1
|
Smith SM, Carew NT, Milcarek C. RNA polymerases in plasma cells trav-ELL2 the beat of a different drum. World J Immunol 2015; 5:99-112. [DOI: 10.5411/wji.v5.i3.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/19/2015] [Accepted: 11/17/2015] [Indexed: 02/05/2023] Open
Abstract
There is a major transformation in gene expression between mature B cells (including follicular, marginal zone, and germinal center cells) and antibody secreting cells (ASCs), i.e., ASCs, (including plasma blasts, splenic plasma cells, and long-lived bone marrow plasma cells). This significant change-over occurs to accommodate the massive amount of secretory-specific immunoglobulin that ASCs make and the export processes itself. It is well known that there is an up-regulation of a small number of ASC-specific transcription factors Prdm1 (B-lymphocyte-induced maturation protein 1), interferon regulatory factor 4, and Xbp1, and the reciprocal down-regulation of Pax5, Bcl6 and Bach2, which maintain the B cell program. Less well appreciated are the major alterations in transcription elongation and RNA processing occurring between B cells and ASCs. The three ELL family members ELL1, 2 and 3 have different protein sequences and potentially distinct cellular roles in transcription elongation. ELL1 is involved in DNA repair and small RNAs while ELL3 was previously described as either testis or stem-cell specific. After B cell stimulation to ASCs, ELL3 levels fall precipitously while ELL1 falls off slightly. ELL2 is induced at least 10-fold in ASCs relative to B cells. All of these changes cause the RNA Polymerase II in ASCs to acquire different properties, leading to differences in RNA processing and histone modifications.
Collapse
|
2
|
Development of an enhanced B-specific lentiviral vector expressing BTK: a tool for gene therapy of XLA. Gene Ther 2008; 15:942-52. [PMID: 18323795 DOI: 10.1038/gt.2008.17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Further development of haematopoietic stem cell (HSC) gene therapy will depend on enhancement of gene transfer safety: ad hoc improvement of vector design relating to each particular disease is thus a crucial issue for HSC gene therapy. We modified a previously described lentiviral vector by adding the Emumar B-specific enhancer to a human CD19 promoter-derived sequence (Mol Ther 2004;10:45-56). We thus significantly improved the level of expression of the green fluorescent protein (GFP) reporter gene while retaining the specificity of expression in B-cell progeny of transduced human CD34+ progenitor cells obtained from cord blood or adult bone marrow. Indeed, GFP was strongly expressed from early medullary pro-B cells to splenic mature B cells whereas transgene expression remained low in transduced immature progenitors as in myeloid and T-lymphoid progeny retrieved from xenografted NOD/SCID/gammac(null) mice. Using this lentiviral vector, we further demonstrated the possibility to express a functional human BTK protein in long-term human CD34+ cell B-lymphoid progeny. This newly designed lentiviral vector fulfils one of the pre-requisites for the development of efficient and safe gene therapy for X-linked agammaglobulinaemia, the most common primary humoral immunodeficiency disorder.
Collapse
|
3
|
Platts AE, Quayle AK, Krawetz SA. In-silico prediction and observations of nuclear matrix attachment. Cell Mol Biol Lett 2006; 11:191-213. [PMID: 16847565 PMCID: PMC6276010 DOI: 10.2478/s11658-006-0016-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/26/2006] [Indexed: 11/30/2022] Open
Abstract
The nuclear matrix is a functionally adaptive structural framework interior to the nuclear envelope. The nature and function of this nuclear organizer remains the subject of widespread discussion in the epigenetic literature. To draw this discussion together with a view to suggest a way forward we summarize the biochemical evidence for the modalities of DNA-matrix binding alongside the in-silico predictions. Concordance is exhibited at various, but not all levels. On the one hand, both the reiteration and sequence similarity of some elements of Matrix Attachment Regions suggest conservation. On the other hand, in-silico predictions suggest additional unique components. In bringing together biological and sequence evidence we conclude that binding may be hierarchical in nature, reflective of a biological role in replicating, transcribing and potentiating chromatin. Nuclear matrix binding may well be more complex than the widely accepted simple loop model.
Collapse
Affiliation(s)
- Adrian E. Platts
- Department of Obstetrics and Gynecology, University School of Medicine, 253 C.S. Mott Center, 275 E Hancock, Detroit, MI 48201 USA
| | - Amelia K. Quayle
- The Center for Molecular Medicine and Genetics, University School of Medicine, 253 C.S. Mott Center, 275 E Hancock, Detroit, MI 48201 USA
| | - Stephen A. Krawetz
- Department of Obstetrics and Gynecology, University School of Medicine, 253 C.S. Mott Center, 275 E Hancock, Detroit, MI 48201 USA
- The Center for Molecular Medicine and Genetics, University School of Medicine, 253 C.S. Mott Center, 275 E Hancock, Detroit, MI 48201 USA
- Institute for Scientific Computing Wayne State, University School of Medicine, 253 C.S. Mott Center, 275 E Hancock, Detroit, MI 48201 USA
| |
Collapse
|
4
|
Bode J, Winkelmann S, Götze S, Spiker S, Tsutsui K, Bi C, A K P, Benham C. Correlations between scaffold/matrix attachment region (S/MAR) binding activity and DNA duplex destabilization energy. J Mol Biol 2005; 358:597-613. [PMID: 16516920 DOI: 10.1016/j.jmb.2005.11.073] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 11/02/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022]
Abstract
Scaffold or matrix-attachment regions (S/MARs) are thought to be involved in the organization of eukaryotic chromosomes and in the regulation of several DNA functions. Their characteristics are conserved between plants and humans, and a variety of biological activities have been associated with them. The identification of S/MARs within genomic sequences has proved to be unexpectedly difficult, as they do not appear to have consensus sequences or sequence motifs associated with them. We have shown that S/MARs do share a characteristic structural property, they have a markedly high predicted propensity to undergo strand separation when placed under negative superhelical tension. This result agrees with experimental observations, that S/MARs contain base-unpairing regions (BURs). Here, we perform a quantitative evaluation of the association between the ease of stress-induced DNA duplex destabilization (SIDD) and S/MAR binding activity. We first use synthetic oligomers to investigate how the arrangement of localized unpairing elements within a base-unpairing region affects S/MAR binding. The organizational properties found in this way are applied to the investigation of correlations between specific measures of stress-induced duplex destabilization and the binding properties of naturally occurring S/MARs. For this purpose, we analyze S/MAR and non-S/MAR elements that have been derived from the human genome or from the tobacco genome. We find that S/MARs exhibit long regions of extensive destabilization. Moreover, quantitative measures of the SIDD attributes of these fragments calculated under uniform conditions are found to correlate very highly (r2>0.8) with their experimentally measured S/MAR-binding strengths. These results suggest that duplex destabilization may be involved in the mechanisms by which S/MARs function. They suggest also that SIDD properties may be incorporated into an improved computational strategy to search genomic DNA sequences for sites having the necessary attributes to function as S/MARs, and even to estimate their relative binding strengths.
Collapse
Affiliation(s)
- Jürgen Bode
- German Research Center for Biotechnology, RDIF/Epigenetic Regulation, D-38124 Braunschweig, Mascheroder Weg 1, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kaul-Ghanekar R, Majumdar S, Jalota A, Gulati N, Dubey N, Saha B, Chattopadhyay S. Abnormal V(D)J recombination of T cell receptor beta locus in SMAR1 transgenic mice. J Biol Chem 2004; 280:9450-9. [PMID: 15623522 DOI: 10.1074/jbc.m412206200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scaffold/matrix-associated region-1-binding protein (SMAR1) specifically interacts with the MARbeta sequence, which is located 400-bp upstream of the murine TCRbeta enhancer and is highly expressed during the DP stage of thymocyte development. To further analyze the functions of SMAR1, transgenic mice were generated that express SMAR1 in a tissue-independent manner. SMAR1-overexpressing mice exhibit severely altered frequency of the T cells expressing commonly used Vbetas (Vbeta5.1/5.2 and Vbeta8.1/8.2/8.3). The rearrangements of Vbeta5.1/5.2, Vbeta8.1/8.2/8.3 loci are also reduced in SMAR1 transgenic mice. The T cells in SMAR1 transgenic mice exhibit a mild perturbation at the early DN stage. SMAR1 transgenic mice exhibit hypercellular lymph nodes and spleen accompanied with prominent architectural defects in these organs. These results indicate that SMAR1 plays an important role in the regulation of T cell development as well as V(D)J recombination besides maintaining the architecture of the lymphoid organs.
Collapse
Affiliation(s)
- Ruchika Kaul-Ghanekar
- National Center for Cell Science, Pune University Campus, Ganeshkhind, Pune 411007, India
| | | | | | | | | | | | | |
Collapse
|
6
|
Kaul-Ghanekar R, Jalota A, Pavithra L, Tucker P, Chattopadhyay S. SMAR1 and Cux/CDP modulate chromatin and act as negative regulators of the TCRbeta enhancer (Ebeta). Nucleic Acids Res 2004; 32:4862-75. [PMID: 15371550 PMCID: PMC519105 DOI: 10.1093/nar/gkh807] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chromatin modulation at various cis-acting elements is critical for V(D)J recombination during T and B cell development. MARbeta, a matrix-associated region (MAR) located upstream of the T cell receptor beta (TCRbeta) enhancer (Ebeta), serves a crucial role in silencing Ebeta-mediated TCR activation. By DNaseI hypersensitivity assays, we show here that overexpression of the MAR binding proteins SMAR1 and Cux/CDP modulate the chromatin structure at MARbeta. We further demonstrate that the silencer function of MARbeta is mediated independently by SMAR1 and Cux/CDP as judged by their ability to repress Ebeta-dependent reporter gene expression. Moreover, the repressor activity of SMAR1 is strongly enhanced in the presence of Cux/CDP. These two proteins physically interact with each other and colocalize within the perinuclear region through a SMAR1 domain required for repression. The repression domain of SMAR1 is separate from the MARbeta binding domain and contains a nuclear localization signal and an arginine-serine (RS)-rich domain, characteristic of pre-mRNA splicing regulators. Our data suggest that at the double positive stage of T cell development, cis-acting MARbeta elements recruit the strong negative regulators Cux and SMAR1 to control Ebeta-mediated recombination and transcription.
Collapse
|
7
|
Goebel P, Montalbano A, Ayers N, Kompfner E, Dickinson L, Webb CF, Feeney AJ. High frequency of matrix attachment regions and cut-like protein x/CCAAT-displacement protein and B cell regulator of IgH transcription binding sites flanking Ig V region genes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2477-87. [PMID: 12193717 DOI: 10.4049/jimmunol.169.5.2477] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A major component in controlling V(D)J recombination is differential accessibility through localized changes in chromatin structure. Attachment of DNA to the nuclear matrix via matrix attachment region (MAR) sequences, and interaction with MAR-binding proteins have been shown to alter chromatin conformation, promote histone acetylation, and influence gene transcription. In this study, the flanking regions of several human and mouse Ig V(H) and Ig Vkappa genes were analyzed extensively for the presence of MARs by in vitro matrix-binding assay, and for interaction with the MAR-binding proteins cut-like protein x/CCAAT-displacement protein (Cux/CDP), B cell regulator of IgH transcription (Bright), and special AT-rich sequence-binding protein (SATB1) by EMSA. Cux/CDP and SATB1 are associated with repression, while Bright is an activator of Ig transcription. Binding sites were identified in the vicinity of all analyzed Ig V genes, and were also found flanking TCR Vbeta genes. We also show that the binding sites of the different factors do not always occur at MAR sequences. MAR sequences were also found within the Ig V loci at a much higher frequency than throughout the rest of the genome. Overall, the frequency and location of binding sites relative to the coding regions, and the strength of DNA-protein interaction showed much heterogeneity. Thus, variations in factor binding and MAR activity could potentially influence the extent of localized accessibility to V(D)J recombination and thus could play a role in unequal rearrangement of individual V genes. These sites could also contribute to effective transcription of Ig genes in mature and/or activated B cells, bringing both the promoter as well as the enhancer regions into close proximity at the nuclear matrix.
Collapse
Affiliation(s)
- Peter Goebel
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Frisch M, Frech K, Klingenhoff A, Cartharius K, Liebich I, Werner T. In silico prediction of scaffold/matrix attachment regions in large genomic sequences. Genome Res 2002; 12:349-54. [PMID: 11827955 PMCID: PMC155272 DOI: 10.1101/gr.206602] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Scaffold/matrix attachment regions (S/MARs) are essential regulatory DNA elements of eukaryotic cells. They are major determinants of locus control of gene expression and can shield gene expression from position effects. Experimental detection of S/MARs requires substantial effort and is not suitable for large-scale screening of genomic sequences. In silico prediction of S/MARs can provide a crucial first selection step to reduce the number of candidates. We used experimentally defined S/MAR sequences as the training set and generated a library of new S/MAR-associated, AT-rich patterns described as weight matrices. A new tool called SMARTest was developed that identifies potential S/MARs by performing a density analysis based on the S/MAR matrix library (http://www.genomatix.de/cgi-bin/smartest_pd/smartest.pl). S/MAR predictions were evaluated by using six genomic sequences from animal and plant for which S/MARs and non-S/MARs were experimentally mapped. SMARTest reached a sensitivity of 38% and a specificity of 68%. In contrast to previous algorithms, the SMARTest approach does not depend on the sequence context and is suitable to analyze long genomic sequences up to the size of whole chromosomes. To demonstrate the feasibility of large-scale S/MAR prediction, we analyzed the recently published chromosome 22 sequence and found 1198 S/MAR candidates.
Collapse
|
9
|
Sinclair AM, Lee JA, Goldstein A, Xing D, Liu S, Ju R, Tucker PW, Neufeld EJ, Scheuermann RH. Lymphoid apoptosis and myeloid hyperplasia in CCAAT displacement protein mutant mice. Blood 2001; 98:3658-3667. [PMID: 11739170 DOI: 10.1182/blood.v98.13.3658] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
CCAAT displacement protein (cux/CDP) is an atypical homeodomain protein that represses expression of several developmentally regulated lymphoid and myeloid genes in vitro, including gp91-phox, immunoglobulin heavy chain, the T-cell receptor beta and gamma chains, and CD8. To determine how this activity affects cell development in vivo, a hypomorphic allele of cux/CDP was created by gene targeting. Homozygous mutant mice (cux/CDP(Delta HD/Delta HD)) demonstrated a partial neonatal lethality phenotype. Surviving animals suffered from a wasting disease, which usually resulted in death between 2 and 3 weeks of age. Analysis of T lymphopoiesis demonstrated that cux/CDP(Delta HD/Delta HD) mice had dramatically reduced thymic cellularity due to enhanced apoptosis, with a preferential loss of CD4(+)CD8(+) thymocytes. Ectopic CD25 expression was also observed in maturing thymocytes. B lymphopoiesis was also perturbed, with a 2- to 3-fold reduction in total bone marrow B-lineage cells and a preferential loss of cells in transition from pro-B/pre-BI to pre-BII stages due to enhanced apoptosis. These lymphoid abnormalities were independent of effects related to antigen receptor rearrangement. In contrast to the lymphoid demise, cux/CDP(Delta HD/Delta HD) mice demonstrated myeloid hyperplasia. Bone marrow reconstitution experiments identified that many of the hematopoietic defects were linked to microenvironmental effects, suggesting that underexpression of survival factors or overexpression of death-inducing factors accounted for the phenotypes observed. Tumor necrosis factor (TNF) levels were elevated in several tissues, especially thymus, suggesting that TNF may be a target gene for cux/CDP-mediated repression. These data suggest that cux/CDP regulates normal hematopoiesis, in part, by modulating the levels of survival and/or apoptosis factors expressed by the microenvironment.
Collapse
Affiliation(s)
- A M Sinclair
- Department of Pathology and Laboratory of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas, 75390-9072, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kaplan MH, Zong RT, Herrscher RF, Scheuermann RH, Tucker PW. Transcriptional activation by a matrix associating region-binding protein. contextual requirements for the function of bright. J Biol Chem 2001; 276:21325-30. [PMID: 11294836 DOI: 10.1074/jbc.m100836200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Bright (B cell regulator of IgH transcription) is a B cell-specific, matrix associating region-binding protein that transactivates gene expression from the IgH intronic enhancer (E mu). We show here that Bright has multiple contextual requirements to function as a transcriptional activator. Bright cannot transactivate via out of context, concatenated binding sites. Transactivation is maximal on integrated substrates. Two of the three previously identified binding sites in E mu are required for full Bright transactivation. The Bright DNA binding domain defined a new family, which includes SWI1, a component of the SWI.SNF complex shown to have high mobility group-like DNA binding characteristics. Similar to one group of high mobility group box proteins, Bright distorts E mu binding site-containing DNA on binding, supporting the concept that it mediates E mu remodeling. Transfection studies further implicate Bright in facilitating spatially separated promoter-enhancer interactions in both transient and stable assays. Finally, we show that overexpression of Bright leads to enhanced DNase I sensitivity of the endogenous E mu matrix associating regions. These data further suggest that Bright may contribute to increased gene expression by remodeling the immunoglobulin locus during B cell development.
Collapse
Affiliation(s)
- M H Kaplan
- Institute for Molecular and Cellular Biology, University of Texas at Austin, Austin, Texas 78712-1075, USA
| | | | | | | | | |
Collapse
|
11
|
Zong RT, Das C, Tucker PW. Regulation of matrix attachment region-dependent, lymphocyte-restricted transcription through differential localization within promyelocytic leukemia nuclear bodies. EMBO J 2000; 19:4123-33. [PMID: 10921892 PMCID: PMC306587 DOI: 10.1093/emboj/19.15.4123] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/1999] [Revised: 04/25/2000] [Accepted: 06/05/2000] [Indexed: 01/19/2023] Open
Abstract
Bright (B cell regulator of IgH transcription) transactivates the immunoglobulin heavy chain (IgH) intronic enhancer, Emicro, by binding to matrix attachment regions (MARs), sites necessary for DNA attachment to the nuclear matrix. Here we report that Bright interacts with the ubiquitous autoantigen Sp100, a component of promyelocytic leukemia nuclear bodies (PML NBs), and with LYSp100B/Sp140, the lymphoid-restricted homolog of Sp100. Both in intact cells and in nuclear matrix preparations, the majority of Bright and Sp100 colocalize within PML NBs. In contrast, Bright colocalizes with only a small fraction of LYSp100B while inducing a redistribution of the majority of LYSp100B from its associated nuclear domains (LANDs) into nucleoplasm and cytoplasm. Sp100 represses the MAR-binding and transactivation activity of Bright. LYSp100B interacts more weakly with Bright but requires significantly higher levels than Sp100 to inhibit MAR binding. However, it strongly stimulates Bright transactivation through E mu. We suggest that Sp100 and LYSp100B interactions with Bright have different consequences for IgH transcription, potentially through differential association of E mu MARs with nuclear matrix- associated PML NBs and LANDs.
Collapse
Affiliation(s)
- R T Zong
- Department of Molecular Genetics and The Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
12
|
Zhu Q, Gregg K, Lozano M, Liu J, Dudley JP. CDP is a repressor of mouse mammary tumor virus expression in the mammary gland. J Virol 2000; 74:6348-57. [PMID: 10864645 PMCID: PMC112141 DOI: 10.1128/jvi.74.14.6348-6357.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2000] [Accepted: 04/19/2000] [Indexed: 01/19/2023] Open
Abstract
Mouse mammary tumor virus (MMTV) transcription is highest in the lactating mammary gland but is detectable in a variety of other tissues. Previous results have shown that MMTV expression is suppressed in lymphoid and other tissues through the binding of the homeodomain-containing repressor special AT-rich binding protein 1 to a negative regulatory element (NRE) in the MMTV long terminal repeat (LTR). Another homeoprotein repressor, CCAAT displacement protein (CDP), also binds to the MMTV NRE, but a role for CDP in MMTV transcriptional suppression has not yet been demonstrated. In this paper, we show that the level of CDP decreases during development of the mammary gland and that this decline in CDP level correlates with the known increase in MMTV expression observed during mammary gland differentiation. Moreover, CDP overexpression was able to suppress MMTV LTR-reporter gene activity up to 20-fold in transient-transfection assays of mouse mammary cells. To determine if this effect was due to direct binding of CDP to the promoter-proximal NRE, we performed DNase I protection assays to map two CDP-binding sites from +835 to +845 and +920 to +931 relative to the first base of the LTR. Mutations engineered into each of these sites decreased CDP binding to the proximal NRE, whereas a combination of these mutations further reduced binding. Subsequently, each of these mutations was introduced into the full-length MMTV LTR upstream of the luciferase reporter gene. Analysis of stable transfectants of LTR constructs showed that CDP binding site mutations in the proximal NRE elevated reporter gene expression two- to sixfold compared to wild-type LTR constructs. Thus, MMTV expression increases during mammary gland development, in part due to decreased CDP levels and CDP binding to the LTR. Together, these experiments provide the first evidence that CDP acts as a repressor of MMTV transcription in the mammary gland.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- DNA Footprinting
- DNA, Viral/genetics
- DNA, Viral/physiology
- Deoxyribonuclease I
- Female
- Gene Expression Regulation
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/virology
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/metabolism
- Mice
- Mice, Inbred BALB C
- Mutagenesis
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Terminal Repeat Sequences
Collapse
Affiliation(s)
- Q Zhu
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78705, USA
| | | | | | | | | |
Collapse
|
13
|
Vassetzky Y, Hair A, Méchali M. Rearrangement of chromatin domains during development in Xenopus. Genes Dev 2000. [DOI: 10.1101/gad.14.12.1541] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A dynamic change in the organization of different gene domains transcribed by RNA polymerase I, II, or III occurs during the progression from quiescent [pre-midblastula transition (pre-MBT)] to active (post-MBT) embryos during Xenopus development. In the rDNA, c-myc, and somatic 5S gene domains, a transition from random to specific anchorage to the nuclear matrix occurs when chromatin domains become active. The keratin gene domain was also randomly associated to the nuclear matrix before MBT, whereas a defined attachment site was found in keratinocytes. In agreement with this specification, ligation-mediated (LM)-PCR genomic footprinting carried out on the subpopulation of 5S domains specifically attached to the matrix reveals the hallmarks of determined chromatin after the midblastula transition. In contrast, the same analysis performed on the total 5S gene population does not reveal specific chromatin organization, validating the use of nuclear matrix fractionation to unveil active chromatin domains. These data provide a means for the determination of active chromosomal territories in the embryo and emphasize the role of nuclear architecture in regulated gene expression during development.
Collapse
|
14
|
Stünkel W, Huang Z, Tan SH, O'Connor MJ, Bernard HU. Nuclear matrix attachment regions of human papillomavirus type 16 repress or activate the E6 promoter, depending on the physical state of the viral DNA. J Virol 2000; 74:2489-501. [PMID: 10684263 PMCID: PMC111737 DOI: 10.1128/jvi.74.6.2489-2501.2000] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1999] [Accepted: 12/15/1999] [Indexed: 01/19/2023] Open
Abstract
Two nuclear matrix attachment regions (MARs) bracket a 550-bp segment of the long control region (LCR) containing the epithelial cell-specific enhancer and the E6 promoter of human papillomavirus type 16 (HPV-16). One of these MARs is located in the 5' third of the LCR (5'-LCR-MAR); the other lies within the E6 gene (E6-MAR). To study their function, we linked these MARs in various natural or artificial permutations to a chimeric gene consisting of the HPV-16 enhancer-promoter segment and a reporter gene. In transient transfections of HeLa cells, the presence of either of these two MARs strongly represses reporter gene expression. In contrast to this, but similar to the published behavior of cellular MARs, reporter gene expression is stimulated strongly by the E6-MAR and moderately by the 5'-LCR-MAR in stable transfectants of HeLa or C33A cells. To search for binding sites of soluble nuclear proteins which may be responsible for repression during transient transfections, we performed electrophoretic mobility shift assays (EMSAs) of overlapping oligonucleotides that represented all sequences of these two MARs. Both MARs contain multiple sites for two strongly binding proteins and weak binding sites for additional factors. The strongest complex, with at least five binding sites in each MAR, is generated by the CCAAT displacement factor (CDP)/Cut, as judged by biochemical purification, by EMSAs with competing oligonucleotides and with anti-CDP/Cut oligonucleotides, and by mutations. CDP/Cut, a repressor that is down-regulated during differentiation, apparently represses HPV-16 transcription in undifferentiated epithelials cells and in HeLa cells, which are rich in CDP/Cut. In analogy to poorly understood mechanisms acting on cellular MARs, activation after physical linkage to chromosomal DNA may result from competition between the nuclear matrix and CDP/Cut. Our observations show that cis-responsive elements that regulate the HPV-16 E6 promoter are tightly clustered over at least 1.3 kb and occur throughout the E6 gene. HPV-16 MARs are context dependent transcriptional enhancers, and activated expression of HPV-16 oncogenes dependent on chromosomal integration may positively select tumorigenic cells during the multistep etiology of cervical cancer.
Collapse
Affiliation(s)
- W Stünkel
- Institute of Molecular and Cell Biology, National University of Singapore, Singapore 117609, Republic of Singapore
| | | | | | | | | |
Collapse
|
15
|
Yi M, Wu P, Trevorrow KW, Claflin L, Garrard WT. Evidence That the Igκ Gene MAR Regulates the Probability of Premature V-J Joining and Somatic Hypermutation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.10.6029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The Igκ gene contains an evolutionarily conserved nuclear matrix association region (MAR) adjacent to the intronic enhancer. To test for the function of this MAR, we created mouse lines with a targeted MAR deletion. In MAR knockout animals, the immune system was normal in nearly all respects, including the distributions of various B cell populations and Ab levels. However, in pro-B cells, enhanced rearrangement was noted on the MAR− allele in heterozygotes. In addition, the efficiencies for targeting and generating somatic mutations were reduced on MAR-deleted alleles. These results provide evidence for the MAR negatively regulating the probability of premature rearrangement and positively regulating the probability of somatic hypermutation.
Collapse
Affiliation(s)
- Ming Yi
- *Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235; and
| | - Peiqing Wu
- †Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kenneth W. Trevorrow
- *Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235; and
| | - Latham Claflin
- †Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - William T. Garrard
- *Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75235; and
| |
Collapse
|
16
|
Wang Z, Goldstein A, Zong RT, Lin D, Neufeld EJ, Scheuermann RH, Tucker PW. Cux/CDP homeoprotein is a component of NF-muNR and represses the immunoglobulin heavy chain intronic enhancer by antagonizing the bright transcription activator. Mol Cell Biol 1999; 19:284-295. [PMID: 9858552 PMCID: PMC83886 DOI: 10.1128/mcb.19.1.284] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/1998] [Accepted: 09/22/1998] [Indexed: 01/19/2023] Open
Abstract
Nuclear matrix attachment regions (MARs) flanking the immunoglobulin heavy chain intronic enhancer (Emu) are the targets of the negative regulator, NF-muNR, found in non-B and early pre-B cells. Expression library screening with NF-muNR binding sites yielded a cDNA clone encoding an alternatively spliced form of the Cux/CDP homeodomain protein. Cux/CDP fulfills criteria required for NF-muNR identity. It is expressed in non-B and early pre-B cells but not mature B cells. It binds to NF-muNR binding sites within Emu with appropriate differential affinities. Antiserum specific for Cux/CDP recognizes a polypeptide of the predicted size in affinity-purified NF-muNR preparations and binds NF-muNR complexed with DNA. Cotransfection with Cux/CDP represses the activity of Emu via the MAR sequences in both B and non-B cells. Cux/CDP antagonizes the effects of the Bright transcription activator at both the DNA binding and functional levels. We propose that Cux/CDP regulates cell-type-restricted, differentiation stage-specific Emu enhancer activity by interfering with the function of nuclear matrix-bound transcription activators.
Collapse
Affiliation(s)
- Z Wang
- Department of Pathology and Laboratory of Molecular Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas 75235-9072, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Chattopadhyay S, Whitehurst CE, Chen J. A nuclear matrix attachment region upstream of the T cell receptor beta gene enhancer binds Cux/CDP and SATB1 and modulates enhancer-dependent reporter gene expression but not endogenous gene expression. J Biol Chem 1998; 273:29838-46. [PMID: 9792700 DOI: 10.1074/jbc.273.45.29838] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have previously identified a DNase I-hypersensitive site in the T cell receptor beta locus, designated HS1, that is located 400 base pairs upstream of the transcriptional enhancer Ebeta and is induced during CD4(-)CD8(-) to CD4(+)CD8(+) thymocyte differentiation. Using electrophoretic mobility shift assays, we show that HS1 induction correlates with increased binding of two nuclear factors, Cux/CDP and SATB1, to a 170-base pair DNA sequence within HS1. Furthermore, we demonstrate that HS1 is a nuclear matrix attachment region, referred to as MARbeta. These findings demonstrate that an analogous organization of cis-regulatory elements in which a nuclear matrix attachment region is in close proximity to an enhancer is conserved in the immunoglobulin and T cell receptor loci. In addition, we show that MARbeta represses Ebeta-dependent reporter gene expression in transient transfection assays. However, the targeted deletion of MARbeta from the endogenous locus does not change T cell receptor beta gene transcription in developing T cells. These contrasting results suggest a potential pitfall of functional studies of nuclear matrix attachment regions outside of their natural chromosomal context.
Collapse
Affiliation(s)
- S Chattopadhyay
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
18
|
Abstract
Metaphase chromosome condensation is a dynamic process that must utilize cis elements to form and maintain the final structure. Likewise, cis elements must regulate the accessibility of chromatin domains to protein machines involved in processes such as transcription. Scaffold associated regions appear to play important roles in both of these dynamic processes.
Collapse
Affiliation(s)
- C M Hart
- Departments of Biochemistry and Molecular Biology University of Geneva 30 Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | | |
Collapse
|
19
|
Yan ZJ, Qian RL. The 5'-flanking cis-acting elements of the human epsilon-globin gene associates with the nuclear matrix and binds to the nuclear matrix proteins. Cell Res 1998; 8:209-18. [PMID: 9791734 DOI: 10.1038/cr.1998.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The nuclear matrix attachment regions(MARs) and the binding nuclear matrix proteins in the 5'-flanking cis-acting elements of the human epsilon-globin gene have been examined. Using in vitro DNA-matrix binding assay, it has been shown that the positive stage-specific regulatory element (epsilon-PREII, -446 bp(-)-419 bp) upstream of this gene could specifically associate with the nuclear matrix from K562 cells, indicating that epsilon-PREII may be an erythroid-specific facultative MAR. In gel mobility shift assay and Southwestern blotting assay, an erythroid-specific nuclear matrix protein (epsilon-NMP kappa) in K562 cells has been revealed to bind to this positive regulatory element (epsilon-PREII). Furthermore, we demonstrated that the silencer (-392 bp(-)-177 bp) upstream of the human epsilon-globin gene could associate with the nuclear matrices from K562, HEL and Raji cells. In addition, the nuclear matrix proteins prepared from these three cell lines could also bind to this silencer, suggesting that this silencer element might be a constitutive nuclear matrix attachment region (constitutive MAR). Our results demonstrated that the nuclear matrix and nuclear matrix proteins might play an important role in the regulation of the human epsilon-globin gene expression.
Collapse
Affiliation(s)
- Z J Yan
- Shanghai Institute of Cell Biology, Chinese Academy of Sciences, China.
| | | |
Collapse
|
20
|
Bachl J, Olsson C, Chitkara N, Wabl M. The Ig mutator is dependent on the presence, position, and orientation of the large intron enhancer. Proc Natl Acad Sci U S A 1998; 95:2396-9. [PMID: 9482896 PMCID: PMC19354 DOI: 10.1073/pnas.95.5.2396] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypermutation at the Ig loci is confined to the area between the promoter and the intronic enhancer, which includes the rearranged variable region gene segment. We identified factors that contribute to the site-specificity at the heavy chain locus. We found that distance from both the promoter and the intronic enhancer is crucial in hypermutation. The presence of the enhancer is required, and, in contrast to its definition for transcriptional activity, its effect is orientation-sensitive.
Collapse
Affiliation(s)
- J Bachl
- Basel Institute for Immunology, Postfach, CH-4005 Basel, Switzerland
| | | | | | | |
Collapse
|
21
|
Benham C, Kohwi-Shigematsu T, Bode J. Stress-induced duplex DNA destabilization in scaffold/matrix attachment regions. J Mol Biol 1997; 274:181-96. [PMID: 9398526 DOI: 10.1006/jmbi.1997.1385] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
S/MARs are DNA elements 300 to several thousand base-pairs long, which are operationally defined by their affinity for the nuclear scaffold or matrix. S/MARs occur exclusively in eukaryotic genomes, where they mediate several functions. Because S/MARs do not have a clearcut consensus sequence, the characteristics that define their activity are thought to be structural. Ubiquitous S/MAR binding proteins have been identified, but to date no unique binding sequence or structural motif has been found. Here we show by computational analysis that S/MARs conform to a specific design whose essential attribute is the presence of stress-induced base-unpairing regions (BURs). Stress-induced destabilization (SIDD) profiles are calculated using a previously developed statistical mechanical procedure in which the superhelical deformation is partitioned between strand separation, twisting within denatured regions, and residual superhelicity. The results of these calculations show that BURs exhibit a succession of evenly spaced destabilized sites that would render part or all of the S/MAR sequence single stranded at sufficient superhelicity. These analyses are performed for a range of sequenced S/MAR elements from the borders of eukaryotic gene domains, from centromeres, and from positions where S/MARs are known to support the action of an enhancer. The results reported here are in excellent agreement with earlier in vitro chemical reactivity studies. This approach demonstrates the potential for computational analysis to predict the points of division of the eukaryotic genome into functional units (domains), and also to locate certain cis-regulatory sequences.
Collapse
Affiliation(s)
- C Benham
- Department of Biomathematical Sciences, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, NY 10029, USA
| | | | | |
Collapse
|
22
|
Liu J, Bramblett D, Zhu Q, Lozano M, Kobayashi R, Ross SR, Dudley JP. The matrix attachment region-binding protein SATB1 participates in negative regulation of tissue-specific gene expression. Mol Cell Biol 1997; 17:5275-87. [PMID: 9271405 PMCID: PMC232378 DOI: 10.1128/mcb.17.9.5275] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nuclear matrix has been implicated in several cellular processes, including DNA replication, transcription, and RNA processing. In particular, transcriptional regulation is believed to be accomplished by binding of chromatin loops to the nuclear matrix and by the concentration of specific transcription factors near these matrix attachment regions (MARs). A number of MAR-binding proteins have been identified, but few have been directly linked to tissue-specific transcription. Recently, we have identified two cellular protein complexes (NBP and UBP) that bind to a region of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) previously shown to contain at least two negative regulatory elements (NREs) termed the promoter-proximal and promoter-distal NREs. These NREs are absent from MMTV strains that cause T-cell lymphomas instead of mammary carcinomas. We show here that NBP binds to a 22-bp sequence containing an imperfect inverted repeat in the promoter-proximal NRE. Previous data showed that a mutation (p924) within the inverted repeat elevated basal transcription from the MMTV promoter and destabilized the binding of NBP, but not UBP, to the proximal NRE. By using conventional and affinity methods to purify NBP from rat thymic nuclear extracts, we obtained a single major protein of 115 kDa that was identified by protease digestion and partial sequencing analysis as the nuclear matrix-binding protein special AT-rich sequence-binding protein 1 (SATB1). Antibody ablation, distamycin inhibition of binding, renaturation and competition experiments, and tissue distribution data all confirmed that the NBP complex contained SATB1. Similar types of experiments were used to show that the UBP complex contained the homeodomain protein Cux/CDP that binds the MAR of the intronic heavy-chain immunoglobulin enhancer. By using the p924 mutation within the MMTV LTR upstream of the chloramphenicol acetyltransferase gene, we generated two strains of transgenic mice that had a dramatic elevation of reporter gene expression in lymphoid tissues compared with reporter gene expression in mice expressing wild-type LTR constructs. Thus, the 924 mutation in the SATB1-binding site dramatically elevated MMTV transcription in lymphoid tissues. These results and the ability of the proximal NRE in the MMTV LTR to bind to the nuclear matrix clearly demonstrate the role of MAR-binding proteins in tissue-specific gene regulation and in MMTV-induced oncogenesis.
Collapse
Affiliation(s)
- J Liu
- Department of Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, 78712, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Khodarev NN, Narayana A, Constantinou A, Vaughan AT. Topologically constrained domains of supercoiled DNA in eukaryotic cells. DNA Cell Biol 1997; 16:1051-8. [PMID: 9324307 DOI: 10.1089/dna.1997.16.1051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The size of supercoiled, topologically constrained DNA domains within the squamous carcinoma cell line SQ-20B were determined by direct comparison with a panel of irradiated supercoiled plasmid DNAs. Loss of supercoiling in plasmids was determined by gel electrophoresis and in cells by nucleoid flow cytometry. Comparison of dose-response data for plasmid relaxation with that obtained from SQ-20B cells enabled a direct estimation of supercoil target size in these cells. Plasmids pUCD9P (3.9 kbp), pXT-1 (10.1 kbp), pdBPV-MMT-neo (14.6 kbp), pRK290 (20.0 kbp), and R6K (38 kbp) were used and analyzed under the same exposure conditions as nucleoid DNA. Two sizes of topologically closed domains were found in nucleoids of 0.51+/-0.17Mbp and 1.34+/-0.3 Mbp. In an attempt to relate these large-scale organizations of DNA with function, cells were exposed to the DNA topoisomerase II inhibitor, VP16 and the G1/S cell cycle blocking agent mimosine. A 1 h exposure to VP16 was effective in reducing DNA synthesis which was associated with a parallel increase in nucleoid supercoiling. Addition of the G1 > S inhibitor mimosine enhanced both responses. It is concluded that chromosomes and interphase nuclei are organized into at least two sizes of topologically constrained domains of DNA which may have functional relevance to the control and execution of DNA synthesis.
Collapse
Affiliation(s)
- N N Khodarev
- Loyola University Medical Center, Dept. of Radiotherapy, Cancer Center, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
24
|
Banan M, Rojas IC, Lee WH, King HL, Harriss JV, Kobayashi R, Webb CF, Gottlieb PD. Interaction of the nuclear matrix-associated region (MAR)-binding proteins, SATB1 and CDP/Cux, with a MAR element (L2a) in an upstream regulatory region of the mouse CD8a gene. J Biol Chem 1997; 272:18440-52. [PMID: 9218488 DOI: 10.1074/jbc.272.29.18440] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Matrix-associated regions (MARs), AT-rich DNA segments that have an affinity for the nuclear matrix, have been shown to play a role in transcriptional regulation of eukaryotic genes. The present study demonstrates that a DNA element, called L2a, which has been implicated in the transcriptional regulation of the mouse CD8a gene encoding an important T cell coreceptor, is a MAR. Moreover, the identities of two nuclear proteins, L2a-P1 and L2a-P2, previously shown to bind to the L2a element, have been determined. The L2a-P1 protein found to be present in all CD8-positive T cell lines tested is SATB1, a known MAR-binding protein. The widely expressed L2a-P2 protein is CDP/Cux, a MAR-binding protein that has been associated with repression of gene transcription. Interaction of both proteins with the L2a element was studied using the missing nucleoside approach, DNase I footprinting, and electrophoretic mobility shift assays with wild type and mutant L2a elements. The data suggest that CDP/Cux bound to the L2a element is displaced by binding of SATB1 and the accompanying conformational change in the DNA lying between the primary binding sites of SATB1 and CDP/Cux. We suggest that displacement of CDP/Cux by SATB1 favors transcription of the CD8a gene, possibly by enhancing or altering its association with the nuclear matrix.
Collapse
Affiliation(s)
- M Banan
- Department of Microbiology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Oancea AE, Berru M, Shulman MJ. Expression of the (recombinant) endogenous immunoglobulin heavy-chain locus requires the intronic matrix attachment regions. Mol Cell Biol 1997; 17:2658-68. [PMID: 9111336 PMCID: PMC232116 DOI: 10.1128/mcb.17.5.2658] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The elements which regulate gene expression have traditionally been identified by their effects on reporter genes which have been transfected into cell lines or animals. It is generally assumed that these elements have a comparable role in expression of the corresponding endogenous locus. Nevertheless, several studies of immunoglobulin heavy-chain (IgH) gene expression have reported that the requirements for expressing IgH-derived transgenes differ from the requirements for expression of the endogenous IgH locus. Thus, although expression of transgenes requires multiple elements from the J(H)-C mu intron--the E mu core enhancer, the matrix attachment regions (MARs) which flank E mu, and several switch-associated elements--B-cell lines in which expression of the endogenous heavy-chain gene is maintained at the normal level in the absence of these intronic elements have occasionally been reported. Gene targeting offers an alternative method for assessing regulatory elements, one in which the role of defined segments of endogenous genes can be evaluated in situ. We have applied this approach to the IgH locus of a hybridoma cell line, generating recombinants which bear predetermined modifications in the functional, endogenous mu heavy-chain gene. Our analysis indicates the following. (i) Ninety-eight percent of the expression of the recombinant endogenous mu gene depends on elements in the MAR-E mu-MAR segment. (ii) Expression of the recombinant mu gene depends strongly on the MARs of the J(H)-C mu intron but not on the adjoining E mu core enhancer and switch regions; because our recombinant cell lines bear only a single copy of the mu gene, our results indicate that mu expression is activated by MAR elements lying within that same mu transcription unit. (iii) The MAR segment includes at least one activating element in addition to those defined previously by the binding of presumptive activating proteins in the nuclear matrix. (iv) Close association of the MARs with the E mu enhancer is not required for MAR-stimulated expression. (v) The other MARs in the IgH locus do not in their normal context provide the requisite MAR function.
Collapse
Affiliation(s)
- A E Oancea
- Department of Immunology, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|