1
|
Schäfer I, Bauch J, Wegrzyn D, Roll L, van Leeuwen S, Jarocki A, Faissner A. The guanine nucleotide exchange factor Vav3 intervenes in the migration pathway of oligodendrocyte precursor cells on tenascin-C. Front Cell Dev Biol 2022; 10:1042403. [PMID: 36531963 PMCID: PMC9748482 DOI: 10.3389/fcell.2022.1042403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/10/2022] [Indexed: 10/22/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are the exclusive source of myelination in the central nervous system (CNS). Prior to myelination, OPCs migrate to target areas and mature into myelinating oligodendrocytes. This process is underpinned by drastic changes of the cytoskeleton and partially driven by pathways involving small GTPases of the Rho subfamily. In general, the myelination process requires migration, proliferation and differentiation of OPCs. Presently, these processes are only partially understood. In this study, we analyzed the impact of the guanine nucleotide exchange factor (GEF) Vav3 on the migration behavior of OPCs. Vav3 is known to regulate RhoA, Rac1 and RhoG activity and is therefore a promising candidate with regard to a regulatory role concerning the rearrangement of the cytoskeleton. Our study focused on the Vav3 knockout mouse and revealed an enhanced migration capacity of Vav3 -/- OPCs on the extracellular matrix (ECM) glycoprotein tenascin-C (TnC). The migration behavior of individual OPCs on further ECM molecules such as laminin-1 (Ln1), laminin-2 (Ln2) and tenascin-R (TnR) was not affected by the elimination of Vav3. The migration process was further investigated with regard to intracellular signal transmission by pharmacological blockade of downstream pathways of specific Rho GTPases. Our data suggest that activation of RhoA GTPase signaling compromises migration, as inhibition of RhoA-signaling promoted migration behavior. This study provides novel insights into the control of OPC migration, which could be useful for further understanding of the complex differentiation and myelination process.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Grumbach IM, Mayer IA, Uddin S, Lekmine F, Majchrzak B, Yamauchi H, Fujita S, Druker B, Fish EN, Platanias LC. Engagement of the CrkL adaptor in interferon alpha signalling in BCR-ABL-expressing cells. Br J Haematol 2001; 112:327-336. [PMID: 11167825 DOI: 10.1046/j.1365-2141.2001.02556.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interferon alpha (IFNalpha) has significant clinical activity in the treatment of patients with chronic myelogenous leukaemia (CML), but the mechanisms of its selective efficacy in the treatment of the disease are unknown. The CrkL adaptor protein interacts directly with the BCR-ABL fusion protein that causes the malignant transformation and is constitutively phosphorylated in BCR-ABL-expressing cells. In the present study, we provide evidence that CrkL was engaged in IFNalpha-signalling in the CML-derived KT-1 cell line, which expresses BCR-ABL and is sensitive to the growth inhibitory effects of IFNalpha. CrkL is constitutively associated with BCR-ABL in these cells and treatment with IFNalpha had no effect on the BCR-ABL/CrkL interaction. After IFNalpha stimulation, CrkL associated with Stat5, which also underwent phosphorylation in an IFNalpha-dependent manner. The interaction of CrkL with Stat5 was facilitated by the function of both the SH2 and the N-terminus SH3 domains of CrkL. The resulting CrkL-Stat5 complex translocated to the nucleus and could be detected in gel shift assays using elements derived from either the beta-casein promoter or the promoter of the PML gene, an IFNalpha-inducible gene that mediates growth inhibitory responses. In addition to its interaction with Stat5, CrkL interacts with C3G in KT-1 cells and such an interaction regulates the downstream activation of the small GTPase Rap1, which also mediates inhibition of cell proliferation. Thus, despite its engagement by BCR-ABL in CML-derived cells, CrkL mediates activation of downstream signalling pathways in response to the activated type I IFN receptor and such signals may contribute to the generation of the anti-proliferative effects of IFNalpha in CML.
Collapse
Affiliation(s)
- I M Grumbach
- Section of Hematology-Oncology, The University of Illinois at Chicago and West Side VA Hospital, Chicago, IL 60607-7173, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zeng L, Sachdev P, Yan L, Chan JL, Trenkle T, McClelland M, Welsh J, Wang LH. Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Mol Cell Biol 2000; 20:9212-24. [PMID: 11094073 PMCID: PMC102179 DOI: 10.1128/mcb.20.24.9212-9224.2000] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A recently reported new member of the Vav family proteins, Vav3 has been identified as a Ros receptor protein tyrosine kinase (RPTK) interacting protein by yeast two-hybrid screening. Northern analysis shows that Vav3 has a broad tissue expression profile that is distinct from those of Vav and Vav2. Two species of Vav3 transcripts, 3.4 and 5.4 kb, were detected with a differential expression pattern in various tissues. Transient expression of Vav in 293T and NIH 3T3 cells demonstrated that ligand stimulation of several RPTKs (epidermal growth factor receptor [EGFR], Ros, insulin receptor [IR], and insulin-like growth factor I receptor [IGFR]) led to tyrosine phosphorylation of Vav3 and its association with the receptors as well as their downstream signaling molecules, including Shc, Grb2, phospholipase C (PLC-gamma), and phosphatidylinositol 3 kinase. In vitro binding assays using glutathione S-transferase-fusion polypeptides containing the GTPase-binding domains of Rok-alpha, Pak, or Ack revealed that overexpression of Vav3 in NIH 3T3 cells resulted in the activation of Rac-1 and Cdc42 whereas a deletion mutant lacking the N-terminal calponin homology and acidic region domains activated RhoA and Rac-1 but lost the ability to activate Cdc42. Vav3 induced marked membrane ruffles and microspikes in NIH 3T3 cells, while the N-terminal truncation mutants of Vav3 significantly enhanced membrane ruffle formation but had a reduced ability to induce microspikes. Activation of IR further enhanced the ability of Vav3 to induce membrane ruffles, but IGFR activation specifically promoted Vav3-mediated microspike formation. N-terminal truncation of Vav3 activated its transforming potential, as measured by focus-formation assays. We conclude that Vav3 mediates RPTK signaling and regulates GTPase activity, its native and mutant forms are able to modulate cell morphology, and it has the potential to induce cell transformation.
Collapse
Affiliation(s)
- L Zeng
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Affiliation(s)
- X R Bustelo
- Department of Pathology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA.
| |
Collapse
|
5
|
Abstract
Insulin modulates many intracellular processes including cellular metabolism, cell proliferation and cell differentiation. Some of these processes involve significant changes in the traffic of intracellular vesicles or in the structural organization of the cell. These phenomena have been linked to the activity of regulatory GTP-binding proteins. Most, if not all functions, of the insulin receptor are associated with its tyrosine kinase activity. Thus, over the past few years, a significant effort has been dedicated to elucidate the cross-talk between the tyrosine kinase activity of the receptor and the regulation of G protein-mediated pathways. Recent progress indicates that G proteins may mediate the control of several of insulin's intracellular functions. These include the regulation of the MAP kinase pathway, the activation of phospholipase D and the regulation of glucose uptake. This article discusses some recent advances in this area.
Collapse
Affiliation(s)
- M A Rizzo
- Department of Pharmacology, University of Pittsburgh School of Medicine, PA 15261, USA
| | | |
Collapse
|
6
|
Fish EN, Uddin S, Korkmaz M, Majchrzak B, Druker BJ, Platanias LC. Activation of a CrkL-stat5 signaling complex by type I interferons. J Biol Chem 1999; 274:571-573. [PMID: 9872990 DOI: 10.1074/jbc.274.2.571] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I interferons (IFNalpha and IFNbeta) transduce signals by inducing tyrosine phosphorylation of Jaks and Stats, as well as the CrkL adapter, an SH2/SH3-containing protein which provides a link to downstream pathways that mediate growth inhibition. We report that Stat5 interacts constitutively with the IFN receptor-associated Tyk-2 kinase, and during IFNalpha stimulation its tyrosine-phosphorylated form acts as a docking site for the SH2 domain of CrkL. CrkL and Stat5 then form a complex that translocates to the nucleus. This IFN-inducible CrkL-Stat5 complex binds in vitro to the TTCTAGGAA palindromic element found in the promoters of a subset of IFN-stimulated genes. Thus, during activation of the Type I IFN receptor, CrkL functions as a nuclear adapter protein and, in association with Stat5, regulates gene transcription through DNA binding.
Collapse
Affiliation(s)
- E N Fish
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Wang J, Riedel H. Insulin-like growth factor-I receptor and insulin receptor association with a Src homology-2 domain-containing putative adapter. J Biol Chem 1998; 273:3136-9. [PMID: 9452421 DOI: 10.1074/jbc.273.6.3136] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Insulin receptor (IR) and the related insulin-like growth factor-I (IGF-I) receptor (IGF-IR) mediate a variety of metabolic and mitogenic cellular responses, some of which may involve unidentified receptor targets. A Src homology-2 (SH2) domain-coding region of a mouse protein was cloned based on its interaction with IR. It was designated mSH2-B based on its high similarity to an earlier reported rat sequence SH2-B. A role of mSH2-B in IGF-I and insulin action was suggested by the interaction of the SH2 domain with activated IGF-IR and IR catalytic fragments but not with an inactive IR catalytic fragment in the yeast two-hybrid system in vivo and by the hormone-dependent association of a glutathione S-transferase (GST) SH2 domain fusion protein of mSH2-B with both receptors in cell extracts. A comparison of IGF-IR and IR mutants lacking individual Tyr autophosphorylation sites for association with GST mSH2-B showed that homologous juxtamembrane (IR960/IGF-IR950) and C-terminal (IR1322/IGF-IR1316) receptor motifs were required. Synthetic phosphopeptides representing IR960 and IR1322 competed for GST mSH2-B binding to the receptor, suggesting that both motifs participate in the association with mSH2-B. Antibodies raised against GST mSH2-B identified a cellular protein of 92 kDa that was not found to be phosphorylated on Tyr. It co-immunoprecipitated with IGF-IR or IR, which was strictly dependent on receptor activation. IR and IGF-IR Tyr phosphorylation motifs were not identified in the complete SH2-B primary structure, suggesting that it may participate as an adapter rather than a substrate in the IGF-I and insulin signaling pathways.
Collapse
Affiliation(s)
- J Wang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
8
|
Taouis M, Dupont J, Gillet A, Derouet M, Simon J. Insulin receptor substrate 1 antisense expression in an hepatoma cell line reduces cell proliferation and induces overexpression of the Src homology 2 domain and collagen protein (SHC). Mol Cell Endocrinol 1998; 137:177-86. [PMID: 9605520 DOI: 10.1016/s0303-7207(97)00245-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In mammalian cells, the insulin receptor substrate 1 protein (IRS-1) is a specific substrate for insulin and IGF-1 receptor tyrosine kinases which is involved in mediating metabolic and mitogenic actions of insulin and IGFs. In order to determine if IRS-1 is also essential in a chicken derived hepatoma cell line (LMH cells), IRS-1 gene has been invalidated in these cells. For this, we subcloned chicken IRS-1 gene in an antisense orientation into a mammalian expression vector driven by the cytomegalovirus early promoter. LMH cells were stably transfected with this construct or with the empty vector carrying only the neomycin resistance gene and selected for cIRS-1 expression. One subclone, C2, showed a complete repression of cIRS-1 expression at both protein and mRNA levels. Proliferation of C2 cells was dramatically reduced (54%) compared with Neo(r) cells. Furthermore this reduction was accompanied by a decrease in insulin-dependent [3H]thymidine incorporation, indicating a reduction in DNA synthesis. Insulin-dependent [U-14C]glucose incorporation into cellular lipids was also significantly reduced in C2 cell line suggesting an alteration in lipogenesis. In wild type LMH cells, SHC which is involved in Ras pathway, also served as a substrate for insulin receptor tyrosine kinase. In C2 cells, SHC expression, its association with the insulin receptor and its tyrosine phosphorylation were largely increased. Two forms of the regulatory subunit of PI 3-kinase were present: p85 and p55 forms. Furthermore, C2 cells displayed increased basal phosphatidylinositol (PI) 3'-kinase activity. This report demonstrates a role for cIRS-1 in the metabolic and mitogenic actions of insulin in LMH cells. However, the overexpression of cIRS-1 antisense did not completely abolish cell proliferation. This may be explained by the exacerbation of an alternative pathway that only partly compensate for the knocking out of cIRS-1 gene: the overexpression of SHC.
Collapse
Affiliation(s)
- M Taouis
- Endocrinologie de la Croissance et du Métabolisme, Station de Recherches Avicoles, INRA, Nouzilly, France.
| | | | | | | | | |
Collapse
|
9
|
Uddin S, Sher DA, Alsayed Y, Pons S, Colamonici OR, Fish EN, White MF, Platanias LC. Interaction of p59fyn with interferon-activated Jak kinases. Biochem Biophys Res Commun 1997; 235:83-88. [PMID: 9196040 DOI: 10.1006/bbrc.1997.6741] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During IFN alpha stimulation, p59(fyn) associates with the Type I IFNR-associated Tyk-2 kinase in several human hematopoietic cell lines in vivo. This interaction is direct, and is mediated by the SH2 domain in p59(fyn), as shown by binding studies using glutathione-S-transferase fusion proteins and far western blots. Furthermore, in response to IFN alpha-treatment of cells, the SH2 domain of Fyn interacts with the Tyk-2-associated c-cbl proto-oncogene product. In a similar manner, during IFN gamma stimulation, p59(fyn) associates via its SH2 domain with the activated form of the IFN gamma-dependent Jak-2 kinase. These data suggest that p59(fyn) is a common element in IFN alpha and IFN gamma signaling, and is selectively engaged by the Type I or II IFN receptors via specific interactions with distinct Jak kinases.
Collapse
Affiliation(s)
- S Uddin
- Department of Medicine, University of Illinois at Chicago and West Side Veterans Affairs Hospital, 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The vav oncogene is expressed primarily in tissues of hematopoietic origin. While much effort has been focused on determining the role of vav in various signal transduction pathways, little is known about the mechanism by which vav is regulated in a tissue-selective manner. This issue was examined by developing somatic cell hybrids between human U937 cells, which express vav, and mouse Balb/c 3T3 cells, which do not. If vav is primarily regulated by the presence of positive acting transcription factors, then vav expression should be maintained in hybrid cells. In contrast, if the regulation of vav is primarily negative in nature, then vav expression should be extinguished in most of the somatic cell hybrids. Of the hybrid cells that were obtained, 64% were positive by reverse transcriptase-polymerase chain reaction for the expression of the vav oncogene. Differences in the pattern of restriction enzyme cleavage sites between the mouse and human PCR products were used to determine that 6 of 11 of the positive clones expressed the normally dormant mouse gene. The other positive clones were found to express the human vav gene. In all cases, the hybrid cells preferentially retained the chromosomes and the cellular morphological appearance of the mouse Balb/c 3T3 fusion partner, which does not express the vav oncogene. Since vav is able to be transiently expressed by hybrid cells with a predominately mouse phenotype, these results support the hypothesis that vav is regulated primarily by the presence of transactivating factors which stimulate transcription, rather than by a gene silencing mechanism.
Collapse
Affiliation(s)
- D J Denkinger
- Department of Pharmacology, University of Nebraska Medical Center, Omaha 68198-6260, USA
| | | |
Collapse
|
11
|
Uddin S, Sweet M, Colamonici OR, Krolewski JJ, Platanias LC. The vav proto-oncogene product (p95vav) interacts with the Tyk-2 protein tyrosine kinase. FEBS Lett 1997; 403:31-34. [PMID: 9038355 DOI: 10.1016/s0014-5793(97)00023-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The vav proto-oncogene product participates in the signaling pathways activated by various cell-surface receptors, including the type I IFN receptor. During engagement of the type I IFN receptor, p95vav is phosphorylated on tyrosine residues, but the kinase regulating its phosphorylation has not been identified to date. Our studies demonstrate that p95vav forms a stable complex with the IFN-receptor-associated Tyk-2 kinase in vivo, and strongly suggest that this kinase regulates its phosphorylation on tyrosine. Thus, p95vav is engaged in IFN-signaling by a direct interaction with the functional type I IFN receptor complex to transduce downstream signals.
Collapse
Affiliation(s)
- S Uddin
- Department of Medicine, University of Illinois at Chicago, 60607, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
The proto-oncogene vav is expressed solely in cells of hematopoietic origin regardless of their differentiation lineage. However, recently an homologue of vav, which is widely expressed (vav2) has been identified. Vav is a complicated and interesting molecule that contains a number of structural features found in proteins involved in cell signaling. Vav has a leucine-rich region, a leucine-zipper, a calponin homology domain, an acidic domain, a Dbl-homology domain, a pleckstrin homology domain, a cysteine-rich domain, two Src homology 3 domains, with a proline-rich region in the amino-SH3 domain, and finally an Src homology 2 domain. These domains have been implicated in protein protein interactions and strongly suggest that vav is involved in signaling events. vav is also rapidly and transiently tyrosine phosphorylated through the activation of multiple receptors on hematopoietic cells. Furthermore, vav is tyrosine phosphorylated upon the activation of several cytokines and growths factors. Recently, the generation of nice vav-/- showed that vav has an essential role in proliferation/activation of T and B cells. The purpose of this review is to summarize the current knowledge on vav and to evaluate the roles of vav in cellular functions.
Collapse
Affiliation(s)
- F Romero
- Institut Cochin de Génétique Moléculaire, U363 INSERM, Hôpital Cochin, Paris, France
| | | |
Collapse
|
13
|
Myers MG, Zhang Y, Aldaz GA, Grammer T, Glasheen EM, Yenush L, Wang LM, Sun XJ, Blenis J, Pierce JH, White MF. YMXM motifs and signaling by an insulin receptor substrate 1 molecule without tyrosine phosphorylation sites. Mol Cell Biol 1996; 16:4147-55. [PMID: 8754813 PMCID: PMC231411 DOI: 10.1128/mcb.16.8.4147] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) by the activated receptors for insulin, IGF-1, and various cytokines creates binding sites for signaling proteins with Src homology 2 domains (SH2 proteins). Determining the role of specific SH2 proteins during insulin signaling has been difficult because IRS-1 possesses as many as 18 potential tyrosine phosphorylation sites, several of which contain redundant motifs. Using 32D cells, which contain no endogenous IRS proteins, we compared the signaling ability of an IRS-1 molecule in which 18 potential tyrosine phosphorylation sites were replaced by phenylalanine (IRS-1(F18)) with two derivative molecules which retained three YMXM motifs (IRS-1(3YMXM)) or the two COOH-terminal SHP2-Fyn binding sites (IRS-1(YCT)). During insulin stimulation, IRS-1(F18) failed to undergo tyrosine phosphorylation or mediate activation of the phosphotidylinositol (PI) 3'-kinase or p70(s6k); IRS-1(YCT) was tyrosine phosphorylated but also failed to mediate these signaling events. Neither IRS-1(3YMXM) nor IRS-1(YCT) mediated activation of mitogen-activated protein kinases. IRS-1(F18) and IRS-1(YCT) partially mediated similar levels of insulin-stimulated mitogenesis at high insulin concentrations, however, suggesting that IRS-1 contains phosphotyrosine-independent elements which effect mitogenic signals, and that the sites in IRS-l(YCT) do not augment this signal. IRS-1(3YMXM) mediated the maximal mitogenic response to insulin, although the response to insulin was more sensitive with wild-type IRS-1. By contrast, the association of IRS-1(3YMXM) with PI 3'-kinase was more sensitive to insulin than the association with IRS-1. Thus, the binding of SH2 proteins (such as PI 3'-kinase) by YMXM motifs in IRS-1 is an important element in the mitogenic response, but other elements are essential for full mitogenic sensitivity.
Collapse
Affiliation(s)
- M G Myers
- Research Division, Joslin Diabetes Center and Program in Biological and Biochemical Sciences, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Bonnefoy-Bérard N, Munshi A, Yron I, Wu S, Collins TL, Deckert M, Shalom-Barak T, Giampa L, Herbert E, Hernandez J, Meller N, Couture C, Altman A. Vav: function and regulation in hematopoietic cell signaling. Stem Cells 1996; 14:250-68. [PMID: 8724692 DOI: 10.1002/stem.140250] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vav, a 95 kDa proto-oncogene product expressed specifically in hematopoietic cells, was originally isolated as a transforming human oncogene. Vav contains an array of functional domains that are involved in interactions with other proteins and, possibly, with lipids. These include, among others, a putative guanine nucleotide exchange domain, a cysteine-rich region similar to the phorbol ester/diacylglycerol-binding domain of protein kinase C, a pleckstrin-homology domain, and Src-homology 2 and 3 (SH2 and SH3, respectively) domains. The presence of these domains, the transforming activity of the vav oncogene, and the rapid increase in tyrosine phosphorylation of Vav induced by triggering of diverse receptors indicate that it plays an important role in hematopoietic cell signaling pathways. Such a role is supported by recent studies using "knockout" mice and transiently transfected T cells, in which Vav deletion or overexpression, respectively, had marked effects on lymphocyte development or activation. The presence of a putative guanine nucleotide exchange domain, the prototype of which is found in the dbl oncogene product, implies that Vav functions as a guanine nucleotide exchange factor (GEF) for one (or more) members of the Ras-like family of small GTP-binding proteins. In support of such a role, Vav preparations were found in some (but not other) studies to mediate in vitro-specific GEF activity for Ras. Additional studies are required to identify the physiological regulators and targets of Vav, and its exact role in hematopoietic cell development and signaling.
Collapse
|
15
|
Cichowski K, Brugge JS, Brass LF. Thrombin receptor activation and integrin engagement stimulate tyrosine phosphorylation of the proto-oncogene product, p95vav, in platelets. J Biol Chem 1996; 271:7544-50. [PMID: 8631786 DOI: 10.1074/jbc.271.13.7544] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The vav proto-oncogene product, p95vav or Vav, is primarily expressed in hematopoietic cells and has been shown to be a substrate for tyrosine kinases. Although its function is unknown, Vav shares a region of homology with DBL, an exchange factor for the Rho family of GTP-binding proteins. The presence of this domain and the observation that cells transformed with Vav display prominent stress fibers and focal adhesions similar to those that are observed in RhoA transformed cells suggests that Vav may play a role in regulating the actin cytoskeleton. We have, therefore, examined Vav phosphorylation in platelets, which undergo dramatic cytoskeletal reorganization in response to agonists. Two potent platelet agonists, thrombin (via its G protein-coupled receptor) and collagen (via its interaction with the alpha2beta1 integrin), caused Vav to become phosphorylated on tyrosine. Weaker platelet agonists, including ADP, epinephrine and the thromboxane A2 analog, U46619, did not. The phosphorylation of Vav in response to thrombin was maximal within 15 s and was unaffected by aspirin, inhibitors of aggregation, or the presence of the ADP scavenger, apyrase. Vav phosphorylation was also observed when platelets became adherent to immobilized collagen (via integrin alpha2beta1), fibronectin (via integrin alpha5beta1), and fibrinogen (via integrin alphaIIbbeta3). These results show that Vav phosphorylation by tyrosine kinases 1) occurs during platelet activation by potent agonists, 2) also occurs when platelets adhere to biologically relevant matrix proteins, 3) requires neither platelet aggregation nor the release of secondary agonists such as ADP and TxA2, and 4) can be initiated by at least some members of two additional classes of receptors, G protein-coupled receptors and integrins, providing further evidence that both of these can couple to tyrosine kinases.
Collapse
Affiliation(s)
- K Cichowski
- Department of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | |
Collapse
|
16
|
Kulas DT, Freund GG, Mooney RA. The transmembrane protein-tyrosine phosphatase CD45 is associated with decreased insulin receptor signaling. J Biol Chem 1996; 271:755-60. [PMID: 8557683 DOI: 10.1074/jbc.271.2.755] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Overexpression of the transmembrane protein-tyrosine phosphatase (PTPase) CD45 in nonhematopoietic cells results in decreased signaling through growth factor receptor tyrosine kinases. Consistent with these data, insulin receptor signaling is increased when the CD45-related PTPase LAR is reduced by antisense suppression in a rat hepatoma cell line. To test whether the hematopoietic cell-specific PTPase CD45 functions in a manner similar to LAR by negatively modulating insulin receptor signaling in hematopoietic cells, the insulin-responsive human multiple myeloma cell line U266 was isolated into two subpopulations that differed in CD45 expression. In CD45 nonexpressing (CD45-) cells, insulin receptor autophosphorylation was increased by 3-fold after insulin treatment when compared to CD45 expressing (CD45+) cells. This increase in receptor autophosphorylation was associated with similar increases in insulin-dependent tyrosine kinase activation. These receptor level effects were paralleled by postreceptor responses. Insulin-dependent tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) and Shc was 3-fold greater in CD45- cells. In addition, insulin-dependent IRS-1/phosphatidylinositol 3-kinase association and MAP kinase activation in CD45- cells were also 3-fold larger. While expression of CD45 was associated with a decrease in the responsiveness of early insulin receptor signaling, interleukin 6-dependent activation of mitogen-activated protein kinase kinase and mitogen-activated protein kinase was equivalent between CD45- and CD45+ cells. These observations indicate that CD45 can function as a negative modulator of growth factor receptor tyrosine kinases in addition to its well-established role as an activator of src family tyrosine kinases.
Collapse
Affiliation(s)
- D T Kulas
- Department of Pathology, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | |
Collapse
|
17
|
Platanias LC, Uddin S, Yetter A, Sun XJ, White MF. The type I interferon receptor mediates tyrosine phosphorylation of insulin receptor substrate 2. J Biol Chem 1996; 271:278-282. [PMID: 8550573 DOI: 10.1074/jbc.271.1.278] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Binding of interferon alpha (IFN alpha) to its receptor induces activation of the Tyk-2 and Jak-1 tyrosine kinases and tyrosine phosphorylation of multiple downstream signaling elements, including the Stat components of the interferon-stimulated gene factor 3 (ISGF-3). IFN alpha also induces tyrosine phosphorylation of IRS-1, the principle substrate of the insulin receptor. In this study we demonstrate that various Type I IFNs rapidly stimulate tyrosine phosphorylation of IRS-2. This is significant since IRS-2 is the major IRS protein found in hematopoietic cells. The IFN alpha-induced phosphorylated form of IRS-2 associates with the p85 regulatory subunit of the phosphatidylinositol 3'-kinase, suggesting that this kinase participates in an IFN alpha-signaling cascade downstream of IRS-2. We also provide evidence for an interaction of IRS-2 with Tyk-2, suggesting that Tyk-2 is the kinase that phosphorylates this protein during IFN alpha stimulation. A conserved region in the pleckstrin homology domain of IRS-2 may be required for the interaction of IRS-2 with Tyk-2, as shown by the selective binding of glutathione S-transferase (GST) fusion proteins containing the IRS-2-IH1PH or IRS-1-IH1PH domains to Tyk-2 but not other Janus kinases in vitro.
Collapse
Affiliation(s)
- L C Platanias
- Department of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|
18
|
Yetter A, Uddin S, Krolewski JJ, Jiao H, Yi T, Platanias LC. Association of the interferon-dependent tyrosine kinase Tyk-2 with the hematopoietic cell phosphatase. J Biol Chem 1995; 270:18179-18182. [PMID: 7629131 DOI: 10.1074/jbc.270.31.18179] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The tyrosine kinase Tyk-2 is physically associated with the Type I interferon (IFN) receptor complex and is rapidly activated during IFN alpha stimulation. We report that Tyk-2 forms stable complexes with the SH2-containing hematopoietic cell phosphatase (HCP) in several hematopoietic cell lines in vivo, and that the IFN alpha-induced tyrosine-phosphorylated form of Tyk-2 is a substrate for the phosphatase activity of HCP in in vitro assays. Furthermore, treatment of cells with the phosphatase inhibitor sodium orthovanadate induces tyrosine phosphorylation of Tyk-2 and an associated 115-kDa protein. Altogether, these data suggest that HCP regulates tyrosine phosphorylation of the Tyk-2 kinase, and thus its function may be important in the transmission of signals generated at the Type I IFN receptor level.
Collapse
Affiliation(s)
- A Yetter
- Division of Hematology-Oncology, Loyola University of Chicago, Maywood, Illinois 60153, USA
| | | | | | | | | | | |
Collapse
|
19
|
Uddin S, Yenush L, Sun XJ, Sweet ME, White MF, Platanias LC. Interferon-alpha engages the insulin receptor substrate-1 to associate with the phosphatidylinositol 3'-kinase. J Biol Chem 1995; 270:15938-15941. [PMID: 7608146 DOI: 10.1074/jbc.270.27.15938] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interferon-alpha (IFN alpha) induces rapid tyrosine phosphorylation of the insulin receptor substrate-1 (IRS-1), a docking protein with multiple tyrosine phosphorylation sites that bind to the Src homology 2 (SH2) domains of various signaling proteins. During IFN alpha stimulation, the p85 regulatory subunit of the phosphatidylinositol 3'-kinase binds via its SH2 domains to tyrosine-phosphorylated IRS-1, and phosphatidylinositol 3'-kinase activity is detected in association with IRS-1. Thus, IFN alpha responses occur by activation of the IRS signaling system, which it shares with insulin, insulin-like growth factor-1, and interleukin-4.
Collapse
Affiliation(s)
- S Uddin
- Division of Hematology-Oncology, Loyola University of Chicago, Maywood, Illinois 60153, USA
| | | | | | | | | | | |
Collapse
|