1
|
Woo ARE, Sze SK, Chung HH, Lin VCL. Delineation of critical amino acids in activation function 1 of progesterone receptor for recruitment of transcription coregulators. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:522-533. [DOI: 10.1016/j.bbagrm.2019.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/15/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022]
|
2
|
Parua PK, Ryan PM, Trang K, Young ET. Pichia pastoris 14-3-3 regulates transcriptional activity of the methanol inducible transcription factor Mxr1 by direct interaction. Mol Microbiol 2012; 85:282-98. [PMID: 22625429 DOI: 10.1111/j.1365-2958.2012.08112.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The zinc-finger transcription factor, Mxr1 activates methanol utilization and peroxisome biogenesis genes in the methylotrophic yeast, Pichia pastoris. Expression of Mxr1-dependent genes is regulated in response to various carbon sources by an unknown mechanism. We show here that this mechanism involves the highly conserved 14-3-3 proteins. 14-3-3 proteins participate in many biological processes in different eukaryotes. We have characterized a putative 14-3-3 binding region at Mxr1 residues 212-225 and mapped the major activation domain of Mxr1 to residues 246-280, and showed that phenylalanine residues in this region are critical for its function. Furthermore, we report that a unique and previously uncharacterized 14-3-3 family protein in P. pastoris complements Saccharomyces cerevisiae 14-3-3 functions and interacts with Mxr1 through its 14-3-3 binding region via phosphorylation of Ser215 in a carbon source-dependent manner. Indeed, our in vivo results suggest a carbon source-dependent regulation of expression of Mxr1-activated genes by 14-3-3 in P. pastoris. Interestingly, we observed 14-3-3-independent binding of Mxr1 to the promoters, suggesting a post-DNA binding function of 14-3-3 in regulating transcription. We provide the first molecular explanation of carbon source-mediated regulation of Mxr1 activity, whose mechanism involves a post-DNA binding role of 14-3-3.
Collapse
Affiliation(s)
- Pabitra K Parua
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
3
|
Dziedzic-Letka A, Rymarczyk G, Kapłon TM, Górecki A, Szamborska-Gbur A, Wojtas M, Dobryszycki P, Ożyhar A. Intrinsic disorder of Drosophila melanogaster hormone receptor 38 N-terminal domain. Proteins 2010; 79:376-92. [DOI: 10.1002/prot.22887] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
4
|
Watanabe T, Takeuchi H, Kubo T. Structural diversity and evolution of the N-terminal isoform-specific region of ecdysone receptor-A and -B1 isoforms in insects. BMC Evol Biol 2010; 10:40. [PMID: 20152013 PMCID: PMC2829036 DOI: 10.1186/1471-2148-10-40] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 02/12/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The ecdysone receptor (EcR) regulates various cellular responses to ecdysteroids during insect development. Insects have multiple EcR isoforms with different N-terminal A/B domains that contain the isoform-specific activation function (AF)-1 region. Although distinct physiologic functions of the EcR isoforms have been characterized in higher holometabolous insects, they remain unclear in basal direct-developing insects, in which only A isoform has been identified. To examine the structural basis of the EcR isoform-specific AF-1 regions, we performed a comprehensive structural comparison of the isoform-specific region of the EcR-A and -B1 isoforms in insects. RESULTS The EcR isoforms were newly identified in 51 species of insects and non-insect arthropods, including direct-developing ametabolous and hemimetabolous insects. The comprehensive structural comparison revealed that the isoform-specific region of each EcR isoform contained evolutionally conserved microdomain structures and insect subgroup-specific structural modifications. The A isoform-specific region generally contained four conserved microdomains, including the SUMOylation motif and the nuclear localization signal, whereas the B1 isoform-specific region contained three conserved microdomains, including an acidic activator domain-like motif. In addition, the EcR-B1 isoform of holometabolous insects had a novel microdomain at the N-terminal end. CONCLUSIONS Given that the nuclear receptor AF-1 is involved in cofactor recruitment and transcriptional regulation, the microdomain structures identified in the isoform-specific A/B domains might function as signature motifs and/or as targets for cofactor proteins that play essential roles in the EcR isoform-specific AF-1 regions. Moreover, the novel microdomain in the isoform-specific region of the holometabolous insect EcR-B1 isoform suggests that the holometabolous insect EcR-B1 acquired additional transcriptional regulation mechanisms.
Collapse
Affiliation(s)
- Takayuki Watanabe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
5
|
Nocula-Ługowska M, Rymarczyk G, Lisowski M, Ożyhar A. Isoform-specific variation in the intrinsic disorder of the ecdysteroid receptor N-terminal domain. Proteins 2009; 76:291-308. [DOI: 10.1002/prot.22342] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Abstract
Small lipophilic molecules such as steroidal hormones, retinoids, and free fatty acids control many of the reproductive, developmental, and metabolic processes in eukaryotes. The mediators of these effects are nuclear receptor proteins, ligand-activated transcription factors capable of regulating the expression of complex gene networks. This review addresses the structure and structural properties of nuclear receptors, focusing on the well-studied ligand-binding and DNA-binding domains as well as our still-emerging understanding of the largely unstructured N-terminal regions. To emphasize the allosteric interdependence among these subunits, a more detailed inspection of the structural properties of the human progesterone receptor is presented. Finally, this work is placed in the context of developing a quantitative and mechanistic understanding of nuclear receptor function.
Collapse
Affiliation(s)
- David L Bain
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | |
Collapse
|
7
|
Wardell SE, Kwok SC, Sherman L, Hodges RS, Edwards DP. Regulation of the amino-terminal transcription activation domain of progesterone receptor by a cofactor-induced protein folding mechanism. Mol Cell Biol 2005; 25:8792-808. [PMID: 16199860 PMCID: PMC1265796 DOI: 10.1128/mcb.25.20.8792-8808.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We previously identified a small basic leucine zipper (bZIP) protein, Jun dimerization protein 2 (JDP-2), that acts as a coregulator of the N-terminal transcriptional activation domain of progesterone receptor (PR). We show here that JDP-2, through interaction with the DNA binding domain (DBD), induces or stabilizes structure in the N-terminal domain in a manner that correlates with JDP-2 stimulation of transcriptional activity. Circular dichroism spectroscopy experiments showed that JDP-2 interaction caused a significant increase in overall helical content of a two-domain PR polypeptide containing the N-terminal domain and DBD and that the change in structure resides primarily in the N-terminal domain. Thermal melt curves showed that the JDP-2/PR complex is significantly more stable than either protein alone, and partial proteolysis confirmed that JDP-2 interaction alters conformation of the N-terminal domain of PR. Functional analysis of N-terminal domain mutants and receptor chimeras provides evidence that the stimulatory effect of JDP-2 on transcriptional activity of PR is mediated through an interdomain communication between the DBD and the N-terminal domain and that transcriptional activity and functional response to JDP-2 are mediated by multiple elements of the N-terminal domain as opposed to a discrete region.
Collapse
Affiliation(s)
- Suzanne E Wardell
- Molecular Biology Program, University of Colorado Health Sciences Center, Aurora, USA
| | | | | | | | | |
Collapse
|
8
|
Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B. Transcriptional activities of retinoic acid receptors. VITAMINS AND HORMONES 2005; 70:199-264. [PMID: 15727806 DOI: 10.1016/s0083-6729(05)70007-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin A derivatives plays a crucial role in embryonic development, as demonstrated by the teratogenic effect of either an excess or a deficiency in vitamin A. Retinoid effects extend however beyond embryonic development, and tissue homeostasis, lipid metabolism, cellular differentiation and proliferation are in part controlled through the retinoid signaling pathway. Retinoids are also therapeutically effective in the treatment of skin diseases (acne, psoriasis and photoaging) and of some cancers. Most of these effects are the consequences of retinoic acid receptors activation, which triggers transcriptional events leading either to transcriptional activation or repression of retinoid-controlled genes. Synthetic molecules are able to mimic part of the biological effects of the natural retinoic acid receptors, all-trans retinoic acid. Therefore, retinoic acid receptors are considered as highly valuable therapeutic targets and limiting unwanted secondary effects due to retinoid treatment requires a molecular knowledge of retinoic acid receptors biology. In this review, we will examine experimental evidence which provide a molecular basis for the pleiotropic effects of retinoids, and emphasize the crucial roles of coregulators of retinoic acid receptors, providing a conceptual framework to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Philippe Lefebvre
- INSERM U459 and Ligue Nationale Contre le Cancer, Faculté de Médecine de Lille, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
9
|
Kumar R, Thompson EB. Transactivation functions of the N-terminal domains of nuclear hormone receptors: protein folding and coactivator interactions. Mol Endocrinol 2003; 17:1-10. [PMID: 12511601 DOI: 10.1210/me.2002-0258] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The N-terminal domains (NTDs) of many members of the nuclear hormone receptor (NHR) family contain potent transcription-activating functions (AFs). Knowledge of the mechanisms of action of the NTD AFs has lagged, compared with that concerning other important domains of the NHRs. In part, this is because the NTD AFs appear to be unfolded when expressed as recombinant proteins. Recent studies have begun to shed light on the structure and function of the NTD AFs. Recombinant NTD AFs can be made to fold by application of certain osmolytes or when expressed in conjunction with a DNA-binding domain by binding that DNA-binding domain to a DNA response element. The sequence of the DNA binding site may affect the functional state of the AFs domain. If properly folded, NTD AFs can bind certain cofactors and primary transcription factors. Through these, and/or by direct interactions, the NTD AFs may interact with the AF2 domain in the ligand binding, carboxy-terminal portion of the NHRs. We propose models for the folding of the NTD AFs and their protein-protein interactions.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Human Biological Chemistry & Genetics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | |
Collapse
|
10
|
Tung L, Shen T, Abel MG, Powell RL, Takimoto GS, Sartorius CA, Horwitz KB. Mapping the unique activation function 3 in the progesterone B-receptor upstream segment. Two LXXLL motifs and a tryptophan residue are required for activity. J Biol Chem 2001; 276:39843-51. [PMID: 11546784 DOI: 10.1074/jbc.m106843200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Progesterone receptors (PR) contain three activation functions (AFs) that together define the extent to which they regulate transcription. AF1 and AF2 are common to the two isoforms of PR, PR-A and PR-B, whereas AF3 lies within the N-terminal 164 amino acids unique to PR-B, termed the "B-upstream segment" (BUS). To define the BUS regions that contribute to AF3 function, we generated a series of deletion and amino acid substitution mutants and tested them in three backgrounds as follows: BUS alone fused to the PR DNA binding domain (BUS-DBD), the entire PR-B N terminus linked to its DBD (NT-B), and full-length PR-B. Analyses of these mutants identified two regions in BUS whose loss reduces AF3 activity by more than 90%. These are associated with amino acids 54-90 (R1) and 120-154 (R2). R1 contains a consensus (55)LXXLL(59) motif (L1) identical to ones found in nuclear receptor co-activators. R2 is adjacent to a second nuclear receptor box (L2) at (115)LXXLL(119) and contains a conserved tryptophan (Trp-140). Their mutation completely disrupts AF3 activity in a promoter and cell type-independent manner. Critical mutations elicited similar effects on all three B-receptor backgrounds. This underscores the probability that these mutations alter a process linking BUS structure to the function of full-length PR-B in a fundamental way.
Collapse
Affiliation(s)
- L Tung
- Department of Medicine, Division of Endocrinology, University of Colorado Health Sciences Center, 4200 East 9th Ave., Denver, CO 80262, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Plassat J, Penna L, Chambon P, Rochette-Egly C. The conserved amphipatic alpha-helical core motif of RARgamma and RARalpha activating domains is indispensable for RA-induced differentiation of F9 cells. J Cell Sci 2000; 113 ( Pt 16):2887-95. [PMID: 10910773 DOI: 10.1242/jcs.113.16.2887] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In monolayers cultures, retinoic acid (RA) induces the differentiation of F9 embryonal carcinomal (EC) cells into primitive endoderm-like cells, while a combination of RA and dibutyryl cAMP leads to parietal endoderm-like differentiation. Knock out of all RARgamma isoforms (RARgamma(-/-) line) drastically impairs primitive and subsequent parietal endodermal differentiation and affects the induction of many endogenous RA-responsive genes. Using lines that reexpress RARgamma2 or overexpress RARalpha1 lacking their AF-2AD core (RARgammadeltaAF2 and RARalphadeltaAF2, respectively), we show that this conserved amphipatic alpha-helical motif (helix 12) of the ligand binding domain, and therefore the activation function AF-2 of both receptors, is required for the induction of differentiation and target gene expression upon RA treatment of F9 EC cells. We also show that these deletion mutants behave as dominant negatives.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Carcinoma, Embryonal
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Line, Transformed
- Conserved Sequence
- Endoderm/cytology
- Endoderm/physiology
- Gene Deletion
- Gene Expression Regulation, Neoplastic/physiology
- Mutagenesis/physiology
- Promoter Regions, Genetic/physiology
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Transfection
- Tretinoin/metabolism
- Tretinoin/pharmacology
- Tumor Cells, Cultured
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- J Plassat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, BP 163, CU de Strasbourg, France
| | | | | | | |
Collapse
|
12
|
Hi R, Osada S, Yumoto N, Osumi T. Characterization of the amino-terminal activation domain of peroxisome proliferator-activated receptor alpha. Importance of alpha-helical structure in the transactivating function. J Biol Chem 1999; 274:35152-8. [PMID: 10574998 DOI: 10.1074/jbc.274.49.35152] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The transactivating function of the A/B region of mouse peroxisome proliferator-activated receptor alpha (PPARalpha; NR1C1) was characterized. The truncated version of PPARalpha lacking the A/B region had 60-70% lower transactivating function than full-length PPARalpha in both the presence and absence of the peroxisome proliferator ciprofibrate. When tethered to the yeast Gal4 DNA-binding domain, the A/B region exhibited the significant ligand-independent transactivating function, AF-1 activity. The first 44 amino acid residues were necessary for maximal transactivation, and the minimally essential region was further delimited to amino acids 15-44. This region is highly enriched with acidic residues, but mutational analyses showed that the protein structure, rather than the negative charge itself, was important for the AF-1 activity. An alpha-helical configuration was predicted for this region, and a CD spectrum analysis of the synthetic peptides showed that mutant sequences with higher AF-1 activity have higher helical contents and vice versa. The most active mutant, in which Met(31) was replaced with Leu, was approximately 5-fold more potent than the wild-type A/B region. These findings indicate that the AF-1 region of PPARalpha is an acidic activation domain and that the helix-forming property is implicated in the transactivating function.
Collapse
Affiliation(s)
- R Hi
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, 3-2-1 Koto, Kamigori, Hyogo 678-1297, Japan
| | | | | | | |
Collapse
|
13
|
Kester HA, Blanchetot C, den Hertog J, van der Saag PT, van der Burg B. Transforming growth factor-beta-stimulated clone-22 is a member of a family of leucine zipper proteins that can homo- and heterodimerize and has transcriptional repressor activity. J Biol Chem 1999; 274:27439-47. [PMID: 10488076 DOI: 10.1074/jbc.274.39.27439] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TGF-beta-stimulated clone-22 (TSC-22) encodes a leucine zipper-containing protein that is highly conserved during evolution. Two homologues are known that share a similar leucine zipper domain and another conserved domain (designated the TSC box). Only limited data are available on the function of TSC-22 and its homologues. TSC-22 is transcriptionally up-regulated by many different stimuli, including anti-cancer drugs and growth inhibitors, and recent data suggest that TSC-22 may play a suppressive role in tumorigenesis. In this paper we show that TSC-22 forms homodimers via its conserved leucine zipper domain. Using a yeast two-hybrid screen, we identified a TSC-22 homologue (THG-1) as heterodimeric partner. Furthermore, we report the presence of two more mammalian family members with highly conserved leucine zippers and TSC boxes. Interestingly, both TSC-22 and THG-1 have transcriptional repressor activity when fused to a heterologous DNA-binding domain. The repressor activity of TSC-22 appears sensitive for promoter architecture, but not for the histone deacetylase inhibitor trichostatin A. Mutational analysis showed that this repressor activity resides in the non-conserved regions of the protein and is enhanced by the conserved dimerization domain. Our results suggest that TSC-22 belongs to a family of leucine zipper-containing transcription factors that can homodimerize and heterodimerize with other family members and that at least two TSC-22 family members may be repressors of transcription.
Collapse
Affiliation(s)
- H A Kester
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Abstract
The functions of the group of proteins known as nuclear receptors will be understood fully only when their working three-dimensional structures are known. These ligand-activated transcription factors belong to the steroid-thyroid-retinoid receptor superfamily, which include the receptors for steroids, thyroid hormone, vitamins A- and D-derived hormones, and certain fatty acids. The majority of family members are homologous proteins for which no ligand has been identified (the orphan receptors). Molecular cloning and structure/function analyses have revealed that the members of the superfamily have a common functional domain structure. This includes a variable N-terminal domain, often important for transactivation of transcription; a well conserved DNA-binding domain, crucial for recognition of specific DNA sequences and protein:protein interactions; and at the C-terminal end, a ligand-binding domain, important for hormone binding, protein: protein interactions, and additional transactivation activity. Although the structure of some independently expressed single domains of a few of these receptors have been solved, no holoreceptor structure or structure of any two domains together is yet available. Thus, the three-dimensional structure of the DNA-binding domains of the glucocorticoid, estrogen, retinoic acid-beta, and retinoid X receptors, and of the ligand-binding domains of the thyroid, retinoic acid-gamma, retinoid X, estrogen, progesterone, and peroxisome proliferator activated-gamma receptors have been solved. The secondary structure of the glucocorticoid receptor N-terminal domain, in particular the taul transcription activation region, has also been studied. The structural studies available not only provide a beginning stereochemical knowledge of these receptors, but also a basis for understanding some of the topological details of the interaction of the receptor complexes with coactivators, corepressors, and other components of the transcriptional machinery. In this review, we summarize and discuss the current information on structures of the steroid-thyroid-retinoid receptors.
Collapse
Affiliation(s)
- R Kumar
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch at Galveston, 77555-0645, USA
| | | |
Collapse
|
15
|
Green VJ, Kokkotou E, Ladias JA. Critical structural elements and multitarget protein interactions of the transcriptional activator AF-1 of hepatocyte nuclear factor 4. J Biol Chem 1998; 273:29950-7. [PMID: 9792714 DOI: 10.1074/jbc.273.45.29950] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nuclear receptor hepatocyte nuclear factor 4 (HNF-4) is an important regulator of several genes involved in diverse metabolic and developmental pathways. Mutations in the HNF-4A gene are responsible for the maturity-onset diabetes of the young type 1. Recently, we showed that the 24 N-terminal residues of HNF-4 function as an acidic transcriptional activator, termed AF-1 (Hadzopoulou-Cladaras, M., Kistanova, E., Evagelopoulou, C., Zeng, S. , Cladaras C., and Ladias, J. A. A. (1997) J. Biol. Chem. 272, 539-550). To identify the critical residues for this activator, we performed an extensive genetic analysis using site-directed mutagenesis. We showed that the aromatic and bulky hydrophobic residues Tyr6, Tyr14, Phe19, Lys10, and Lys17 are essential for AF-1 function. To a lesser degree, five acidic residues are also important for optimal activity. Positional changes of Tyr6 and Tyr14 reduced AF-1 activity, underscoring the importance of primary structure for this activator. Our analysis also indicated that AF-1 is bipartite, consisting of two modules that synergize to activate transcription. More important, AF-1 shares common structural motifs and molecular targets with the activators of the tumor suppressor protein p53 and NF-kappaB-p65, suggesting similar mechanisms of action. Remarkably, AF-1 interacted specifically with multiple transcriptional targets, including the TATA-binding protein; the TATA-binding protein-associated factors TAFII31 and TAFII80; transcription factor IIB; transcription factor IIH-p62; and the coactivators cAMP-responsive element-binding protein-binding protein, ADA2, and PC4. The interaction of AF-1 with proteins that regulate distinct steps of transcription may provide a mechanism for synergistic activation of gene expression by AF-1.
Collapse
Affiliation(s)
- V J Green
- Gene Regulation Laboratory and Macromolecular Crystallography Unit, Division of Experimental Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
16
|
Almlöf T, Gustafsson JA, Wright AP. Role of hydrophobic amino acid clusters in the transactivation activity of the human glucocorticoid receptor. Mol Cell Biol 1997; 17:934-45. [PMID: 9001247 PMCID: PMC231819 DOI: 10.1128/mcb.17.2.934] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have performed a mutagenesis analysis of the 58-amino-acid tau1-core peptide, which represents the core transactivation activity of the tau1 transactivation domain from the glucocorticoid receptor. Mutants with altered activity were identified by phenotypic screening in the yeast Saccharomyces cerevisiae. Most mutants with reduced activity had substitutions of hydrophobic amino acids. Most single-substitution mutants with reduced activity were localized near the N terminus of the tau1-core within a segment that has been shown previously to have a propensity for alpha-helix conformation, suggesting that this helical region is of predominant importance. The particular importance of hydrophobic residues within this region was confirmed by comparing the activities of alanine substitutions of the hydrophobic residues in this and two other helical regions. The hydrophobic residues were shown to be important for the transactivation activity of both the isolated tau1-core and the intact glucocorticoid receptor in mammalian cells. Rare mutations in helical regions I and II gave rise to increased transcriptional activation activity. These mutations increase the hydrophobicity of hydrophobic patches on each of these helices, suggesting a relationship between the hydrophobicity of the patches and transactivation activity. However, certain nonhydrophobic residues are also important for activity. Interestingly, helical region I partially matches a consensus motif found in the retinoic acid receptor, VP16, and several other activator proteins.
Collapse
Affiliation(s)
- T Almlöf
- Center for Biotechnology, Department of Biosciences, Karolinska Institute, Novum, Huddinge, Sweden.
| | | | | |
Collapse
|
17
|
Hadzopoulou-Cladaras M, Kistanova E, Evagelopoulou C, Zeng S, Cladaras C, Ladias JA. Functional domains of the nuclear receptor hepatocyte nuclear factor 4. J Biol Chem 1997; 272:539-50. [PMID: 8995295 DOI: 10.1074/jbc.272.1.539] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The hepatocyte nuclear factor 4 (HNF-4) is a member of the nuclear receptor superfamily and participates in the regulation of several genes involved in diverse metabolic pathways and developmental processes. To date, the functional domains of this nuclear receptor have not been identified, and it is not known whether its transcriptional activity is regulated by a ligand or other signals. In this report, we show that HNF-4 contains two transactivation domains, designated AF-1 and AF-2, which activate transcription in a cell type-independent manner. AF-1 consists of the extreme N-terminal 24 amino acids and functions as a constitutive autonomous activator of transcription. This short transactivator belongs to the class of acidic activators, and it is predicted to adopt an amphipathic alpha-helical structure. In contrast, the AF-2 transactivator is complex, spanning the 128-366 region of HNF-4, and it cannot be further dissected without impairing activity. The 360-366 region of HNF-4 contains a motif that is highly conserved among transcriptionally active nuclear receptors, and it is essential for AF-2 activity, but it is not necessary for dimerization and DNA binding of HNF-4. Thus, HNF-4 deletion mutants lacking the 361-465 region bind efficiently to DNA as homo- and heterodimers and behave as dominant negative mutants. Remarkably, the full transactivation potential of AF-2 is inhibited by the region spanning residues 371-465 (region F). The inhibitory effect of region F on the HNF-4 AF-2 activity is a unique feature among members of the nuclear receptor superfamily, and we propose that it defines a distinct regulatory mechanism of transcriptional activation by HNF-4.
Collapse
Affiliation(s)
- M Hadzopoulou-Cladaras
- Department of Medicine and Biochemistry, Cardiovascular Institute, Boston University School of Medicine, Massachusetts 02118-2394, USA
| | | | | | | | | | | |
Collapse
|
18
|
Folkers GE, Van der Burg B, Van der Saag PT. A role for cofactors in synergistic and cell-specific activation by retinoic acid receptors and retinoid X receptor. J Steroid Biochem Mol Biol 1996; 56:119-29. [PMID: 8603032 DOI: 10.1016/0960-0760(95)00229-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transcriptional activation is thought to be mediated by DNA-bound activators through interaction with a basal transcription factor thereby stabilizing the pre-initiation complex. For such interaction cofactors such as TAFs, bridging proteins, mediators or intermediary proteins are required by binding simultaneously to the activator and the target. We have investigated the activation functions (AFs) of both RARbeta and RXRalpha and show that both activators contain two homologous AFs. By comparing the capacity to activate transcription by these AFs on several promoters, both as full-length receptors and as fusion-proteins of AFs with the DNA-binding domain of the yeast transcription factor GAL-4, we were able to show that these AFs function by different mechanisms. We found that the activity of these AFs is cell-type specific, as they are more active in certain cell lines than in others. Furthermore we observed that the AFs of RARbeta and RXRalpha can activate transcription synergistically both as GAL-fusion protein and with full-length receptors. For AF-2 of RAR beta we observed cell type-dependent difference in synergistic activation and we show that the E1A protein, which functions as a cofactor for RAR beta, permits synergistic activation in cell lines in which in the absence of this cofactor transcription occurs non-synergistically. We propose a model in which several non cell type specific cofactors and cell-specific cofactors act together to form a more stable pre-initiation complex explaining the observed cell-specific synergistic activation.
Collapse
Affiliation(s)
- G E Folkers
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, Netherlands
| | | | | |
Collapse
|