1
|
Hussein M, Mirza I, Morsy M, Mostafa A, Hassan C, Masrur M, Bianco FM, Papasani S, Levitan I, Mahmoud AM. Comparison of Adiposomal Lipids between Obese and Non-Obese Individuals. Metabolites 2024; 14:464. [PMID: 39195560 DOI: 10.3390/metabo14080464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Our recent findings revealed that human adipose tissues (AT)-derived extracellular vesicles (adiposomes) vary in cargo among obese and lean individuals. The main objective of this study was to investigate the adiposomal lipid profiles and their correlation with cardiometabolic risk factors. AT samples were collected from obese subjects and lean controls and analyzed for their characteristics and lipid content. In addition, we measured the correlation between adiposomal lipid profiles and body composition, glucose and lipid metabolic profiles, brachial artery vasoreactivity, AT arteriolar flow-induced dilation, and circulating markers such as IL-6, C-reactive protein, and nitric oxide (NO). Compared to lean controls, adiposomes isolated from obese subjects were higher in number after normalization to AT volume. The two major lipid classes differentially expressed were lysophosphatidylcholine/phosphatidylcholine (LPC/PC) and ceramides (Cer). All lipids in the LPC/PC class were several-fold lower in adiposomes from obese subjects compared to lean controls, on top of which were PC 18:2, PC 18:1, and PC 36:3. Most ceramides were markedly upregulated in the obese group, especially Cer d37:0, Cer d18:0, and Cer d39:0. Regression analyses revealed associations between adiposomal lipid profiles and several cardiometabolic risk factors such as body mass index (BMI), fat percentage, insulin resistance, arteriolar and brachial artery vasoreactivity, NO bioavailability, and high-density lipoproteins (HDL-C). We conclude that the ability of adiposomes from obese subjects to disrupt cardiometabolic function could be partly attributed to the dysregulated lipid cargo.
Collapse
Affiliation(s)
- Mohamed Hussein
- Department of Pathology, University of Kentucky, Lexington, KY 40536, USA
| | - Imaduddin Mirza
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Mohammed Morsy
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Amro Mostafa
- Department of Pharmacology, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Chandra Hassan
- Department of Surgery, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Mario Masrur
- Department of Surgery, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Francesco M Bianco
- Department of Surgery, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Subbaiah Papasani
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Abeer M Mahmoud
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
2
|
Xia JG, Li B, Zhang H, Li QX, Lam SM, Yin CL, Tian H, Shui G. Precise Metabolomics Defines Systemic Metabolic Dysregulation Distinct to Acute Myocardial Infarction Associated With Diabetes. Arterioscler Thromb Vasc Biol 2023; 43:581-596. [PMID: 36727520 DOI: 10.1161/atvbaha.122.318871] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a leading cause of death and disability. Diabetes is an important risk factor and a common comorbidity in AMI patients. The higher mortality risk of diabetes-AMI relative to nondiabetes-AMI indicates a need for specific treatment to improve clinical outcome. However, the global metabolic dysregulation of AMI complicated with diabetes is still unclear. We aim to systematically interrogate changes in the metabolic microenvironment immediate to AMI episodes in the absence or presence of diabetes. METHODS In this work, quantitative metabolomics was used to investigate plasma metabolic differences between diabetes-AMI (n=59) and nondiabetes-AMI (n=59) patients. A diverse array of perturbed metabolic pathways involving carbohydrate metabolism, lipid metabolism, glycolysis, tricarboxylic acid cycle, and amino acid metabolism emerged. RESULTS In all, our omics-oriented approach defined a metabolic signature of afflicted mitochondrial function aggravated by concurrent diabetes in AMI patients. In particular, our analyses uncovered N-lactoyl-phenylalanine and lysophosphatidylcholines as key functional metabolites that skewed the metabolic picture of diabetes-AMI relative to nondiabetes-AMI. N-lactoyl-phenylalanine was strongly associated with metabolic indicators reflective of mitochondrial overload and negatively correlated with HbA1c (glycosylated hemoglobin, type A1C) specifically in hyperglycemic AMI, suggestive of its central role in glucose utilization and mitochondrial energy production instrumental to the clinical outcome of diabetes-AMI. Reductions in lysophosphatidylcholines, which were negatively correlated with blood glucose and inflammatory markers, might further compromise glucose expenditure and aggravate inflammation leading to poorer prognosis in diabetes-AMI. CONCLUSIONS As circulating metabolite levels are amenable to therapeutic intervention, such shifts in metabolic signatures provide new clues and potential therapeutic targets specific to the treatment of diabetes-AMI.
Collapse
Affiliation(s)
- Jing-Gang Xia
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China (J.-g.X., H.Z., C.-l.Y.)
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, Jiangsu Province, China (B.L., S.M.L.)
| | - Hao Zhang
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China (J.-g.X., H.Z., C.-l.Y.)
| | - Qin-Xue Li
- Department of Cardiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.-x.L.)
| | - Sin Man Lam
- LipidALL Technologies Company Limited, Changzhou, Jiangsu Province, China (B.L., S.M.L.)
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China (S.M.L., H.T., G.S.)
| | - Chun-Lin Yin
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China (J.-g.X., H.Z., C.-l.Y.)
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China (S.M.L., H.T., G.S.)
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China (S.M.L., H.T., G.S.)
| |
Collapse
|
3
|
Emerging Role of Phospholipids and Lysophospholipids for Improving Brain Docosahexaenoic Acid as Potential Preventive and Therapeutic Strategies for Neurological Diseases. Int J Mol Sci 2022; 23:ijms23073969. [PMID: 35409331 PMCID: PMC9000073 DOI: 10.3390/ijms23073969] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 01/25/2023] Open
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) is an omega-3 polyunsaturated fatty acid (PUFA) essential for neural development, learning, and vision. Although DHA can be provided to humans through nutrition and synthesized in vivo from its precursor alpha-linolenic acid (ALA, 18:3n-3), deficiencies in cerebral DHA level were associated with neurodegenerative diseases including Parkinson’s and Alzheimer’s diseases. The aim of this review was to develop a complete understanding of previous and current approaches and suggest future approaches to target the brain with DHA in different lipids’ forms for potential prevention and treatment of neurodegenerative diseases. Since glycerophospholipids (GPs) play a crucial role in DHA transport to the brain, we explored their biosynthesis and remodeling pathways with a focus on cerebral PUFA remodeling. Following this, we discussed the brain content and biological properties of phospholipids (PLs) and Lyso-PLs with omega-3 PUFA focusing on DHA’s beneficial effects in healthy conditions and brain disorders. We emphasized the cerebral accretion of DHA when esterified at sn-2 position of PLs and Lyso-PLs. Finally, we highlighted the importance of DHA-rich Lyso-PLs’ development for pharmaceutical applications since most commercially available DHA formulations are in the form of PLs or triglycerides, which are not the preferred transporter of DHA to the brain.
Collapse
|
4
|
Knuplez E, Marsche G. An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci 2020; 21:E4501. [PMID: 32599910 PMCID: PMC7350010 DOI: 10.3390/ijms21124501] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Lysophosphatidylcholines are a group of bioactive lipids heavily investigated in the context of inflammation and atherosclerosis development. While present in plasma during physiological conditions, their concentration can drastically increase in certain inflammatory states. Lysophosphatidylcholines are widely regarded as potent pro-inflammatory and deleterious mediators, but an increasing number of more recent studies show multiple beneficial properties under various pathological conditions. Many of the discrepancies in the published studies are due to the investigation of different species or mixtures of lysophatidylcholines and the use of supra-physiological concentrations in the absence of serum or other carrier proteins. Furthermore, interpretation of the results is complicated by the rapid metabolism of lysophosphatidylcholine (LPC) in cells and tissues to pro-inflammatory lysophosphatidic acid. Interestingly, most of the recent studies, in contrast to older studies, found lower LPC plasma levels associated with unfavorable disease outcomes. Being the most abundant lysophospholipid in plasma, it is of utmost importance to understand its physiological functions and shed light on the discordant literature connected to its research. LPCs should be recognized as important homeostatic mediators involved in all stages of vascular inflammation. In this review, we want to point out potential pro- and anti-inflammatory activities of lysophospholipids in the vascular system and highlight recent discoveries about the effect of lysophosphatidylcholines on immune cells at the endothelial vascular interface. We will also look at their potential clinical application as biomarkers.
Collapse
Affiliation(s)
- Eva Knuplez
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
5
|
Garcia V, Sessa WC. Endothelial NOS: perspective and recent developments. Br J Pharmacol 2019; 176:189-196. [PMID: 30341769 PMCID: PMC6295413 DOI: 10.1111/bph.14522] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023] Open
Abstract
Endothelial NOS (eNOS), and its product NO, are vital components of the control of vasomotor function and cardiovascular homeostasis. In the present review, we will take a deep dive into eNOS enzymology, function and mechanisms regulating endothelial NO. The mechanisms regulating eNOS and NO synthesis discussed here include alterations to transcriptional, post-translational modifications and protein-protein regulations. Also, we will discuss the phenotypes associated with various eNOS mutants and the consequences of a disrupted eNOS/NO cascade, highlighting the importance of eNOS function and vascular homeostasis. LINKED ARTICLES: This article is part of a themed section on Nitric Oxide 20 Years from the 1998 Nobel Prize. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.2/issuetoc.
Collapse
Affiliation(s)
- Victor Garcia
- Vascular Biology and Therapeutics Program, Department of PharmacologyYale University School of MedicineNew HavenCTUSA
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Department of PharmacologyYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
6
|
Nonaka R, Iesaki T, de Vega S, Daida H, Okada T, Sasaki T, Arikawa-Hirasawa E. Perlecan deficiency causes endothelial dysfunction by reducing the expression of endothelial nitric oxide synthase. Physiol Rep 2015; 3:3/1/e12272. [PMID: 25626871 PMCID: PMC4387761 DOI: 10.14814/phy2.12272] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Perlecan is a major heparan sulfate proteoglycan found in the subendothelial extracellular matrix of the vascular wall. The aim of this study was to investigate the role of perlecan in the regulation of vascular tone. A previously developed conditional perlecan‐deficient mouse model was used to measure changes in the isometric force of isolated aortic rings. The vessels were first precontracted with phenylephrine, and then treated with increasing concentrations of vasorelaxants. Endothelium‐dependent relaxation, elicited by acetylcholine, was significantly reduced in the perlecan‐deficient aortas, whereas endothelium‐independent relaxation caused by the exogenous nitric oxide donor sodium nitroprusside remained well preserved. The expression of the endothelial nitric oxide synthase (eNOS) gene, detected by real‐time polymerase chain reaction, was significantly decreased in the perlecan‐deficient aortas. The expression of eNOS protein detected using Western blotting was also significantly decreased in the perlecan‐deficient aortas. We examined the role of perlecan in eNOS gene expression by creating perlecan knockdown human aortic endothelial cells using small interfering RNA (siRNA) for perlecan. Perlecan gene expression was significantly reduced in the perlecan siRNA‐treated cells, resulting in a significant decrease in eNOS gene expression. Perlecan deficiency induced endothelial dysfunction, as indicated by a reduction in endothelium‐dependent relaxation due, at least partly, to a reduction in eNOS expression. These findings suggest that perlecan plays a role in the activation of eNOS gene expression during normal growth processes. Perlecan deficiency induced endothelial dysfunction at least partly, to a reduction in eNOS expression. These findings suggest that perlecan plays a role in the activation of the eNOS expression during normal growth processes.
Collapse
Affiliation(s)
- Risa Nonaka
- Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takafumi Iesaki
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Susana de Vega
- Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takao Okada
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takako Sasaki
- Department of Biochemistry, Faculty of Medicine, Oita University, Oita, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for Disease of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Oleoyl-lysophosphatidylcholine limits endothelial nitric oxide bioavailability by induction of reactive oxygen species. PLoS One 2014; 9:e113443. [PMID: 25419657 PMCID: PMC4242637 DOI: 10.1371/journal.pone.0113443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 10/23/2014] [Indexed: 12/25/2022] Open
Abstract
Previously we reported modulation of endothelial prostacyclin and interleukin-8 production, cyclooxygenase-2 expression and vasorelaxation by oleoyl- lysophosphatidylcholine (LPC 18:1). In the present study, we examined the impact of this LPC on nitric oxide (NO) bioavailability in vascular endothelial EA.hy926 cells. Basal NO formation in these cells was decreased by LPC 18:1. This was accompanied with a partial disruption of the active endothelial nitric oxide synthase (eNOS)- dimer, leading to eNOS uncoupling and increased formation of reactive oxygen species (ROS). The LPC 18:1-induced ROS formation was attenuated by the superoxide scavenger Tiron, as well as by the pharmacological inhibitors of eNOS, NADPH oxidases, flavin-containing enzymes and superoxide dismutase (SOD). Intracellular ROS-formation was most prominent in mitochondria, less pronounced in cytosol and undetectable in endoplasmic reticulum. Importantly, Tiron completely prevented the LPC 18:1-induced decrease in NO bioavailability in EA.hy926 cells. The importance of the discovered findings for more in vivo like situations was analyzed by organ bath experiments in mouse aortic rings. LPC 18:1 attenuated the acetylcholine-induced, endothelium dependent vasorelaxation and massively decreased NO bioavailability. We conclude that LPC 18:1 induces eNOS uncoupling and unspecific superoxide production. This results in NO scavenging by ROS, a limited endothelial NO bioavailability and impaired vascular function.
Collapse
|
8
|
Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med 2014; 73:383-99. [PMID: 24878261 PMCID: PMC4112002 DOI: 10.1016/j.freeradbiomed.2014.05.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 02/07/2023]
Abstract
Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a worldwide pandemic with few tangible and safe treatment options. Although it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many "distal" causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity-those that directly regulate energy metabolism or caloric intake-seem to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin-resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease.
Collapse
Affiliation(s)
- Brian E Sansbury
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
9
|
Physical Exercise Induces Specific Adaptations Resulting in Reduced Organ Injury and Mortality During Severe Polymicrobial Sepsis. Crit Care Med 2013; 41:e246-55. [DOI: 10.1097/ccm.0b013e31828a2ae3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Frisardi V, Panza F, Seripa D, Farooqui T, Farooqui AA. Glycerophospholipids and glycerophospholipid-derived lipid mediators: A complex meshwork in Alzheimer’s disease pathology. Prog Lipid Res 2011; 50:313-30. [DOI: 10.1016/j.plipres.2011.06.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 10/18/2022]
|
11
|
Demosthenous M, Antoniades C, Tousoulis D, Margaritis M, Marinou K, Stefanadis C. Endothelial nitric oxide synthase in the vascular wall: Mechanisms regulating its expression and enzymatic function. Artery Res 2011; 5:37. [DOI: 10.1016/j.artres.2011.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
12
|
Burris RL, Xie CH, Thampi P, Wu X, Melnyk SB, Nagarajan S. Dietary rice protein isolate attenuates atherosclerosis in apoE-deficient mice by upregulating antioxidant enzymes. Atherosclerosis 2010; 212:107-15. [PMID: 20839391 DOI: 10.1016/j.atherosclerosis.2010.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Rice-based diets may have been reported to protect against the development of atherosclerosis; however, the underlying mechanism(s) for this protection remains unknown. In this report, the mechanism(s) contributing to the atheroprotective effects of rice-based diet was addressed using the apolipoprotein E knockout (apoE-/-) mice fed rice protein isolate (RPI) or casein (CAS). Reduced atherosclerotic lesions were observed in aortic sinus and enface analyses of the descending aorta in RPI-fed apoE-/- mice compared with CAS-fed mice. Plasma total- and HDL-cholesterol levels were not different amongst the two groups, suggesting alternative mechanism(s) could have contributed to the atheroprotective effect of rice-based diets. Plasma oxLDL and anti-oxLDL IgG levels were significantly decreased in RPI-fed compared to CAS-fed animals. Plasma and aortic tissue GSH levels and GSH:GSSG ratio were higher in RPI-fed mice compared to CAS-fed group. Interestingly, RPI feeding increased mRNA and protein expression of superoxide dismutase, and mRNA expression of catalase, glutathione peroxidase and glutathione reductase, key antioxidant enzymes implicated inhibiting oxidative stress leading to atherosclerosis. In conclusion, these findings suggest that the reduction in atherosclerotic lesions observed in mice fed the rice-based diet is mediated in part by inhibiting oxidative stress and subsequent oxLDL generation that could result in reduced foam cell formation, an early event during atherogenesis.
Collapse
Affiliation(s)
- Ramona L Burris
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | | | | | | | | | | |
Collapse
|
13
|
Tardivel S, Gousset-Dupont A, Robert V, Pourci ML, Grynberg A, Lacour B. Protective effects of EPA and deleterious effects of DHA on eNOS activity in Ea hy 926 cultured with lysophosphatidylcholine. Lipids 2009; 44:225-35. [PMID: 19190950 DOI: 10.1007/s11745-009-3284-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 01/07/2009] [Indexed: 11/25/2022]
Abstract
Oxidized low density lipoprotein (Ox-LDL) is a well-established risk factor in atherosclerosis and lysophosphatidylcholine (LysoPtdCho) is considered to be one of the major atherogenic component of Ox-LDL. The purpose of this work was to investigate the effects of two membrane n-3 long chain polyunsaturated fatty acids (n-3 PUFAs), EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) compared to n-6 PUFA, ARA (arachidonic acid), on the activation of endothelial NO synthase (eNOS) by histamine in Ea hy 926 endothelial cells incubated during 24 h in the presence or the absence of LysoPtdCho. DHA (50 muM) produced a ROS induction in cells and aggravated the LysoPtdCho-induced oxidative stress. It did not modify the basal eNOS activity but impaired the stimulation of eNOS induced by histamine and was unable to correct the deleterious effect of LysoPtdCho on histamine-stimulated eNOS activity or phosphorylation of Ser 1177. In contrast, EPA (90 muM) did not modify the ROS level produced in the presence or absence of LysoPtdCho or basal eNOS activity and the stimulating effect of histamine on eNOS. However, it diminished the deleterious effect of LysoPtdCho as well as on the histamine-stimulated eNOS activity on the phosphorylation on Ser 1177 of eNOS. The beneficial effect of EPA but not DHA on endothelial eNOS activity in Ea hy 926 could be also partially due to a slight decrease in membrane DHA content in EPA-treated cells. Consequently, the equilibrium between NO generated by eNOS and ROS due to oxidative stress could explain, in part, the beneficial effect of EPA on the development of cardiovascular diseases. By contrast ARA an n-6 PUFA was devoid of any effect on ROS generation or eNOS activity in the basal state or after histamine-induced stimulation. In vivo experiments should be undertaken to confirm these results.
Collapse
Affiliation(s)
- Sylviane Tardivel
- Université Paris-Sud 11, UMR1154, INRA-UPS, Faculté de Pharmacie, Châtenay-Malabry, France.
| | | | | | | | | | | |
Collapse
|
14
|
Adverse balance of nitric oxide/peroxynitrite in the dysfunctional endothelium can be reversed by statins. J Cardiovasc Pharmacol 2008; 50:391-8. [PMID: 18049306 DOI: 10.1097/fjc.0b013e31811f3fd0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Vascular endothelial dysfunction is a complex phenomenon that might be caused by a deficiency of nitric oxide (NO) and an overproduction of peroxynitrite (ONOO-). This study used a nanotechnological approach to monitor the in vitro effect of statins on the [NO]/[ONOO-] balance in normal and dysfunctional endothelial cells. NO and (ONOO-) were measured by electrochemical nanosensors in a single human umbilical vein endothelial cell (HUVEC) treated with atorvastatin or simvastatin for 24 hours in the presence or absence of 50 microg/mL oxidized-LDL. An imbalance between [NO]/[ONOO-] concentrations was used as an indicator of endothelial dysfunction and correlated with endothelial nitric oxide synthase (eNOS) expression. Ox-LDL induced dysfunction of the endothelium by uncoupling eNOS. NO concentration decreased from 300 +/- 12 to 146 +/- 8 nmol/L and (ONOO-) increased from 200 +/- 9 to 360 +/- 13 nmol/L. The [NO]/[ONOO-] balance decreased from 1.50 +/- 0.04 (control) to 0.40 +/- 0.03 for cells co-incubated with ox-LDL. Treatment with statins reversed eNOS uncoupling, induced by oxidized-LDL and significantly increased the [NO]/[ONOO-] balance to 1.2 +/- 0.1. These results demonstrate that statins can restore endothelial function by increasing eNOS expression, decreasing eNOS uncoupling, reducing the (ONOO-) level (nitroxidative stress), and shifting the [NO]/[ONOO-] balance towards NO.
Collapse
|
15
|
Trussell JC, Legro RS. Erectile dysfunction: does insulin resistance play a part? Fertil Steril 2007; 88:771-8. [PMID: 17498710 DOI: 10.1016/j.fertnstert.2007.01.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 01/17/2007] [Accepted: 01/17/2007] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To review MEDLINE literature for correlations between insulin resistance and erectile dysfunction (ED). DESIGN MEDLINE literature review (1966 to present). SETTING Academic medical center. PATIENT(S) None. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) None. RESULT(S) Erectile dysfunction affects more than half of men over the age of 40. Fortunately, most men with ED can be successfully treated with phosphodiesterase 5A (PDE-5) inhibitors, which up-regulate the vasodilatory effects of nitric oxide (NO). Insulin resistance affects 25% of U.S. adults and increases to a 60% occurrence in individuals who are overweight. Endothelial dysfunction, which is associated with insulin resistance states, can cause disturbances in the subcellular signaling pathways required for NO production. Because endothelial production of NO and insulin sensitivity are positively related in healthy humans, the relationships among insulin resistance, NO, and ED are the target of this review of MEDLINE literature. CONCLUSION(S) Insulin resistance states are characterized by defective vascular NO production and impaired insulin-induced vasodilation, both of which are likely to cause ED. Diagnosing and treating insulin resistance should be part of the initial management plan for ED. Future studies concerning the cause and effect relationship of insulin resistance and ED should be implemented.
Collapse
Affiliation(s)
- J C Trussell
- Division of Urology, Penn State Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, PA 17033-0850, USA.
| | | |
Collapse
|
16
|
Tsuda T, Yoshimura H, Hamasaki N. Effect of phosphatidylcholine, phosphatidylethanolamine and lysophosphatidylcholine on the activated factor X-prothrombin system. Blood Coagul Fibrinolysis 2006; 17:465-9. [PMID: 16905950 DOI: 10.1097/01.mbc.0000240919.72930.ee] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Membrane phospholipids are essential in blood coagulation reactions. The importance of negatively changed phosphatidylserine has been shown. The roles of other phospholipids in the blood coagulation system, however, are not clear. This study examined the effects of phosphatidylcholine on the blood coagulation system using liposomes containing varying concentrations of phosphatidylcholine in the presence of phosphatidylserine at a constant concentration. In addition, with phosphatidylserine and phosphatidylcholine at constant concentrations, the effects of phosphatidylethanolamine and lysophosphatidylcholine on the blood coagulation system were examined. Using an in vitro reconstructed system of the activated factor X-prothrombin system, blood coagulation was measured by the rate of thrombin formation after the addition of liposome preparations. The results showed suppression of the system by phosphatidylcholine and phosphatidylethanolamine and acceleration by lysophosphatidylcholine. The results of the present study suggest that the cell membrane, the 'location' of blood coagulation, is one of the regulatory factors, and that changes in phosphatidylcholine content and phospholipid composition of the cell membrane regulate the coagulation reaction.
Collapse
|
17
|
Murch O, Collin M, Sepodes B, Foster SJ, Mota-Filipe H, Thiemermann C. Lysophosphatidylcholine reduces the organ injury and dysfunction in rodent models of gram-negative and gram-positive shock. Br J Pharmacol 2006; 148:769-77. [PMID: 16751791 PMCID: PMC1617069 DOI: 10.1038/sj.bjp.0706788] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
1. Lysophosphatidylcholine (LPC) modulates the inflammatory response and reduces mortality in animal models of sepsis. Here, we investigate the effects of LPC from synthetic (sLPC) and natural, soy bean derived LPC, (nLPC) sources on the organ injury/dysfunction caused by systemic administration of lipopolysaccharide (LPS) or peptidoglycan (PepG) and lipoteichoic acid (LTA). 2. Rats were subjected to (i) endotoxaemia (LPS 6 mg kg(-1) i.v.) and treated with sLPC (1-100 mg kg(-1)), (ii) endotoxaemia and treated with nLPC (10 mg kg(-1)) or (iii) gram-positive shock (PepG 10 mg kg(-1) and LTA 3 mg kg(-1) i.v.) and treated with sLPC (10 mg kg(-1)). 3. Endotoxaemia or gram-positive shock for 6 h resulted in increases in serum makers of renal dysfunction and liver, pancreatic and neuromuscular injury. 4. Administration of sLPC, at 1 or 2 h after LPS, dose dependently (1-10 mg kg(-1)) reduced the organ injury/dysfunction. High doses of sLPC (30 and 100 mg kg(-1)) were shown to be detrimental in endotoxaemia. sLPC also afforded protection against the organ injury/dysfunction caused by gram-positive shock. nLPC was found to be protective in endotoxaemic animals. 5. The beneficial effects of sLPC were associated with an attenuation in circulating levels of interleukin-1beta (IL-1beta). 6. In conclusion, LPC dose and time dependently reduces the organ injury and circulating IL-1beta levels caused by gram-negative or gram-positive shock in the rat. Thus, we speculate that appropriate doses of LPC may be useful in reducing the degree of organ injury and dysfunction associated with shock of various aetiologies.
Collapse
Affiliation(s)
- Oliver Murch
- The Centre for Experimental Medicine, Nephrology and Critical Care, The William Harvey Research Institute, St Bartholomew's and The Royal London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ
| | - Marika Collin
- The Centre for Experimental Medicine, Nephrology and Critical Care, The William Harvey Research Institute, St Bartholomew's and The Royal London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ
| | - Bruno Sepodes
- Pharmacology and Pharmacotoxicology Unit, Pharmacy School, University of Lisbon, Lisbon, Portugal
| | - Simon J Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield
| | - Helder Mota-Filipe
- Pharmacology and Pharmacotoxicology Unit, Pharmacy School, University of Lisbon, Lisbon, Portugal
| | - Christoph Thiemermann
- The Centre for Experimental Medicine, Nephrology and Critical Care, The William Harvey Research Institute, St Bartholomew's and The Royal London School of Medicine and Dentistry, Queen Mary, University of London, Charterhouse Square, London EC1M 6BQ
- Author for correspondence:
| |
Collapse
|
18
|
Searles CD. Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression. Am J Physiol Cell Physiol 2006; 291:C803-16. [PMID: 16738003 DOI: 10.1152/ajpcell.00457.2005] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability of the endothelium to produce nitric oxide is essential to maintenance of vascular homeostasis; disturbance of this ability is a major contributor to the pathogenesis of vascular disease. In vivo studies have demonstrated that expression of endothelial nitric oxide synthase (eNOS) is vital to endothelial function and have led to the understanding that eNOS expression is subject to modest but significant degrees of regulation. Subsequently, numerous physiological and pathophysiological stimuli have been identified that modulate eNOS expression via mechanisms that alter steady-state eNOS mRNA levels. These mechanisms involve changes in the rate of eNOS gene transcription (transcriptional regulation) and alteration of eNOS mRNA processing and stability (posttranscriptional regulation). In cultured endothelial cells, shear stress, transforming growth factor-beta1, lysophosphatidylcholine, cell growth, oxidized linoleic acid, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, and hydrogen peroxide have been shown to increase eNOS expression. In contrast, tumor necrosis factor-alpha, hypoxia, lipopolysaccaride, thrombin, and oxidized LDL can decrease eNOS mRNA levels. For many of these stimuli, both transcriptional and posttranscriptional mechanisms contribute to regulation of eNOS expression. Recent studies have begun to further define signaling pathways responsible for changes in eNOS expression and have characterized cis- and trans-acting regulatory elements. In addition, a role has been identified for epigenetic control of eNOS mRNA levels. This review will discuss transcriptional and posttranscriptional regulation of eNOS with emphasis on the molecular mechanisms that have been identified for these processes.
Collapse
Affiliation(s)
- Charles D Searles
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
19
|
Dudzinski DM, Igarashi J, Greif D, Michel T. The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 2006; 46:235-76. [PMID: 16402905 DOI: 10.1146/annurev.pharmtox.44.101802.121844] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitric oxide (NO) is a small, diffusible, lipophilic free radical gas that mediates significant and diverse signaling functions in nearly every organ system in the body. The endothelial isoform of nitric oxide synthase (eNOS) is a key source of NO found in the cardiovascular system. This review summarizes the pharmacology of NO and the cellular regulation of endothelial NOS (eNOS). The molecular intricacies of the chemistry of NO and the enzymology of NOSs are discussed, followed by a review of the biological activities of NO. This information is then used to develop a more global picture of the pharmacological control of NO synthesis by NOSs in both physiologic conditions and pathophysiologic states.
Collapse
Affiliation(s)
- David M Dudzinski
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
20
|
Zhang R, Rodrigues B, MacLeod KM. Lysophosphatidylcholine potentiates phenylephrine responses in rat mesenteric arterial bed through modulation of thromboxane A2. J Pharmacol Exp Ther 2006; 317:355-61. [PMID: 16394197 DOI: 10.1124/jpet.105.097964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lysophosphatidylcholine (LPC) plays important physiological and pathophysiological roles in the cardiovascular system. Despite this, there is little information about its effects on vasore-activity of resistance vessels. The present study was designed to characterize the effects of LPC in the isolated perfused rat mesenteric arterial bed (MAB) and to investigate the underlying mechanisms of the changes it produced. Perfusion with 10 microM LPC for 40 min did not significantly affect basal perfusion pressure or reactivity of MAB to the alpha(1)-adrenoceptor agonist phenylephrine (PE) but almost completely abolished the maximal endothelium-dependent relaxation to acetylcholine (Ach), reducing it from 93 +/- 5 to 7 +/- 4% (p < 0.001). After washout of LPC for 60 min, the vasodilator response to Ach partially recovered, whereas the vasoconstrictor response to PE was markedly enhanced, the pD(2) value increasing from 7.50 +/- 0.04 to 8.13 +/- 0.15 and maximum response to 199 +/- 24% of control (p < 0.001). Pretreatment with either indomethacin, a nonselective inhibitor of cyclooxygenase, or SQ-29548 [[1S-[1a,2a(Z),3a,4a]]-7-[3-[[2-[(phenylamino)carbonyl]hydrazino] methyl]-7-oxabicyclo [2.2.1]hept-2-yl]-5-heptanoic acid], a selective thromboxane receptor antagonist, completely prevented the potentiation of the PE response after washout of LPC. In untreated MABs, only the highest concentration of PE produced a significant increase in thromboxane A(2) (TxA(2)) production (assessed by enzyme-immunoassay of thromboxane B(2) levels). This was prevented by perfusion with LPC but was significantly increased after LPC washout. The basal release of TxA(2) was not modified by LPC. These results demonstrate that LPC exerts both immediate and residual effects on the reactivity of the rat MAB and that these effects are at least partially due to modification of PE-induced TxA(2) production.
Collapse
Affiliation(s)
- Rui Zhang
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
21
|
Hou M, Xia M, Zhu H, Wang Q, Li Y, Xiao Y, Zhao T, Tang Z, Ma J, Ling W. Lysophosphatidylcholine promotes cholesterol efflux from mouse macrophage foam cells via PPARγ-LXRα-ABCA1-dependent pathway associated with apoE. Cell Biochem Funct 2006; 25:33-44. [PMID: 16981222 DOI: 10.1002/cbf.1374] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Formation of macrophage-derived foam cells is a hallmark in earlier stages of atherosclerosis (AS). Increased cholesterol efflux from macrophage foam cells promote atherosclerotic regression. In the present study, lysophosphatidylcholine (LPC) promoting cholesterol efflux from macrophage foam cells was observed, and the mechanism underlying the action was investigated. Macrophage foam cells from mice were incubated with different concentrations of LPC (10, 20, 40, 80 microM), and the free cholesterol in medium increased but total intracellular cholesterol decreased. At the same time, the expression of PPARgamma, LXRalpha, ABCA1 was enhanced in a dose-dependent manner. The treatment of macrophage foam cells with 40 microM LPC for 12, 24 and 48 h promoted cellular cholesterol efflux in a time-dependent manner, meanwhile expression of PPARgamma, LXRalpha, ABCA1 was also raised respectively. Addition of different specific inhibitors of PPARgamma (GW9662), LXRalpha (GGPP), ABCA1 (DIDS) to the foam cells significantly suppressed LPC-induced cholesterol efflux. Also treatment with specific inhibitors of PPARgamma or LXRalpha decreased ABCA1 mRNA and protein expressions. LPC (40 microM)-induced cholesterol efflux was significantly lower in macrophage foam cells from apoE deficient mice than from normal C57BL/6J mice. In contrast, 10 microg apoAI-induced cholesterol efflux from foam cells remained in apoE deficient mice. The present results indicate that LPC promotes cholesterol efflux from macrophage foam cells via a PPARgamma-LXRalpha-ABCA1-dependent pathway. Furthermore, apoE may be involved in this process.
Collapse
Affiliation(s)
- Mengjun Hou
- School of Public Health, Zhongshan University (Northern Campus), Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The vascular endothelium synthesises the vasodilator and anti-aggregatory mediator nitric oxide (NO) from L-arginine. This action is catalysed by the action of NO synthases, of which two forms are present in the endothelium. Endothelial (e)NOS is highly regulated, constitutively active and generates NO in response to shear stress and other physiological stimuli. Inducible (i)NOS is expressed in response to immunological stimuli, is transcriptionally regulated and, once activated, generates large amounts of NO that contribute to pathological conditions. The physiological actions of NO include the regulation of vascular tone and blood pressure, prevention of platelet aggregation and inhibition of vascular smooth muscle proliferation. Many of these actions are a result of the activation by NO of the soluble guanylate cyclase and consequent generation of cyclic guanosine monophosphate (cGMP). An additional target of NO is the cytochrome c oxidase, the terminal enzyme in the electron transport chain, which is inhibited by NO in a manner that is reversible and competitive with oxygen. The consequent reduction of cytochrome c oxidase leads to the release of superoxide anion. This may be an NO-regulated cell signalling system which, under certain circumstances, may lead to the formation of the powerful oxidant species, peroxynitrite, that is associated with a variety of vascular diseases.
Collapse
Affiliation(s)
- S Moncada
- The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
23
|
Searles CD, Ide L, Davis ME, Cai H, Weber M. Actin Cytoskeleton Organization and Posttranscriptional Regulation of Endothelial Nitric Oxide Synthase During Cell Growth. Circ Res 2004; 95:488-95. [PMID: 15256481 DOI: 10.1161/01.res.0000138953.21377.80] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Posttranscriptional regulation of endothelial nitric oxide synthase (eNOS) expression is an important mechanism by which endothelial cells respond to various physiological and pathophysiological stimuli. Previously, we showed that eNOS expression was dramatically altered by the state of cell growth and that the mechanism responsible for this regulation was entirely posttranscriptional, occurring via changes in eNOS mRNA stability. The present study identifies a role for actin cytoskeleton organization in the posttranscriptional regulation of eNOS during cell growth and examines the relationship between the state of actin polymerization and eNOS expression. We identified monomeric actin (globular [G]-actin) as the major component of a 51-kDa ribonucleoprotein that binds to the eNOS mRNA 3' untranslated region in UV-crosslinking analysis. Binding activity of the ribonucleoprotein complex correlated with the relative concentration of G-actin versus filamentous actin (F-actin). ENOS transcripts colocalized with cytoplasmic G-actin in cells subjected to fluorescence in situ hybridization and G-actin fluorescence staining. In subcellular fractionation studies, eNOS transcripts were enriched in the free polysomal fraction of nonproliferating cells and enriched in the cell matrix-associated polysomal fraction of proliferating cells. Furthermore, an inverse relationship between the concentration of G-actin and eNOS expression was observed in endothelial cells subjected to pharmacological alteration of their cytoskeleton; lower G/F-actin ratios correlated with increased eNOS expression. Our findings provide some insight into how endothelial cells may use the dynamic organization of the actin cytoskeleton to regulate expression of an enzyme that is crucial to vascular homeostasis.
Collapse
Affiliation(s)
- Charles D Searles
- Division of Cardiology, Emory University, 1639 Pierce Dr, WMB 319, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
24
|
Kang WS, Tamarkin FJ, Wheeler MA, Weiss RM. Rapid up-regulation of endothelial nitric-oxide synthase in a mouse model of Escherichia coli lipopolysaccharide-induced bladder inflammation. J Pharmacol Exp Ther 2004; 310:452-8. [PMID: 15082754 DOI: 10.1124/jpet.104.066506] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increases in the signaling molecule nitric oxide (NO) during inflammation may be linked not only to inducible nitric-oxide synthase (iNOS) but also to endothelial (e)NOS. Escherichia coli lipopolysaccharide (LPS) induces an inflammatory response in the bladder and rapidly increases phosphorylation of Akt/protein kinase B (Akt), a key enzyme regulating proliferation, apoptosis, and inflammation. Activated Akt phosphorylates human eNOS at serine 1177 and subsequently increases NOS activity. Because Akt and eNOS are both localized in the bladder urothelium, phosphorylation of eNOS by Akt provides an attractive mechanism for rapid increases in urinary NO production. Female mice were intraperitoneally injected with LPS (25 mg/kg) or pyrogen-free water (control). Four hours before LPS injection, some mice were injected with wortmannin, which inhibits Akt phosphorylation. Levels of urinary cyclic GMP, a downstream product of NO, increase 75% within 1 h after intraperitoneal injection of LPS, and this increase is blocked by wortmannin. Bladder eNOS and phosphorylated eNOS protein increase 94 and 151%, respectively, 1 h after LPS treatment, whereas iNOS was not detected. Wortmannin decreases eNOS phosphorylation by 60%. Furthermore, bladder Ca(2+)-dependent NOS activity (eNOS, neuronal NOS) is increased 79 +/- 20% 1 h after LPS treatment, whereas there is no increase in Ca(2+)-independent (iNOS) activity (n = 4). Increases in urinary cyclic GMP, NOS activity, and eNOS protein and phosphorylation 1 h after induction of inflammation with LPS, indicate that eNOS plays a role in the early response to bladder inflammation.
Collapse
Affiliation(s)
- Walter S Kang
- Section of Urology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208041, New Haven, CT 06520-8041.
| | | | | | | |
Collapse
|
25
|
Abstract
Advances in our understanding of the molecular mechanisms involved in the constitutive and regulated expression of endothelial nitric oxide synthase (eNOS) mRNA expression present a new level of complexity to the study of endothelial gene regulation in health and disease. Recent studies highlight the contribution of both transcription and RNA stability to net steady-state mRNA levels of eNOS in vascular endothelium, introducing a new paradigm to gene regulation in the injured blood vessel. Constitutive eNOS expression is dependent on basal transcription machinery in the core promoter, involving positive and negative protein–protein and protein–DNA interactions. Chromatin-based mechanisms and epigenetic events also regulate expression of eNOS at the transcriptional level in a cell-restricted fashion. Although constitutively active, important physiological and pathophysiologic stimuli alter eNOS gene transcription rates. For instance, eNOS transcription rates increase in response to lysophosphatidylcholine, shear stress, and TGF-β, among others. Under basal conditions, eNOS mRNA is extremely stable. Surprisingly, posttranscriptional mechanisms have emerged as important regulatory pathways in the observed decreases in eNOS expression in some settings. In models of inflammation, proliferation/injury, oxidized low-density lipoprotein treatment, and hypoxia, eNOS mRNA destabilization plays a significant role in the rapid downregulation of eNOS mRNA levels.
Collapse
Affiliation(s)
- Sharon C Tai
- Renal Division and Department of Medicine, St. Michael's Hospital and University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
26
|
Kitamura T, Kimura K, Makondo K, Furuya DT, Suzuki M, Yoshida T, Saito M. Proinsulin C-peptide increases nitric oxide production by enhancing mitogen-activated protein-kinase-dependent transcription of endothelial nitric oxide synthase in aortic endothelial cells of Wistar rats. Diabetologia 2003; 46:1698-705. [PMID: 14586499 DOI: 10.1007/s00125-003-1232-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 07/22/2003] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Recent studies have suggested that proinsulin C-peptide improves vascular functions, possibly through nitric oxide (NO) production. To clarify the molecular mechanisms of vascular NO production induced by C-peptide, we examined the effects of C-peptide on NO production and NO synthase expression in rat aortic endothelial cells in connection with mitogen-activated protein kinase (MAPK) activation. METHODS Aortic endothelial cells were isolated from female Wistar rats, cultured to confluence, and serum-starved for 24 h before treatment with C-peptide. Nitric oxide production was measured by the DAF-2 fluorescence dye method and relative amounts of endothelial nitric oxide synthase (eNOS) protein and its mRNA were semi-quantified by western blot and RT-PCR analyses respectively. Activation of MAPK was estimated by western blot detection of activity-related phosphorylation and in vitro kinase assay. RESULTS Stimulation of cells with C-peptide for 3 h doubled NO production, which was suppressed by the NO synthase inhibitor, N(G)-nitro- L-arginine methyl ester (L-NAME). Stimulation also increased mRNA and protein contents of eNOS in a manner sensitive to the transcription inhibitor actinomycin D. It did not affect inducible NO synthase mRNA. C-peptide also induced rapid phosphorylation and activation of extracellular signal-regulated kinase (ERK, also known as p44/42MAPK), but not of p38MAPK. In cells pretreated with the ERK inhibitor PD98059 the C-peptide-elicited increase of NO production and eNOS was abrogated in a dose-dependent manner; suppression of ERK phosphorylation induced by C-peptide also occurred. CONCLUSIONS/INTERPRETATION Our results show that C-peptide increases NO production by increasing eNOS protein contents through ERK-dependent up-regulation of eNOS gene transcription. This could explain some actions of C-peptide on the vasculature, indicating a pivotal role for C-peptide in vascular homeostasis.
Collapse
Affiliation(s)
- T Kitamura
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Konopatskaya O, Whatmore JL, Tooke JE, Shore AC. Insulin and lysophosphatidylcholine synergistically stimulate NO-dependent cGMP production in human endothelial cells. Diabet Med 2003; 20:838-45. [PMID: 14510866 DOI: 10.1046/j.1464-5491.2003.01039.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Nitric oxide (NO) is an important regulator of cardiovascular homeostasis. Lysophosphatidylcholine (lyso-PC), a major constituent of oxidized low density lipoproteins (oxLDL), has been reported to impair nitric oxide-dependent vasodilatation. This study investigated the possible mechanism of the lyso-PC effect on insulin-stimulated NO-dependent of cyclic guanosine 3',5'-monophosphate (cGMP) generation in human endothelial cells. METHODS The intracellular concentration of cGMP in cultured human umbilical vein endothelial cells (HUVECs) was used to estimate NO production. The levels of endothelial nitric oxide synthase (eNOS) protein expression were assessed by Western blotting analyses. RESULTS Both insulin, at physiological concentration, and lyso-PC stimulated rapid and prolonged intracellular of cGMP production, and together induced a marked synergistic response (for short-term stimulation: 1185 +/- 285.9% over control level (100%) compared with insulin and lyso-PC alone (384.8 +/- 67.4% and 357 +/- 205%, respectively; P < 0.001), for long-term stimulation: 3495 +/- 1377%, compared with insulin and lyso-PC alone (663 +/- 131% and 487 +/- 250%, P = 0.002)). Stimulated levels of cGMP accumulation were completely abrogated by NOS inhibitor, indicating NO involvement in the effects of insulin and lyso-PC. Stimulated NO synthesis was not associated with altered eNOS protein expression. Cell subfractionation studies demonstrate that insulin and lyso-PC each alone induced translocation of eNOS from the membrane to the cytosolic compartment and together caused a synergistic translocation. CONCLUSIONS The presented data suggest that insulin and lyso-PC synergistically upregulate endothelial NO production via eNOS translocation from the membrane fraction to the cytosol. This study raises the possibility that an interplay between various factors accompanying diabetes can lead to endothelial NO overproduction or desensitization of NO-dependent responses. Appropriate rather than necessarily high levels of nitric oxide is the determinant of vascular health.
Collapse
Affiliation(s)
- O Konopatskaya
- Institute for Biomedical and Clinical Science, Peninsula Medical School, Noy Scott House, Haldon View Terrace, Exeter EX2 5EQ, UK.
| | | | | | | |
Collapse
|
28
|
Golodne DM, Monteiro RQ, Graca-Souza AV, Silva-Neto MAC, Atella GC. Lysophosphatidylcholine acts as an anti-hemostatic molecule in the saliva of the blood-sucking bug Rhodnius prolixus. J Biol Chem 2003; 278:27766-71. [PMID: 12740385 DOI: 10.1074/jbc.m212421200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Blood-sucking arthropods possess a variety of anti-hemostatic factors in their salivary glands to maintain blood fluidity during feeding. In this work we demonstrate the anti-hemostatic properties of lysophosphatidylcholine (lysoPC) isolated from the salivary glands of Rhodnius prolixus. First, we examined salivary glands of fourth and fifth instar nymphs for their phospholipid composition. The lumen displayed an accumulation of its phospholipid content, mainly phosphatidylcholine and lysoPC, with a 6-fold increase for the latter. To determine the presence of phospholipids in the saliva, fourth instar nymphs were fed with a32P-enriched blood meal. After 28 days their saliva was collected and subjected to lipid extraction, thin-layer chromatography, and autoradiography. The results showed the presence in the saliva of the same phospholipids present in the lumen. We then examined possible biological roles of these phospholipids when compared with other known effects of lysoPC. The luminal lipid extract and purified lysoPC from the lumen and saliva were tested for inhibition of washed rabbit platelets' aggregation induced by alpha-thrombin and platelet-activating factor. Both the luminal lipid extract and salivary lysoPC showed an increasing inhibition of aggregation, which correlated with the response of the platelets to standard lysoPC (up to 13 microg/ml). Next, salivary lysoPC was incubated with porcine arterial endothelial cells for 24 h. After incubation, culture medium was assayed for nitric oxide and showed increased nitric oxide production, similar to control cells exposed to standard lysoPC (up to 20 microg/ml). Together these data demonstrate the presence of lysoPC in the saliva of Rhodnius prolixus and its potential anti-hemostatic activities.
Collapse
Affiliation(s)
- Daniel M Golodne
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
29
|
Wheatcroft SB, Williams IL, Shah AM, Kearney MT. Pathophysiological implications of insulin resistance on vascular endothelial function. Diabet Med 2003; 20:255-68. [PMID: 12675638 DOI: 10.1046/j.1464-5491.2003.00869.x] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Insulin resistance is a key component of the insulin resistance syndrome and is a crucially important metabolic abnormality in Type 2 diabetes. Insulin-resistant individuals are at significantly increased risk of cardiovascular disease, although the underlying mechanisms remain incompletely understood. The endothelium is thought to play a critical role in maintaining vascular homeostasis, a process dependent on the balance between the production of nitric oxide, superoxide and other vasoactive substances. Endothelial dysfunction has been demonstrated in insulin-resistant states in animals and humans and may represent an important early event in the development of atherosclerosis. Insulin resistance may be linked to endothelial dysfunction by a number of mechanisms, including disturbances of subcellular signalling pathways common to both insulin action and nitric oxide production. Other potential unifying links include the roles of oxidant stress, endothelin, the renin angiotensin system and the secretion of hormones and cytokines by adipose tissue. Lifestyle measures and drug therapies which improve insulin sensitivity and ameliorate endothelial dysfunction may be important in delaying the progression to overt cardiovascular disease in at risk individuals. METHODS We conducted a literature search using Medline, restricted to articles published in the English language between 1966 and the present, and reviewed bibliographies of relevant articles. An initial search strategy employing combinations of the MeSH terms: insulin resistance; endothelium, vascular; insulin; nitric oxide or hyperinsulinaemia produced over 300 references. Focused searches using keywords relevant to the molecular aspects of endothelial function and insulin signalling, and lifestyle or pharmacological interventions relevant to insulin resistance or endothelial function, produced over 300 further references. Abstracts of all references were screened before selecting those relevant to this review.
Collapse
Affiliation(s)
- S B Wheatcroft
- Department of Cardiology, Guy's, King's & St Thomas' School of Medicine, King's College, London, UK.
| | | | | | | |
Collapse
|
30
|
Abstract
The endothelium, by releasing nitric oxide (NO), promotes vasodilation and inhibits inflammation, thrombosis, and vascular smooth muscle cell proliferation. These biological actions of NO make it an important component in the endogenous defense against atherosclerosis and its overt clinical complications. Loss of the functional integrity of the endothelium, as seen commonly in the milieu of cardiovascular risk factors, plays an integral role in all stages of atherosclerosis from lesion initiation to plaque rupture. A number of established techniques can assess endothelial function in human vascular beds. The outcome of endothelial testing has profound prognostic implications and is an independent predictor of atherosclerosis disease progression and cardiovascular event rates. The large clinical benefit of statins and angiotensin-converting enzyme inhibitors in patients with atherosclerosis involves favorable effects of endothelial function. Studies of endothelial function represent a prime example of a successful application of insights derived from vascular biology at the bedside.
Collapse
Affiliation(s)
- Dominik Behrendt
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
31
|
Rössig L, Li H, Fisslthaler B, Urbich C, Fleming I, Förstermann U, Zeiher AM, Dimmeler S. Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ Res 2002; 91:837-44. [PMID: 12411399 DOI: 10.1161/01.res.0000037983.07158.b1] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The histone deacetylase (HDAC) inhibitor trichostatin A (TSA) inhibits hypoxia-stimulated angiogenesis. Endothelial nitric oxide synthase (eNOS)-derived NO is central to angiogenesis signaling in endothelial cells (ECs). We hypothesized that the HDAC-dependent regulation of angiogenesis may involve a modulatory effect on eNOS expression. The HDAC inhibitors TSA, butyric acid (BuA), and MS-275 time- and concentration-dependently suppressed eNOS protein levels to 41+/-2%, 46+/-12%, and 40+/-12% of control, respectively. In parallel, TSA and BuA also downregulated eNOS mRNA expression to 21+/-4% and 37+/-4% of control. TSA also attenuated the NO-dependent relaxation of porcine coronary arteries (P<0.0001, TSA 1 micromol/L) and prevented tube formation in a human angiogenesis assay. Although vascular endothelial growth factor substitution did not compensate for the inhibitory effect of TSA, exogenous NO reversed the inhibition of angiogenesis by TSA. To address the underlying signaling mechanism, we characterized the effect of TSA on eNOS gene transcription and mRNA half-life. Although TSA decreased both eNOS protein and mRNA levels, TSA paradoxically enhanced the activity of the eNOS promoter, and did not alter the eNOS transcription rate in nuclear run-on experiments, suggesting that TSA posttranscriptionally targets eNOS mRNA. These data indicate that HDAC-dependent mechanisms contribute to the regulation of eNOS expression in ECs.
Collapse
Affiliation(s)
- Lothar Rössig
- Molecular Cardiology, Department of Internal Medicine IV, University of Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Li H, Wallerath T, Förstermann U. Physiological mechanisms regulating the expression of endothelial-type NO synthase. Nitric Oxide 2002; 7:132-47. [PMID: 12223183 DOI: 10.1016/s1089-8603(02)00127-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although endothelial nitric oxide synthase (eNOS) is a constitutively expressed enzyme, its expression is regulated by a number of biophysical, biochemical, and hormonal stimuli, both under physiological conditions and in pathology. This review summarizes the recent findings in this field. Shear stress, growth factors (such as transforming growth factor-beta, fibroblast growth factor, vascular endothelial growth factor, and platelet-derived growth factor), hormones (such as estrogens, insulin, angiotensin II, and endothelin 1), and other compounds (such as lysophosphatidylcholine) upregulate eNOS expression. On the other hand, the cytokine tumor necrosis factor-alpha and bacterial lipopolysaccharide downregulate the expression of this enzyme. The growth status of cells, the actin cytoskeleton, and NO itself are also important regulators of eNOS expression. Both transcriptional and posttranscriptional mechanisms are involved in the expressional regulation of eNOS. Different signaling pathways are involved in the regulation of eNOS promoter activity and eNOS mRNA stability. Changes in eNOS expression and activity under pathophysiological conditions and the pharmacological modulation of eNOS expression are subject of a subsequent brief review (part 2) to be published in the next issue of this journal.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, Mainz D-55101, Germany
| | | | | |
Collapse
|
33
|
Maas R, Schwedhelm E, Albsmeier J, Böger RH. The pathophysiology of erectile dysfunction related to endothelial dysfunction and mediators of vascular function. Vasc Med 2002; 7:213-25. [PMID: 12553745 DOI: 10.1191/1358863x02vm429ra] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The incidence of erectile dysfunction increases with diabetes, hypertension, hypercholesterolaemia, cardiovascular disease and renal failure. All these conditions are associated with endothelial dysfunction. This review addresses the pathophysiology of erectile dysfunction with a special focus on new insights into nitric oxide (NO)-mediated pathways, oxidative stress and parallels to endothelial dysfunction. NO appears to be the key mediator promoting endothelium-derived vasodilation and penile erection. The possibility is discussed that elevated plasma concentrations of asymmetrical dimethylarginine (ADMA), an endogenous NO synthase inhibitor, may provide an additional pathomechanism for various forms of erectile dysfunction associated with cardiovascular risk factors and disease. Likewise, the role of endothelium-derived factors mediating NO-independent pathways is evaluated.
Collapse
Affiliation(s)
- Renke Maas
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
34
|
Watanabe T, Koba S, Katagiri T, Pakala R, Benedict CR. Lysophosphatidylcholine potentiates the mitogenic effect of various vasoactive compounds on rabbit aortic smooth muscle cells. JAPANESE HEART JOURNAL 2002; 43:409-16. [PMID: 12227716 DOI: 10.1536/jhj.43.409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We examined the mechanism of action of lysophosphatidylcholine (lyso-PC), which is suggested to be involved in the pathogenesis of atherosclerosis and inflamatory disorders, and its interaction with well-known vasoactive compounds such as hydrogen peroxide (H2O2), thromboxane A2 (TX-A2), serotonin (5-HT), angiotensin II (Ang-II), endothelin-1 (ET-1), or urotensin II (U-II) on VSMC proliferation. Growth-arrested rabbit VSMCs were incubated with given concentrations of lyso-PC with H202, TX-A2, 5-HT, Ang-II, ET-1, or U-II. [3H]Thymidine incorporation into DNA was measured as an index of VSMC proliferation. Lyso-PC induced a maximal effect on [3H]thymidine incorporation at a concentration of 15 microM (156%), and its effect was significantly inhibited by the phospholipase C inhibitor U73122 (10 microM), the intracellular antioxidant NAC (400 microM), and the NADPH oxidase inhibitor diphenylene iodonium (1 microM), but not by the MAPK kinase inhibitor (10 microM). H2O2, TX-A2, 5-HT, Ang-II, ET-1, or U-II also stimulated [3H]thymidine incorporation in a dose-dependent manner. A non-mitogenic concentration of lyso-PC (5 microM) significantly potentiated the effect of low concentrations of H2O2 (0.1 microM, 110 to 222%), TX-A2 (5 microM, 120 to 202%), 5-HT (5 microM, 182 to 259%), Ang-II (0.5 microM, 167 to 304%), ET-1 (0.01 microM, 139 to 297%), or U-II (0.025 microM, 120 to 332%) on [3H]thymidine incorporation. The results suggest that lyso-PC acts synergistically with the vasoactive compounds H2O2, TX-A2, 5-HT, Ang-II, ET-1, or U-II in inducing VSMC proliferation, which may play an important role in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Takuya Watanabe
- Third Department of Internal Medicine, Showa University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
35
|
Williams IL, Wheatcroft SB, Shah AM, Kearney MT. Obesity, atherosclerosis and the vascular endothelium: mechanisms of reduced nitric oxide bioavailability in obese humans. Int J Obes (Lond) 2002; 26:754-64. [PMID: 12037644 DOI: 10.1038/sj.ijo.0801995] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2001] [Revised: 11/16/2001] [Accepted: 12/20/2001] [Indexed: 11/08/2022]
Abstract
It is now well established that obesity is an independent risk factor for the development of coronary artery atherosclerosis. The maintenance of vascular homeostasis is critically dependent on the continued integrity of vascular endothelial cell function. A key early event in the development of atherosclerosis is thought to be endothelial cell dysfunction. A primary feature of endothelial cell dysfunction is the reduced bioavailability of the signalling molecule nitric oxide (NO), which has important anti atherogenic properties. Recent studies have produced persuasive evidence showing the presence of endothelial dysfunction in obese humans NO bioavailability is dependent on the balance between its production by a family of enzymes, the nitric oxide synthases, and its reaction with reactive oxygen species. The endothelial isoform (eNOS) is responsible for a significant amount of the NO produced in the vascular wall. NO production can be modulated in both physiological and pathophysiological settings, by regulation of the activity of eNOS at a transcriptional and post-transcriptional level, by substrate and co-factor provision and through calcium dependent and independent signalling pathways. The present review discusses general mechanisms of reduced NO bioavailability including factors determining production of both NO and reactive oxygen species. We then focus on the potential factors responsible for endothelial dysfunction in obesity and possible therapeutic interventions targetted at these abnormalities.
Collapse
Affiliation(s)
- I L Williams
- Department of Cardiology, Guy's, King's and St Thomas' School of Medicine, King's College London, London, UK.
| | | | | | | |
Collapse
|
36
|
Abstract
Endothelial nitric oxide synthase (eNOS) is constitutively expressed in endothelial cells lining the blood vessel and the heart. It plays a major role in vascular and tissue protection. Its activity is tightly controlled by an intramolecular autoinhibitory element that hinders calmodulin binding. This molecular hindrance is removed by elevated intracellular calcium levels. The catalytic activity of eNOS is augmented by phosphorylation of a C-terminal serine residue (Ser-1177 of human eNOS) through the phosphatidyl-3 kinase (PI-3K)/Akt pathway. Its activity is also enhanced by binding to heat shock protein-90. These two processes are calcium independent. The two biochemical events appear to facilitate calmodulin access to its binding site. eNOS is upregulated at the transcriptional level. Its upregulation is mediated by an increased Sp1 binding to its cognate site on eNOS promoter/enhancer region via the action of protein phosphatase 2A (PP2A). PP2A is activated by a signaling pathway including PI-3gamma --> Janus activated kinase 2 (Jak2) --> MEK-1 --> ERK1 and 2. The transcriptional and posttranslational enhancement of eNOS activity is two- to threefold above the basal level. A higher magnitude of augmentation of eNOS gene expression can be achieved by gene transfer, which confers protection against vascular diseases and ischemia-induced tissue injury in experimental animals. These findings provide new insight into the protective role of eNOS and the therapeutic potential of eNOS gene therapy.
Collapse
Affiliation(s)
- Kenneth K Wu
- Vascular Biology Research Center Institute of Molecular Medicine and Division of Hematology, University of Texas-Houston Health Science Center, Houston, Texas, USA.
| |
Collapse
|
37
|
Mehta JL, Li D. Identification, regulation and function of a novel lectin-like oxidized low-density lipoprotein receptor. J Am Coll Cardiol 2002; 39:1429-35. [PMID: 11985903 DOI: 10.1016/s0735-1097(02)01803-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oxidatively modified low-density lipoprotein (ox-LDL) leads to endothelial activation, dysfunction and injury. Recently, a novel lectin-like receptor for ox-LDL (LOX-1) has been identified, primarily in the endothelial cells, and it allows uptake of ox-LDL into endothelial cells. This receptor is transcriptionally upregulated by tumor necrosis factor-alpha, angiotensin II, shear stress and ox-LDL itself. The expression of this receptor activates a variety of intracellular processes that lead to expression of adhesion molecules and endothelial activation. This receptor is highly expressed in the blood vessels of animals and humans with hypertension, diabetes mellitus and atherosclerosis. Expression of this receptor may also be relevant in intra-arterial thrombogenesis and myocardial ischemia-reperfusion injury. Identification and regulation of this receptor and understanding of signal transduction pathways may lead to new therapies of diseases characterized by endothelial dysfunction.
Collapse
Affiliation(s)
- Jawahar L Mehta
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205, USA.
| | | |
Collapse
|
38
|
Rikitake Y, Kawashima S, Takahashi T, Ueyama T, Ishido S, Inoue N, Hirata K, Yokoyama M. Regulation of tyrosine phosphorylation of PYK2 in vascular endothelial cells by lysophosphatidylcholine. Am J Physiol Heart Circ Physiol 2001; 281:H266-74. [PMID: 11406493 DOI: 10.1152/ajpheart.2001.281.1.h266] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lysophosphatidylcholine (LPC), a component of oxidized low-density lipoprotein, exerts various biological effects on vascular endothelial cells. However, the intracellular signaling of LPC is poorly understood. In this study, we investigated the involvement of proline-rich tyrosine kinase (PYK2) in LPC signaling in cultured bovine aortic endothelial cells by immunoprecipitation and Western blotting assays. Treatment of cells with LPC promoted a rapid increase in tyrosine phosphorylation of PYK2. LPC-stimulated PYK2 phosphorylation was inhibited by calcium chelators, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester, EGTA, protein kinase C (PKC) inhibitor, GF-109203X, or PKC depletion by phorbol esters. PYK2 phosphorylation was inhibited by treatment with cytochalasin D but with neither botulinum C3 transferase nor overexpression of a dominant negative mutant of Rho A. LPC stimulated the association of Shc with PYK2, Shc tyrosine phosphorylation, and Grb2 binding to Shc and induced Ras activation. These results provide evidence that 1) LPC tyrosine phosphorylates PYK2 by calcium- and PKC-dependent mechanisms, 2) the intact cytoskeleton is required for LPC-stimulated PYK2 phosphorylation, and 3) LPC-activated Ras via the PYK2/Shc/Grb2 signaling.
Collapse
Affiliation(s)
- Y Rikitake
- First Department of Internal Medicine, Kobe University School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Morimoto M, Kume N, Miyamoto S, Ueno Y, Kataoka H, Minami M, Hayashida K, Hashimoto N, Kita T. Lysophosphatidylcholine Induces Early Growth Response Factor-1 Expression and Activates the Core Promoter of PDGF-A Chain in Vascular Endothelial Cells. Arterioscler Thromb Vasc Biol 2001; 21:771-6. [PMID: 11348873 DOI: 10.1161/01.atv.21.5.771] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
—Lysophosphatidylcholine (lyso-PC), a polar phospholipid that is increased in atherogenic lipoproteins and atherosclerotic lesions, has been shown to transcriptionally induce the expression of endothelial genes relevant to atherogenesis. In cultured bovine aortic endothelial cells (BAECs), we show that lyso-PC induces the expression of early growth response factor (Egr)-1 and thereby activates the proximal promoter of the platelet-derived growth factor (PDGF)-A chain located 55 to 71 bp upstream from the transcription start site, which has been shown to be crucial for PDGF-A chain expression induced by fluid shear stress and fibroblast growth factor-1. Northern blot analyses showed that lyso-PC (10 to 20 μmol/L) transiently (30 minutes to 1 hour) induced expression of Egr-1 mRNA. Induced expression of Egr-1 mRNA, which was associated with increased amounts of Egr-1 protein in nuclei, preceded PDGF-A chain mRNA induction in lyso-PC–activated BAECs. Nuclear runoff assay revealed that lyso-PC stimulates transcription of the Egr-1 gene. Transient transfection of the oligonucleotide corresponding to the proximal promoter of the PDGF-A chain (oligo A) linked to the luciferase reporter gene revealed that lyso-PC can activate the core promoter of the PDGF-A chain by 5-fold. Insertion of a guanine at 3 sites in the oligo A abolished the lyso-PC–induced increases in luciferase activities. Electrophoretic mobility shift assay with use of radiolabeled oligo A showed a lyso-PC–inducible shift band, which was suppressed by excess amounts of unlabeled oligo A or an anti–Egr-1 antibody. In addition, lyso-PC–induced Egr-1 expression was inhibited by PD98059, a specific inhibitor of mitogen-activated protein kinase kinase-1 (MEK1), suggesting that lyso–PC-induced expression of Egr-1 depends on the MEK1/extracellular signal–regulated kinase pathway. Taken together, transcriptional activation of Egr-1–dependent genes by this atherogenic lipid may be a key regulator of atherogenesis.
Collapse
Affiliation(s)
- M Morimoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Renal function is highly dependent on endothelium-derived nitric oxide (NO). Several renal disorders have been linked to impaired NO bioavailability. The enzyme that is responsible for the synthesis of NO within the renal endothelium is endothelial NO synthase (eNOS). eNOS-mediated NO generation is a highly regulated cellular event, which is induced by calcium-mobilizing agonists and fluid shear stress. eNOS activity is regulated at the transcriptional level but also by a variety of modifications, such as acylation and phosphorylation, by its cellular localization, and by protein-protein interactions. The present review focuses on the complex regulation of eNOS within the endothelial cell.
Collapse
Affiliation(s)
- R Govers
- Department of Vascular Medicine, University Medical Center Utrecht, Academic Hospital Utrecht, 3584 CX Utrecht, The Netherlands.
| | | |
Collapse
|
41
|
Cieslik K, Abrams CS, Wu KK. Up-regulation of endothelial nitric-oxide synthase promoter by the phosphatidylinositol 3-kinase gamma /Janus kinase 2/MEK-1-dependent pathway. J Biol Chem 2001; 276:1211-9. [PMID: 11042169 DOI: 10.1074/jbc.m005305200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our recent study indicates that lysophosphatidylcholine (LPC) enhances Sp1 binding and Sp1-dependent endothelial nitric oxide synthase (eNOS) promoter activity via the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 (MEK-1) signaling pathway (Cieslik, K., Lee, C.-M., Tang, J.-L., and Wu, K. K. (1999) J. Biol. Chem. 274, 34669-34675). To identify upstream signaling molecules, we transfected human endothelial cells with dominant negative and active mutants of Ras and evaluated their effects on eNOS promoter activity. Neither mutant altered the basal or LPC-induced eNOS promoter function. By contrast, a dominant negative mutant of phosphatidylinositol 3-kinase gamma (PI-3Kgamma) blocked the promoter activity induced by LPC. Wortmannin and LY 294002 had a similar effect. AG-490, a selective inhibitor of Janus kinase 2 (Jak2), also reduced the LPC-induced Sp1 binding and eNOS promoter activity to the basal level. LPC induced Jak2 phosphorylation, which was abolished by LY 294002 and the dominant negative mutant of PI-3Kgamma. LY 294002 and AG-490 abrogated MEK-1 phosphorylation induced by LPC but had no effect on Raf-1. These results indicate that PI-3Kgamma and Jak2 are essential for LPC-induced eNOS promoter activity. This signaling pathway was sensitive to pertussis toxin, suggesting the involvement of a G(i) protein in PI-3Kgamma activation. These results indicate that LPC enhances Sp1-dependent eNOS promoter activity by a pertussis toxin-sensitive, Ras-independent novel pathway, PI-3Kgamma/Jak2/MEK-1/ERK1/2.
Collapse
Affiliation(s)
- K Cieslik
- Vascular Biology Research Center and Division of Hematology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
42
|
Chai YC, Binion DG, Chisolm GM. Relationship of molecular structure to the mechanism of lysophospholipid-induced smooth muscle cell proliferation. Am J Physiol Heart Circ Physiol 2000; 279:H1830-8. [PMID: 11009470 DOI: 10.1152/ajpheart.2000.279.4.h1830] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that oxidized low-density lipoprotein and one of its constituents, lysophosphatidylcholine (lysoPC), caused smooth muscle cell proliferation that was inhibitable by vitamin E and by a neutralizing antibody against basic fibroblast growth factor-2 (FGF-2). We now show that the mitogenic activity of lysolipids is highly dependent on structure. Phospholipids with palmitoyl fatty acid and phosphocholine induced DNA synthesis optimally. Shorter and longer fatty acids were significantly less potent, as were phosphoserine and phosphoethanolamine head groups. Structurally related phospholipids [platelet-activating factor (PAF) and lysoPAF] were also mitogens and acted via an analogous FGF-2-dependent, vitamin E-inhibitable mechanism. The mechanism of lysoPC stimulation was distinct from that of another phospholipid mitogen, lysophosphatidic acid (lysoPA), in that lysoPC stimulation was not pertussis toxin inhibitable. Furthermore, lysoPA stimulation was not inhibitable by vitamin E. Despite its distinct cellular pathway for stimulation, lysoPA also ultimately led to FGF-2 release. Our data show that specific structural attributes of lysoPC, PAF, and lysoPAF enable these agents to mediate smooth muscle cell release of FGF-2, which in turn stimulates proliferation.
Collapse
Affiliation(s)
- Y C Chai
- Department of Cell Biology, Lerner Research Institute of the Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
43
|
Abstract
Genes contribute significantly to interpopulation differences in vascular disease. Endothelial nitric oxide synthase (eNOS)-a key regulator of vascular nitric oxide production-has been investigated extensively to determine the relevance of DNA variants in the eNOS gene and vascular diseases. Variants in the promoter region, introns, and exons have been explored in a large number of populations but findings have been inconsistent. This paper reviews the current status of functional significance for reported sequence variations in the eNOS gene and the relevance of these variants to different forms of vascular diseases.
Collapse
Affiliation(s)
- X L Wang
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227-5301, USA
| | | |
Collapse
|
44
|
Stief TW. The blood fibrinolysis/deep-sea analogy: a hypothesis on the cell signals singlet oxygen/photons as natural antithrombotics. Thromb Res 2000; 99:1-20. [PMID: 10904099 DOI: 10.1016/s0049-3848(00)00213-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- T W Stief
- Institute of Clinical Chemistry and Molecular Diagnostics, Philipps University, Marburg, Germany.
| |
Collapse
|
45
|
Guillot PV, Liu L, Kuivenhoven JA, Guan J, Rosenberg RD, Aird WC. Targeting of human eNOS promoter to the Hprt locus of mice leads to tissue-restricted transgene expression. Physiol Genomics 2000; 2:77-83. [PMID: 11015585 DOI: 10.1152/physiolgenomics.2000.2.2.77] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phenotypic heterogeneity of the endothelium arises from cell type-specific differences in gene expression. An understanding of the mechanisms that underlie differential gene expression would provide important insight into the molecular basis of vascular diversity. In standard transgenic assays, multiple copies of heterologous DNA cassettes are randomly integrated into the mouse genome, resulting in significant line-to-line variation in expression. To overcome these limitations, we have targeted a single copy of a transgene that contains 1,600 bp of the human endothelial nitric oxide synthase (eNOS) promoter coupled to the LacZ reporter gene to the X-linked hypoxanthine phosphoribosyltransferase (Hprt) locus of mice by homologous recombination. The transgene was inserted in either of the orientations relative to that of the Hprt gene. In mice derived from multiple embryonic stem (ES) cell clones, the expression pattern was limited to a subset of endothelial cells, cardiomyocytes, and vascular smooth muscle cells. These findings suggest that Hprt locus targeting is a feasible tool for studying endothelial cell-restricted gene regulation.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blood Vessels/cytology
- Blood Vessels/embryology
- Blood Vessels/metabolism
- Clone Cells
- Endothelium, Vascular/cytology
- Endothelium, Vascular/embryology
- Endothelium, Vascular/metabolism
- Fluorescent Antibody Technique
- Gene Expression/genetics
- Gene Targeting
- Genes, Reporter/genetics
- Heart/embryology
- Humans
- Hypoxanthine Phosphoribosyltransferase/genetics
- Male
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Myocardium/cytology
- Myocardium/metabolism
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type II
- Nitric Oxide Synthase Type III
- Organ Specificity
- Promoter Regions, Genetic/genetics
- Stem Cells
- Transgenes/genetics
- beta-Galactosidase/biosynthesis
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- P V Guillot
- Beth Israel Deaconess Medical Center, Department of Molecular Medicine, Boston 02215, USA
| | | | | | | | | | | |
Collapse
|
46
|
Drummond GR, Cai H, Davis ME, Ramasamy S, Harrison DG. Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circ Res 2000; 86:347-54. [PMID: 10679488 DOI: 10.1161/01.res.86.3.347] [Citation(s) in RCA: 284] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diverse stimuli, including shear stress, cyclic strain, oxidized LDL, hyperglycemia, and cell growth, modulate endothelial nitric oxide synthase (eNOS) expression. Although seemingly unrelated, these may all alter cellular redox state, suggesting that reactive oxygen intermediates might modulate eNOS expression. The present study was designed to test this hypothesis. Exposure of bovine aortic endothelial cells for 24 hours to paraquat, a superoxide (O(2)(-*))-generating compound, did not affect eNOS mRNA levels. However, cotreatment with paraquat and either Cu(2+)/Zn(2+) superoxide dismutase or the superoxide dismutase mimetic tetrakis(4-benzoic acid)porphyrin chloride increased eNOS mRNA by 2.3- and 2.2-fold, respectively, implicating a role for H(2)O(2). Direct addition of 100 and 150 micromol/L H(2)O(2) caused increases in bovine aortic endothelial cell eNOS mRNA that were dependent on concentration (ie, 3.1- and 5.2-fold increases) and time, and elevated eNOS protein expression and enzyme activity, accordingly. Nuclear run-on and 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole-chase studies showed that H(2)O(2) caused a 3.0-fold increase in eNOS gene transcription and a 2.8-fold increase in eNOS mRNA half-life. Induction of eNOS by H(2)O(2) was not affected by the hydroxyl radical scavenger DMSO, mannitol, or N-tert-butyl-alpha-phenylnitrone, but it was inhibited by the antioxidants N-acetylcysteine, ebselen, and exogenously added catalase. Unlike H(2)O(2), the 4.0-fold induction of eNOS by shear stress (15 dyne/cm(2) for 6 hours) was not inhibited by N-acetylcysteine or exogenous catalase. In conclusion, H(2)O(2) increases eNOS expression through transcriptional and post-transcriptional mechanisms. Although H(2)O(2) does not mediate shear-dependent eNOS regulation, it is likely to be involved in regulation of eNOS expression in response to other physiological and/or pathophysiological stimuli.
Collapse
Affiliation(s)
- G R Drummond
- Division of Cardiology, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
47
|
Simultaneous separation of lysophospholipids from the total lipid fraction of crude biological samples using two-dimensional thin-layer chromatography. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32084-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Abstract
Activated phagocytes (especially polymorphonuclear granulocytes (PMNs)) by respiratory oxidative/photonic burst (activation of NADPH-oxidase and myeloper-oxidase) generate large amounts of oxidants of the hypochlorite-/chloramine-type, which are physiologic sources for singlet oxygen (1O2), a nonradical-excited (photon (h nu) emitting) oxygen species [Weiss SJ, NEJM 1989;320:365-376]. In vitro experiments show that 1O2 (1) inhibits coagulation by inactivation of thrombocytes, fibrinogen, factor V, factor VIII, and factor X and (2) activates fibrinolysis by inactivation of the main fibrinolysis inhibitors plasminogen activator inhibitor (PAI)-1 and alpha-2-antiplasmin, and by activation of single-chain urokinase by plasmin and oxidized fibrin. Additionally, this work suggests that 1O2/h nu acts antithrombotically, inducing selective thrombolysis in vivo (i.e., thrombolysis induced by 0.1 to 0.5 mmol/l chloramine within 30 to 60 minutes without changes of the plasmatic hemostasis system). 1O2 might activate flowing to (on the endothelium) rolling PMN, increasing their chance to get in contact with fibrin/platelet aggregates deposited on the endothelial layer. Via 1O2 generation, the thrombus-activated phagocytes might call for (acute, physiologic) inflammation/fibrinolysis amplification, resulting in the "moving front" of PMN, which infiltrates and destroys the thrombus. 1O2 seems to (partially) participate in the reactivity of nitric oxide, another prooxidative agent. The inhibition of physiologic amounts of 1O2 by blood cholesterol might be involved in the pathogenesis of atherothrombosis. Consequently, it is suggested that activated PMNs modulate hemostasis, shifting it into an antithrombotic state; this cellular part of fibrinolysis seems to be of greater physiologic importance than the plasmatic one. Impaired PMN function (e.g., as occurring in patients with antineutrophil cytoplasmic antibodies or under cytostatic treatments) often results in serious thrombotic complications. Light is the only signal whose origin can be immediately recognized by a fast moving cell in the (dark) blood stream. The cell signal action of 1O2/h nu (e.g., released by chloramines such as taurine-chloramine or vancomycin, by fiberoptic, by photodynamic therapy, or by so-called redox-cycling drugs such as quinones or tetracyclines) might be a new and physiologic principle for pharmacologic intervention in atherothrombosis.
Collapse
Affiliation(s)
- T W Stief
- Department of Clinical Chemistry, Philipps University, Marburg, Germany
| | | |
Collapse
|
49
|
Cieslik K, Lee CM, Tang JL, Wu KK. Transcriptional regulation of endothelial nitric-oxide synthase by an interaction between casein kinase 2 and protein phosphatase 2A. J Biol Chem 1999; 274:34669-75. [PMID: 10574932 DOI: 10.1074/jbc.274.49.34669] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that lysophosphatidylcholine up-regulated endothelial nitric-oxide synthase promoter activity by increasing Sp1 binding via the action of protein serine/threonine phosphatase 2A (Cieslik, K., Zembowicz, A., Tang, J.-L., and Wu, K.K. (1998) J. Biol. Chem. 273, 14885-14890). To characterize the regulation of basal endothelial nitric-oxide synthase promoter activity and the signaling pathway through which lysophosphatidylcholine augments endothelial nitric-oxide synthase transcription, we used a casein kinase 2 inhibitor coupled with immunoprecipitation to demonstrate that basal Sp1 binding and endothelial nitric-oxide synthase promoter activity were controlled by casein kinase 2 complexed with protein serine/threonine phosphatase 2A. Casein kinase 2 catalyzed protein serine/threonine phosphatase 2A phosphorylation thereby inhibiting its activity. Lysophosphatidylcholine selectively activated p42/p44 mitogen-activated protein kinase. Purified extracellular regulated kinase 2 blocked casein kinase 2 activity and increased protein serine/threonine phosphatase 2A activity, resulting in an increased Sp1 binding and endothelial nitric-oxide synthase promoter activity. These results indicate that Sp1 binding to its cognate site on the endothelial nitric-oxide synthase promoter and its transactivation of endothelial nitric-oxide synthase is regulated by post-translational Sp1 phosphorylation and dephosphorylation through a dynamic interaction between casein kinase 2 and protein serine/threonine phosphatase 2A.
Collapse
Affiliation(s)
- K Cieslik
- Vascular Biology Research Center, Division of Hematology, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
50
|
Searles CD, Miwa Y, Harrison DG, Ramasamy S. Posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circ Res 1999; 85:588-95. [PMID: 10506483 DOI: 10.1161/01.res.85.7.588] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression of the endothelial NO synthase (eNOS) is dramatically influenced by the state of cell growth. In proliferating cells, mRNA levels are increased 4-fold compared with postconfluent, nonproliferating cells. Nuclear run-on analysis indicated that there is no difference in the transcriptional rate of eNOS in proliferating versus postconfluent cells. The half-life of eNOS mRNA, measured after actinomycin D transcriptional arrest, was 3-fold greater in preconfluent compared with confluent endothelial cells. Using UV-cross-linking analysis, a cytoplasmic protein with an apparent molecular mass of 51 kDa was found to bind to terminal 545-nt eNOS mRNA 3-fold more in confluent cells than in proliferating cells. Further characterization of the eNOS mRNA indicated that a 43-nt sequence at the origin of the 3'-untranslated region (UTR) is critical in binding of this protein. Endothelial cells were stably transfected with a chimeric cDNA plasmid containing chloramphenicol acetyl transferase (CAT) ligated to the eNOS coding region and either the wild-type 3'-UTR (pcDNACAT/eNOS((wtUTR))) or a mutant 3'-UTR lacking the 43 nt found to bind the 51-kDa protein (pcDNACAT/eNOS((DeltaUTR))). The CAT/eNOS mRNA half-life was dramatically stabilized in these latter cells as compared with cells transfected with pcDNACAT/eNOS((wtUTR))). Thus, this 43-nt region plays a critical role in destabilizing eNOS mRNA. These studies demonstrate a mechanism for modulation of eNOS expression during cell growth via interactions between the proximal 3'-UTR and a novel approximately 51-kDa cytosolic protein.
Collapse
Affiliation(s)
- C D Searles
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|