID: PMC2790608 DOI: 10.1371/journal.ppat.1000704] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/20/2009] [Indexed: 01/09/2023] Open
Abstract
The ability of Legionella pneumophila to proliferate within various protozoa in the aquatic environment and in macrophages indicates a remarkable evolution and microbial exploitation of evolutionarily conserved eukaryotic processes. Ankyrin B (AnkB) of L. pneumophila is a non-canonical F-box-containing protein, and is the only known Dot/Icm-translocated effector of L. pneumophila essential for intra-vacuolar proliferation within both macrophages and protozoan hosts. We show that the F-box domain of AnkB and the 9L10P conserved residues are essential for intracellular bacterial proliferation and for rapid acquisition of polyubiquitinated proteins by the Legionella-containing vacuole (LCV) within macrophages, Dictyostelium discoideum, and Acanthamoeba. Interestingly, translocation of AnkB and recruitment of polyubiquitinated proteins in macrophages and Acanthamoeba is rapidly triggered by extracellular bacteria within 5 min of bacterial attachment. Ectopically expressed AnkB within mammalian cells is localized to the periphery of the cell where it co-localizes with host SKP1 and recruits polyubiquitinated proteins, which results in restoration of intracellular growth to the ankB mutant similar to the parental strain. While an ectopically expressed AnkB-9L10P/AA variant is localized to the cell periphery, it does not recruit polyubiquitinated proteins and fails to trans-rescue the ankB mutant intracellular growth defect. Direct in vivo interaction of AnkB but not the AnkB-9L10P/AA variant with the host SKP1 is demonstrated. Importantly, RNAi-mediated silencing of expression of SKP1 renders the cells non-permissive for intracellular proliferation of L. pneumophila. The role of AnkB in exploitation of the polyubiquitination machinery is essential for intrapulmonary bacterial proliferation in the mouse model of Legionnaires' disease. Therefore, AnkB exhibits a novel molecular and functional mimicry of eukaryotic F-box proteins that exploits conserved polyubiquitination machinery for intracellular proliferation within evolutionarily distant hosts. Legionella pneumophila is abundantly found in the aquatic environment within various protozoa and can cause a severe pneumonia called Legionnaires' disease when it invades human macrophages in the lung. The ability of L. pneumophila to invade and proliferate within macrophages and protozoa is dependent on the translocation of specific proteins into the invaded cell via a specialized secretory device, and these proteins modulate various host cell processes. Of these translocated proteins, AnkB is indispensable for intracellular growth of L. pneumophila within macrophages and protozoa. Here we show that AnkB is essential for establishing a favorable intracellular replicative niche by promoting the decoration of the Legionella containing vacuole (LCV) with polyubiquitinated proteins. The AnkB effector achieves this by mimicking the action of host cell F-box proteins, a highly conserved component of the SCF ubiquitin ligase complex that is found in both unicellular organisms and mammalian cells. Our study provides new insights into the ability of intracellular pathogens to hijack evolutionarily conserved host cell processes through molecular mimicry to establish a favorable replicative niche within various hosts and to cause disease in mammals.
Collapse
Affiliation(s)
- Christopher T. Price
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Kentucky, United States of America
| | - Souhaila Al-Khodor
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Kentucky, United States of America
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Kentucky, United States of America
| | - Marina Santic
- Department of Microbiology, University of Rijeka, Rijeka, Croatia
| | - Fabien Habyarimana
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Kentucky, United States of America
| | - Awdhesh Kalia
- Department of Biology, University of Louisville, Kentucky, United States of America
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Kentucky, United States of America
- Department of Biology, University of Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
44
|
Khare A, Santorelli LA, Strassmann JE, Queller DC, Kuspa A, Shaulsky G. Cheater-resistance is not futile. Nature 2009; 461:980-2. [PMID: 19794414 DOI: 10.1038/nature08472] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 09/03/2009] [Indexed: 11/09/2022]
|
45
|
Gilbert OM, Queller DC, Strassmann JE. Discovery of a large clonal patch of a social amoeba: implications for social evolution. Mol Ecol 2009; 18:1273-81. [PMID: 19243508 DOI: 10.1111/j.1365-294x.2009.04108.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Owen M Gilbert
- Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA.
| | | | | |
Collapse
|
46
|
Four quantitative trait loci that influence worker sterility in the honeybee (Apis mellifera). Genetics 2008; 179:1337-43. [PMID: 18562647 DOI: 10.1534/genetics.108.087270] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The all-female worker caste of the honeybee (Apis mellifera) is effectively barren in that workers refrain from laying eggs in the presence of a fecund queen. The mechanism by which workers switch off their ovaries in queenright colonies is pheromonally cued, but there is genetically based variation among individuals: some workers have high thresholds for ovary activation, while for others the response threshold is lower. Genetic variation for threshold response by workers to ovary-suppressing cues is most evident in "anarchist" colonies in which mutant patrilines have a proportion of workers that activate their ovaries and lay eggs, despite the presence of a queen. In this study we use a selected anarchist line to create a backcross queenright colony that segregated for high and low levels of ovary activation. We used 191 informative microsatellite loci, covering all 16 linkage groups to identify QTL for ovary activation and test the hypothesis that anarchy is recessively inherited. We reject this hypothesis, but identify four QTL that together explain approximately 25% of the phenotypic variance for ovary activation in our mapping population. They provide the first molecular evidence for the existence of quantitative loci that influence selfish cheating behavior in a social animal.
Collapse
|
47
|
Facultative cheater mutants reveal the genetic complexity of cooperation in social amoebae. Nature 2008; 451:1107-10. [PMID: 18272966 DOI: 10.1038/nature06558] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 12/20/2007] [Indexed: 01/04/2023]
Abstract
Cooperation is central to many major transitions in evolution, including the emergence of eukaryotic cells, multicellularity and eusociality. Cooperation can be destroyed by the spread of cheater mutants that do not cooperate but gain the benefits of cooperation from others. However, cooperation can be preserved if cheaters are facultative, cheating others but cooperating among themselves. Several cheater mutants have been studied before, but no study has attempted a genome-scale investigation of the genetic opportunities for cheating. Here we describe such a screen in a social amoeba and show that cheating is multifaceted by revealing cheater mutations in well over 100 genes of diverse types. Many of these mutants cheat facultatively, producing more than their fair share of spores in chimaeras, but cooperating normally when clonal. These findings indicate that phenotypically stable cooperative systems may nevertheless harbour genetic conflicts. The opportunities for evolutionary moves and countermoves in such conflicts may select for the involvement of multiple pathways and numerous genes.
Collapse
|
48
|
Abstract
When confronted with starvation, the amoebae of Dictyostelium discoideum initiate a developmental process that begins with cell aggregation and ends with a ball of spores supported on a stalk. Spores live and stalk cells die. Because the multicellular organism is produced by cell aggregation and not by growth and division of a single cell, genetically diverse amoebae may enter an aggregate and, if one lineage has a capacity to avoid the stalk cell fate, it may have a selective advantage. Such cheater mutants have been found among wild isolates and created in laboratory strains. The mutants raise a number of questions--how did such a cooperative system evolve in the face of cheating? What is the basis of self recognition? What genes are involved? How is cheating constrained? This review summarizes the results of studies on the social behavior of Dictyostelium and its relatives, including the familiar asexual developmental cycle and the lesser known, but puzzling, sexual cycle.
Collapse
Affiliation(s)
- Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | |
Collapse
|
49
|
Sandoz KM, Mitzimberg SM, Schuster M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci U S A 2007; 104:15876-81. [PMID: 17898171 PMCID: PMC2000394 DOI: 10.1073/pnas.0705653104] [Citation(s) in RCA: 377] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In a process termed quorum sensing, bacteria use diffusible chemical signals to coordinate cell density-dependent gene expression. In the human pathogen Pseudomonas aeruginosa, quorum sensing controls hundreds of genes, many of which encode extracellular virulence factors. Quorum sensing is required for P. aeruginosa virulence in animal models. Curiously, quorum sensing-deficient variants, most of which carry a mutation in the gene encoding the central quorum sensing regulator lasR, are frequently isolated from acute and chronic infections. The mechanism for their emergence is not known. Here we provide experimental evidence suggesting that these lasR mutants are social cheaters that cease production of quorum-controlled factors and take advantage of their production by the group. We detected an emerging subpopulation of lasR mutants after approximately 100 generations of in vitro evolution of the P. aeruginosa wild-type strain under culture conditions that require quorum sensing for growth. Under such conditions, quorum sensing appears to impose a metabolic burden on the proliferating bacterial cell, because quorum-controlled genes not normally induced until cessation of growth were highly expressed early in growth, and a defined lasR mutant showed a growth advantage when cocultured with the parent strain. The emergence of quorum-sensing-deficient variants in certain environments is therefore an indicator of high quorum sensing activity of the bacterial population as a whole. It does not necessarily indicate that quorum sensing is insignificant, as has previously been suggested. Thus, novel antivirulence strategies aimed at disrupting bacterial communication may be particularly effective in such clinical settings.
Collapse
Affiliation(s)
| | | | - Martin Schuster
- Microbiology, Oregon State University, Corvallis, OR 97331
- To whom correspondence should be addressed at
Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR 97331. E-mail:
| |
Collapse
|
50
|
West CM, van der Wel H, Wang ZA. Prolyl 4-hydroxylase-1 mediates O2 signaling during development of Dictyostelium. Development 2007; 134:3349-58. [PMID: 17699611 DOI: 10.1242/dev.000893] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development in multicellular organisms is subject to both environmental and internal signals. In Dictyostelium, starvation induces amoebae to form migratory slugs that translocate from subterranean areas to exposed sites, where they culminate to form sessile fruiting bodies. Culmination, thought to be regulated by anterior tip cells, is selectively suppressed by mild hypoxia by a mechanism that can be partially overridden by another environmental signal, overhead light, or genetic activation of protein kinase A. Dictyostelium expresses, in all cells, an O2-dependent prolyl 4-hydroxylase (P4H1) required for O-glycosylation of Skp1, a subunit of E3SCF-Ub-ligases. P4H1-null cells differentiate the basic pre-stalk and pre-spore cell types but exhibit a selectively increased O2 requirement for culmination, from approximately 12% to near or above ambient (21%) levels. Overexpression of P4H1 reduces the O2 requirement to <5%. The requirement for P4H1 can be met by forced expression of the active enzyme in either pre-stalk (anterior) or pre-spore (posterior) cells, or replaced by protein kinase A activation or addition of small numbers of wild-type cells. P4H1-expressing cells accumulate at the anterior end, suggesting that P4H1 enables transcellular signaling by the tip. The evidence provides novel genetic support for the animal-derived O2-sensor model of prolyl 4-hydroxylase function, in an organism that lacks the canonical HIFalpha transcriptional factor subunit substrate target that is a feature of animal hypoxic signaling.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry and Molecular Biology and the Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA.
| | | | | |
Collapse
|