1
|
Tampa M, Georgescu SR, Mitran MI, Mitran CI, Matei C, Caruntu A, Scheau C, Nicolae I, Matei A, Caruntu C, Constantin C, Neagu M. Current Perspectives on the Role of Matrix Metalloproteinases in the Pathogenesis of Basal Cell Carcinoma. Biomolecules 2021; 11:biom11060903. [PMID: 34204372 PMCID: PMC8235174 DOI: 10.3390/biom11060903] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin malignancy, which rarely metastasizes but has a great ability to infiltrate and invade the surrounding tissues. One of the molecular players involved in the metastatic process are matrix metalloproteinases (MMPs). MMPs are enzymes that can degrade various components of the extracellular matrix. In the skin, the expression of MMPs is increased in response to various stimuli, including ultraviolet (UV) radiation, one of the main factors involved in the development of BCC. By modulating various processes that are linked to tumor growth, such as invasion and angiogenesis, MMPs have been associated with UV-related carcinogenesis. The sources of MMPs are multiple, as they can be released by both neoplastic and tumor microenvironment cells. Inhibiting the action of MMPs could be a useful therapeutic option in BCC management. In this review that reunites the latest advances in this domain, we discuss the role of MMPs in the pathogenesis and evolution of BCC, as molecules involved in tumor aggressiveness and risk of recurrence, in order to offer a fresh and updated perspective on this field.
Collapse
Affiliation(s)
- Mircea Tampa
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Simona Roxana Georgescu
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
- Correspondence: (S.R.G.); (A.C.)
| | - Madalina Irina Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Cristina Iulia Mitran
- Department of Microbiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.I.M.); (C.I.M.)
| | - Clara Matei
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (M.T.); (C.M.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Correspondence: (S.R.G.); (A.C.)
| | - Cristian Scheau
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Ilinca Nicolae
- Department of Dermatology, Victor Babes Clinical Hospital for Infectious Diseases, 030303 Bucharest, Romania;
| | - Andreea Matei
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (A.M.); (C.C.)
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania
- Faculty of Biology, University of Bucharest, Bucharest 76201, Romania
| |
Collapse
|
2
|
Zuka M, Okada Y, Nemori R, Fukuda A, Takekoshi N, Nakanishi I, Katsuda S. Vascular tissue fragility assessed by a new double stain method. Appl Immunohistochem Mol Morphol 2003; 11:78-84. [PMID: 12610361 DOI: 10.1097/00129039-200303000-00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although matrix metalloproteinases (MMPs) are known to be involved in the development of atherosclerosis and the instability of atheromatous plaques, much remains to be learned about their roles at the tissue level. To help clarify this area, we established a new double staining method using film in situ zymography and immunohistochemistry. Using this technique, a comprehensive analysis of the gelatinolytic activity in human vessel tissue demonstrated that gelatinolytic activity is enhanced in the shoulder region and fibrous cap at superficial areas of the atheromatous plaque in the presence of thrombolysis. Enzyme assay clarified high activity in the superficial area (7.50 +/- 5.04 U/mg weight; P < 0.001). Gelatin zymography also indicated that addition of the antiplatelet agent, trapidil, alters the amount of secretion of MMP-2 and MMP-9 and their activation ratio. This novel approach to detect the activity of gelatinases in resected tissues may aid in the selection of optimal treatment of individual patients.
Collapse
Affiliation(s)
- Masahiko Zuka
- Department of Pathology and Division of Basic Science, Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
3
|
Dumin JA, Dickeson SK, Stricker TP, Bhattacharyya-Pakrasi M, Roby JD, Santoro SA, Parks WC. Pro-collagenase-1 (Matrix Metalloproteinase-1) Binds the α2β1 Integrin upon Release from Keratinocytes Migrating on Type I Collagen. J Biol Chem 2001; 276:29368-74. [PMID: 11359786 DOI: 10.1074/jbc.m104179200] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In injured skin, collagenase-1 (matrix metalloproteinase-1 (MMP-1)) is induced in migrating keratinocytes. This site-specific expression is regulated by binding of the alpha(2)beta(1) integrin with dermal type I collagen, and the catalytic activity of MMP-1 is required for keratinocyte migration. Because of this functional association among substrate/ligand, receptor, and proteinase, we assessed whether the integrin also directs the compartmentalization of MMP-1 to its matrix target. Indeed, pro-MMP-1 co-localized to sites of alpha(2)beta(1) contacts in migrating keratinocytes. Furthermore, pro-MMP-1 co-immunoprecipitated with alpha(2)beta(1) from keratinocytes, and alpha(2)beta(1) co-immunoprecipitated with pro-MMP-1. No other MMPs bound alpha(2)beta(1), and no other integrins interacted with MMP-1. Pro-MMP-1 also provided a substrate for alpha(2)beta(1)-dependent adhesion of platelets. Complex formation on keratinocytes was most efficient on native type I collagen and reduced or ablated on denatured or cleaved collagen. Competition studies suggested that the alpha(2) I domain interacts with the linker and hemopexin domains of pro-MMP-1, not with the pro-domain. These data indicate that the interaction of pro-MMP-1 with alpha(2)beta(1) confines this proteinase to points of cell contact with collagen and that the ternary complex of integrin, enzyme, and substrate function together to drive and regulate keratinocyte migration.
Collapse
Affiliation(s)
- J A Dumin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Matrilysin was first discovered in the involuting rat uterus; it has also been known as uterine metalloproteinase, putative metalloproteinase (Pump-1), and matrix metalloproteinase 7 (MMP-7). It is the smallest member (28 kDa) of a family of 15 MMPs that together are able to degrade most of the macromolecules of the extracellular matrix. This family is briefly reviewed; all members are zinc metalloproteinases that occur in zymogen form with the active site zinc blocked by cysteine. Matrilysin can degrade a wide range of gelatins, proteoglycans, and glycoproteins of the matrix and can activate several other MMPs including collagenase. With respect to the uterus, matrilysin is localized to epithelial cells and varies in amount with the estrus cycle and is found in high levels during postpartum involution. There is evidence for a role in the last stage of cervical ripening and immediately postpartum. Induction of premature delivery by onapristone and prostaglandin E2 advances these changes in matrilysin. Regulation of the enzyme levels in the uterus are considered from four viewpoints: control of protein synthesis (particularly in response to hormones), activation of the proenzyme to functional protease, retention of enzyme by binding to matrix components such as heparan sulfate, and inhibition by natural inhibitors such as tissue inhibitor of metalloproteinases (TIMPs) and alpha 2-macroglobulin.
Collapse
Affiliation(s)
- J F Woessner
- Department of Biochemistry and Molecular Biology and Medicine, University of Miami School of Medicine, Florida 33101, USA.
| |
Collapse
|
5
|
Lindstedt L, Saarinen J, Kalkkinen N, Welgus H, Kovanen PT. Matrix metalloproteinases-3, -7, and -12, but not -9, reduce high density lipoprotein-induced cholesterol efflux from human macrophage foam cells by truncation of the carboxyl terminus of apolipoprotein A-I. Parallel losses of pre-beta particles and the high affinity component of efflux. J Biol Chem 1999; 274:22627-34. [PMID: 10428843 DOI: 10.1074/jbc.274.32.22627] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Matrix metalloproteinases (MMPs) have been suggested to function in remodeling of the arterial wall, but no information is available on their possible role in early atherogenesis, when cholesterol accumulates in the cells of the arterial intima, forming foam cells. Here, we incubated the major component responsible for efflux of cholesterol from foam cells, high density lipoprotein 3 (HDL(3)), with MMP-1, -3, -7, -9, or -12 at 37 degrees C before adding it to cholesterol-loaded human monocyte-derived macrophages. After incubation with MMP-3, -7, or -12, the ability of HDL(3) to induce the high affinity component of cholesterol efflux from the macrophage foam cells was strongly reduced, whereas preincubation with MMP-1 reduced cholesterol efflux only slightly and preincubation with MMP-9 had no effect. These differential effects of the various MMPs were reflected in their differential abilities to degrade the small pre-beta migrating particles present in the HDL(3) fraction. NH(2)-terminal sequence and mass spectrometric analyses of the apolipoprotein (apo) A-I fragments generated by MMPs revealed that those MMPs that strongly reduced cholesterol efflux (MMPs-3, -7, and -12) cleaved the COOH-terminal region of apoA-I and produced a major fragment of about 22 kDa, whereas MMPs-1 and -9, which had little and no effect on cholesterol efflux, degraded apoA-I only slightly and not at all, respectively. These results show, for the first time, that some members of the MMP family can degrade the apoA-I of HDL(3), so blocking cholesterol efflux from macrophage foam cells. This expansion of the substrate repertoire of MMPs to include apoA suggests that these proteinases are directly involved in the accumulation of cholesterol in atherosclerotic lesions.
Collapse
Affiliation(s)
- L Lindstedt
- Wihuri Research Institute, Kalliolinnantie 4, 00350 Helsinki, Finland
| | | | | | | | | |
Collapse
|
6
|
Nakagawa H, Takano K, Kuzumaki H. A 16-kDa fragment of collagen type XIV is a novel neutrophil chemotactic factor purified from rat granulation tissue. Biochem Biophys Res Commun 1999; 256:642-5. [PMID: 10080952 DOI: 10.1006/bbrc.1999.0393] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A neutrophil chemotactic factor has been purified from the homogenate of rat granulation tissues. The purified chemoattractant was a basic protein with heparin-binding site and gave a single band corresponding to a molecular mass of 16 kDa on SDS-PAGE under reducing conditions. The chemoattractant was treated with lysylendopeptidase and the resulting peptides were isolated by reversed-phase HPLC. Amino acid sequences of the peptides were almost identical with the sequence of N-terminal fibronectin type III domain of human collagen type XIV, suggesting that the purified chemoattractant consists mainly of N-terminal fibronectin type III domain and the adjacent heparin-binding site of rat collagen type XIV. The 16-kDa fragment of collagen type XIV dose dependently attracted rat neutrophils and transiently increased the intracellular free Ca2+ concentration of neutrophils. The results suggest that the novel chemoattractant plays a role in neutrophil recruitment in rat inflammation.
Collapse
Affiliation(s)
- H Nakagawa
- Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Toyama, Sugitani, 930-0194, Japan.
| | | | | |
Collapse
|
7
|
Athayde N, Edwin SS, Romero R, Gomez R, Maymon E, Pacora P, Menon R. A role for matrix metalloproteinase-9 in spontaneous rupture of the fetal membranes. Am J Obstet Gynecol 1998; 179:1248-53. [PMID: 9822510 DOI: 10.1016/s0002-9378(98)70141-3] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES Preterm premature rupture of fetal membranes is responsible for 30% to 40% of preterm deliveries. Fetal membranes are composed primarily of collagen. Matrix metalloproteinases are enzymes capable of degrading extracellular matrix macromolecules, including collagens. Expression of matrix metalloproteinase-9 (gelatinase B, 92 kd) and its tissue inhibitor (tissue inhibitor of metalloproteinase-1) has been localized in amnion and chorion. The objective of this study was to determine whether rupture of fetal membranes and intrauterine infection are associated with changes in the expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1. STUDY DESIGN Two hundred one women in the following categories had amniotic fluid retrieved: (1) preterm labor and intact membranes in the presence (n = 42) or absence (n = 21) of microbial invasion of the amniotic cavity, (2) preterm premature rupture of the membranes with (n = 29) or without (n = 23) microbial invasion of the amniotic cavity, and (3) term gestation with intact membranes (n = 50) or with premature rupture of the membranes (n = 40). Women in groups 1 and 2 were matched for gestational age at amniocentesis. Microbial invasion of the amniotic cavity was defined by a positive amniotic fluid culture for micro-organisms. Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 were measured with use of sensitive and specific immunoassays that were validated for amniotic fluid. RESULTS Spontaneous rupture of membranes at term is associated with a significant increase in the amniotic fluid concentrations of matrix metalloproteinase-9 (premature rupture of membranes, no labor: median 3.9 ng/mL, range 2. 7 to 11.1 ng/mL vs no premature rupture of membranes, no labor: median <0.4 ng/mL, range <0.4 to 22.4 ng/mL; P <.001). Patients with preterm premature rupture of the membranes had higher median matrix metalloproteinase-9 concentrations than those with preterm labor and intact membranes who were delivered at term (7.6 ng/mL, range <0.4 to 230.81 ng/mL vs <0.4 ng/mL, range <0.4 to 1650 ng/mL; P =.06). Women with microbial invasion of the amniotic cavity had higher median matrix metalloproteinase-9 concentrations than did those without microbial invasion regardless of membrane status (preterm labor: 54.5 ng/mL, range <0.4 to 3910 ng/mL vs <0.4 ng/mL, range <0. 4 to 1650 ng/mL; P <.01; preterm premature rupture of membranes: 179. 8 ng/mL, range <0.4 to 611 ng/mL vs 7.6 ng/mL, range <0.4 to 230.81; P <.001). CONCLUSION Our data support a role for matrix metalloproteinase-9 in the mechanisms responsible for membrane rupture in term and preterm gestations.
Collapse
Affiliation(s)
- N Athayde
- Perinatology Research Branch, National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Lelongt B, Trugnan G, Murphy G, Ronco PM. Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis in vitro. J Cell Biol 1997; 136:1363-73. [PMID: 9087449 PMCID: PMC2132511 DOI: 10.1083/jcb.136.6.1363] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/1996] [Revised: 01/07/1997] [Indexed: 02/04/2023] Open
Abstract
We analyzed matrix metalloproteinase (MMP) production by 11-d embryonic mouse kidneys and the effects of these enzymes on subsequent renal organogenesis. In vivo, immunolocalization of metalloproteinases by laser scanning confocal microscopy and zymograms of kidney lysates showed that the mesenchyme of embryonic kidneys synthesized both MMP9 and MMP2 enzymes. In vitro, embryonic kidneys also secreted both enzymes when cultured in a medium devoid of hormone, growth factor, and serum for 24 h during which T-shaped branching of the ureter bud appeared. We then evaluated the role of MMP2 and MMP9 in kidney morphogenesis by adding anti-MMP2 or anti-MMP9 IgGs to the culture medium of 11-d kidneys for 24 or 72 h. Although it inhibited activity of the mouse enzyme, anti-MMP2 IgGs had no effect on kidney morphogenesis. In contrast, anti-MMP9 IgGs with enzyme-blocking activity impaired renal morphogenesis, in a concentration-dependent manner, by inhibiting T-shaped branching and further divisions of the ureter bud. This effect was irreversible, still observed after inductive events and reproduced by exogenous tissue inhibitor of metalloproteinase 1 (TIMP1), the natural inhibitor of MMP9. These data provide the first demonstration of MMP9 and MMP2 production in vivo by 11-d embryonic kidneys and further show that MMP9 is required in vitro for branching morphogenesis of the ureter bud.
Collapse
Affiliation(s)
- B Lelongt
- Institut National de la Santé et de la Recherche Médicale, Unité 64,Hôpital Tenon, Paris, France.
| | | | | | | |
Collapse
|
9
|
Knäuper V, Cowell S, Smith B, López-Otin C, O'Shea M, Morris H, Zardi L, Murphy G. The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem 1997; 272:7608-16. [PMID: 9065415 DOI: 10.1074/jbc.272.12.7608] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recombinant human procollagenase-3 and a C-terminal truncated form (Delta249-451 procollagenase-3) have been stably expressed in myeloma cells and purified. The truncated proenzyme could be processed by aminophenylmercuric acetate via a short-lived intermediate form (N-terminal Leu58) to the final active form (N-terminal Tyr85). The kinetics of activation were not affected by removal of the hemopexin-like C-terminal domain. The specific activities of both collagenase-3 and Delta249-451 collagenase-3 were found to be similar using two quenched fluorescent substrates, but Delta249-451 collagenase-3 failed to cleave native triple helical collagens (types I and II) into characteristic one- and three-quarter fragments. It was noted, however, that the beta1,2(I) chains of type I collagen were susceptible to Delta249-451 collagenase-3, which indicates that the catalytic domain displays telopeptidase activity, thereby generating alpha1,2(I) chains that are slightly shorter than those in native type I collagen. It can be concluded that the C-terminal domain is only essential for the triple helicase activity of collagenase-3. Binding of procollagenase-3 and active collagenase-3 to type I collagen is mediated by the C-terminal domain. Both collagenase-3 and Delta249-451 collagenase-3 hydrolyzed the large tenascin C isoform, fibronectin, recombinant fibronectin fragments, and type IV, IX, X, and XIV collagens; thus, these events were independent from C-terminal domain interactions. In contrast, the minor cartilage type XI collagen was resistant to cleavage. Kinetic analysis of the mechanism of inhibition of wild-type and Delta249-451 collagenase-3 by wild-type and mutant tissue inhibitors of metalloproteinase (TIMPs) revealed that the association rates for complex formation were influenced by both N- and C-terminal domain interactions. The C-terminal domain of wild-type collagenase-3 promoted increased association rates with the full-length inhibitors TIMP-1 and TIMP-3 and the hybrid N.TIMP-2/C.TIMP-1 by a factor of up to 33. In contrast, the association rates for complex formation with TIMP-2 and N.TIMP-1/C.TIMP-2 were only marginally affected by C-terminal domain interactions.
Collapse
Affiliation(s)
- V Knäuper
- Department of Cell and Molecular Biology, Strangeways Research Laboratory, Worts' Causeway, Cambridge CB1 4RN, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chandler S, Miller KM, Clements JM, Lury J, Corkill D, Anthony DC, Adams SE, Gearing AJ. Matrix metalloproteinases, tumor necrosis factor and multiple sclerosis: an overview. J Neuroimmunol 1997; 72:155-61. [PMID: 9042108 DOI: 10.1016/s0165-5728(96)00179-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The matrix metalloproteinases (MMPs) are a family of at least 14 zinc-dependent enzymes which are known to degrade the protein components of extracellular matrix. In addition, MMPs and related enzymes can also process a number of cell surface cytokines, receptors, and other soluble proteins. In particular we have shown that the release of the pro-inflammatory cytokine, tumor necrosis factor-alpha, from its membrane-bound precursor is an MMP-dependent process. MMPs are expressed by the inflammatory cells which are associated with CNS lesions in animal models of multiple sclerosis (MS) and in tissue from patients with the disease. MMP expression will contribute to the tissue destruction and inflammation in MS. Drugs which inhibit MMP activity are effective in animal models of MS and may prove to be useful therapies in the clinic.
Collapse
Affiliation(s)
- S Chandler
- British Biotech Pharmaceuticals Limited, Cowley, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Putnins EE, Firth JD, Uitto VJ. Stimulation of collagenase (matrix metalloproteinase-1) synthesis in histiotypic epithelial cell culture by heparin is enhanced by keratinocyte growth factor. Matrix Biol 1996; 15:21-9. [PMID: 8783184 DOI: 10.1016/s0945-053x(96)90123-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of heparin and heparan sulfate in the control of epithelial collagenase production was investigated utilizing a histiotypic cell culture model. The effect of keratinocyte growth factor (KGF), a heparin-binding growth factor, on collagenase secretion was also examined. Heparin, and, to a lesser extent, heparan sulfate induced release of a 58-kDa, gelatin-degrading enzyme which was subsequently identified as the collagenase, matrix metalloproteinase-1. The increase in collagenase secretion by heparin was further enhanced by the addition of KGF. KGF alone did not have any effect. Analysis of secreted radiolabelled proteins showed that the increase in collagenase activity was not due to a general increase in protein synthesis. Synthesis of collagenase protein was specifically increased by heparin and further increased by KGF plus heparin. Heparin and heparan sulfate in combination with KGF may thus have important roles in the regulation of epithelial cell collagenase under conditions such as inflammation and wound healing.
Collapse
Affiliation(s)
- E E Putnins
- Department of Oral Biology, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|