1
|
Arosio P, Cairo G, Bou-Abdallah F. A Brief History of Ferritin, an Ancient and Versatile Protein. Int J Mol Sci 2024; 26:206. [PMID: 39796064 PMCID: PMC11719527 DOI: 10.3390/ijms26010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Ferritin, a highly conserved iron storage protein, is among the earliest proteins that have been purified, named, and characterized due to its unique properties that continue to captivate researchers. Ferritin is composed of 24 subunits that form an almost spherical shell delimiting a cavity where thousands of iron atoms can be stored in a nontoxic ferric form, thereby preventing cytosolic iron from catalyzing oxidative stress. Mitochondrial and extracellular ferritin have also been described and characterized, with the latter being associated with several signaling functions. In addition, serum ferritin serves as a reliable indicator of both iron stores and inflammatory conditions. First identified and purified through crystallization in 1937, ferritin has since drawn significant attention for its critical role in iron metabolism and regulation. Its unique structural features have recently been exploited for many diverse biological and technological applications. To date, more than 40,000 publications have explored this remarkable protein. Here, we present a historical overview, tracing its journey from discovery to current applications and highlighting the evolution of biochemical techniques developed for its structure-function characterization over the past eight decades.
Collapse
Affiliation(s)
- Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Fadi Bou-Abdallah
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA;
| |
Collapse
|
2
|
Sultana F, Ghosh A. Exploring the evolutionary landscape and structural resonances of ferritin with insights into functional significance in plant. Biochimie 2024; 227:217-230. [PMID: 39047810 DOI: 10.1016/j.biochi.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The mineral iron plays a crucial role in facilitating the optimal functioning of numerous biological processes within the cellular environment. These processes involve the transportation of oxygen, energy production, immune system functioning, cognitive abilities, and muscle function. However, it is crucial to note that excessive levels of iron can result in oxidative damage within cells, primarily through Fenton reactions. Iron availability and toxicity present significant challenges that have been addressed through evolution. Ferritin is an essential protein that stores iron and is divided into different subfamilies, including DNA-binding proteins under starvation (Dps), bacterioferritin, and classical ferritin. Ferritin plays a critical role in maintaining cellular balance and protecting against oxidative damage. This study delves into ferritin's evolutionary dynamics across diverse taxa, emphasizing structural features and regulatory mechanisms. Insights into ferritin's evolution and functional diversity are gained through phylogenetic and structural analysis in bacterial Dps, bacterioferritin, and classical ferritin proteins. Additionally, the involvement of ferritin in plant stress responses and development is explored. Analysis of ferritin gene expression across various developmental stages and stress conditions provides insights into its regulatory roles. This comprehensive exploration enhances our understanding of ferritin's significance in plant biology, offering insights into its evolutionary history, structural diversity, and protective mechanisms against oxidative stress.
Collapse
Affiliation(s)
- Fahmida Sultana
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
3
|
Kaur H, Alluri RK, Wu K, Kalayjian RC, Bush WS, Palella FJ, Koletar SL, Hileman CO, Erlandson KM, Ellis RJ, Bedimo RJ, Taiwo BO, Tassiopoulos KK, Kallianpur AR. Sex-Biased Associations of Circulating Ferroptosis Inhibitors with Reduced Lipid Peroxidation and Better Neurocognitive Performance in People with HIV. Antioxidants (Basel) 2024; 13:1042. [PMID: 39334701 PMCID: PMC11429126 DOI: 10.3390/antiox13091042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Ferroptosis is implicated in viral neuropathogenesis and may underlie HIV-associated neurocognitive impairment (NCI). Emerging data also suggest differences in brain iron transport by sex. We hypothesized that circulating ferritins that inhibit ferroptosis associate with neurocognitive function and NCI in people with HIV (PWH) in a sex-biased manner. Serum ferritin heavy-chain-1 (FTH1), ferritin light-chain (FTL), and urinary F2-isoprostanes (uF2-isoPs, specific lipid peroxidation marker) were quantified in 324 PWH (including 61 women) with serial global (NPZ-4) and domain-specific neurocognitive testing. Biomarker associations with neurocognitive test scores and NCIs were evaluated by multivariable regression; correlations with uF2-isoPs were also assessed. Higher FTL and FTH1 levels were associated with less NCI in all PWH (adjusted odds ratios 0.53, 95% confidence interval (95% CI) 0.36-0.79 and 0.66, 95% CI 0.45-0.97, respectively). In women, higher FTL and FTH1 were also associated with better NPZ-4 (FTL adjusted beta (β) = 0.15, 95% CI 0.02-0.29; FTL-by-sex βinteraction = 0.32, p = 0.047) and domain-specific neurocognitive test scores. Effects on neurocognitive performance persisted for up to 5 years. Levels of both ferritins correlated inversely with uF2-isoPs in women (FTL: rho = -0.47, p < 0.001). Circulating FTL and FTH1 exert sustained, sex-biased neuroprotective effects in PWH, possibly by protecting against iron-mediated lipid peroxidation (ferroptosis). Larger studies are needed to confirm the observed sex differences and further delineate the underlying mechanisms.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Genomic Medicine, Cleveland Clinic/Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ravi K Alluri
- Department of Genomic Medicine, Cleveland Clinic/Lerner Research Institute, Cleveland, OH 44195, USA
| | - Kunling Wu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Robert C Kalayjian
- Department of Medicine/Infectious Diseases, MetroHealth Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Frank J Palella
- Department of Medicine/Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Susan L Koletar
- Department of Medicine/Infectious Diseases, The Ohio State University, Columbus, OH 43210, USA
| | - Corrilynn O Hileman
- Department of Medicine/Infectious Diseases, MetroHealth Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kristine M Erlandson
- Department of Medicine/Infectious Diseases, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California-San Diego, San Diego, CA 92103, USA
| | - Roger J Bedimo
- Medicine/Infectious Diseases Section, VA North Texas Health Care System, Dallas, TX 75216, USA
| | - Babafemi O Taiwo
- Department of Medicine/Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Asha R Kallianpur
- Department of Genomic Medicine, Cleveland Clinic/Lerner Research Institute, Cleveland, OH 44195, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
4
|
Chai Z, Zheng J, Shen J. Mechanism of ferroptosis regulating ischemic stroke and pharmacologically inhibiting ferroptosis in treatment of ischemic stroke. CNS Neurosci Ther 2024; 30:e14865. [PMID: 39042604 PMCID: PMC11265528 DOI: 10.1111/cns.14865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024] Open
Abstract
Ferroptosis is a newly discovered form of programmed cell death that is non-caspase-dependent and is characterized by the production of lethal levels of iron-dependent lipid reactive oxygen species (ROS). In recent years, ferroptosis has attracted great interest in the field of cerebral infarction because it differs morphologically, physiologically, and genetically from other forms of cell death such as necrosis, apoptosis, autophagy, and pyroptosis. In addition, ROS is considered to be an important prognostic factor for ischemic stroke, making it a promising target for stroke treatment. This paper summarizes the induction and defense mechanisms associated with ferroptosis, and explores potential treatment strategies for ischemic stroke in order to lay the groundwork for the development of new neuroprotective drugs.
Collapse
Affiliation(s)
- Zhaohui Chai
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jiesheng Zheng
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| | - Jian Shen
- Department of NeurosurgeryFirst Affiliated Hospital, College of Medicine, Zhejiang UniversityHangzhou CityChina
| |
Collapse
|
5
|
Saroj M, Prakash S, Vikram NK, Saraya A, Priyatma, Ganie MA, Arulselvi S, Pandey S. Hyperactive behaviour of growth differentiation factor- 15 (GDF-15) in conjunction with iron trafficking transporters and suppression of Nrf-2 gene in diabetes and metabolic syndrome. Mol Cell Biochem 2024; 479:1109-1120. [PMID: 37338675 DOI: 10.1007/s11010-023-04782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 06/04/2023] [Indexed: 06/21/2023]
Abstract
Multiple parallel factors are frequently interrogated with various toxic radicals which are abundantly generated in the liver, heart, and pancreas in stress conditions. They are actively involved in the development of diabetes and metabolic aberrations. However, whether over-activation of GDF-15mRNA and influxes of iron-by-iron trafficking genes are directly suppressing the Nrf-2 gene in patients with diabetes and metabolic aberrations in context with undiagnosed individuals with diabetes and metabolic aberrations? Therefore, we have investigated inter and intra- related Zip8/14 mRNA, GDF-15mRNA, and Nrf-2 mRNA expressions in diabetes and metabolic syndrome as it is expected to be up to 134 million by 2045 in India. We recruited 120 subjects from the Department of Medicine, Endocrinology and Metabolic Clinic, All India Institute of Medical Sciences, New Delhi, India. Various investigations related to anthropometry, nutritional, hematological, biochemical, cytokine, and oxidative stress were measured in diabetes, metabolic syndrome, diabetes with metabolic aberration, and healthy controls. Relative expression of GDF-15, ZIP8, ZIP14, Nrf-2, and housekeeping genes was done in all subjects. Stress-responsive cytokines are highly expressed in patients with metabolic aberration with respect to body weight, IR, waist circumference, and fat mass. IL-1β, TNF-α, and IL-6 levels were significantly higher in metabolic syndrome, whereas Adiponectin levels were profoundly lower side. MDA levels were significantly raised in diabetes with metabolic syndrome while SOD activities were lowered (p = 0.001). GDF-15 mRNA expression was 1.79-fold upregulated in group III as compared with Group I while 2-threefold down-regulation of Nrf-2 expression was observed in diabetes with metabolic aberration groups. Zip 8 mRNA expressions were downregulated (p = 0.014), and Zip 14 mRNA expressions were upregulated (p = 0.06) in diabetes and metabolic aberrations. The association of GDF-15 and Nrf-2 mRNA expression was found contradictory and highly interlinked with ROS. Zip 8/14mRNA expressions were also dysregulated in diabetes and metabolic-associated complications.
Collapse
Affiliation(s)
- Manish Saroj
- Department of Laboratory Medicine, AIIMS, New Delhi, India
| | - Shyam Prakash
- Department of Laboratory Medicine, AIIMS, New Delhi, India.
- Department of Laboratory Medicine, All India Institute of Medical Sciences, Room No. 11, 2nd Floor, New Delhi, India.
| | | | - Anoop Saraya
- Department of Gastroenterology, AIIMS, New Delhi, India
| | - Priyatma
- Department of Laboratory Medicine, AIIMS, New Delhi, India
| | | | | | - Shivam Pandey
- Department of Biostatistics, AIIMS, New Delhi, India
| |
Collapse
|
6
|
Correnti M, Gammella E, Cairo G, Recalcati S. Iron Absorption: Molecular and Pathophysiological Aspects. Metabolites 2024; 14:228. [PMID: 38668356 PMCID: PMC11052485 DOI: 10.3390/metabo14040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Iron is an essential nutrient for growth among all branches of life, but while iron is among the most common elements, bioavailable iron is a relatively scarce nutrient. Since iron is fundamental for several biological processes, iron deficiency can be deleterious. On the other hand, excess iron may lead to cell and tissue damage. Consequently, iron balance is strictly regulated. As iron excretion is not physiologically controlled, systemic iron homeostasis is maintained at the level of absorption, which is mainly influenced by the amount of iron stores and the level of erythropoietic activity, the major iron consumer. Here, we outline recent advances that increased our understanding of the molecular aspects of iron absorption. Moreover, we examine the impact of these recent insights on dietary strategies for maintaining iron balance.
Collapse
Affiliation(s)
| | | | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (M.C.); (E.G.); (S.R.)
| | | |
Collapse
|
7
|
Helmuth TB, Kumari R, Palsa K, Neely EB, Slagle-Webb B, Simon SD, Connor JR. Common Mutation in the HFE Gene Modifies Recovery After Intracerebral Hemorrhage. Stroke 2023; 54:2886-2894. [PMID: 37750297 PMCID: PMC10996156 DOI: 10.1161/strokeaha.123.043799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is characterized by bleeding into the brain parenchyma. During an ICH, iron released from the breakdown of hemoglobin creates a cytotoxic environment in the brain through increased oxidative stress. Interestingly, the loss of iron homeostasis is associated with the pathological process of other neurological diseases. However, we have previously shown that the H63D mutation in the homeostatic iron regulatory (HFE) gene, prevalent in 28% of the White population in the United States, acts as a disease modifier by limiting oxidative stress. The following study aims to examine the effects of the murine homolog, H67D HFE, on ICH. METHODS An autologous blood infusion model was utilized to create an ICH in the right striatum of H67D and wild-type mice. The motor recovery of each animal was assessed by rotarod. Neurodegeneration was measured using fluorojade-B and mitochondrial damage was assessed by immunofluorescent numbers of CytC+ (cytochrome C) neurons and CytC+ astrocytes. Finally, the molecular antioxidant response to ICH was quantified by measuring Nrf2 (nuclear factor-erythroid 2 related factor), GPX4 (glutathione peroxidase 4), and FTH1 (H-ferritin) levels in the ICH-affected and nonaffected hemispheres via immunoblotting. RESULTS At 3 days post-ICH, H67D mice demonstrated enhanced performance on rotarod compared with wild-type animals despite no differences in lesion size. Additionally, H67D mice displayed higher levels of Nrf2, GPX4, and FTH1 in the ICH-affected hemisphere; however, these levels were not different in the contralateral, non-ICH-affected hemisphere. Furthermore, H67D mice showed decreased degenerated neurons, CytC+ Neurons, and CytC+ astrocytes in the perihematomal area. CONCLUSIONS Our data suggest that the H67D mutation induces a robust antioxidant response 3 days following ICH through Nrf2, GPX4, and FTH1 activation. This activation could explain the decrease in degenerated neurons, CytC+ neurons, and CytC+ astrocytes in the perihematomal region, leading to the improved motor recovery. Based on this study, further investigation into the mechanisms of this neuroprotective response and the effects of the H63D HFE mutation in a population of patients with ICH is warranted.
Collapse
Affiliation(s)
- Timothy B Helmuth
- Department of Neurosurgery (T.B.H., K.P., E.B.N., B.S.-W., S.D.S., J.R.C.), Penn State College of Medicine, Hershey, PA
| | - Rashmi Kumari
- Department of Neural and Behavioral Sciences (R.K.), Penn State College of Medicine, Hershey, PA
| | - Kondaiah Palsa
- Department of Neurosurgery (T.B.H., K.P., E.B.N., B.S.-W., S.D.S., J.R.C.), Penn State College of Medicine, Hershey, PA
| | - Elizabeth B Neely
- Department of Neurosurgery (T.B.H., K.P., E.B.N., B.S.-W., S.D.S., J.R.C.), Penn State College of Medicine, Hershey, PA
| | - Becky Slagle-Webb
- Department of Neurosurgery (T.B.H., K.P., E.B.N., B.S.-W., S.D.S., J.R.C.), Penn State College of Medicine, Hershey, PA
| | - Scott D Simon
- Department of Neurosurgery (T.B.H., K.P., E.B.N., B.S.-W., S.D.S., J.R.C.), Penn State College of Medicine, Hershey, PA
| | - James R Connor
- Department of Neurosurgery (T.B.H., K.P., E.B.N., B.S.-W., S.D.S., J.R.C.), Penn State College of Medicine, Hershey, PA
| |
Collapse
|
8
|
Huang B, Liu Q, Bai C, Li C, Wang C, Xin L. A Putative Receptor for Ferritin in Mollusks: Characterization of the Insulin-like Growth Factor Type 1 Receptor. Int J Mol Sci 2023; 24:ijms24076175. [PMID: 37047145 PMCID: PMC10094261 DOI: 10.3390/ijms24076175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 04/14/2023] Open
Abstract
The ferritin secreted by mammals has been well documented, with the protein capable of localizing to cell membranes and facilitating the delivery of iron to cells through endocytosis. However, the presence of ferritin in the circulatory fluid of mollusks and its functions remain largely unknown. In this study, we aimed to investigate the potential interacting proteins of ferritin in the ark clam (SbFn) through the use of a pull-down assay. Our findings revealed the presence of an insulin-like growth factor type 1 receptor (IGF-1R) in ark clams, which was capable of binding to SbFn and was named SbIGF-1R. SbIGF-1R was found to be composed of two leucine-rich repeat domains (L domain), a cysteine-rich domain, three fibronectin type III domains, a transmembrane domain, and a tyrosine kinase domain. The ectodomain of SbIGF-1R was observed to form a symmetrical antiparallel homodimer in the shape of the letter 'A', with the fibronectin type III domains serving as its 'legs'. The mRNA expression of SbIGF-1R gene was detected ubiquitously in various tissues of the ark clam, with the highest expression levels found in hemocytes, as determined by qRT-PCR. Using a confocal microscopic and yeast two-hybrid assays, the interaction between SbIGF-1R and SbFn was further verified. The results showed that SbFn co-localized with SbIGF-1R on the cell membrane, and their interaction was expected to occur on the FNIII domains of the SbIGF-1R. In conclusion, our findings highlight the identification of a putative receptor, SbIGF-1R, for SbFn, demonstrating the versatility of IGF-1R in ark clams.
Collapse
Affiliation(s)
- Bowen Huang
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qin Liu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin 537000, China
| | - Changming Bai
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chen Li
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Chongming Wang
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lusheng Xin
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin 537000, China
| |
Collapse
|
9
|
Neuroprotection of NRF2 against Ferroptosis after Traumatic Brain Injury in Mice. Antioxidants (Basel) 2023; 12:antiox12030731. [PMID: 36978979 PMCID: PMC10044792 DOI: 10.3390/antiox12030731] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Ferroptosis and iron-related redox imbalance aggravate traumatic brain injury (TBI) outcomes. NRF2 is the predominant transcription factor regulating oxidative stress and neuroinflammation in TBI, but its role in iron-induced post-TBI damage is unclear. We investigated ferroptotic neuronal damage in the injured cortex and observed neurological deficits post-TBI. These were ameliorated by the iron chelator deferoxamine (DFO) in wild-type mice. In Nrf2-knockout (Nrf2−/−) mice, more sever ferroptosis and neurological deficits were detected. Dimethyl fumarate (DMF)-mediated NRF2 activation alleviated neural dysfunction in TBI mice, partly due to TBI-induced ferroptosis mitigation. Additionally, FTH-FTL and FSP1 protein levels, associated with iron metabolism and the ferroptotic redox balance, were highly NRF2-dependent post-TBI. Thus, NRF2 is neuroprotective against TBI-induced ferroptosis through both the xCT-GPX4- and FTH-FTL-determined free iron level and the FSP1-regulated redox status. This yields insights into the neuroprotective role of NRF2 in TBI-induced neuronal damage and its potential use in TBI treatment.
Collapse
|
10
|
Alves FM, Ayton S, Bush AI, Lynch GS, Koopman R. Age-Related Changes in Skeletal Muscle Iron Homeostasis. J Gerontol A Biol Sci Med Sci 2023; 78:16-24. [PMID: 35869751 DOI: 10.1093/gerona/glac139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Indexed: 01/31/2023] Open
Abstract
Sarcopenia is an age-related condition of slow, progressive loss of muscle mass and strength, which contributes to frailty, increased risk of hospitalization and mortality, and increased health care costs. The incidence of sarcopenia is predicted to increase to >200 million affected older adults worldwide over the next 40 years, highlighting the urgency for understanding biological mechanisms and developing effective interventions. An understanding of the mechanisms underlying sarcopenia remains incomplete. Iron in the muscle is important for various metabolic functions, including oxygen supply and electron transfer during energy production, yet these same chemical properties of iron may be deleterious to the muscle when either in excess or when biochemically unshackled (eg, in ferroptosis), it can promote oxidative stress and induce inflammation. This review outlines the mechanisms leading to iron overload in muscle with aging and evaluates the evidence for the iron overload hypothesis of sarcopenia. Based on current evidence, studies are needed to (a) determine the mechanisms leading to iron overload in skeletal muscle during aging; and (b) investigate whether skeletal muscles are functionally deficient in iron during aging leading to impairments in oxidative metabolism.
Collapse
Affiliation(s)
- Francesca M Alves
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - René Koopman
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Ferrer JLM, Garcia RL. Antioxidant Systems, lncRNAs, and Tunneling Nanotubes in Cell Death Rescue from Cigarette Smoke Exposure. Cells 2022; 11:2277. [PMID: 35892574 PMCID: PMC9330437 DOI: 10.3390/cells11152277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Cigarette smoke is a rich source of carcinogens and reactive oxygen species (ROS) that can damage macromolecules including DNA. Repair systems can restore DNA integrity. Depending on the duration or intensity of stress signals, cells may utilize various survival and adaptive mechanisms. ROS levels are kept in check through redundant detoxification processes controlled largely by antioxidant systems. This review covers and expands on the mechanisms available to cigarette smoke-exposed cancer cells for restoring the redox balance. These include multiple layers of transcriptional control, each of which is posited to be activated upon reaching a particular stress threshold, among them the NRF2 pathway, the AP-1 and NF-kB pathways, and, finally, TP53, which triggers apoptosis if extreme toxicity is reached. The review also discusses long noncoding RNAs, which have been implicated recently in regulating oxidative stress-with roles in ROS detoxification, the inflammatory response, oxidative stress-induced apoptosis, and mitochondrial oxidative phosphorylation. Lastly, the emerging roles of tunneling nanotubes in providing additional mechanisms for metabolic rescue and the regulation of redox imbalance are considered, further highlighting the expanded redox reset arsenal available to cells.
Collapse
Affiliation(s)
| | - Reynaldo L. Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines;
| |
Collapse
|
12
|
Grubwieser P, Hoffmann A, Hilbe R, Seifert M, Sonnweber T, Böck N, Theurl I, Weiss G, Nairz M. Airway Epithelial Cells Differentially Adapt Their Iron Metabolism to Infection With Klebsiella pneumoniae and Escherichia coli In Vitro. Front Cell Infect Microbiol 2022; 12:875543. [PMID: 35663465 PMCID: PMC9157649 DOI: 10.3389/fcimb.2022.875543] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
Background Pneumonia is often elicited by bacteria and can be associated with a severe clinical course, respiratory failure and the need for mechanical ventilation. In the alveolus, type-2-alveolar-epithelial-cells (AECII) contribute to innate immune functions. We hypothesized that AECII actively adapt cellular iron homeostasis to restrict this essential nutrient from invading pathogens - a defense strategy termed 'nutritional immunity', hitherto mainly demonstrated for myeloid cells. Methods We established an in-vitro infection model using the human AECII-like cell line A549. We infected cells with Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli), two gram-negative bacteria with different modes of infection and frequent causes of hospital-acquired pneumonia. We followed the entry and intracellular growth of these gram-negative bacteria and analyzed differential gene expression and protein levels of key inflammatory and iron metabolism molecules. Results Both, K. pneumoniae and E. coli are able to invade A549 cells, whereas only K. pneumoniae is capable of proliferating intracellularly. After peak bacterial burden, the number of intracellular pathogens declines, suggesting that epithelial cells initiate antimicrobial immune effector pathways to combat bacterial proliferation. The extracellular pathogen E. coli induces an iron retention phenotype in A549 cells, mainly characterized by the downregulation of the pivotal iron exporter ferroportin, the upregulation of the iron importer transferrin-receptor-1 and corresponding induction of the iron storage protein ferritin. In contrast, cells infected with the facultative intracellular bacterium K. pneumoniae exhibit an iron export phenotype indicated by ferroportin upregulation. This differential regulation of iron homeostasis and the pathogen-specific inflammatory reaction is likely mediated by oxidative stress. Conclusion AECII-derived A549 cells show pathogen-specific innate immune functions and adapt their iron handling in response to infection. The differential regulation of iron transporters depends on the preferential intra- or extracellular localization of the pathogen and likely aims at limiting bacterial iron availability.
Collapse
Affiliation(s)
- Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Hoffmann
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Sonnweber
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nina Böck
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Yang CC, Hsiao LD, Shih YF, Chang CI, Yang CM. Induction of Heme Oxygenase-1 by 15d-Prostaglandin J2 Mediated via a ROS-Dependent Sp1 and AP-1 Cascade Suppresses Lipopolysaccharide-Triggered Interleukin-6 Expression in Mouse Brain Microvascular Endothelial Cells. Antioxidants (Basel) 2022; 11:antiox11040719. [PMID: 35453404 PMCID: PMC9024691 DOI: 10.3390/antiox11040719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Heme oxygenase-1 (HO-1) has been shown to exert antioxidant, anti-inflammatory, and anti-apoptotic effects in various types of cells. Therefore, the induction of HO-1 is an excellent rationale for the development of protective drugs. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) can modulate the expression of antioxidant defense proteins and be beneficial for neuroinflammation. Brain endothelial cells play an important role in the pathophysiology of brain disorders. Whether 15d-PGJ2 can induce HO-1 expression and protect against the inflammatory responses in mouse brain microvascular endothelial (bEnd.3) cells remains unclear. Here, we reveal that 15d-PGJ2 stimulated HO-1 protein and mRNA expression in a time- and concentration-dependent manner in bEnd.3 cells, which was attenuated by diphenyleneiodonium chloride (DPI) and MitoTempo. Thus, activation of NADPH oxidase (NOX)- and mitochondria-derived reactive oxygen species (ROS) mediated 15d-PGJ2-induced HO-1 expression. ROS generation could cause phosphorylation of protein kinase C (PKC)δ, leading to HO-1 expression, which was suppressed by Rottlerin (selective inhibitor PKCδ), DPI, and MitoTempo. We further demonstrated that phosphorylation of c-Jun N-terminal kinase (JNK)1/2 participated in 15d-PGJ2-upregulated HO-1 expression, which was blocked by SP600125 or Rottlerin. Moreover, 15d-PGJ2-induced HO-1 expression was mediated through the activation of c-Jun (a subunit of activator protein 1 (AP-1)) and specificity protein 1 (Sp1), leading to their interaction with the HO-1 promoter, revealed by chromatin immunoprecipitation assay, which was attenuated by SP600125, Mithramycin A, or Tanshinone II A. We further verified the anti-inflammatory effect of HO-1 expression. Our results showed that 15d-PGJ2-induced HO-1 could mitigate the lipopolysaccharide-triggered interleukin-6 expression and secretion, as measured by an ELISA assay kit. These results suggest that 15d-PGJ2-induced HO-1 expression is mediated through the activation of NOX- and mitochondria-derived ROS-dependent PKCδ/JNK1/2/Sp1 and the AP-1 signaling pathway and protects against inflammatory responses in bEnd.3 cells.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan 33302, Taiwan;
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Ya-Fang Shih
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Ching-I Chang
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; (L.-D.H.); (Y.-F.S.); (C.-I.C.)
- Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung 41354, Taiwan
- Correspondence: ; Tel.: +886-4-22053366 (ext. 2229)
| |
Collapse
|
14
|
Videla LA, Valenzuela R. Perspectives in liver redox imbalance: Toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action. Biofactors 2022; 48:400-415. [PMID: 34687092 DOI: 10.1002/biof.1797] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023]
Abstract
Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control, and/or molecular damage altering cellular functions. This redox imbalance may trigger different responses depending on the antioxidant potential of a given cell, the level of reactive oxygen/nitrogen species (ROS/RNS) attained and the time of exposure, with protective effects being induced at low ROS/RNS levels in acute or short-term conditions, and harmful effects after high ROS/RNS exposure in prolonged situations. Relevant conditions underlying liver redox imbalance include iron overload associated with ROS production via Fenton chemistry and the magnitude of the iron labile pool achieved, with low iron exposure inducing protective effects related to nuclear factor-κB, signal transducer and activation of transcription 3, and nuclear factor erythroid-related factor 2 (Nrf2) activation and upregulation of ferritin, hepcidin, acute-phase response and antioxidant components, whereas high iron exposure causes drastic oxidation of biomolecules, mitochondrial dysfunction, and cell death due to necrosis, apoptosis and/or ferroptosis. Redox imbalance in nonalcoholic fatty liver disease (NAFLD) is related to polyunsaturated fatty acid depletion, lipogenic factor sterol regulatory element-binding protein-1c upregulation, fatty acid oxidation-dependent peroxisome proliferator-activated receptor-α downregulation, low antioxidant factor Nrf2 and insulin resistance, a phenomenon that is exacerbated in nonalcoholic steatohepatitis triggering an inflammatory response. Thyroid hormone (T3 ) administration determines liver preconditioning against ischemia-reperfusion injury due to the redox activation of several transcription factors, AMP-activated protein kinase, unfolded protein response and autophagy. High grade liver redox imbalance occurring in severe iron overload is adequately handled by iron chelation, however, that underlying NAFLD/NASH is currently under study in several Phase II and Phase III trials.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
15
|
Camarena V, Huff TC, Wang G. Epigenomic regulation by labile iron. Free Radic Biol Med 2021; 170:44-49. [PMID: 33493555 PMCID: PMC8217092 DOI: 10.1016/j.freeradbiomed.2021.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022]
Abstract
Iron is an essential micronutrient metal for cellular functions but can generate highly reactive oxygen species resulting in oxidative damage. For these reasons its uptake and metabolism is highly regulated. A small but dynamic fraction of ferrous iron inside the cell, termed intracellular labile iron, is redox-reactive and ready to participate multiples reactions of intracellular enzymes. Due to its nature its determination and precise quantification has been a roadblock. However, recent progress in the development of intracellular labile iron probes are allowing the reevaluation of our current understanding and unmasking new functions. The role of intracellular labile iron in regulating the epigenome was recently discovered. This chapter examine how intracellular labile iron can modulate histone and DNA demethylation and how its pool can mediate a signaling pathway from cAMP serving as a sensor of the metabolic needs of the cells.
Collapse
Affiliation(s)
- Vladimir Camarena
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Tyler C Huff
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
16
|
SARS-CoV-2 Mediated Hyperferritinemia and Cardiac Arrest: Preliminary Insights. Drug Discov Today 2021; 26:1265-1274. [PMID: 33493677 PMCID: PMC7826001 DOI: 10.1016/j.drudis.2021.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/14/2020] [Accepted: 01/08/2021] [Indexed: 02/06/2023]
|
17
|
Kim T, Choi H, Kang J. Association of serum ferritin and lung function in tobacco-naïve postmenopausal women: Analysis of population-based nationally representative data. THE CLINICAL RESPIRATORY JOURNAL 2020; 14:908-917. [PMID: 32460410 DOI: 10.1111/crj.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/05/2020] [Accepted: 05/20/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Ferritin regulates iron homeostasis, and is involved in the inflammation in the lung, especially in smokers; however, its associations on pulmonary function in nonsmokers remain unclear. OBJECTIVES The present study aimed to evaluate the association between serum ferritin and lung function in a tobacco-naïve postmenopausal women. METHODS In this study, 25 534 individuals were enrolled, among who 5338 tobacco-naïve individuals were identified; of those, 342 men and 2879 women (742 pre- and 2137 postmenopausal) with data of serum ferritin, lung function and covariates were included. To evaluate the association of ferritin and lung function, multivariable-adjusted linear regression analyses was used including the factors of predicted value of forced expiratory volume in 1 second (FEV1 %) and forced vital capacity (FVC%). Logistic regression analyses were used to measure the relationship between ferritin and restrictive and obstructive lung disease. RESULTS In premenopausal women, FEV1 %/FVC was weakly but positively associated with serum ferritin, and after adjusting for covariates, the association was without statistical significance. No significant association between ferritin and obstructive lung disease was observed. In postmenopausal women, predicted FVC% was negatively associated with serum ferritin, and ferritin was dose-dependently related with risk for restrictive lung disease. The odds ratio for restrictive lung disease in postmenopausal women was 2.285 at T3 and 1.560 at T2 relative to that at T1. CONCLUSIONS High serum ferritin level was significantly associated with lower FVC% and increased risk of restrictive lung disease in tobacco-naïve postmenopausal women. Further study is needed to determine the mechanism underlying the current findings.
Collapse
Affiliation(s)
- Taeyun Kim
- Division of Pulmonology, Department of Internal Medicine, The Armed Forces Goyang Hospital, Goyang-si, South Korea
| | - Hyunji Choi
- Department of Laboratory Medicine, Kosin University Gospel Hospital, Busan, South Korea
| | - Jihun Kang
- Department of Family Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, South Korea
| |
Collapse
|
18
|
Yokel RA, Tseng MT, Butterfield DA, Hancock ML, Grulke EA, Unrine JM, Stromberg AJ, Dozier AK, Graham UM. Nanoceria distribution and effects are mouse-strain dependent. Nanotoxicology 2020; 14:827-846. [DOI: 10.1080/17435390.2020.1770887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Robert A. Yokel
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Michael T. Tseng
- Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY, USA
| | | | - Matthew L. Hancock
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Eric A. Grulke
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY, USA
| | - Jason M. Unrine
- Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | - Uschi M. Graham
- Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
- CDC, NIOSH, Cincinnati, OH, USA
| |
Collapse
|
19
|
Elwan NM, Salah SM, Abdelsalam SF, Elfar NN. Role of ferritin in pathogenesis of rosacea and its value in efficacy of 595 nm pulsed dye laser in treatment of different variants of rosacea: a clinical and immunohistochemical study. J COSMET LASER THER 2020; 22:130-136. [PMID: 32441163 DOI: 10.1080/14764172.2020.1761549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Current rosacea treatment focused on symptom suppression to improve patient's quality of life, prevent progression, and sustain remission. The progress of laser therapy has brought about a paradigm shift in the world of treating erythema and telangiectasia. We appraised role of ferritin in pathogenesis of rosacea and consider its value in efficacy of 595 nm pulsed dye laser (PDL) in treatment of rosacea. MATERIALS/METHODS 20 patients had rosacea were treated with PDL; received 4 sessions, 4 weeks apart. They were assessed before and after treatment by rosacea grading scale and skin biopsies were taken to detect changes in ferritin expression before and after treatment. RESULTS Ferritin expression in lesional skin was positively expressed in all patients proportional to severity of rosacea that showed statistically significant reduction of ferritin expression after PDL. There was a statistically significant reduction in rosacea grading scale after PDL (p value = .005*); the highest efficacy was in phymatous then papulopustular and erythrotelangiectatic types. CONCLUSIONS The reduction of ferritin expression after PDL opens a new era for antioxidant agents to be added as a relevant approach for the therapy of rosacea via attenuation of oxidative stress.
Collapse
Affiliation(s)
- Nagwa Mohamed Elwan
- Dermatology and Venereology Department, Tanta University Faculty of Medicine , Tanta, Egypt
| | - Salwa Mohamed Salah
- Dermatology and Venereology Department, Tanta University Faculty of Medicine , Tanta, Egypt
| | - Shady F Abdelsalam
- Dermatology and Venereology Department, Tanta University Faculty of Medicine , Tanta, Egypt
| | - Nashwa Naeem Elfar
- Dermatology and Venereology Department, Tanta University Faculty of Medicine , Tanta, Egypt
| |
Collapse
|
20
|
Hernandez EP, Talactac MR, Fujisaki K, Tanaka T. The case for oxidative stress molecule involvement in the tick-pathogen interactions -an omics approach. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 100:103409. [PMID: 31200008 DOI: 10.1016/j.dci.2019.103409] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
The blood-feeding behavior of ticks has resulted in them becoming one of the most important vectors of disease-causing pathogens. Ticks possess a well-developed innate immune system to counter invading pathogens. However, the coevolution of ticks with tick-borne pathogens has adapted these pathogens to the tick's physiology and immune response through several mechanisms including transcriptional regulation. The recent development in tick and tick-borne disease research greatly involved the "omics" approach. The omics approach takes a look en masse at the different genes, proteins, metabolomes, and the microbiome of the ticks that could be differentiated during pathogen infection. Data from this approach revealed that oxidative stress-related molecules in ticks are differentiated and possibly being exploited by the pathogens to evade the tick's immune response. In this study, we review and discuss transcriptomic and proteomic data for some oxidative stress molecules differentially expressed during pathogen infection. We also discuss metabolomics and microbiome data as well as functional genomics in order to provide insight into the tick-pathogen interaction.
Collapse
Affiliation(s)
- Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Melbourne Rio Talactac
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan; Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite, 4122, Philippines
| | - Kozo Fujisaki
- National Agricultural and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan; Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
21
|
Czaja AJ. Review article: iron disturbances in chronic liver diseases other than haemochromatosis - pathogenic, prognostic, and therapeutic implications. Aliment Pharmacol Ther 2019; 49:681-701. [PMID: 30761559 DOI: 10.1111/apt.15173] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Disturbances in iron regulation have been described in diverse chronic liver diseases other than hereditary haemochromatosis, and iron toxicity may worsen liver injury and outcome. AIMS To describe manifestations and consequences of iron dysregulation in chronic liver diseases apart from hereditary haemochromatosis and to encourage investigations that clarify pathogenic mechanisms, define risk thresholds for iron toxicity, and direct management METHODS: English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. RESULTS Hyperferritinemia is present in 4%-65% of patients with non-alcoholic fatty liver disease, autoimmune hepatitis, chronic viral hepatitis, or alcoholic liver disease, and hepatic iron content is increased in 11%-52%. Heterozygosity for the C282Y mutation is present in 17%-48%, but this has not uniformly distinguished patients with adverse outcomes. An inappropriately low serum hepcidin level has characterised most chronic liver diseases with the exception of non-alcoholic fatty liver disease, and the finding has been associated mainly with suppression of transcriptional activity of the hepcidin gene. Iron overload has been associated with oxidative stress, advanced fibrosis and decreased survival, and promising therapies beyond phlebotomy and oral iron chelation have included hepcidin agonists. CONCLUSIONS Iron dysregulation is common in chronic liver diseases other than hereditary haemochromatosis, and has been associated with liver toxicity and poor prognosis. Further evaluation of iron overload as a co-morbid factor should identify the key pathogenic disturbances, establish the risk threshold for iron toxicity, and promote molecular interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| |
Collapse
|
22
|
Recalcati S, Gammella E, Cairo G. Dysregulation of iron metabolism in cancer stem cells. Free Radic Biol Med 2019; 133:216-220. [PMID: 30040994 DOI: 10.1016/j.freeradbiomed.2018.07.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are a distinct subpopulation of tumor cells endowed with stem-like properties. Importantly, CSCs can survive current standard therapies, resulting in metastatic disease and tumor recurrence. Here we describe the alterations of iron homeostasis occurring in CSCs, which in general are characterized by high intracellular iron content. Importantly, abnormalities of iron metabolism correlate with faster tumor growth and adverse prognosis in cancer patients. In line with the dependence of cancer on iron, we also discuss iron-dependent mechanisms as druggable pathways, as iron chelators have been considered for tumor therapy and new molecules currently proposed and studied as antineoplastic drugs may impinge on iron and its capacity to promote oxidative stress to have therapeutic value in cancer.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milano, Italy
| | - Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milano, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milano, Italy.
| |
Collapse
|
23
|
Grievink H, Kuzmina N, Chevion M, Drenger B. Sevoflurane postconditioning is not mediated by ferritin accumulation and cannot be rescued by simvastatin in isolated streptozotocin-induced diabetic rat hearts. PLoS One 2019; 14:e0211238. [PMID: 30682140 PMCID: PMC6347357 DOI: 10.1371/journal.pone.0211238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/09/2019] [Indexed: 11/24/2022] Open
Abstract
Sevoflurane postconditioning (sevo postC) is an attractive and amenable approach that can protect the myocardium against ischemia/reperfusion (I/R)-injury. Unlike ischemic preconditioning (IPC), sevo postC does not require additional induced ischemic periods to a heart that is already at risk. IPC was previously shown to generate myocardial protection against I/R-injury through regulation of iron homeostasis and de novo ferritin synthesis, a process found to be impaired in the diabetic state. The current study investigated whether alterations in iron homeostasis and ferritin mRNA and protein accumulation are also involved in the cardioprotective effects generated by sevo postC. It was also investigated whether the protective effects of sevo postC in the diabetic state can be salvaged by simvastatin, through inducing nitric oxide (NO) bioavailability/activity, in isolated streptozotocin (STZ)-induced diabetic hearts (DH). Isolated rat hearts from healthy Controls and diabetic animals were retrogradely perfused using the Langendorff configuration and subjected to prolonged ischemia and reperfusion, with and without (2.4 and 3.6%) sevo postC and/or pre-treatment with simvastatin (0.5 mg/kg). Sevo postC significantly reduced infarct size and improved myocardial function in healthy Controls but not in isolated DH. The sevo postC mediated myocardial protection against I/R-injury was not associated with de novo ferrtin synthesis. Furthermore, simvastatin aggravated myocardial injury after sevo postC in STZ-induced DHs, likely due to increasing NO levels. Despite the known mechanistic overlaps between PC and postC stimuli, distinct differences underlie the cardioprotective interventions against myocardial I/R-injury and are impaired in the DH. Sevo postC mediated cardioprotection, unlike IPC, does not involve de novo ferritin accumulation and cannot be rescued by simvastatin in STZ-induced DHs.
Collapse
Affiliation(s)
- Hilbert Grievink
- Department of Anesthesiology and Critical Care and Pain Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
- Department of Biochemistry and Molecular Biology Hebrew University of Jerusalem, Jerusalem, Israel
- Cyclotron/Radiochemistry/MicroPET Unit, Hadassah Hebrew University Hospital, Hadassah Medical Organization, Jerusalem, Israel
- * E-mail:
| | - Natalia Kuzmina
- Department of Anesthesiology and Critical Care and Pain Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Mordechai Chevion
- Department of Biochemistry and Molecular Biology Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Drenger
- Department of Anesthesiology and Critical Care and Pain Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
24
|
Abstract
SIGNIFICANCE Iron and oxygen are intimately linked: iron is an essential nutrient utilized as a cofactor in enzymes for oxygen transport, oxidative phosphorylation, and metabolite oxidation. However, excess labile iron facilitates the formation of oxygen-derived free radicals capable of damaging biomolecules. Therefore, biological utilization of iron is a tightly regulated process. The nuclear factor (erythroid-derived 2)-like 2 (NRF2) transcription factor, which can respond to oxidative and electrophilic stress, regulates several genes involved in iron metabolism. Recent Advances: The bulk of NRF2 transcription factor research has focused on its roles in detoxification and cancer prevention. Recent works have identified that several genes involved in heme synthesis, hemoglobin catabolism, iron storage, and iron export are under the control of NRF2. Constitutive NRF2 activation and subsequent deregulation of iron metabolism have been implicated in cancer development: NRF2-mediated upregulation of the iron storage protein ferritin or heme oxygenase 1 can lead to enhanced proliferation and therapy resistance. Of note, NRF2 activation and alterations to iron signaling in cancers may hinder efforts to induce the iron-dependent cell death process known as ferroptosis. CRITICAL ISSUES Despite growing recognition of NRF2 as a modulator of iron signaling, exactly how iron metabolism is altered due to NRF2 activation in normal physiology and in pathologic conditions remains imprecise; moreover, the roles of NRF2-mediated iron signaling changes in disease progression are only beginning to be uncovered. FUTURE DIRECTIONS Further studies are necessary to connect NRF2 activation with physiological and pathological changes to iron signaling and oxidative stress. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Michael John Kerins
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , Tucson, Arizona
| | - Aikseng Ooi
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona , Tucson, Arizona
| |
Collapse
|
25
|
Hernandez EP, Kusakisako K, Talactac MR, Galay RL, Yoshii K, Tanaka T. Induction of intracellular ferritin expression in embryo-derived Ixodes scapularis cell line (ISE6). Sci Rep 2018; 8:16566. [PMID: 30410072 PMCID: PMC6224502 DOI: 10.1038/s41598-018-34860-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/25/2018] [Indexed: 11/26/2022] Open
Abstract
Iron is a very important nutrient for cells; however, it could also cause fatal effects because of its capability to trigger oxidative stress. Due to high exposure to iron from their blood diet, ticks make use of several mechanisms to cope up with oxidative stress. One mechanism is iron sequestration by ferritin and its control protein (IRP). Since the IRP activity is dependent on the ferrous iron concentration, we tried to induce intracellular ferritin (FER1) protein expression by exposing Ixodes scapularis embryo-derived cell line (ISE6) to different concentrations of ferrous sulphate at different time points. We were able to induce FER1 protein after exposure to 2 mM of ferrous sulphate for 48 h, as observed in both Western blotting and indirect immunofluorescent antibody tests. This could indicate that the FER1 produced could be a product of the release of IRPs from the FER1 mRNA leading to its translation. The RNA interference of FER1, through the transfection of dsRNA, led to an increase in mortality and decrease in the cellular proliferation of ISE6 cells. Overall, ISE6 cells could be a good tool in further understanding the mechanism of FER1 action, not just in Ixodes ticks but in other tick species as well.
Collapse
Affiliation(s)
- Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Kodai Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan
| | - Melbourne Rio Talactac
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan.,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.,Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite, 4122, Philippines
| | - Remil Linggatong Galay
- Department of Veterinary Paraclinical Sciences, University of the Philippines Los Baños, College, Laguna, 3004, Philippines
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0056, Japan. .,Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
26
|
Suárez-Ortegón MF, McLachlan S, Price AH, Fernández-Balsells M, Franch-Nadal J, Mata-Cases M, Barrot-de la Puente J, Mundet-Tudurí X, Mauricio D, Ricart W, Wild SH, Strachan MWJ, Price JF, Fernández-Real JM. Decreased iron stores are associated with cardiovascular disease in patients with type 2 diabetes both cross-sectionally and longitudinally. Atherosclerosis 2018; 272:193-199. [PMID: 29625295 DOI: 10.1016/j.atherosclerosis.2018.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/27/2018] [Accepted: 03/15/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS The possible contribution of iron to cardiovascular complications of type 2 diabetes (T2D) has been scarcely investigated. We aimed to study whether serum ferritin is linked to prevalent/incident cardiovascular disease (CVD) in T2D. METHODS The prevalence of coronary heart disease (CHD), cerebrovascular disease (CEVD) and CVD was evaluated in the SIDIAP study (n = 38,617) and prevalence and 7-year incidence were analysed in the Edinburgh Type 2 Diabetes Study (ET2DS) (n = 821). Logistic and Cox regressions were used to describe associations between serum ferritin and CVD adjusting for confounding variables. RESULTS Increase of 1 SD unit in log-ferritin was associated with lower CVD prevalence in fully-adjusted models (ET2DS odds ratio (OR) 95% confidence interval (CI): 0.81 (0.68-0.96), p = 0.018; SIDIAP study: 0.91 (0.88-0.94), p < 0.001). In ET2DS, ferritin in the highest (vs. the lowest) quintile was associated with lower incidence of CVD (fully adjusted HR 95% CI: 0.46 (0.26-0.83), p = 0.010). This association persisted after removing subjects with CVD at baseline (n = 536) (HR 95% CI: 0.34 (0.14-0.81), p = 0.016). CONCLUSIONS Low iron status was associated with CVD risk in T2D. This pattern was consistent in populations at different cardiovascular risk. Low iron status seems to be harmful for cardiovascular health in T2D and it may be a target for intervention.
Collapse
Affiliation(s)
- Milton Fabian Suárez-Ortegón
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK; Nutrition Group, Universidad Del Valle, Cali, Colombia.
| | - Stela McLachlan
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | - Anna H Price
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | - Mercé Fernández-Balsells
- Department of Diabetes, Endocrinology and Nutrition, Institut D'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Josep Franch-Nadal
- DAP-Catgroup, Unitat de Suport a La Recerca Barcelona Ciutat, Institut Universitari D'Investigació en AtencióPrimària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain; Primary Health Care Center Raval Sud, Gerència D'Àmbit D'Atenció Primària Barcelona Ciutat, Institut Català de La Salut, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Spain
| | - Manel Mata-Cases
- DAP-Catgroup, Unitat de Suport a La Recerca Barcelona Ciutat, Institut Universitari D'Investigació en AtencióPrimària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Spain; Primary Health Care La Mina (Sant Adrià de Besò), Gerència D'Àmbit D'Atenció Primària Barcelona Ciutat, Institut Català de La Salut, Barcelona, Spain
| | - Joan Barrot-de la Puente
- DAP-Catgroup, Unitat de Suport a La Recerca Barcelona Ciutat, Institut Universitari D'Investigació en AtencióPrimària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain
| | - Xavier Mundet-Tudurí
- DAP-Catgroup, Unitat de Suport a La Recerca Barcelona Ciutat, Institut Universitari D'Investigació en AtencióPrimària Jordi Gol (IDIAP Jordi Gol), Barcelona, Spain
| | - Didac Mauricio
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Spain
| | - Wifredo Ricart
- Department of Diabetes, Endocrinology and Nutrition, Institut D'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Sarah H Wild
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Jackie F Price
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK
| | - José-Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut D'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain.
| |
Collapse
|
27
|
Transferrin saturation concentrations associated with telomeric ageing: a population-based study. Br J Nutr 2017; 117:1693-1701. [PMID: 28720163 DOI: 10.1017/s0007114517001696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There are limited data on the association between Fe overload and leucocyte telomere length (LTL), known as a useful biomarker of the replicative ageing of cells. The aim of the study was to evaluate associations between Fe-status biomarkers and LTL. A cross-sectional study included 1174 men and women aged 50-79 years who provided blood samples for assays of Fe-status biomarkers including ferritin, transferrin saturation (TSAT), total Fe-binding capacity (TIBC) and relative LTL. They were free of hepatitis, potential infection or Fe deficiency. In multiple linear regression analysis adjusted for potential confounding variables, log-transformed LTL was positively associated with TIBC (adjusted coefficient estimate for its highest quartile: 0·17 (se 0·03), P45 %) but also with high-normal concentrations (35-45 %) of TSAT had shorter LTL compared with those with low-normal concentrations (<30 %) (P<0·05). We also observed that less-active or obese persons with high TSAT concentrations had shorter LTL than others. Our findings that cellular ageing is influenced not only by Fe overload but also by high-normal concentrations of TSAT support the hypothesis regarding the detrimental effects of labile Fe, which has a potent pro-oxidant activity in the body.
Collapse
|
28
|
Shi L, Ito F, Wang Y, Okazaki Y, Tanaka H, Mizuno M, Hori M, Hirayama T, Nagasawa H, Richardson DR, Toyokuni S. Non-thermal plasma induces a stress response in mesothelioma cells resulting in increased endocytosis, lysosome biogenesis and autophagy. Free Radic Biol Med 2017; 108:904-917. [PMID: 28465262 DOI: 10.1016/j.freeradbiomed.2017.04.368] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/19/2017] [Accepted: 04/28/2017] [Indexed: 12/31/2022]
Abstract
Non-thermal plasma (NTP) is a potential new therapeutic modality for cancer. However, its mechanism of action remains unclear. Herein, we studied the effect of NTP on mesothelioma cells and fibroblasts to understand its anti-proliferative efficacy. Interestingly, NTP demonstrated greater selective anti-proliferative activity against mesothelioma cells relative to fibroblasts than cisplatin, which is used for mesothelioma treatment. The anti-proliferative effect of NTP was enhanced by pre-incubation with the cellular iron donor, ferric ammonium citrate (FAC), and inhibited by iron chelation using desferrioxamine (DFO). Three oxidative stress probes (CM-H2DCFDA, MitoSOX and C11-BODIPY) demonstrated reactive oxygen species (ROS) generation by NTP, which was inhibited by DFO. Moreover, NTP decreased transferrin receptor-1 and increased ferritin-H and -L chain expression that was correlated with decreased iron-regulatory protein expression and RNA-binding activity. This regulation was potentially due to increased intracellular iron in lysosomes, which was demonstrated via the Fe(II)-selective probe, HMRhoNox-M, and was consistent with autophagic-induction. Immunofluorescence using LysoTracker and Pepstatin A probes demonstrated increased cellular lysosome content, which was confirmed by elevated LAMP1 expression. The enhanced lysosomal biogenesis after NTP could be due to the observed increase in fluid-phase endocytosis and early endosome formation. These results suggest NTP acts as a stressor, which results in increased endocytosis, lysosome content and autophagy. In fact, NTP rapidly increased autophagosome formation, as judged by increased LC3B-II expression, which co-localized with LAMP1, indicating autophagolysosome formation. Autophagic-induction by NTP was confirmed using electron microscopy. In summary, NTP acts as a cellular stressor to rapidly induce fluid-phase endocytosis, lysosome biogenesis and autophagy.
Collapse
Affiliation(s)
- Lei Shi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Fumiya Ito
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yue Wang
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiromasa Tanaka
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya 466-8550, Japan
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya 466-8550, Japan
| | - Masaru Hori
- Plasma Nanotechnology Research Center, Nagoya University, Nagoya 464-8603, Japan
| | - Tasuku Hirayama
- The Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideko Nagasawa
- The Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
29
|
Recalcati S, Gammella E, Buratti P, Cairo G. Molecular regulation of cellular iron balance. IUBMB Life 2017; 69:389-398. [PMID: 28480557 DOI: 10.1002/iub.1628] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022]
Abstract
Handling a life-supporting yet redox-active metal like iron represents a significant challenge to cells and organisms that must not only tightly balance intra- and extracellular iron concentrations but also chaperone it during its journey from its point of entry to final destinations, to prevent inappropriate generation of damaging reactive oxygen species. Accordingly, regulatory mechanisms have been developed to maintain appropriate cellular and body iron levels. In intracellular compartments, about 95% of iron is protein-bound and the expression of the major proteins of iron metabolism is controlled by an integrated and dynamic system involving multilayered levels of regulation. However, dysregulation of iron homeostasis, which could result from both iron-related and unrelated effectors, may occur and have important pathological consequences in a number of human disorders. In this review, we describe the current understanding of the mechanisms that keep cellular iron balance and outline recent advances that increased our knowledge of the molecular physiology of iron metabolism. © 2017 IUBMB Life, 69(6):389-398, 2017.
Collapse
Affiliation(s)
- Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Elena Gammella
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Paolo Buratti
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| |
Collapse
|
30
|
Zuehlke A, Zhang H. Elevated 5-hydroxymethycytosine and cell apoptosis induced by tetrachloro-1,4-benzoquinone in mouse embryonic stem cells. J Environ Sci (China) 2017; 51:1-4. [PMID: 28115119 DOI: 10.1016/j.jes.2016.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Albert Zuehlke
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
31
|
Tammen SA, Park JE, Shin PK, Friso S, Chung J, Choi SW. Iron Supplementation Reverses the Reduction of Hydroxymethylcytosine in Hepatic DNA Associated With Chronic Alcohol Consumption in Rats. J Cancer Prev 2016; 21:264-270. [PMID: 28053961 PMCID: PMC5207611 DOI: 10.15430/jcp.2016.21.4.264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 11/05/2022] Open
Abstract
Background Alcohol is known to affect two epigenetic phenomena, DNA methylation and DNA hydroxymethylation, and iron is a cofactor of ten-eleven translocation (TET) enzymes that catalyze the conversion from methylcytosine to hydroxymethylcytosine. In the present study we aimed to determine the effects of alcohol on DNA hydroxymethylation and further effects of iron on alcohol associated epigenetic changes. Methods Twenty-four male Sprague-Dawley rats were fed either Lieber-DeCarli alcohol diet (36% calories from ethanol) or Lieber-DeCarli control diet along with or without iron supplementation (0.6% carbonyl iron) for 8 weeks. Hepatic non-heme iron concentrations were measured by colorimetric assays. Protein levels of hepatic ferritin and transferrin receptor were determined by Western blotting. Methylcytosine, hydroxymethylcytosine and unmodified cytosine in DNA were simultaneously measured by liquid chromatography/mass spectrometry method. Results Iron supplementation significantly increased hepatic non-heme iron contents (P < 0.05) but alcohol alone did not. However, both alcohol and iron significantly increased hepatic ferritin levels and decreased hepatic transferrin receptor levels (P < 0.05). Alcohol reduced hepatic DNA hydroxymethylation (0.21% ± 0.04% vs. 0.33% ± 0.04%, P = 0.01) compared to control, while iron supplementation to alcohol diet did not change DNA hydroxymethylation. There was no significant difference in methylcytosine levels, while unmodified cytosine levels were significantly increased in alcohol-fed groups compared to control (95.61% ± 0.08% vs. 95.26% ± 0.12%, P = 0.03), suggesting that alcohol further increases the conversion from hydroxymethylcytosine to unmodified cytosine. Conclusions Chronic alcohol consumption alters global DNA hydroxymethylation in the liver but iron supplementation reverses the epigenetic effect of alcohol.
Collapse
Affiliation(s)
- Stephanie A Tammen
- Friedman School of Nutrition Science and Policy Tufts University, Boston, MA, USA
| | - Jung Eun Park
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul, Korea
| | - Phil Kyung Shin
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul, Korea; Chaum Life Center, CHA University School of Medicine, Seoul, Korea
| | | | - Jayong Chung
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul, Korea
| | - Sang-Woon Choi
- Friedman School of Nutrition Science and Policy Tufts University, Boston, MA, USA; Chaum Life Center, CHA University School of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Dziegala M, Kasztura M, Kobak K, Bania J, Banasiak W, Ponikowski P, Jankowska EA. Influence of the availability of iron during hypoxia on the genes associated with apoptotic activity and local iron metabolism in rat H9C2 cardiomyocytes and L6G8C5 skeletal myocytes. Mol Med Rep 2016; 14:3969-77. [PMID: 27599775 DOI: 10.3892/mmr.2016.5705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/04/2016] [Indexed: 11/06/2022] Open
Abstract
The differential availability of iron during hypoxia is presumed to affect the functioning of cardiac and skeletal myocytes. Rat H9C2 cardiomyocytes and L6G8C5 myocytes were cultured for 48 h in normoxic or hypoxic conditions at the optimal, reduced or increased iron concentration. The mRNA expression levels of markers of apoptosis [B‑cell lymphoma‑2 (Bcl2; inhibition) and Bcl‑2‑activated X protein (Bax; induction)], atrophy (Atrogin), glycolysis (pyruvate kinase 2; PKM2) and iron metabolism [transferrin receptor 1 (TfR1; iron importer), ferroportin 1 (FPN1; iron exporter), ferritin heavy chain (FTH; iron storage protein) and hepcidin (HAMP; iron regulator)] were determined using reverse transcription‑quantitative polymerase chain reaction, and cell viability was measured using an tetrazolium reduction assay. Cardiomyocytes and myocytes, when exposed to hypoxia, demonstrated an increased Bax/Bcl‑2 gene expression ratio (P<0.05). Additional deferoxamine (DFO) treatment resulted in further increases in Bax/Bcl‑2 in each cell type (P<0.001 each) and this was associated with the 15% loss in viability. The analogous alterations were observed in both cell types upon ammonium ferric citrate (AFC) treatment during hypoxia; however, the increased Bax/Bcl‑2 ratio and associated viability loss was lower compared with that in case of DFO treatment (P<0.05 each). Under hypoxic conditions, myocytes demonstrated an increased expression of PKM2 (P<0.01). Additional DFO treatment caused an increase in the mRNA expression levels of PKM2 and Atrogin‑1 (P<0.001 and P<0.05, respectively), whereas AFC treatment caused an increased mRNA expression of PKM2 (P<0.01) and accompanied decreased mRNA expression of Atrogin‑1 (P<0.05). The expression augmentation of PKM2 during hypoxia was greater upon low iron compared with that of ferric salt treatment (P<0.01). Both cell types upon DFO during hypoxia demonstrated the increased expression of TfR1 and HAMP (all P<0.05), which was associated with the increased Bax/Bcl‑2 ratio (all R>0.6 and P<0.05). In conclusion, during hypoxia iron deficiency impairs the viability of cardiomyocytes and myocytes more severely compared with iron excess. In myocytes, during hypoxia iron may act in a protective manner, since the level of atrophy is decreased in the iron‑salt‑treated cells.
Collapse
Affiliation(s)
- Magdalena Dziegala
- Students' Scientific Organization, Department of Heart Diseases, Wrocław Medical University, 50‑367 Wrocław, Poland
| | - Monika Kasztura
- Department of Heart Diseases, Wrocław Medical University, 50‑367 Wrocław, Poland
| | - Kamil Kobak
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wrocław Medical University, 50‑981 Wrocław, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, 50‑375 Wrocław, Poland
| | - Waldemar Banasiak
- Centre for Heart Diseases, Military Hospital, 50‑981 Wrocław, Poland
| | - Piotr Ponikowski
- Department of Heart Diseases, Wrocław Medical University, 50‑367 Wrocław, Poland
| | - Ewa A Jankowska
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wrocław Medical University, 50‑981 Wrocław, Poland
| |
Collapse
|
33
|
Tacchini L, Pogliaghi G, Radice L, Bernelli-Zazzera A, Cairo G. Post-transcriptional control of increased hepatic catalase gene expression in response to oxidative stress. Redox Rep 2016; 2:273-8. [DOI: 10.1080/13510002.1996.11747061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
34
|
Maeda H, Yoshida KI. Intermittent hypoxia upregulates hepatic heme oxygenase-1 and ferritin-1, thereby limiting hepatic pathogenesis in rats fed a high-fat diet. Free Radic Res 2016; 50:720-31. [PMID: 27021659 DOI: 10.3109/10715762.2016.1170125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is prevalent in patients with sleep apnea syndrome (SAS). Intermittent hypoxia (IH) and a high-fat diet (HFD) reproduce SAS and NAFLD, respectively, in rodents. In this study, rats were fed either an HFD or a standard diet (SD) for 2 weeks, and breathed either IH air or normoxic air for 4 days (early phase) or 6 weeks (late phase), with the same diets maintained during the exposure. HFD increased hepatic lipid accumulation, as detected by oil-red staining and triglyceride content. However, IH exposure reversed the hepatic steatosis at the late phase in these HFD-rats. IH exposure also increased hepatic expression of HO-1 and iron-binding protein ferritin-1 at the late phase, in association with increase in serum iron, bilirubin, and hepatic levels of lipid peroxides, such as 4-hydroxy-2-nonenal (HNE). IH exposure increased serum levels of hemoglobin (Hb) at the early phase and immunofluorescence of Hb and HO-1 in CD68-positive Kupffer cells (KCs) at the late phase. These findings support that IH induces erythrocytosis, erythro-phagocytosis, and generation of Hb in the KCs. The Hb promotes HO-1 expression in KCs, thereby produces iron, bilirubin, and carbon monoxide (CO). The iron would be either sequestrated by ferritin-1, transferred to the bone marrow for erythropoiesis, or would produce hydroxyradicals and HNE in the liver of rats fed an HFD. HNE might also contribute to the upregulation of HO-1, transferrin-1, and IκB, thereby limiting hepatic steatosis and inflammation via inhibition of nuclear factor κB (NFκB) activation.
Collapse
Affiliation(s)
- Hideyuki Maeda
- a Department of Forensic Medicine , Tokyo Medical University , Shinjyuku-ku , Tokyo , Japan
| | - Ken-Ichi Yoshida
- a Department of Forensic Medicine , Tokyo Medical University , Shinjyuku-ku , Tokyo , Japan
| |
Collapse
|
35
|
Lobo AR, Cocato ML, De Sá LRM, Colli C. Dietary iron overload: short- and long-term effects on cecal morphometry in growing rats. J Nutr Sci Vitaminol (Tokyo) 2016; 60:397-402. [PMID: 25866302 DOI: 10.3177/jnsv.60.397] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In animal models, Fe overload is associated with organ oxidative stress and tissue injury. In this context, luminal Fe may affect the mucosal barrier and function or generate a pathological milieu in the intestine that triggers epithelial cell stress. Here, we hypothesized that increased liver Fe levels resulting from dietary Fe overload may be associated with architectural changes in the cecal mucosa. Weanling male Wistar rats (n=7-10/group) were fed diets (modified from AIN-93G) containing adequate or supplemental Fe (approximately 10 times the recommended levels) for 4 and 12 wk. At euthanasia, the blood Hb was determined, and Fe analyses were performed in stool and liver samples using atomic absorption spectrophotometry. Cecal tissue was collected for histological and morphometric analysis. No significant differences were observed in the blood Hb or Hb Fe pool between groups in either period. Iron overload led to a higher fecal Fe excretion, whereas the liver Fe was increased only after 12 wk when compared with controls. After 4 wk, the consumption of Fe-overloaded diets resulted in changes in the mucosal architecture of the cecum, which were intensified after 12 wk. At this time, these changes were significantly correlated with the hepatic Fe content. These findings suggest that changes in the cecal mucosa may have occurred as a result of oxidative stress caused by excessive amounts of Fe in the intestinal lumen. The consequences of these effects on the intestinal absorption and its implications for liver Fe homeostasis should be considered in future studies.
Collapse
Affiliation(s)
- Alexandre Rodrigues Lobo
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo
| | | | | | | |
Collapse
|
36
|
Li H, Jiang W, Liu Y, Jiang J, Zhang Y, Wu P, Zhao J, Duan X, Zhou X, Feng L. The metabolites of glutamine prevent hydroxyl radical-induced apoptosis through inhibiting mitochondria and calcium ion involved pathways in fish erythrocytes. Free Radic Biol Med 2016; 92:126-140. [PMID: 26795598 DOI: 10.1016/j.freeradbiomed.2016.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
The present study explored the apoptosis pathways in hydroxyl radicals ((∙)OH)-induced carp erythrocytes. Carp erythrocytes were treated with the caspase inhibitors in physiological carp saline (PCS) or Ca(2+)-free PCS in the presence of 40μM FeSO4/20μM H2O2. The results showed that the generation of reactive oxygen species (ROS), the release of cytochrome c and DNA fragmentation were caspase-dependent, and Ca(2+) was involved in calpain activation and phosphatidylserine (PS) exposure in (∙)OH-induced carp erythrocytes. Moreover, the results suggested that caspases were involved in PS exposure, and Ca(2+) was involved in DNA fragmentation in (∙)OH-induced fish erythrocytes. These results demonstrated that there might be two apoptosis pathways in fish erythrocytes, one is the caspase and cytochrome c-dependent apoptosis that is similar to that in mammal nucleated cells, the other is the Ca(2+)-involved apoptosis that was similar to that in mammal non-nucleated erythrocytes. So, fish erythrocytes may be used as a model for studying oxidative stress and apoptosis in mammal cells. Furthermore, the present study investigated the effects of glutamine (Gln)'s metabolites [alanine (Ala), citrulline (Cit), proline (Pro) and their combination (Ala10Pro4Cit1)] on the pathways of apoptosis in fish erythrocytes. The results displayed that Ala, Cit, Pro and Ala10Pro4Cit1 effectively suppressed ROS generation, cytochrome c release, activation of caspase-3, caspase-8 and caspase-9 at the physiological concentrations, prevented Ca(2+) influx, calpain activation, PS exposure, DNA fragmentation and the degradation of the cytoskeleton and oxidation of membrane and hemoglobin (Hb) and increased activity of anti-hydroxyl radical (AHR) in (∙)OH-induced carp erythrocytes. Ala10Pro4Cit1 produced a synergistic effect of inhibited oxidative stress and apoptosis in fish erythrocytes. These results demonstrated that Ala, Cit, Pro and their combination can protect mammal erythrocytes and nucleated cells against oxidative stress and apoptosis. The studies supported the use of Gln, Ala, Cit and Pro as oxidative stress and apoptosis inhibitors in mammal cells and the hypothesis that the inhibited effects of Gln on oxidative stress and apoptosis are at least partly dependent on that of its metabolites in mammalian.
Collapse
Affiliation(s)
- Huatao Li
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Conservation and Utilization of Fishes Resources in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Neijiang Normal University, Sichuan, Neijiang 641000, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yongan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xudong Duan
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
37
|
Oh S, Shin PK, Chung J. Effects of developmental iron deficiency and post-weaning iron repletion on the levels of iron transporter proteins in rats. Nutr Res Pract 2015; 9:613-8. [PMID: 26634050 PMCID: PMC4667202 DOI: 10.4162/nrp.2015.9.6.613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/OBJECTIVES Iron deficiency in early life is associated with developmental problems, which may persist until later in life. The question of whether iron repletion after developmental iron deficiency could restore iron homeostasis is not well characterized. In the present study, we investigated the changes of iron transporters after iron depletion during the gestational-neonatal period and iron repletion during the post-weaning period. MATERIALS/METHODS Pregnant rats were provided iron-deficient (< 6 ppm Fe) or control (36 ppm Fe) diets from gestational day 2. At weaning, pups from iron-deficient dams were fed either iron-deficient (ID group) or control (IDR group) diets for 4 week. Pups from control dams were continued to be fed with the control diet throughout the study period (CON). RESULTS Compared to the CON, ID rats had significantly lower hemoglobin and hematocrits in the blood and significantly lower tissue iron in the liver and spleen. Hepatic hepcidin and BMP6 mRNA levels were also strongly down-regulated in the ID group. Developmental iron deficiency significantly increased iron transporters divalent metal transporter 1 (DMT1) and ferroportin (FPN) in the duodenum, but decreased DMT1 in the liver. Dietary iron repletion restored the levels of hemoglobin and hematocrit to a normal range, but the tissue iron levels and hepatic hepcidin mRNA levels were significantly lower than those in the CON group. Both FPN and DMT1 protein levels in the liver and in the duodenum were not different between the IDR and the CON. By contrast, DMT1 in the spleen was significantly lower in the IDR, compared to the CON. The splenic FPN was also decreased in the IDR more than in the CON, although the difference did not reach statistical significance. CONCLUSIONS Our findings demonstrate that iron transporter proteins in the duodenum, liver and spleen are differentially regulated during developmental iron deficiency. Also, post-weaning iron repletion efficiently restores iron transporters in the duodenum and the liver but not in the spleen, which suggests that early-life iron deficiency may cause long term abnormalities in iron recycling from the spleen.
Collapse
Affiliation(s)
- Sugyoung Oh
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Pill-Kyung Shin
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Jayong Chung
- Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
38
|
Bresgen N, Eckl PM. Oxidative stress and the homeodynamics of iron metabolism. Biomolecules 2015; 5:808-47. [PMID: 25970586 PMCID: PMC4496698 DOI: 10.3390/biom5020808] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022] Open
Abstract
Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress.
Collapse
Affiliation(s)
- Nikolaus Bresgen
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
39
|
Serum ferritin levels predict histological severity in patients with nonalcoholic fatty liver disease in India. Indian J Gastroenterol 2015; 34:200-8. [PMID: 26108652 DOI: 10.1007/s12664-015-0572-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/13/2015] [Indexed: 02/04/2023]
Abstract
AIM The aims of the study were to determine the levels of serum ferritin which predict fibrosis in Indian patients with nonalcoholic fatty liver disease (NAFLD) and to establish correlation between Fibroscan values and serum ferritin levels. METHODS The clinical, biochemical, radiologic, and histological findings of consecutive adult NAFLD patients accessed at a tertiary care center over a 3-year period were analyzed. Those with concurrent liver diseases were excluded. Fifty-five of 250 NAFLD patients with fatty liver on ultrasound and raised enzymes (>40 IU/L) underwent liver biopsy. Patients were stratified into two groups based on their histological stage steatosis (with or without inflammation) but no fibrosis and nonalcoholic steatohepatitis (NASH) with fibrosis/cirrhosis. Serum ferritin levels were measured at the same time as getting liver biopsy. Fibroscan was carried out in each of these patients. These were compared with 50 age- and sex-matched controls with normal ultrasound, liver enzymes, and no history of alcohol. Student's t test was used as the test for significance. RESULTS Fifty-five NAFLD patients diagnosed on ultrasound and with raised enzymes underwent biopsy. Steatosis (with or without inflammation, but no fibrosis/ballooning) was seen in 35 patients, fibrosis/ballooning in 14 patients, and cirrhosis in 6 patients. Mean ferritin levels in groups with nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH) were 39.4 and 72.7 ng/mL, respectively (p < 0.001). The mean ferritin levels in NAFLD and controls were 51.2 and 35.2 ng/mL, respectively (p < 0.05). The area under the curve (AUC) of serum ferritin at value 48.0 ng/mL was 0.779. The coefficient of correlation between Fibroscan and serum ferritin levels was 0.9864 while that with alanine transaminase and aspartate aminotransferase was 0.69. Serum ferritin at the cutoff of 48 ng/mL differentiated significantly patients with fibrosis and higher Fibroscan levels. CONCLUSION Serum ferritin was low in Indian individuals, and levels even within apparently normal range indicated fibrosis and cirrhosis. A cutoff level of 48.0 IU/mL distinguished fibrosis in NAFLD. Fibroscan correlated well with serum ferritin levels.
Collapse
|
40
|
Busch AW, Montgomery BL. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response. Redox Biol 2015; 4:260-71. [PMID: 25618582 PMCID: PMC4315935 DOI: 10.1016/j.redox.2015.01.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 01/01/2023] Open
Abstract
Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS) associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms. Tetrapyrroles are involved in light sensing and oxidative stress mitigation. Reactive oxygen species (ROS) can form upon light exposure of free tetrapyrroles. Tetrapyrrole homeostasis must be tightly regulated to avoid oxidative stress. ROS can result in cellular damage or oxidative stress signaling in cells.
Collapse
|
41
|
Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:230182. [PMID: 25878762 PMCID: PMC4387903 DOI: 10.1155/2015/230182] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 02/08/2023]
Abstract
The high incidence of cardiomyopathy in patients with hemosiderosis, particularly in transfusional iron overload, strongly indicates that iron accumulation in the heart plays a major role in the process leading to heart failure. In this context, iron-mediated generation of noxious reactive oxygen species is believed to be the most important pathogenetic mechanism determining cardiomyocyte damage, the initiating event of a pathologic progression involving apoptosis, fibrosis, and ultimately cardiac dysfunction. However, recent findings suggest that additional mechanisms involving subcellular organelles and inflammatory mediators are important factors in the development of this disease. Moreover, excess iron can amplify the cardiotoxic effect of other agents or events. Finally, subcellular misdistribution of iron within cardiomyocytes may represent an additional pathway leading to cardiac injury. Recent advances in imaging techniques and chelators development remarkably improved cardiac iron overload detection and treatment, respectively. However, increased understanding of the pathogenic mechanisms of iron overload cardiomyopathy is needed to pave the way for the development of improved therapeutic strategies.
Collapse
|
42
|
Dongiovanni P, Lanti C, Gatti S, Rametta R, Recalcati S, Maggioni M, Fracanzani AL, Riso P, Cairo G, Fargion S, Valenti L. High fat diet subverts hepatocellular iron uptake determining dysmetabolic iron overload. PLoS One 2015; 10:e0116855. [PMID: 25647178 PMCID: PMC4315491 DOI: 10.1371/journal.pone.0116855] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/15/2014] [Indexed: 02/06/2023] Open
Abstract
Increased serum ferritin associated with mild hepatic iron accumulation, despite preserved upregulation of the iron hormone hepcidin, is frequently observed in patients with dysmetabolic overload syndrome (DIOS). Genetic factors and Western diet represent predisposing conditions, but the mechanisms favoring iron accumulation in DIOS are still unclear. Aims of this study were to assess the effect a high-fat diet (HFD) on hepatic iron metabolism in an experimental model in rats, to further characterize the effect of free fatty acids on iron metabolism in HepG2 hepatocytes in vitro, and to assess the translational relevance in patients with fatty liver with and without iron accumulation. Despite decreased uptake of dietary iron, rats fed HFD accumulated more hepatic iron than those fed regular diet, which was associated with steatosis development. Hepatic iron accumulation was paralleled by induction of ferritin, in the presence of preserved upregulation of hepcidin, recapitulating the features of DIOS. HFD was associated with increased expression of the major iron uptake protein Transferrin receptor-1 (TfR-1), consistently with upregulation of the intracellular iron sensor Iron regulated protein-1 (IRP1). Supplementation with fatty acids induced TfR-1 and IRP1 in HepG2 hepatocytes, favoring intracellular iron accumulation following exposure to iron salts. IRP1 silencing completely abrogated TfR-1 induction and the facilitation of intracellular iron accumulation induced by fatty acids. Hepatic TfR-1 mRNA levels were upregulated in patients with fatty liver and DIOS, whereas they were not associated with liver fat nor with inflammation. In conclusion, increased exposure to fatty acids subverts hepatic iron metabolism, favoring the induction of an iron uptake program despite hepatocellular iron accumulation.
Collapse
Affiliation(s)
- Paola Dongiovanni
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milano, Italy
| | - Claudia Lanti
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
| | - Stefano Gatti
- Preclinical Surgical Research Center, and Surgery, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milano, Italy
| | - Raffaela Rametta
- Department of Pathophysiology and Transplantation, Metabolic Liver Diseases Research Center, Università degli Studi di Milano, Milano, Italy
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Marco Maggioni
- Pathology, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milano, Italy
| | - Anna Ludovica Fracanzani
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, Metabolic Liver Diseases Research Center, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, Milano, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Silvia Fargion
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, Metabolic Liver Diseases Research Center, Università degli Studi di Milano, Milano, Italy
| | - Luca Valenti
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, Metabolic Liver Diseases Research Center, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
43
|
Kim DH, Song NY, Kim EH, Na HK, Joe Y, Chung HT, Surh YJ. 15-Deoxy-Δ12,14-prostaglandin J2induces p53 expression through Nrf2-mediated upregulation of heme oxygenase-1 in human breast cancer cells. Free Radic Res 2014; 48:1018-27. [DOI: 10.3109/10715762.2014.897343] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
44
|
Fan Y, Zhang J, Cai L, Wang S, Liu C, Zhang Y, You L, Fu Y, Shi Z, Yin Z, Luo L, Chang Y, Duan X. The effect of anti-inflammatory properties of ferritin light chain on lipopolysaccharide-induced inflammatory response in murine macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2775-83. [PMID: 24983770 DOI: 10.1016/j.bbamcr.2014.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
Ferritin light chain (FTL) reduces the free iron concentration by forming ferritin complexes with ferritin heavy chain (FTH). Thus, FTL competes with the Fenton reaction by acting as an antioxidant. In the present study, we determined that FTL influences the lipopolysaccharide (LPS)-induced inflammatory response. FTL protein expression was regulated by LPS stimulation in RAW264.7 cells. To investigate the role of FTL in LPS-activated murine macrophages, we established stable FTL-expressing cells and used shRNA to silence FTL expression in RAW264.7 cells. Overexpression of FTL significantly decreased the LPS-induced production of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), nitric oxide (NO) and prostaglandin E2 (PGE2). Additionally, overexpression of FTL decreased the LPS-induced increase of the intracellular labile iron pool (LIP) and reactive oxygen species (ROS). Moreover, FTL overexpression suppressed the LPS-induced activation of MAPKs and nuclear factor-κB (NF-κB). In contrast, knockdown of FTL by shRNA showed the reverse effects. Therefore, our results indicate that FTL plays an anti-inflammatory role in response to LPS in murine macrophages and may have therapeutic potential for treating inflammatory diseases.
Collapse
Affiliation(s)
- Yumei Fan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Jie Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Linlin Cai
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Shengnan Wang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Caizhi Liu
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yongze Zhang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Linhao You
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yujian Fu
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Zhenhua Shi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, PR China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, PR China
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| | - Xianglin Duan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China; Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| |
Collapse
|
45
|
Spasojevic-Kalimanovska V, Bogavac-Stanojevic N, Kalimanovska-Ostric D, Memon L, Spasic S, Kotur-Stevuljevic J, Jelic-Ivanovic Z. Factor analysis of risk variables associated with iron status in patients with coronary artery disease. Clin Biochem 2014; 47:564-9. [PMID: 24690216 DOI: 10.1016/j.clinbiochem.2014.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/09/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Epidemiological evidence concerning the role of iron, a lipid peroxidation catalyst, in atherosclerosis and coronary artery disease (CAD) is inconsistent. DESIGN AND METHODS Exploratory factor analysis was used to examine the potential clustering of variables known to be associated with CAD using data from 188 patients with angiographically-approved disease. The resulting factors were then tested for their association with serum ferritin and soluble transferrin receptor (sTfR) as indicators of body iron status. RESULTS Factor analysis resulted in a reduction of a variable number from the original 15 to 5 composite clusters. These factors were interpreted as (1) "proatherogenic factor" with positive loadings of TC, LDL-C, apoB and TG; (2) "inflammatory factor" with positive loadings of hsCRP, fibrinogen and MDA; (3) "antiatherogenic factor" with positive loadings of HDL-C and apoA-I; (4) "obesity factor" with positive loadings of weight and waist; and (5) "antioxidative status factor" with positive loadings of SOD and age and negative loading of superoxide anion. "Inflammatory", "obesity" and "antiatherogenic" factors predicted high ferritin values and the "proatherogenic factor" predicted high sTfR values. We compared the ability of the "proatherogenic factor" with that of a multivariable logistic model that included the "proatherogenic factor" and sTfR values in predicting significant stenosis in patients. The area under the ROC curve was 0.692 vs. 0.821, respectively. CONCLUSIONS "Inflammatory", "obesity", "antiatherogenic" and "proatherogenic" factors were associated with increased parameters of body iron status. The measurement of sTfR improves the prediction of CAD based on clustered cardiovascular risk factors.
Collapse
Affiliation(s)
| | | | | | - Lidija Memon
- Clinical Chemistry Laboratory, Clinical Center "Bezanijska Kosa", Belgrade, Serbia
| | - Slavica Spasic
- Institute of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Jelena Kotur-Stevuljevic
- Institute of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Zorana Jelic-Ivanovic
- Institute of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
46
|
Al-Qenaei A, Yiakouvaki A, Reelfs O, Santambrogio P, Levi S, Hall ND, Tyrrell RM, Pourzand C. Role of intracellular labile iron, ferritin, and antioxidant defence in resistance of chronically adapted Jurkat T cells to hydrogen peroxide. Free Radic Biol Med 2014; 68:87-100. [PMID: 24333634 PMCID: PMC4046229 DOI: 10.1016/j.freeradbiomed.2013.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 11/14/2013] [Accepted: 12/06/2013] [Indexed: 02/07/2023]
Abstract
To examine the role of intracellular labile iron pool (LIP), ferritin (Ft), and antioxidant defence in cellular resistance to oxidative stress on chronic adaptation, a new H2O2-resistant Jurkat T cell line "HJ16" was developed by gradual adaptation of parental "J16" cells to high concentrations of H2O2. Compared to J16 cells, HJ16 cells exhibited much higher resistance to H2O2-induced oxidative damage and necrotic cell death (up to 3mM) and had enhanced antioxidant defence in the form of significantly higher intracellular glutathione and mitochondrial ferritin (FtMt) levels as well as higher glutathione-peroxidase (GPx) activity. In contrast, the level of the Ft H-subunit (FtH) in the H2O2-adapted cell line was found to be 7-fold lower than in the parental J16 cell line. While H2O2 concentrations higher than 0.1mM fully depleted the glutathione content of J16 cells, in HJ16 cells the same treatments decreased the cellular glutathione content to only half of the original value. In HJ16 cells, H2O2 concentrations higher than 0.1mM increased the level of FtMt up to 4-fold of their control values but had no effect on the FtMt levels in J16 cells. Furthermore, while the basal cytosolic level of LIP was similar in both cell lines, H2O2 treatment substantially increased the cytosolic LIP levels in J16 but not in HJ16 cells. H2O2 treatment also substantially decreased the FtH levels in J16 cells (up to 70% of the control value). In contrast in HJ16 cells, FtH levels were not affected by H2O2 treatment. These results indicate that chronic adaptation of J16 cells to high concentrations of H2O2 has provoked a series of novel and specific cellular adaptive responses that contribute to higher resistance of HJ16 cells to oxidative damage and cell death. These include increased cellular antioxidant defence in the form of higher glutathione and FtMt levels, higher GPx activity, and lower FtH levels. Further adaptive responses include the significantly reduced cellular response to oxidant-mediated glutathione depletion, FtH modulation, and labile iron release and a significant increase in FtMt levels following H2O2 treatment.
Collapse
Affiliation(s)
| | - Anthie Yiakouvaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Olivier Reelfs
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | | | - Sonia Levi
- San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Nick D Hall
- Bath Institute for Rheumatic Diseases, Bath, UK
| | - Rex M Tyrrell
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Charareh Pourzand
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK.
| |
Collapse
|
47
|
Gammella E, Maccarinelli F, Buratti P, Recalcati S, Cairo G. The role of iron in anthracycline cardiotoxicity. Front Pharmacol 2014; 5:25. [PMID: 24616701 PMCID: PMC3935484 DOI: 10.3389/fphar.2014.00025] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/12/2014] [Indexed: 01/24/2023] Open
Abstract
The clinical use of the antitumor anthracycline Doxorubicin is limited by the risk of severe cardiotoxicity. The mechanisms underlying anthracycline-dependent cardiotoxicity are multiple and remain uncompletely understood, but many observations indicate that interactions with cellular iron metabolism are important. Convincing evidence showing that iron plays a role in Doxorubicin cardiotoxicity is provided by the protecting efficacy of iron chelation in patients and experimental models, and studies showing that iron overload exacerbates the cardiotoxic effects of the drug, but the underlying molecular mechanisms remain to be completely characterized. Since anthracyclines generate reactive oxygen species, increased iron-catalyzed formation of free radicals appears an obvious explanation for the aggravating role of iron in Doxorubicin cardiotoxicity, but antioxidants did not offer protection in clinical settings. Moreover, how the interaction between reactive oxygen species and iron damages heart cells exposed to Doxorubicin is still unclear. This review discusses the pathogenic role of the disruption of iron homeostasis in Doxorubicin-mediated cardiotoxicity in the context of current and future pharmacologic approaches to cardioprotection.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Biomedical Sciences for Health, University of Milano Milano, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| | - Paolo Buratti
- Department of Biomedical Sciences for Health, University of Milano Milano, Italy
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milano Milano, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milano Milano, Italy
| |
Collapse
|
48
|
Zhao B, Yang Y, Wang X, Chong Z, Yin R, Song SH, Zhao C, Li C, Huang H, Sun BF, Wu D, Jin KX, Song M, Zhu BZ, Jiang G, Rendtlew Danielsen JM, Xu GL, Yang YG, Wang H. Redox-active quinones induces genome-wide DNA methylation changes by an iron-mediated and Tet-dependent mechanism. Nucleic Acids Res 2014; 42:1593-605. [PMID: 24214992 PMCID: PMC3919571 DOI: 10.1093/nar/gkt1090] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/12/2013] [Accepted: 10/16/2013] [Indexed: 12/21/2022] Open
Abstract
DNA methylation has been proven to be a critical epigenetic mark important for various cellular processes. Here, we report that redox-active quinones, a ubiquitous class of chemicals found in natural products, cancer therapeutics and environment, stimulate the conversion of 5 mC to 5 hmC in vivo, and increase 5 hmC in 5751 genes in cells. 5 hmC increase is associated with significantly altered gene expression of 3414 genes. Interestingly, in quinone-treated cells, labile iron-sensitive protein ferritin light chain showed a significant increase at both mRNA and protein levels indicating a role of iron regulation in stimulating Tet-mediated 5 mC oxidation. Consistently, the deprivation of cellular labile iron using specific chelator blocked the 5 hmC increase, and a delivery of labile iron increased the 5 hmC level. Moreover, both Tet1/Tet2 knockout and dimethyloxalylglycine-induced Tet inhibition diminished the 5 hmC increase. These results suggest an iron-regulated Tet-dependent DNA demethylation mechanism mediated by redox-active biomolecules.
Collapse
Affiliation(s)
- Bailin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoli Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zechen Chong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ruichuan Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shu-Hui Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cuiping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bao-Fa Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Danni Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kang-Xuan Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jannie M. Rendtlew Danielsen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Liang Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yun-Gui Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China, Disease Genomics and Individualized Medicine Laboratory, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China, The Novo Nordisk Foundation Center for Protein Research, Ubiquitin Signalling Group, Faculty of Health Sciences, Blegdamsvej 3b, 2200, Copenhagen, Denmark and Group of DNA Metabolism, The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
49
|
Abstract
Iron is an essential nutrient that is tightly regulated. A principal function of the liver is the regulation of iron homeostasis. The liver senses changes in systemic iron requirements and can regulate iron concentrations in a robust and rapid manner. The last 10 years have led to the discovery of several regulatory mechanisms in the liver that control the production of iron regulatory genes, storage capacity, and iron mobilization. Dysregulation of these functions leads to an imbalance of iron, which is the primary cause of iron-related disorders. Anemia and iron overload are two of the most prevalent disorders worldwide and affect over a billion people. Several mutations in liver-derived genes have been identified, demonstrating the central role of the liver in iron homeostasis. During conditions of excess iron, the liver increases iron storage and protects other tissues, namely, the heart and pancreas from iron-induced cellular damage. However, a chronic increase in liver iron stores results in excess reactive oxygen species production and liver injury. Excess liver iron is one of the major mechanisms leading to increased steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Erik R Anderson
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
50
|
Alkhateeb AA, Connor JR. The significance of ferritin in cancer: anti-oxidation, inflammation and tumorigenesis. Biochim Biophys Acta Rev Cancer 2013; 1836:245-54. [PMID: 23891969 DOI: 10.1016/j.bbcan.2013.07.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 12/16/2022]
Abstract
The iron storage protein ferritin has been continuously studied for over 70years and its function as the primary iron storage protein in cells is well established. Although the intracellular functions of ferritin are for the most part well-characterized, the significance of serum (extracellular) ferritin in human biology is poorly understood. Recently, several lines of evidence have demonstrated that ferritin is a multi-functional protein with possible roles in proliferation, angiogenesis, immunosuppression, and iron delivery. In the context of cancer, ferritin is detected at higher levels in the sera of many cancer patients, and the higher levels correlate with aggressive disease and poor clinical outcome. Furthermore, ferritin is highly expressed in tumor-associated macrophages which have been recently recognized as having critical roles in tumor progression and therapy resistance. These characteristics suggest ferritin could be an attractive target for cancer therapy because its down-regulation could disrupt the supportive tumor microenvironment, kill cancer cells, and increase sensitivity to chemotherapy. In this review, we provide an overview of the current knowledge on the function and regulation of ferritin. Moreover, we examine the literature on ferritin's contributions to tumor progression and therapy resistance, in addition to its therapeutic potential.
Collapse
Affiliation(s)
- Ahmed A Alkhateeb
- Department of Neurosurgery, The Pennsylvania State University Hershey Medical Center, Hershey, PA, USA
| | | |
Collapse
|