1
|
Mahdavimehr M, Rahdari T, Nikfarjam N, Ehtesham S, Shafiee Ardestani M, Asghari SM. Development and application of dual-modality tumor-targeting SPIONs for precision breast cancer imaging. BIOMATERIALS ADVANCES 2025; 172:214236. [PMID: 40010023 DOI: 10.1016/j.bioadv.2025.214236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/05/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have gained attention as contrast agents in cancer imaging due to their unique magnetic properties, enhancing MRI's effectiveness. This study introduces an innovative approach by functionalizing SPIONs with diethylenetriaminepentaacetic acid (DTPA) and a novel C-peptide derived from endostatin, aimed at improved tumor targeting. This C-peptide targets integrin αv receptors, prominently overexpressed in breast cancer cells, enhancing specificity and imaging efficacy. The SPION-DTPA-C-peptide provided precise MRI capabilities and significantly inhibited cell viability and migration in vitro (p < 0.01). The DTPA coating also facilitates the chelation of technetium-99m (99mTc), allowing dual-modality imaging with SPECT. Comprehensive characterization via XRD, EDX, TEM, FT-IR, and VSM confirmed successful synthesis, functionalization, spherical morphology, optimal size, and superparamagnetic characteristics. In vitro studies demonstrated selective targeting of 4T1 mammary carcinoma cells by SPION-DTPA-C-Peptide, exerting cytotoxic effects and inhibiting cell migration. In vivo imaging in Balb-c mice bearing 4T1 xenograft tumors showed enhanced tumor targeting and contrast on both MRI and SPECT modalities. These findings highlight the potential of the SPION-DTPA-C-Peptide system for targeted cancer imaging, offering a promising strategy for integrated MRI and SPECT in cancer diagnosis and management.
Collapse
Affiliation(s)
- Mohsen Mahdavimehr
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Tahereh Rahdari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Somayeh Ehtesham
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Molecular Medicine, Shariati Hospital, North Kargar Ave., Tehran, Iran
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Jansen SM, Pitek R, Karsdal MA, Henriksen K. Decastatin, a Novel Non-Collagenous 1 Domain From Collagen Type X, Harbors a Specific Fragment With Antiangiogenic Properties. J Cardiovasc Pharmacol 2025; 85:369-380. [PMID: 39933048 DOI: 10.1097/fjc.0000000000001683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/25/2025] [Indexed: 02/13/2025]
Abstract
ABSTRACT The NC1 domains of collagens have been shown to possess antiangiogenic potential and, therefore, are of therapeutic interest for cancer. However, endostatin and other NC1 domains have not been successful in clinical tests. Therefore, we used evolutionary conservation to perform molecular deconstruction of the domains to further understand their structure-activity relationship, thereby deciphering their antiangiogenic potential. Homology exploration revealed that collagen type X contains a highly interesting NC1 domain (decastatin), with several sequences showing significant homology with vastatin, which is a known collagen type VIII-derived NC1 domain. For comparison, endostatin and vastatin were split into fragments, some of which contained highly conserved regions. The testing of these peptides revealed that the peptides containing conserved regions induced signaling, and fragment 4 of decastatin showed the highest potency of all fragments, with a calculated inhibitory concentration value of 2.7 μM in the human umbilical vein endothelial cell-based tube formation assay, which is like that of an intact NC1 domain. Notably, the corresponding fragment from vastatin (V4) also inhibited tube formation, suggesting that this region is of therapeutic interest. In summary, we used evolutionary conservation to identify a novel NC1 domain of collagen type X, a collagen playing a role in angiogenesis of the growth plate. Furthermore, we provided data indicating that the antiangiogenic activity of NC1 domain-derived peptides reside within their conserved domains. As a result, we identified a fragment called Decastatin fragment 4 (D4) derived from the NC1 domain of collagen type X, and which has potent antiangiogenic activity.
Collapse
|
3
|
Anakha J, Prasad YR, Pande AH. Endostatin in disease modulation: From cancer to beyond. Vascul Pharmacol 2025; 158:107459. [PMID: 39708990 DOI: 10.1016/j.vph.2024.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Angiogenesis plays a pivotal role in various pathological conditions, making it a key target in therapeutic development. Anti-angiogenic therapies are gaining traction for their potential in treating a range of angiogenesis-dependent diseases. Among these, endogenous angiogenesis inhibitors, particularly endostatin, have garnered significant attention for their therapeutic potential. While extensively studied for its anti-angiogenic effects in cancer, endostatin also exhibits anti-atherosclerotic and anti-fibrotic properties, broadening its therapeutic scope. Despite the successful clinical use of recombinant human endostatin in China for nearly two decades, its broader therapeutic potential remains underexplored. Thus, this review delves into the multifaceted applications of endostatin, examining its role in ocular diseases, inflammation, reproductive disorders, and tumor angiogenesis. Furthermore, it provides a comprehensive overview of its emerging roles beyond angiogenesis, particularly in the context of atherosclerosis and fibroproliferative conditions.
Collapse
Affiliation(s)
- J Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| | - Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| |
Collapse
|
4
|
Mongiat M, Pascal G, Poletto E, Williams DM, Iozzo RV. Proteoglycans of basement membranes: Crucial controllers of angiogenesis, neurogenesis, and autophagy. PROTEOGLYCAN RESEARCH 2024; 2:e22. [PMID: 39184370 PMCID: PMC11340296 DOI: 10.1002/pgr2.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/02/2024] [Indexed: 08/27/2024]
Abstract
Anti-angiogenic therapy is an established method for the treatment of several cancers and vascular-related diseases. Most of the agents employed target the vascular endothelial growth factor A, the major cytokine stimulating angiogenesis. However, the efficacy of these treatments is limited by the onset of drug resistance. Therefore, it is of fundamental importance to better understand the mechanisms that regulate angiogenesis and the microenvironmental cues that play significant role and influence patient treatment and outcome. In this context, here we review the importance of the three basement membrane heparan sulfate proteoglycans (HSPGs), namely perlecan, agrin and collagen XVIII. These HSPGs are abundantly expressed in the vasculature and, due to their complex molecular architecture, they interact with multiple endothelial cell receptors, deeply affecting their function. Under normal conditions, these proteoglycans exert pro-angiogenic functions. However, in pathological conditions such as cancer and inflammation, extracellular matrix remodeling leads to the degradation of these large precursor molecules and the liberation of bioactive processed fragments displaying potent angiostatic activity. These unexpected functions have been demonstrated for the C-terminal fragments of perlecan and collagen XVIII, endorepellin and endostatin. These bioactive fragments can also induce autophagy in vascular endothelial cells which contributes to angiostasis. Overall, basement membrane proteoglycans deeply affect angiogenesis counterbalancing pro-angiogenic signals during tumor progression, and represent possible means to develop new prognostic biomarkers and novel therapeutic approaches for the treatment of solid tumors.
Collapse
Affiliation(s)
- Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Gabriel Pascal
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Davion M. Williams
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Revert-Ros F, Ventura I, Prieto-Ruiz JA, Hernández-Andreu JM, Revert F. The Versatility of Collagen in Pharmacology: Targeting Collagen, Targeting with Collagen. Int J Mol Sci 2024; 25:6523. [PMID: 38928229 PMCID: PMC11203716 DOI: 10.3390/ijms25126523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Collagen, a versatile family of proteins with 28 members and 44 genes, is pivotal in maintaining tissue integrity and function. It plays a crucial role in physiological processes like wound healing, hemostasis, and pathological conditions such as fibrosis and cancer. Collagen is a target in these processes. Direct methods for collagen modulation include enzymatic breakdown and molecular binding approaches. For instance, Clostridium histolyticum collagenase is effective in treating localized fibrosis. Polypeptides like collagen-binding domains offer promising avenues for tumor-specific immunotherapy and drug delivery. Indirect targeting of collagen involves regulating cellular processes essential for its synthesis and maturation, such as translation regulation and microRNA activity. Enzymes involved in collagen modification, such as prolyl-hydroxylases or lysyl-oxidases, are also indirect therapeutic targets. From another perspective, collagen is also a natural source of drugs. Enzymatic degradation of collagen generates bioactive fragments known as matrikines and matricryptins, which exhibit diverse pharmacological activities. Overall, collagen-derived peptides present significant therapeutic potential beyond tissue repair, offering various strategies for treating fibrosis, cancer, and genetic disorders. Continued research into specific collagen targeting and the application of collagen and its derivatives may lead to the development of novel treatments for a range of pathological conditions.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Revert
- Mitochondrial and Molecular Medicine Research Group, Facultad de Medicina y Ciencias de la Salud, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain; (F.R.-R.); (I.V.); (J.A.P.-R.); (J.M.H.-A.)
| |
Collapse
|
6
|
Kaur G, Roy B. Decoding Tumor Angiogenesis for Therapeutic Advancements: Mechanistic Insights. Biomedicines 2024; 12:827. [PMID: 38672182 PMCID: PMC11048662 DOI: 10.3390/biomedicines12040827] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels within the tumor microenvironment, is considered a hallmark of cancer progression and represents a crucial target for therapeutic intervention. The tumor microenvironment is characterized by a complex interplay between proangiogenic and antiangiogenic factors, regulating the vascularization necessary for tumor growth and metastasis. The study of angiogenesis involves a spectrum of techniques, spanning from biomarker assessment to advanced imaging modalities. This comprehensive review aims to provide insights into the molecular intricacies, regulatory dynamics, and clinical implications of tumor angiogenesis. By delving into these aspects, we gain a deeper understanding of the processes driving vascularization in tumors, paving the way for the development of novel and effective antiangiogenic therapies in the fight against cancer.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Bipradas Roy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Alshannag F, Zaki RMM, Hemida E, ElBakry MMM, Noureldeen AFH. Endostatin and Cystatin C as Potential Biomarkers for Early Prediction of Preeclampsia. ACS OMEGA 2023; 8:42776-42786. [PMID: 38024766 PMCID: PMC10652833 DOI: 10.1021/acsomega.3c05586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Preeclampsia (PE) is characterized by new onset hypertension and proteinuria. Undoubtedly, some individuals do not fit precisely into this description, and it could be challenging to spot newly developed PE in females who already have hypertension or renal illness. Monitoring the disease's progression enables the optimization of delivery time while minimizing premature births. The current study explores the diagnostic benefits of serum endostatin and cystatin C in addition to serum and urinary magnesium (Mg) and fractional excretion magnesium (FEMg) for early prediction of PE. The population sample included 82 pregnant women divided into 3 groups: normal pregnancy group served as a control (n = 26), nonpreeclampsia (NPE, n = 34) group included pregnant women with one or more risk factors but did not progress to PE, and pregnant women who developed preeclampsia (PE, n = 22) group. Blood samples were withdrawn at two sampling times: at 12th to 16th and 24th to 26th weeks of gestation. Compared to normal pregnancy, results (X̅ ± SD) indicated a significant increase in serum endostatin in NPE at the first sample (10.78 ± 3.63 ng/mL) and the second sample (28.03 ± 3.79 ng/mL), while cystatin C was at the first sample (0.68 ± 0.06 mg/dL) and the second sample (0.71 ± 0.07 mg/dL). In the PE group, the serum endostatin was 18.86 ± 4.37 ng/mL at the first sampling time and 53.56 ± 9.76 ng/mL for the second sample. Serum cystatin C was also elevated in PE with X̅ ± SD equivalent to 0.73 ± 0.08 and 0.89 ± 0.08 mg/dL at the first and second samples, respectively. On the other hand, serum and urinary Mg in addition to FEMg levels did not significantly differ across the groups under study. Receiver operating characteristic (ROC) curve analysis proved that both endostatin and cystatin C could be good indicators for PE. The findings imply that measuring endostatin and cystatin C at early pregnancy and before progression to PE may be effective in detecting the likelihood of PE. Endostatin could be more precise and sensitive in assessing the probability of PE than cystatin C; however, coupling of the two parameters may be promising.
Collapse
Affiliation(s)
- Fatima Alshannag
- Biochemistry
Department, Faculty of Science, Ain Shams
University, Cairo 11566, Egypt
| | - Radwa M. M. Zaki
- Obstetrics
and Gynecology Department, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Eman Hemida
- Ain
Shams Specialized Hospital, Cairo 11568, Egypt
| | - Mustafa M. M. ElBakry
- Biochemistry
Department, Faculty of Science, Ain Shams
University, Cairo 11566, Egypt
| | | |
Collapse
|
8
|
Patras L, Paul D, Matei IR. Weaving the nest: extracellular matrix roles in pre-metastatic niche formation. Front Oncol 2023; 13:1163786. [PMID: 37350937 PMCID: PMC10282420 DOI: 10.3389/fonc.2023.1163786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
The discovery that primary tumors condition distant organ sites of future metastasis for seeding by disseminating tumor cells through a process described as the pre-metastatic niche (PMN) formation revolutionized our understanding of cancer progression and opened new avenues for therapeutic interventions. Given the inherent inefficiency of metastasis, PMN generation is crucial to ensure the survival of rare tumor cells in the otherwise hostile environments of metastatic organs. Early on, it was recognized that preparing the "soil" of the distal organ to support the outgrowth of metastatic cells is the initiating event in PMN development, achieved through the remodeling of the organ's extracellular matrix (ECM). Remote restructuring of ECM at future sites of metastasis under the influence of primary tumor-secreted factors is an iterative process orchestrated through the crosstalk between resident stromal cells, such as fibroblasts, epithelial and endothelial cells, and recruited innate immune cells. In this review, we will explore the ECM changes, cellular effectors, and the mechanisms of ECM remodeling throughout PMN progression, as well as its impact on shaping the PMN and ultimately promoting metastasis. Moreover, we highlight the clinical and translational implications of PMN ECM changes and opportunities for therapeutically targeting the ECM to hinder PMN formation.
Collapse
Affiliation(s)
- Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Doru Paul
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Irina R. Matei
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
9
|
Nucleolin; A tumor associated antigen as a potential lung cancer biomarker. Pathol Res Pract 2022; 240:154160. [DOI: 10.1016/j.prp.2022.154160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/11/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
10
|
Lee SY. Endothelial cell‑derived connective tissue growth factor stimulates fibroblast differentiation into myofibroblasts through integrin αVβ3. Exp Ther Med 2022; 25:30. [PMID: 36561611 PMCID: PMC9748665 DOI: 10.3892/etm.2022.11730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Connective tissue growth factor (CTGF) is expressed at high levels in blood vessels, where it functions as a regulator of a number of physiological processes, such as cell proliferation, angiogenesis and wound healing. In addition, CTGF has been reported to be involved in various pathological processes, such as tumor development and tissue fibrosis. However, one of the main roles of CTGF is to promote the differentiation of fibroblasts into myofibroblasts, a process that is involved in disease progression. Therefore, the present study aimed to investigate the possible mechanism by which pathological changes in the microvasculature can direct the activation of fibroblasts into myofibroblasts in the context of hypoxia/reoxygenation (H/R). Human umbilical vein endothelial cells (HUVECs) and normal human dermal fibroblasts were used in the present study. The expression levels of CTGF were determined by western blot analysis and reverse transcription-semi-quantitative PCR. To analyze the paracrine effect of HUVECs on fibroblasts, HUVECs were infected with CTGF-expressing adenovirus and then the culture supernatant of HUVECs was collected to treat fibroblasts. The formation of α-smooth muscle actin (α-SMA) stress fibers in fibroblasts were observed by immunofluorescence staining. It was found that H/R significantly increased CTGF expression in HUVECs. CTGF was also able to directly induce the differentiation of fibroblasts into myofibroblasts. In addition, the culture supernatant from CTGF-overexpressing HUVECs stimulated the formation of α-SMA stress fibers in fibroblasts, which was inhibited by treatment with a functional blocking antibody against integrin αVβ3 and to a lesser degree by a blocking antibody against α6 integrin. The mechanism of CTGF upregulation by H/R in HUVECs was then evaluated, where it was found that the CTGF protein was more stable in the H/R group compared with that in the normoxic control group. These findings suggest that CTGF expressed and secreted by vascular endothelial cells under ischemia/reperfusion conditions can exert a paracrine influence on neighboring fibroblasts, which may in turn promote myofibroblast-associated diseases. This association may hold potential as a therapeutic target.
Collapse
Affiliation(s)
- Seo-Yeon Lee
- Department of Pharmacology, Wonkwang University School of Medicine, Iksan, Jeollabuk-do 54538, Republic of Korea,Department of Biomedical Science, Wonkwang University School of Medicine, Iksan, Jeollabuk-do 54538, Republic of Korea,Correspondence to: Professor Seo-Yeon Lee, Department of Pharmacology, Wonkwang University School of Medicine, 460 Iksan-daero, Iksan, Jeollabuk-do 54538, Republic of Korea
| |
Collapse
|
11
|
Chen H, Ma D, Yue F, Qi Y, Dou M, Cui L, Xing Y. The Potential Role of Hypoxia-Inducible Factor-1 in the Progression and Therapy of Central Nervous System Diseases. Curr Neuropharmacol 2022; 20:1651-1666. [PMID: 34325641 PMCID: PMC9881070 DOI: 10.2174/1570159x19666210729123137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/19/2021] [Accepted: 07/16/2021] [Indexed: 11/22/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a heterodimer protein composed of an oxygenregulated functional subunit, HIF-1α, and a structural subunit, HIF-1β, belonging to the basic helixloop- helix family. Strict regulation of HIF-1 protein stability and subsequent transcriptional activity involves various molecular interactions and is primarily controlled by post-transcriptional modifications. Hypoxia, owing to impaired cerebral blood flow, has been implicated in a range of central nervous system (CNS) diseases by exerting a deleterious effect on brain function. As a master oxygen- sensitive transcription regulator, HIF-1 is responsible for upregulating a wide spectrum of target genes involved in glucose metabolism, angiogenesis, and erythropoiesis to generate the adaptive response to avoid, or at least minimize, hypoxic brain injury. However, prolonged, severe oxygen deprivation may directly contribute to the role-conversion of HIF-1, namely, from neuroprotection to the promotion of cell death. Currently, an increasing number of studies support the fact HIF-1 is involved in a variety of CNS-related diseases, such as intracranial atherosclerosis, stroke, and neurodegenerative diseases. This review article chiefly focuses on the effect of HIF-1 on the pathogenesis and mechanism of progression of numerous CNS-related disorders by mediating the expression of various downstream genes and extensive biological functional events and presents robust evidence that HIF-1 may represent a potential therapeutic target for CNS-related diseases.
Collapse
Affiliation(s)
- Hongxiu Chen
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; ,Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; ,Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 45 Changchun Road, Xicheng District, Beijing, 100053, China; ,Hongxiu Chen and Di Ma contributed equally to this work.
| | - Di Ma
- Department of Neurology, The First Hospital of Jilin University, Changchun, China,Hongxiu Chen and Di Ma contributed equally to this work.
| | - Feixue Yue
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yajie Qi
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Manman Dou
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Liuping Cui
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yingqi Xing
- Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China; ,Beijing Diagnostic Center of Vascular Ultrasound, Beijing, China; ,Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 45 Changchun Road, Xicheng District, Beijing, 100053, China; ,Address correspondence to this author at the Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing Diagnostic Center of Vascular Ultrasound, Center of Vascular Ultrasonography, Beijing Institute of Brain Disorders, 45 Changchun Road, Xicheng District, Beijing, 100053, China; E-mail: This work is recommended by Pro Jiachun Feng, The First Hospital of Jilin University.
| |
Collapse
|
12
|
Hong TU, Park SK. The Roles of Vascular Endothelial Growth Factor, Angiostatin, and Endostatin in Nasal Polyp Development. JOURNAL OF RHINOLOGY 2022; 29:82-87. [PMID: 39665059 PMCID: PMC11540239 DOI: 10.18787/jr.2021.00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 11/01/2022] Open
Abstract
Background and Objectives Microvascular remodeling and angiogenesis are elements of tissue remodeling characteristic of chronic inflammatory diseases, including nasal polyps (NPs). Angiogenesis reflects the balance between the actions of pro- and anti-angiogenic factors. Many pro-angiogenic factors are known, including vascular endothelial growth factor (VEGF). A number of anti-angiogenic factors (e.g., angiostatin and endostatin) also has been identified. Our objective was to assess the roles of VEGF, angiostatin, and endostatin in NP development. Methods The expression levels of VEGF, angiostatin, and endostatin were measured in NPs harvested during endoscopic endonasal surgery and compared with those in inferior turbinate mucosa (control) samples acquired from patients with hypertrophic rhinitis without allergy. Western blotting and immunohistochemical staining were used to analyze all samples. Results The levels of VEGF and angiostatin were significantly higher in the NP subjects than in the controls. Neither the VEGF/angiostatin ratio nor the endostatin level differed significantly between the two groups. However, the VEGF/endostatin ratio was significantly higher in the NP than in the control group. Both the NP and control tissues were diffusely immunoreactive for VEGF, angiostatin, and endostatin. Conclusion NP-associated hypoxia can elevate angiostatin level; moreover, an imbalance in the VEGF/endostatin ratio can contribute to NP formation.
Collapse
Affiliation(s)
- Tae Ui Hong
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Inje University, Busan, Republic of Korea
| | - Seong Kook Park
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Inje University, Busan, Republic of Korea
| |
Collapse
|
13
|
Role of Anti-Angiogenic Factors in the Pathogenesis of Breast Cancer: A Review of Therapeutic Potential. Pathol Res Pract 2022; 236:153956. [DOI: 10.1016/j.prp.2022.153956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022]
|
14
|
Chen CG, Iozzo RV. Extracellular matrix guidance of autophagy: a mechanism regulating cancer growth. Open Biol 2022; 12:210304. [PMID: 34982945 PMCID: PMC8727153 DOI: 10.1098/rsob.210304] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 01/09/2023] Open
Abstract
The extracellular matrix (ECM) exists as a dynamic network of biophysical and biochemical factors that maintain tissue homeostasis. Given its sensitivity to changes in the intra- and extracellular space, the plasticity of the ECM can be pathological in driving disease through aberrant matrix remodelling. In particular, cancer uses the matrix for its proliferation, angiogenesis, cellular reprogramming and metastatic spread. An emerging field of matrix biology focuses on proteoglycans that regulate autophagy, an intracellular process that plays both critical and contextual roles in cancer. Here, we review the most prominent autophagic modulators from the matrix and the current understanding of the cellular pathways and signalling cascades that mechanistically drive their autophagic function. We then critically assess how their autophagic functions influence tumorigenesis, emphasizing the complexities and stage-dependent nature of this relationship in cancer. We highlight novel emerging data on immunoglobulin-containing and proline-rich receptor-1, heparanase and thrombospondin 1 in autophagy and cancer. Finally, we further discuss the pro- and anti-autophagic modulators originating from the ECM, as well as how these proteoglycans and other matrix constituents specifically influence cancer progression.
Collapse
Affiliation(s)
- Carolyn G. Chen
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
15
|
Zhang Z, Liu X, Shen Z, Quan J, Lin C, Li X, Hu G. Endostatin in fibrosis and as a potential candidate of anti-fibrotic therapy. Drug Deliv 2021; 28:2051-2061. [PMID: 34595978 PMCID: PMC8491667 DOI: 10.1080/10717544.2021.1983071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fibrotic diseases pose significant clinical challenges due to their broadness and complexity. Thus, a better understanding of fibrogenesis and the development of more effective treatments is imperative. Recent evidence suggests a significant antifibrotic potential of an endogenous glycoprotein, endostatin. While endostatin has been widely studied for its role as an anticancer adjuvant by inhibiting tumor angiogenesis, its possible implication in fibrosis remains largely unclear. Here, we review the role of endostatin in various cellular processes and highlight its antifibrotic activity. We hypothesize that endostatin conveys a homeostatic function in the process of fibrosis by regulating (a) TGF-β1 and its downstream signaling; (b) RhoA/ROCK pathway; (c) NF-κB signaling pathway; (d) expression of EGR-1; (e) PDGF/PDGFR pathway; (f) autophagy-related pathways; (g) pathways associated with cell proliferation and apoptosis. Finally, we propose a schematic model of the antifibrotic roles and mechanisms of endostatin; also, we outline future research directions of endostatin and aim to present a potential therapeutic approach for fibrosis.
Collapse
Affiliation(s)
- Zequn Zhang
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Liu
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaolong Shen
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Quan
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Changwei Lin
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaorong Li
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gui Hu
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Han X, Caron JM, Lary CW, Sathyanarayana P, Vary C, Brooks PC. An RGDKGE-Containing Cryptic Collagen Fragment Regulates Phosphorylation of Large Tumor Suppressor Kinase-1 and Controls Ovarian Tumor Growth by a Yes-Associated Protein-Dependent Mechanism. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:527-544. [PMID: 33307038 PMCID: PMC7927278 DOI: 10.1016/j.ajpath.2020.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/28/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
The growth and spread of malignant tumors, such as ovarian carcinomas, are governed in part by complex interconnected signaling cascades occurring between stromal and tumor cells. These reciprocal cross-talk signaling networks operating within the local tissue microenvironment may enhance malignant tumor progression. Understanding how novel bioactive molecules generated within the tumor microenvironment regulate signaling pathways in distinct cellular compartments is critical for the development of more effective treatment paradigms. Herein, we provide evidence that blocking cellular interactions with an RGDKGE-containing collagen peptide that selectively binds integrin β3 on ovarian tumor cells enhances the phosphorylation of the hippo effector kinase large tumor suppressor kinase-1 and reduces nuclear accumulation of yes-associated protein and its target gene c-Myc. Selectively targeting this RGDKGE-containing collagen fragment inhibited ovarian tumor growth and the development of ascites fluid in vivo. These findings suggest that this bioactive collagen fragment may represent a previously unknown regulator of the hippo effector kinase large tumor suppressor kinase-1 and regulate ovarian tumor growth by a yes-associated protein-dependent mechanism. Taken together, these data not only provide new mechanistic insight into how a unique collagen fragment may regulate ovarian cancer, but in addition may help provide a useful new alternative strategy to control ovarian tumor progression based on selectively disrupting a previously unappreciated signaling cascade.
Collapse
Affiliation(s)
- XiangHua Han
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Jennifer M Caron
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Christine W Lary
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Pradeep Sathyanarayana
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Calvin Vary
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine
| | - Peter C Brooks
- Maine Medical Center Research Institute, Center for Molecular Medicine, Scarborough, Maine.
| |
Collapse
|
17
|
de la Torre P, Paris JL, Fernández-de la Torre M, Vallet-Regí M, Flores AI. Endostatin Genetically Engineered Placental Mesenchymal Stromal Cells Carrying Doxorubicin-Loaded Mesoporous Silica Nanoparticles for Combined Chemo- and Antiangiogenic Therapy. Pharmaceutics 2021; 13:244. [PMID: 33578733 PMCID: PMC7916487 DOI: 10.3390/pharmaceutics13020244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
Combination therapies constitute a powerful tool for cancer treatment. By combining drugs with different mechanisms of action, the limitations of each individual agent can be overcome, while increasing therapeutic benefit. Here, we propose employing tumor-migrating decidua-derived mesenchymal stromal cells as therapeutic agents combining antiangiogenic therapy and chemotherapy. First, a plasmid encoding the antiangiogenic protein endostatin was transfected into these cells by nucleofection, confirming its expression by ELISA and its biological effect in an ex ovo chick embryo model. Second, doxorubicin-loaded mesoporous silica nanoparticles were introduced into the cells, which would act as vehicles for the drug being released. The effect of the drug was evaluated in a coculture in vitro model with mammary cancer cells. Third, the combination of endostatin transfection and doxorubicin-nanoparticle loading was carried out with the decidua mesenchymal stromal cells. This final cell platform was shown to retain its tumor-migration capacity in vitro, and the combined in vitro therapeutic efficacy was confirmed through a 3D spheroid coculture model using both cancer and endothelial cells. The results presented here show great potential for the development of combination therapies based on genetically-engineered cells that can simultaneously act as cellular vehicles for drug-loaded nanoparticles.
Collapse
Affiliation(s)
- Paz de la Torre
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n 28041, 28041 Madrid, Spain;
| | - Juan L. Paris
- Departamento de Química en Ciencias Farmacéuticas (Unidad Docente de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Miguel Fernández-de la Torre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n 28041, 28041 Madrid, Spain;
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas (Unidad Docente de Química Inorgánica y Bioinorgánica), Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ana I. Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n 28041, 28041 Madrid, Spain;
| |
Collapse
|
18
|
Chen CG, Iozzo RV. Angiostatic cues from the matrix: Endothelial cell autophagy meets hyaluronan biology. J Biol Chem 2020; 295:16797-16812. [PMID: 33020183 PMCID: PMC7864073 DOI: 10.1074/jbc.rev120.014391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
The extracellular matrix encompasses a reservoir of bioactive macromolecules that modulates a cornucopia of biological functions. A prominent body of work posits matrix constituents as master regulators of autophagy and angiogenesis and provides molecular insight into how these two processes are coordinated. Here, we review current understanding of the molecular mechanisms underlying hyaluronan and HAS2 regulation and the role of soluble proteoglycan in affecting autophagy and angiogenesis. Specifically, we assess the role of proteoglycan-evoked autophagy in regulating angiogenesis via the HAS2-hyaluronan axis and ATG9A, a novel HAS2 binding partner. We discuss extracellular hyaluronan biology and the post-transcriptional and post-translational modifications that regulate its main synthesizer, HAS2. We highlight the emerging group of proteoglycans that utilize outside-in signaling to modulate autophagy and angiogenesis in cancer microenvironments and thoroughly review the most up-to-date understanding of endorepellin signaling in vascular endothelia, providing insight into the temporal complexities involved.
Collapse
Affiliation(s)
- Carolyn G Chen
- Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Renato V Iozzo
- Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
19
|
Kleiser S, Nyström A. Interplay between Cell-Surface Receptors and Extracellular Matrix in Skin. Biomolecules 2020; 10:E1170. [PMID: 32796709 PMCID: PMC7465455 DOI: 10.3390/biom10081170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022] Open
Abstract
Skin consists of the epidermis and dermis, which are connected by a specialized basement membrane-the epidermal basement membrane. Both the epidermal basement membrane and the underlying interstitial extracellular matrix (ECM) created by dermal fibroblasts contain distinct network-forming macromolecules. These matrices play various roles in order to maintain skin homeostasis and integrity. Within this complex interplay of cells and matrices, cell surface receptors play essential roles not only for inside-out and outside-in signaling, but also for establishing mechanical and biochemical properties of skin. Already minor modulations of this multifactorial cross-talk can lead to severe and systemic diseases. In this review, major epidermal and dermal cell surface receptors will be addressed with respect to their interactions with matrix components as well as their roles in fibrotic, inflammatory or tumorigenic skin diseases.
Collapse
Affiliation(s)
- Svenja Kleiser
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine and Medical Center, University of Freiburg, Hauptstraße 7, 79104 Freiburg, Germany
| |
Collapse
|
20
|
Nijhawan P, Behl T. The Role of Endostatin in Rheumatoid Arthritis. Curr Rheumatol Rev 2020; 17:68-75. [PMID: 32348230 DOI: 10.2174/1573397115666191127141801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/19/2020] [Accepted: 04/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endostatin by its therapeutic value against rheumatoid arthritis has recently gained significant interest in biomedical science. A recent study revealed that various approaches have been made to prevent rheumatoid arthritis by either controlling or inhibiting the progression of angiogenesis. OBJECTIVE The main objective of the current manuscript is to enumerate the intrinsic role of endostatin in rheumatoid arthritis. METHODS A thorough and detailed review of literature from the papers published from the year 1997-2019 was studied for the preparation of the current article. RESULTS Endostatin is one such agent of the subfamily of ECM called as multiplexins obtained from proteolytic cleavage of XVIII and its carboxylic terminal fragments and is known for its antiangiogenic and antiproliferative property. The exact mechanism of endostatin is still unclear, but it acts by downregulating or inhibiting the responses of various factors, including Id1, Id3, matrix metalloproteinase, and Nuclear factor Kappa B that are liable for angiogenesis. The mutual effects on adipogenesis and angiogenesis, endostatin inhibits dietary-induced obesity and its related metabolic disorders, such as insulin resistance, glucose intolerance, and hepatic steatosis. CONCLUSION The present review demonstrates the intrinsic usage of endostatin as a novel molecule in rheumatoid arthritis. It focuses on the status of the therapeutic potential of endostatin in inhibiting the activity of angiogenesis is also very well explored.
Collapse
Affiliation(s)
- Priya Nijhawan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| |
Collapse
|
21
|
Nagaraj R, Stack T, Yi S, Mathew B, Shull KR, Scott EA, Mathew MT, Bijukumar DR. High Density Display of an Anti-Angiogenic Peptide on Micelle Surfaces Enhances Their Inhibition of αvβ3 Integrin-Mediated Neovascularization In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E581. [PMID: 32235802 PMCID: PMC7153711 DOI: 10.3390/nano10030581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Diabetic retinopathy (DR), Retinopathy of Pre-maturity (ROP), and Age-related Macular Degeneration (AMD) are multifactorial manifestations associated with abnormal growth of blood vessels in the retina. These three diseases account for 5% of the total blindness and vision impairment in the US alone. The current treatment options involve heavily invasive techniques such as frequent intravitreal administration of anti-VEGF (vascular endothelial growth factor) antibodies, which pose serious risks of endophthalmitis, retinal detachment and a multitude of adverse effects stemming from the diverse physiological processes that involve VEGF. To overcome these limitations, this current study utilizes a micellar delivery vehicle (MC) decorated with an anti-angiogenic peptide (aANGP) that inhibits αvβ3 mediated neovascularization using primary endothelial cells (HUVEC). Stable incorporation of the peptide into the micelles (aANGP-MCs) for high valency surface display was achieved with a lipidated peptide construct. After 24 h of treatment, aANGP-MCs showed significantly higher inhibition of proliferation and migration compared to free from aANGP peptide. A tube formation assay clearly demonstrated a dose-dependent angiogenic inhibitory effect of aANGP-MCs with a maximum inhibition at 4 μg/mL, a 1000-fold lower concentration than that required for free from aANGP to display a biological effect. These results demonstrate valency-dependent enhancement in the therapeutic efficacy of a bioactive peptide following conjugation to nanoparticle surfaces and present a possible treatment alternative to anti-VEGF antibody therapy with decreased side effects and more versatile options for controlled delivery.
Collapse
Affiliation(s)
- Rajini Nagaraj
- 1601 Parkveiw Ave, Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Trevor Stack
- Department of Biomedical Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Sijia Yi
- Department of Biomedical Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Benjamin Mathew
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Kenneth R Shull
- Department of Biomedical Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Evan A Scott
- Department of Biomedical Sciences, Northwestern University, Evanston, IL 60208, USA
| | - Mathew T Mathew
- 1601 Parkveiw Ave, Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Divya Rani Bijukumar
- 1601 Parkveiw Ave, Regenerative Medicine and Disability Research Lab, Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA
| |
Collapse
|
22
|
The role of tumor-derived exosomes in tumor angiogenesis and tumor progression. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Exosomes, belonging to the group of extracellular bodies, are released by healthy as well as cancerous cells and serve as a communication pathway. Tumor-derived exosomes (TEX) possess the capacity to reprogram the function of normal cells owing to their genetic and molecular cargo. Such exosomes target endothelial cells (among others) in the tumor microenvironment to promote angiogenesis. Blood supply is essential in solid tumor growth and metastasis. The potential of pro-angiogenic changes is enhanced by an increased amount of circulating tumor-derived exosomes in the body fluids of cancer patients. A vascular network is important, since the proliferation, as well as the metastatic spread of cancer cells depends on an adequate supply of oxygen and nutrients, and the removal of waste products. New blood vessels and lymphatic vessels are formed through processes called angiogenesis and lymphangiogenesis, respectively. Angiogenesis is regulated by both activator and inhibitor molecules. Thousands of patients have received anti-angiogenic therapy to date. Despite their theoretical efficacy, anti-angiogenic treatments have not proved beneficial in terms of long-term survival. Tumor-derived exosomes carrying pro-angiogenic factors might be a target for new anti-cancer therapy.
Collapse
|
23
|
Extracellular matrix-cell interactions: Focus on therapeutic applications. Cell Signal 2019; 66:109487. [PMID: 31778739 DOI: 10.1016/j.cellsig.2019.109487] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Extracellular matrix (ECM) macromolecules together with a multitude of different molecules residing in the extracellular space play a vital role in the regulation of cellular phenotype and behavior. This is achieved via constant reciprocal interactions between the molecules of the ECM and the cells. The ECM-cell interactions are mediated via cell surface receptors either directly or indirectly with co-operative molecules. The ECM is also under perpetual remodeling process influencing cell-signaling pathways on its part. The fragmentation of ECM macromolecules provides even further complexity for the intricate environment of the cells. However, as long as the interactions between the ECM and the cells are in balance, the health of the body is retained. Alternatively, any dysregulation in these interactions can lead to pathological processes and finally to various diseases. Thus, therapeutic applications that are based on retaining normal ECM-cell interactions are highly rationale. Moreover, in the light of the current knowledge, also concurrent multi-targeting of the complex ECM-cell interactions is required for potent pharmacotherapies to be developed in the future.
Collapse
|
24
|
Exploring the roles of MACIT and multiplexin collagens in stem cells and cancer. Semin Cancer Biol 2019; 62:134-148. [PMID: 31479735 DOI: 10.1016/j.semcancer.2019.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is ubiquitously involved in neoplastic transformation, tumour growth and metastatic dissemination, and the interplay between tumour and stromal cells and the ECM is now considered crucial for the formation of a tumour-supporting microenvironment. The 28 different collagens (Col) form a major ECM protein family and display extraordinary functional diversity in tissue homeostasis as well as in pathological conditions, with functions ranging from structural support for tissues to regulatory binding activities and storage of biologically active cryptic domains releasable through ECM proteolysis. Two subfamilies of collagens, namely the plasma membrane-associated collagens with interrupted triple-helices (MACITs, including ColXIII, ColXXIII and ColXXV) and the basement membrane-associated collagens with multiple triple-helix domains with interruptions (multiplexins, including ColXV and ColXVIII), have highly interesting regulatory functions in tissue and organ development, as well as in various diseases, including cancer. An increasing, albeit yet sparse, data suggest that these collagens play crucial roles in conveying regulatory signals from the extracellular space to cells. We summarize here the current knowledge about MACITs and multiplexins as regulators of stemness and oncogenic processes, as well as their roles in influencing cell fate decisions in healthy and cancerous tissues. In addition, we present a bioinformatic analysis of the impacts of MACITs and multiplexins transcript levels on the prognosis of patients representing a wide array of malignant diseases, to aid future diagnostic and therapeutic efforts.
Collapse
|
25
|
Huaman J, Naidoo M, Zang X, Ogunwobi OO. Fibronectin Regulation of Integrin B1 and SLUG in Circulating Tumor Cells. Cells 2019; 8:cells8060618. [PMID: 31226820 PMCID: PMC6627780 DOI: 10.3390/cells8060618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the leading cause of cancer death worldwide. Circulating tumor cells (CTCs) are a critical step in the metastatic cascade and a good tool to study this process. We isolated CTCs from a syngeneic mouse model of hepatocellular carcinoma (HCC) and a human xenograft mouse model of castration-resistant prostate cancer (CRPC). From these models, novel primary tumor and CTC cell lines were established. CTCs exhibited greater migration than primary tumor-derived cells, as well as epithelial-to-mesenchymal transition (EMT), as observed from decreased E-cadherin and increased SLUG and fibronectin expression. Additionally, when fibronectin was knocked down in CTCs, integrin B1 and SLUG were decreased, indicating regulation of these molecules by fibronectin. Investigation of cell surface molecules and secreted cytokines conferring immunomodulatory advantage to CTCs revealed decreased major histocompatibility complex class I (MHCI) expression and decreased endostatin, C-X-C motif chemokine 5 (CXCL5), and proliferin secretion by CTCs. Taken together, these findings indicate that CTCs exhibit distinct characteristics from primary tumor-derived cells. Furthermore, CTCs demonstrate enhanced migration in part through fibronectin regulation of integrin B1 and SLUG. Further study of CTC biology will likely uncover additional important mechanisms of cancer metastasis.
Collapse
Affiliation(s)
- Jeannette Huaman
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA.
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA.
| | - Michelle Naidoo
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA.
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA.
| | - Xingxing Zang
- Departments of Microbiology and Immunology, and Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Olorunseun O Ogunwobi
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10065, USA.
- Department of Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA.
- Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
26
|
Gubbiotti MA, Buraschi S, Kapoor A, Iozzo RV. Proteoglycan signaling in tumor angiogenesis and endothelial cell autophagy. Semin Cancer Biol 2019; 62:1-8. [PMID: 31078640 PMCID: PMC7864242 DOI: 10.1016/j.semcancer.2019.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022]
Abstract
The need for more effective cancer therapies is omnipresent as the ever-complex, and highly adaptive, mechanisms of tumor biology allow this disease to elude even the most stringent treatment options. The expanding field of proteoglycan signaling is enticing as a reservoir of potential drug targets and prospects for novel therapeutic strategies. The newest trend in proteoglycan biology is the interplay between extracellular signaling and autophagy fueled by the close link between autophagy and angiogenesis. Here we summarize the most current evidence surrounding proteoglycan signaling in both of these biological processes featuring the well-known suspects, decorin and perlecan, as well as other up-and-coming neophytes in this evolving signaling web.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College and Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Simone Buraschi
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College and Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Aastha Kapoor
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College and Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College and Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
27
|
Sun F, Wang Z, Yang Z, Li Y, Cui H, Liu C, Gao D, Wang F, Tan H. Characterization, bioactivity and pharmacokinetic study of a novel carbohydrate-peptide polymer: Glycol-split heparin-endostatin2 (GSHP-ES2). Carbohydr Polym 2019; 207:79-90. [DOI: 10.1016/j.carbpol.2018.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/03/2018] [Accepted: 11/14/2018] [Indexed: 01/28/2023]
|
28
|
Yan H, Guo W, Li K, Tang M, Zhao X, Lei Y, Nie CL, Yuan Z. Combination of DESI2 and endostatin gene therapy significantly improves antitumor efficacy by accumulating DNA lesions, inducing apoptosis and inhibiting angiogenesis. Exp Cell Res 2018; 371:50-62. [DOI: 10.1016/j.yexcr.2018.07.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
|
29
|
Huang CY, Wu TC, Hong YH, Hsieh SL, Guo HR, Huang RH. Enhancement of Cell Adhesion, Cell Growth, Wound Healing, and Oxidative Protection by Gelatins Extracted from Extrusion-Pretreated Tilapia ( Oreochromis sp.) Fish Scale. Molecules 2018; 23:molecules23102406. [PMID: 30241285 PMCID: PMC6222921 DOI: 10.3390/molecules23102406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Gelatin has been broadly utilized in the food, pharmaceutical, photographic, cosmetic and packaging industries, and there is also huge potential for novel applications of gelatin in the fields of biotechnology and biomedicine. In the present study, we extracted gelatin from fish processing waste, i.e., scale of tilapia, by a combined method of extrusion-pretreatment and hot water extraction. The extrusion-pretreatment process increases the extraction yield of gelatin. Three gelatins (FS2: preconditioning with double-distilled water (ddH2O) before extrusion; FS12: preconditioning with citric acid solution before extrusion; FS14: preconditioning with acetic acid solution before extrusion) were obtained and all of them enhanced cell adhesion, cell growth, and wound healing in HaCaT cells and protected HaCaT cells from H2O2-induced cellular damage. Among FS2, FS12, and FS14, FS12 exhibited the most pronounced enhancement of cell adhesion, cell growth, and wound healing in HaCaT cells, and thus it may have potential as an effective natural raw material in cell therapies for cutaneous wounds and for reducing H2O2-induced oxidative damage of cells. In additional experiments, it was found that phosphorylations of Akt and mTOR are involved in the signaling pathway activated by FS2, FS12, and FS14 in HaCaT cells.
Collapse
Affiliation(s)
- Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan.
| | - Tien-Chou Wu
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, Tzyou 1st Rd., Sanmin District, Kaohsiung City 80708, Taiwan.
| | - Yong-Han Hong
- Department of Nutrition, I-Shou University (Yanchao Campus), No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan.
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan.
| | - Hui-Ru Guo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan.
| | - Ren-Han Huang
- Department of Nursing, Mackay Medical College, No. 46, Sec. 3, Zhongzheng Rd., Sanzhi District, New Taipei City 25245, Taiwan.
| |
Collapse
|
30
|
Okada M, Imoto K, Sugiyama A, Yasuda J, Yamawaki H. New Insights into the Role of Basement Membrane-Derived Matricryptins in the Heart. Biol Pharm Bull 2018; 40:2050-2060. [PMID: 29199230 DOI: 10.1248/bpb.b17-00308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular matrix (ECM), which contributes to structural homeostasis as well as to the regulation of cellular function, is enzymatically cleaved by proteases, such as matrix metalloproteinases and cathepsins, in the normal and diseased heart. During the past two decades, matricryptins have been defined as fragments of ECM with a biologically active cryptic site, namely the 'matricryptic site,' and their biological activities have been initially identified and clarified, including anti-angiogenic and anti-tumor effects. Thus, matricryptins are expected to be novel anti-tumor drugs, and thus widely investigated. Although there are a smaller number of studies on the expression and function of matricryptins in fields other than cancer research, some matricryptins have been recently clarified to have biological functions beyond an anti-angiogenic effect in heart. This review particularly focuses on the expression and function of basement membrane-derived matricryptins, including arresten, canstatin, tumstatin, endostatin and endorepellin, during cardiac diseases leading to heart failure such as cardiac hypertrophy and myocardial infarction.
Collapse
Affiliation(s)
- Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Keisuke Imoto
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Akira Sugiyama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Jumpei Yasuda
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University
| |
Collapse
|
31
|
Nagy N, Barad C, Hotta R, Bhave S, Arciero E, Dora D, Goldstein AM. Collagen 18 and agrin are secreted by neural crest cells to remodel their microenvironment and regulate their migration during enteric nervous system development. Development 2018; 145:dev.160317. [PMID: 29678817 DOI: 10.1242/dev.160317] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) arises from neural crest cells that migrate, proliferate, and differentiate into enteric neurons and glia within the intestinal wall. Many extracellular matrix (ECM) components are present in the embryonic gut, but their role in regulating ENS development is largely unknown. Here, we identify heparan sulfate proteoglycan proteins, including collagen XVIII (Col18) and agrin, as important regulators of enteric neural crest-derived cell (ENCDC) development. In developing avian hindgut, Col18 is expressed at the ENCDC wavefront, while agrin expression occurs later. Both proteins are normally present around enteric ganglia, but are absent in aganglionic gut. Using chick-mouse intestinal chimeras and enteric neurospheres, we show that vagal- and sacral-derived ENCDCs from both species secrete Col18 and agrin. Whereas glia express Col18 and agrin, enteric neurons only express the latter. Functional studies demonstrate that Col18 is permissive whereas agrin is strongly inhibitory to ENCDC migration, consistent with the timing of their expression during ENS development. We conclude that ENCDCs govern their own migration by actively remodeling their microenvironment through secretion of ECM proteins.
Collapse
Affiliation(s)
- Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Csilla Barad
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Ryo Hotta
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emily Arciero
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David Dora
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, 1094 Hungary
| | - Allan M Goldstein
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
32
|
Morohoshi K, Mochinaga R, Watanabe T, Nakajima R, Harigaya T. 16 kDa vasoinhibin binds to integrin alpha5 beta1 on endothelial cells to induce apoptosis. Endocr Connect 2018; 7:630-636. [PMID: 29622663 PMCID: PMC5919937 DOI: 10.1530/ec-18-0116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 11/08/2022]
Abstract
Many functions of vasoinhibins have been reported, but its receptor has not been clarified yet. Vasoinhibins, 11-18 kDa N-terminal fragments of prolactin, have anti-angiogenic activity and act on endothelial cells to induce apoptosis and to inhibit migration and proliferation, which are opposite to the effects of prolactin. Although vasoinhibins bind to the prolactin receptor, its binding activity is very weak compared to prolactin. Therefore, in this study, we evaluated the binding activity between 16 kDa vasoinhibin and integrin beta1, alpha5 beta1, alpha1 beta1 and alphaV beta3 to identify a specific receptor for vasoinhibins. Moreover, we examined whether 16 kDa vasoinhibin induced apoptosis through integrin beta1 and alpha5 beta1 in endothelial cells. In this study, binding assays and co-immunoprecipitation experiments demonstrated that 16 kDa vasoinhibin could bind strongly to integrin beta1 and alpha5 beta1. Moreover, neutralizing with integrin beta1 and alpha5 beta1 antibody could inhibit 16 kDa vasoinhibin-induced apoptosis in endothelial cells. These findings suggest that vasoinhibins can act on endothelial cells through integrin alpha5 beta1 to induce apoptosis.
Collapse
Affiliation(s)
- Kazunori Morohoshi
- Department of Life SciencesLaboratory of Functional Anatomy, Faculty of Agriculture, Meiji University, Kawasaki, Japan
| | - Ryo Mochinaga
- Department of Life SciencesLaboratory of Functional Anatomy, Faculty of Agriculture, Meiji University, Kawasaki, Japan
| | - Tsukasa Watanabe
- Department of Life SciencesLaboratory of Functional Anatomy, Faculty of Agriculture, Meiji University, Kawasaki, Japan
| | - Ryojun Nakajima
- Department of Life SciencesLaboratory of Functional Anatomy, Faculty of Agriculture, Meiji University, Kawasaki, Japan
| | - Toshio Harigaya
- Department of Life SciencesLaboratory of Functional Anatomy, Faculty of Agriculture, Meiji University, Kawasaki, Japan
| |
Collapse
|
33
|
Filipe EC, Chitty JL, Cox TR. Charting the unexplored extracellular matrix in cancer. Int J Exp Pathol 2018; 99:58-76. [PMID: 29671911 DOI: 10.1111/iep.12269] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is present in all solid tissues and considered a master regulator of cell behaviour and phenotype. The importance of maintaining the correct biochemical and biophysical properties of the ECM, and the subsequent regulation of cell and tissue homeostasis, is illustrated by the simple fact that the ECM is highly dysregulated in many different types of disease, especially cancer. The loss of tissue ECM homeostasis and integrity is seen as one of the hallmarks of cancer and typically defines transitional events in progression and metastasis. The vast majority of cancer studies place an emphasis on exploring the behaviour and intrinsic signalling pathways of tumour cells. Their goal was to identify ways to target intracellular pathways regulating cancer. Cancer progression and metastasis are powerfully influenced by the ECM and thus present a vast, unexplored repository of anticancer targets that we are only just beginning to tap into. Deconstructing the complexity of the tumour ECM landscape and identifying the interactions between the many cell types, soluble factors and extracellular-matrix proteins have proved challenging. Here, we discuss some of the emerging tools and platforms being used to catalogue and chart the ECM in cancer.
Collapse
Affiliation(s)
- Elysse C Filipe
- Cancer Division, Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
| | - Jessica L Chitty
- Cancer Division, Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, New South Wales, Australia
| | - Thomas R Cox
- Cancer Division, Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, New South Wales, Australia.,Faculty of Medicine, St Vincent's Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Thakur C. Angiogenesis in Brain Tumors. NANOTECHNOLOGY-BASED TARGETED DRUG DELIVERY SYSTEMS FOR BRAIN TUMORS 2018:27-47. [DOI: 10.1016/b978-0-12-812218-1.00002-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
35
|
Zhao X, Wen X, Wei W, Su Y, You J, Gong L, Zhang Z, Wang M, Xiao J, Wei X, Wang C. Predictors for the efficacy of Endostar combined with neoadjuvant chemotherapy for stage IIIA (N2) NSCLC. Cancer Biomark 2017; 21:169-177. [PMID: 29036790 DOI: 10.3233/cbm-170565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Endostar (rh-endostatin) is a new recombinant human endostatin, which could inhibit cell proliferation, angiogenesis, and tumor growth. OBJECTIVE To explore anti-angiogenesis short-term efficacy combined with neoadjuvant chemotherapy for stage IIIA (N2) non-small cell lung cancer (NSCLC), and identify the potential predictive factors. METHODS We pathologically examined 26 patients diagnosed with stage IIIA (N2) NSCLC who received NP chemotherapy alone or combined with Endostar, respectively. RESULTS Our results indicated that total clinical benefit rate (CBR) 87.5% and 64% (p= 0.76), respectively. The clinical benefit (CB) patients in the treatment group showed significant changes in endothelial progenitor cells (EPC), vascular endothelial growth factor (VEGF), blood flow (BF), permeability surface (PMS), and microvascular density (MVD) before and after treatment. Compared with CB patients in the control group, changes in EPC and MVD (only) before and after treatment were significant. The variation of EPC, PMS, and MVD before and after treatment in the treatment group showed positive correlation with tumor regression rate (TRR) and the variation of MVD, whereas those of EPC and PMS demonstrated positive correlations with variation of MVD before and after treatment. CONCLUSION Our findings suggested that PMS and EPC may be used as a predictive factor for the short-term efficacy of the combined therapy in NSCLC.
Collapse
Affiliation(s)
- Xiaoliang Zhao
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Lung Cancer Center, Tianjin 300060, China.,Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaohua Wen
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wei Wei
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Lung Cancer Center, Tianjin 300060, China.,Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yanjun Su
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Lung Cancer Center, Tianjin 300060, China.,Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jian You
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Lung Cancer Center, Tianjin 300060, China.,Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Liqun Gong
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Lung Cancer Center, Tianjin 300060, China.,Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Zhenfa Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Lung Cancer Center, Tianjin 300060, China.,Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Meng Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Lung Cancer Center, Tianjin 300060, China.,Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jianyu Xiao
- Tianjin Lung Cancer Center, Tianjin 300060, China.,Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China.,Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xiyin Wei
- Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China.,Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Changli Wang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.,Tianjin Lung Cancer Center, Tianjin 300060, China.,Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
36
|
Ricard-Blum S, Vallet SD. Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs. Matrix Biol 2017; 75-76:170-189. [PMID: 29133183 DOI: 10.1016/j.matbio.2017.11.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
The remodeling of the extracellular matrix (ECM) by several protease families releases a number of bioactive fragments, which regulate numerous biological processes such as autophagy, angiogenesis, adipogenesis, fibrosis, tumor growth, metastasis and wound healing. We review here the proteases which generate bioactive ECM fragments, their ECM substrates, the major bioactive ECM fragments, together with their biological properties and their receptors. The translation of ECM fragments into drugs is challenging and would take advantage of an integrative approach to optimize the design of pre-clinical and clinical studies. This could be done by building the contextualized interaction network of the ECM fragment repertoire including their parent proteins, remodeling proteinases, and their receptors, and by using mathematical disease models.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| | - Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| |
Collapse
|
37
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
38
|
Kim J, Mirando AC, Popel AS, Green JJ. Gene delivery nanoparticles to modulate angiogenesis. Adv Drug Deliv Rev 2017; 119:20-43. [PMID: 27913120 PMCID: PMC5449271 DOI: 10.1016/j.addr.2016.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/01/2016] [Accepted: 11/24/2016] [Indexed: 01/19/2023]
Abstract
Angiogenesis is naturally balanced by many pro- and anti-angiogenic factors while an imbalance of these factors leads to aberrant angiogenesis, which is closely associated with many diseases. Gene therapy has become a promising strategy for the treatment of such a disordered state through the introduction of exogenous nucleic acids that express or silence the target agents, thereby engineering neovascularization in both directions. Numerous non-viral gene delivery nanoparticles have been investigated towards this goal, but their clinical translation has been hampered by issues associated with safety, delivery efficiency, and therapeutic effect. This review summarizes key factors targeted for therapeutic angiogenesis and anti-angiogenesis gene therapy, non-viral nanoparticle-mediated approaches to gene delivery, and recent gene therapy applications in pre-clinical and clinical trials for ischemia, tissue regeneration, cancer, and wet age-related macular degeneration. Enhanced nanoparticle design strategies are also proposed to further improve the efficacy of gene delivery nanoparticles to modulate angiogenesis.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Adam C Mirando
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Translational Tissue Engineering Center and Institute for Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Ophthalmology, Neurosurgery, and Materials Science & Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
39
|
Atef M, Mahdi Ojagh S. Health benefits and food applications of bioactive compounds from fish byproducts: A review. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
40
|
Wang Y, Wei P, Weng W. Characteristics and Select Functional Properties of Collagen from Golden Pompano (Trachinotus ovatus) Skins. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2017. [DOI: 10.1080/10498850.2017.1354344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yanxia Wang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Peixiao Wei
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Wuyin Weng
- College of Food and Biological Engineering, Jimei University, Xiamen, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen, China
| |
Collapse
|
41
|
Chen H, Mruk DD, Lee WM, Cheng CY. Regulation of spermatogenesis by a local functional axis in the testis: role of the basement membrane-derived noncollagenous 1 domain peptide. FASEB J 2017; 31:3587-3607. [PMID: 28487282 DOI: 10.1096/fj.201700052r] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/11/2017] [Indexed: 11/11/2022]
Abstract
Spermatogenesis takes place in the epithelium of the seminiferous tubules of the testes, producing millions of spermatozoa per day in an adult male in rodents and humans. Thus, multiple cellular events that are regulated by an array of signaling molecules and pathways are tightly coordinated to support spermatogenesis. Here, we report findings of a local regulatory axis between the basement membrane (BM), the blood-testis barrier (BTB), and the apical ectoplasmic specialization (apical ES; a testis-specific, actin-rich adherens junction at the Sertoli cell-spermatid interface) to coordinate cellular events across the seminiferous epithelium during the epithelial cycle. In short, a biologically active fragment, noncollagenous 1 (NC1) domain that is derived from collagen chains in the BM, was found to modulate cell junction dynamics at the BTB and apical ES. NC1 domain from the collagen α3(IV) chain was cloned into a mammalian expression vector, pCI-neo, with and without a collagen signal peptide. We also prepared a specific Ab against the purified recombinant NC1 domain peptide. These reagents were used to examine whether overexpression of NC1 domain with high transfection efficacy would perturb spermatogenesis, in particular, spermatid adhesion (i.e., inducing apical ES degeneration) and BTB function (i.e., basal ES and tight junction disruption, making the barrier leaky), in the testis in vivo We report our findings that NC1 domain derived from collagen α3(IV) chain-a major structural component of the BM-was capable of inducing BTB remodeling, making the BTB leaky in studies in vivo Furthermore, NC1 domain peptide was transported across the epithelium via a microtubule-dependent mechanism and is capable of inducing apical ES degeneration, which leads to germ cell exfoliation from the seminiferous epithelium. Of more importance, we show that NC1 domain peptide exerted its regulatory effect by disorganizing actin microfilaments and microtubules in Sertoli cells so that they failed to support cell adhesion and transport of germ cells and organelles (e.g., residual bodies, phagosomes) across the seminiferous epithelium. This local regulatory axis between the BM, BTB, and the apical ES thus coordinates cellular events that take place across the seminiferous epithelium during the epithelial cycle of spermatogenesis.-Chen, H., Mruk, D. D., Lee, W. M., Cheng, C. Y. Regulation of spermatogenesis by a local functional axis in the testis: role of the basement membrane-derived noncollagenous 1 domain peptide.
Collapse
Affiliation(s)
- Haiqi Chen
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Dolores D Mruk
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Will M Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA; .,School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
42
|
Integrin signaling in atherosclerosis. Cell Mol Life Sci 2017; 74:2263-2282. [PMID: 28246700 DOI: 10.1007/s00018-017-2490-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/24/2017] [Accepted: 02/15/2017] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a chronic lipid-driven inflammatory disease affecting large arteries, represents the primary cause of cardiovascular disease in the world. The local remodeling of the vessel intima during atherosclerosis involves the modulation of vascular cell phenotype, alteration of cell migration and proliferation, and propagation of local extracellular matrix remodeling. All of these responses represent targets of the integrin family of cell adhesion receptors. As such, alterations in integrin signaling affect multiple aspects of atherosclerosis, from the earliest induction of inflammation to the development of advanced fibrotic plaques. Integrin signaling has been shown to regulate endothelial phenotype, facilitate leukocyte homing, affect leukocyte function, and drive smooth muscle fibroproliferative remodeling. In addition, integrin signaling in platelets contributes to the thrombotic complications that typically drive the clinical manifestation of cardiovascular disease. In this review, we examine the current literature on integrin regulation of atherosclerotic plaque development and the suitability of integrins as potential therapeutic targets to limit cardiovascular disease and its complications.
Collapse
|
43
|
Zhang YC, Li XM, Yu Z, Shi XL, Li Y, Wang WL. Efficacy of pEgr-1-endostatin combined with ionizing radiation on hypoxic conditions in nude mice bearing SKOV3 ovarian carcinoma. Oncol Lett 2017; 13:1101-1108. [PMID: 28454220 PMCID: PMC5403319 DOI: 10.3892/ol.2017.5559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/06/2016] [Indexed: 12/21/2022] Open
Abstract
Hypoxia occurs in a wide range of solid tumors, and is strongly associated with radio-resistance of malignant tumors. The aim of the present study was to investigate the effect of endostatin combined with ionizing radiation (IR) on hypoxic conditions. A total of 24 mice bearing SKOV3 ovarian carcinoma were divided into three groups. Following injection with pEgr-1-endostatin plasmid for 12 h, the mice in the endostatin-IR-treated group were exposed to 300 cGy/min X-ray for 48 h, and the IR-treated group was exposed to the same condition. Then, the expression of endostatin, hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) was detected by reverse transcription-polymerase chain reaction, ELISA, immunohistochemistry and western blotting. In addition, the tumor microvessel density (MVD) was examined by immunohistochemistry analysis of cluster of differentiation 31-positive cells. The results revealed that pEgr-1-endostatin was successfully induced by IR. The level of endostatin messenger RNA in the endostatin-IR-treated group was significantly higher than that in the control and IR-treated groups (F=380.078, P<0.001). Statistical differences were also examined at the protein level by western blotting and ELISA. An obvious increase in MVD was observed in the IR-treated group compared with that in the control group (t=7.040, P<0.001), and a significant decrease in MVD was observed in the endostatin-IR-treated group compared with that in the control group (t=18.153, P<0.001). By comparing the morphology of the tumor vasculature in the three groups, it was noticed that the microvessels in the endostatin-IR-treated group were more regularly distributed and had fewer giant branches than those in the IR-treated group. Further investigation revealed that the expression levels of HIF-1α and VEGF in the endostatin-IR-treated group were lower compared with those in the control (t=5.339, P=0.001; and t=13.880, P<0.001, respectively) and the IR-treated groups (t=12.930, P<0.001; and t=14.050, P<0.001, respectively). Our findings suggested that endostatin decreased the number of microvessels via the HIF-1/VEGF signaling pathway, and that pEgr-1-endostatin combined with IR may improve hypoxic conditions and may be a novel approach for treating solid tumors.
Collapse
Affiliation(s)
- Yong-Chun Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiu-Mei Li
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiao-Li Shi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yong Li
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wan-Lin Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
44
|
Oudart JB, Doué M, Vautrin A, Brassart B, Sellier C, Dupont-Deshorgue A, Monboisse JC, Maquart FX, Brassart-Pasco S, Ramont L. The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through αvβ3 integrin interaction. Oncotarget 2016; 7:1516-28. [PMID: 26621838 PMCID: PMC4811477 DOI: 10.18632/oncotarget.6399] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/14/2015] [Indexed: 11/25/2022] Open
Abstract
Type XIX collagen is a minor collagen associated with basement membranes. It was isolated for the first time in a human cDNA library from rhabdomyosarcoma and belongs to the FACITs family (Fibril Associated Collagens with Interrupted Triple Helices). Previously, we demonstrated that the NC1 domain of collagen XIX (NC1(XIX)) exerts anti-tumor properties on melanoma cells by inhibiting their migration and invasion. In the present work, we identified for the first time the integrin αvβ3 as a receptor of NC1(XIX). Moreover, we demonstrated that NC1(XIX) inhibits the FAK/PI3K/Akt/mTOR pathway, by decreasing the phosphorylation and activity of the major proteins involved in this pathway. On the other hand, NC1(XIX) induced an increase of GSK3β activity by decreasing its degree of phosphorylation. Treatments targeting this central signaling pathway in the development of melanoma are promising and new molecules should be developed. NC1(XIX) seems to have the potential for the design of new anti-cancer drugs.
Collapse
Affiliation(s)
- Jean-Baptiste Oudart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - Manon Doué
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Alexia Vautrin
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Bertrand Brassart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Christèle Sellier
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Aurelie Dupont-Deshorgue
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Jean-Claude Monboisse
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - François-Xavier Maquart
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| | - Sylvie Brassart-Pasco
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Reims, France.,CHU de Reims, Laboratoire Central de Biochimie, Reims, France
| |
Collapse
|
45
|
The antiangiogenic and antitumor activities of the N-terminal fragment of endostatin augmented by Ile/Arg substitution: The overall structure implicated the biological activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1765-1774. [DOI: 10.1016/j.bbapap.2016.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/25/2016] [Accepted: 09/25/2016] [Indexed: 01/10/2023]
|
46
|
Tang R, Zhang G, Chen SY. Smooth Muscle Cell Proangiogenic Phenotype Induced by Cyclopentenyl Cytosine Promotes Endothelial Cell Proliferation and Migration. J Biol Chem 2016; 291:26913-26921. [PMID: 27821588 DOI: 10.1074/jbc.m116.741967] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/27/2016] [Indexed: 12/19/2022] Open
Abstract
Vascular smooth muscle cells (SMCs) and endothelial cells (ECs) are in close contact with blood vessels. SMC phenotypes can be altered during pathological vascular remodeling. However, how SMC phenotypes affect EC properties remains largely unknown. In this study, we found that PDGF-BB-induced synthetic SMCs suppressed EC proliferation and migration while exhibiting increased expression of anti-angiogenic factors, such as endostatin, and decreased pro-angiogenic factors, including CXC motif ligand 1 (CXCL1). Cyclopentenyl cytosine (CPEC), a CTP synthase inhibitor that has been reported previously to inhibit SMC proliferation and injury-induced neointima formation, induced SMC redifferentiation. Interestingly, CPEC-conditioned SMC culture medium promoted EC proliferation and migration because of an increase in CXCL1 along with decreased endostatin production in SMCs. Addition of recombinant endostatin protein or blockade of CXCL1 with a neutralizing antibody suppressed the EC proliferation and migration induced by CPEC-conditioned SMC medium. Mechanistically, CPEC functions as a cytosine derivate to stimulate adenosine receptors A1 and A2a, which further activate downstream cAMP and Akt signaling, leading to the phosphorylation of cAMP response element binding protein and, consequently, SMC redifferentiation. These data provided proof of a novel concept that synthetic SMC exhibits an anti-angiogenic SMC phenotype, whereas contractile SMC shows a pro-angiogenic phenotype. CPEC appears to be a potent stimulator for switching the anti-angiogenic SMC phenotype to the pro-angiogenic phenotype, which may be essential for CPEC to accelerate re-endothelialization for vascular repair during injury-induced vascular wall remodeling.
Collapse
Affiliation(s)
- Rui Tang
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602
| | - Gui Zhang
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602
| | - Shi-You Chen
- From the Department of Physiology and Pharmacology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
47
|
Heljasvaara R, Aikio M, Ruotsalainen H, Pihlajaniemi T. Collagen XVIII in tissue homeostasis and dysregulation - Lessons learned from model organisms and human patients. Matrix Biol 2016; 57-58:55-75. [PMID: 27746220 DOI: 10.1016/j.matbio.2016.10.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/12/2016] [Accepted: 10/10/2016] [Indexed: 12/13/2022]
Abstract
Collagen XVIII is a ubiquitous basement membrane (BM) proteoglycan produced in three tissue-specific isoforms that differ in their N-terminal non-collagenous sequences, but share collagenous and C-terminal non-collagenous domains. The collagenous domain provides flexibility to the large collagen XVIII molecules on account of multiple interruptions in collagenous sequences. Each isoform has a complex multi-domain structure that endows it with an ability to perform various biological functions. The long isoform contains a frizzled-like (Fz) domain with Wnt-inhibiting activity and a unique domain of unknown function (DUF959), which is also present in the medium isoform. All three isoforms share an N-terminal laminin-G-like/thrombospondin-1 sequence whose specific functions still remain unconfirmed. The proteoglycan nature of the isoforms further increases the functional diversity of collagen XVIII. An anti-angiogenic domain termed endostatin resides in the C-terminus of collagen XVIII and is proteolytically cleaved from the parental molecule during the BM breakdown for example in the process of tumour progression. Recombinant endostatin can efficiently reduce tumour angiogenesis and growth in experimental models by inhibiting endothelial cell migration and proliferation or by inducing their death, but its efficacy against human cancers is still a subject of debate. Mutations in the COL18A1 gene result in Knobloch syndrome, a genetic disorder characterised mainly by severe eye defects and encephalocele and, occasionally, other symptoms. Studies with gene-modified mice have elucidated some aspects of this rare disease, highlighting in particular the importance of collagen XVIII in the development of the eye. Research with model organisms have also helped in determining other structural and biological functions of collagen XVIII, such as its requirement in the maintenance of BM integrity and its emerging roles in regulating cell survival, stem or progenitor cell maintenance and differentiation and inflammation. In this review, we summarise current knowledge on the properties and endogenous functions of collagen XVIII in normal situations and tissue dysregulation. When data is available, we discuss the functions of the distinct isoforms and their specific domains.
Collapse
Affiliation(s)
- Ritva Heljasvaara
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland; Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway.
| | - Mari Aikio
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Heli Ruotsalainen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
48
|
Aydemir EA, Şimşek E, Korcum AF, Fişkin K. Endostatin and irradiation modifies the activity of ADAM10 and neprilysin in breast cancer cells. Mol Med Rep 2016; 14:2343-51. [PMID: 27430992 DOI: 10.3892/mmr.2016.5463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/06/2016] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is regarded as a key cancer cell property. Endostatin (ES) is a potential antiangiogenic agent and it may be useful when implemented in combination with other cancer therapeutic strategies. The present study investigated the in vitro effects of ES, radiotherapy (RT) or combination therapy (ES + RT) on two important proteases, a disintegrin and metalloproteinase domain‑containing protein 10 (ADAM10) and neprilysin (NEP) in 4T1 mouse breast cancer cells and the more metastatic phenotype of 4THMpc breast cancer cells. 4T1 and 4THMpc cells were treated with recombinant murine ES (4 µg/ml) alone, RT (45 Gy) alone or with ES + RT. ADAM10 enzyme activity was determined using a tumor necrosis factor‑α converting enzyme (α‑secretase) activity assay kit, and NEP enzyme activity was measured with a fluorometric assay based on the generation of free dansyl‑D‑Ala‑Gly from N-dansyl-Ala-Gly-D-nitro-Phe-Gly, the substrate of NEP. Western blotting analysis was performed to determine whether the altered enzyme activity levels of the two cell lines occurred due to changes in expression level. These data indicate that ES independently potentiates the activity of ADAM10 and NEP enzymes in 4T1 and 4THMpc breast cancer cells.
Collapse
Affiliation(s)
- Esra Arslan Aydemir
- Department of Biology, Science Faculty, Akdeniz University, Antalya 07058, Turkey
| | - Ece Şimşek
- Department of Nutrition and Dietetics, Antalya School of Health, Akdeniz University, Antalya 07058, Turkey
| | - Aylin Fidan Korcum
- Department of Radiation Oncology, School of Medicine, Akdeniz University, Antalya 07058, Turkey
| | - Kayahan Fişkin
- Department of Nutrition and Dietetics, Antalya School of Health, Akdeniz University, Antalya 07058, Turkey
| |
Collapse
|
49
|
Myren M, Kirby DJ, Noonan ML, Maeda A, Owens RT, Ricard-Blum S, Kram V, Kilts TM, Young MF. Biglycan potentially regulates angiogenesis during fracture repair by altering expression and function of endostatin. Matrix Biol 2016; 52-54:141-150. [PMID: 27072616 DOI: 10.1016/j.matbio.2016.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/31/2022]
Abstract
The small proteoglycan biglycan (Bgn) is highly expressed in the organic matrix of bone and plays a role in bone formation. Previous work implicated Bgn in vessel growth during bone healing [1]. By infusing barium sulfate (BaSO4) into WT and Bgn-deficient mice we discovered the positive effect of Bgn in modulating angiogenesis during fracture healing. Using micro-computed tomography angiography we found significant differences in the vessel size and volume among other parameters. To further understand the mechanistic basis for this, we explored the relationship between Bgn and the anti-angiogenic protein endostatin. Immunohistochemistry (IHC) showed co-localization of Bgn and endostatin in regions of bone formation, with increased endostatin staining in Bgn-KO compared to WT at 14days post-fracture. To further elucidate the relationship between Bgn and endostatin, an endothelial cell tube formation assay was used. This study showed that endothelial cells treated with endostatin had significantly decreased vessel length and vessel branches compared to untreated cells, while cells treated with endostatin and Bgn at a 1:1M ratio had vessel length and vessel branches comparable to untreated cells. This indicated that Bgn was able to mitigate the inhibitory effect of endostatin on endothelial cell growth. In summary, these results suggest that Bgn is needed for proper blood vessel formation during fracture healing, and one mechanism by which Bgn impacts angiogenesis is through inhibition of endostatin.
Collapse
Affiliation(s)
- Maja Myren
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - David J Kirby
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - Megan L Noonan
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - Azusa Maeda
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - Rick T Owens
- Life Cell Corporation, Branchburg, NJ 08876, United States
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246 CNRS - University Lyon 1, ICBMS, 69622 Villeurbanne, France
| | - Vardit Kram
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - Tina M Kilts
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States
| | - Marian F Young
- Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
50
|
Abstract
Collagens mediate essential hemostasis by maintaining the integrity and stability of the vascular wall. Imbalanced turnover of collagens by uncontrolled formation and/or degradation may result in pathologic conditions such as fibrosis. Thickening of the vessel wall because of accumulation of collagens may lead to arterial occlusion or thrombosis. Thinning of the wall because of collagen degradation or deficiency may lead to rupture of the vessel wall or aneurysm. Preventing excessive hemorrhage or thrombosis relies on collagen-mediated actions. Von Willebrand factor, integrins and glycoprotein VI, as well as clotting factors, can bind collagen to restore normal hemostasis after trauma. This review outlines the essential roles of collagens in mediating hemostasis, with a focus on collagens types I, III, IV, VI, XV, and XVIII.
Collapse
Affiliation(s)
| | - N G Kjeld
- Nordic Bioscience A/S, Herlev, Denmark
| | | |
Collapse
|