1
|
Babu M, Aoki H, Chowdhury WQ, Gagarinova A, Graham C, Phanse S, Laliberte B, Sunba N, Jessulat M, Golshani A, Emili A, Greenblatt JF, Ganoza MC. Ribosome-dependent ATPase interacts with conserved membrane protein in Escherichia coli to modulate protein synthesis and oxidative phosphorylation. PLoS One 2011; 6:e18510. [PMID: 21556145 PMCID: PMC3083400 DOI: 10.1371/journal.pone.0018510] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 03/09/2011] [Indexed: 01/15/2023] Open
Abstract
Elongation factor RbbA is required for ATP-dependent deacyl-tRNA release presumably after each peptide bond formation; however, there is no information about the cellular role. Proteomic analysis in Escherichia coli revealed that RbbA reciprocally co-purified with a conserved inner membrane protein of unknown function, YhjD. Both proteins are also physically associated with the 30S ribosome and with members of the lipopolysaccharide transport machinery. Genome-wide genetic screens of rbbA and yhjD deletion mutants revealed aggravating genetic interactions with mutants deficient in the electron transport chain. Cells lacking both rbbA and yhjD exhibited reduced cell division, respiration and global protein synthesis as well as increased sensitivity to antibiotics targeting the ETC and the accuracy of protein synthesis. Our results suggest that RbbA appears to function together with YhjD as part of a regulatory network that impacts bacterial oxidative phosphorylation and translation efficiency.
Collapse
Affiliation(s)
- Mohan Babu
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Hiroyuki Aoki
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Wasimul Q. Chowdhury
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Alla Gagarinova
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chris Graham
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Sadhna Phanse
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Ben Laliberte
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Canada
| | - Noor Sunba
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Canada
| | - Matthew Jessulat
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Canada
| | - Andrew Emili
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jack F. Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - M. Clelia Ganoza
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
2
|
Tenson T, Hauryliuk V. Does the ribosome have initiation and elongation modes of translation? Mol Microbiol 2009; 72:1310-5. [PMID: 19486296 DOI: 10.1111/j.1365-2958.2009.06741.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
RNA polymerases differ functionally and structurally in the initiation phase of transcription, when polymerization of 8-12 nucleotides occurs, from the later phases of transcription. Here we argue that the ribosome also might have different properties when translating the first codons in open reading frames, as compared with the later phases of translation.
Collapse
Affiliation(s)
- Tanel Tenson
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.
| | | |
Collapse
|
3
|
Aoki H, Xu J, Emili A, Chosay JG, Golshani A, Ganoza MC. Interactions of elongation factor EF-P with the Escherichia coli ribosome. FEBS J 2008; 275:671-81. [PMID: 18201202 DOI: 10.1111/j.1742-4658.2007.06228.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
EF-P (eubacterial elongation factor P) is a highly conserved protein essential for protein synthesis. We report that EF-P protects 16S rRNA near the G526 streptomycin and the S12 and mRNA binding sites (30S T-site). EF-P also protects domain V of the 23S rRNA proximal to the A-site (50S T-site) and more strongly the A-site of 70S ribosomes. We suggest that EF-P: (a) may play a role in translational fidelity and (b) prevents entry of fMet-tRNA into the A-site enabling it to bind to the 50S P-site. We also report that EF-P promotes a ribosome-dependent accommodation of fMet-tRNA into the 70S P-site.
Collapse
|
4
|
Xu J, Kiel MC, Golshani A, Chosay JG, Aoki H, Ganoza MC. Molecular localization of a ribosome-dependent ATPase on Escherichia coli ribosomes. Nucleic Acids Res 2006; 34:1158-65. [PMID: 16495476 PMCID: PMC1383619 DOI: 10.1093/nar/gkj508] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have previously isolated and described an Escherichia coli ribosome-bound ATPase, RbbA, that is required for protein synthesis in the presence of ATP, GTP and the elongation factors, EF-Tu and EF-G. The gene encoding RbbA, yhih, has been cloned and the deduced protein sequence harbors two ATP-motifs and one RNA-binding motif and is homologous to the fungal EF-3. Here, we describe the isolation and assay of a truncated form of the RbbA protein that is stable to overproduction and purification. Chemical protection results show that the truncated RbbA specifically protects nucleotide A937 on the 30S subunit of ribosomes, and the protected site occurs at the E-site where the tRNA is ejected upon A-site occupation. Other weakly protected bases in the region occur at or near the mRNA binding site. Using radiolabeled tRNAs, we study the stimulating effect of this truncated RbbA on the binding and release of different tRNAs bound to the (aminoacyl) A-, (peptidyl) P- and (exit) E-sites of 70S ribosomes. The combined data suggest plausible mechanisms for the function of RbbA in translation.
Collapse
Affiliation(s)
| | - M. C. Kiel
- Science Department, Marywood University2300 Adams Avenue, Scranton, PA 18509, USA
| | - A. Golshani
- Department of Science, Carleton University1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - J. G. Chosay
- Pfizer Pharmaceuticals5/MS-1, 2800 Plymouth Road, Ann Arbor, MI 48105, USA
| | | | - M. C. Ganoza
- To whom correspondence should be addressed. Tel: +1 416 978 8918; Fax: +1 416 978 8528;
| |
Collapse
|
5
|
An S, Musier-Forsyth K. Cys-tRNA(Pro) editing by Haemophilus influenzae YbaK via a novel synthetase.YbaK.tRNA ternary complex. J Biol Chem 2005; 280:34465-72. [PMID: 16087664 DOI: 10.1074/jbc.m507550200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases are multidomain enzymes that often possess two activities to ensure translational accuracy. A synthetic active site catalyzes tRNA aminoacylation, while an editing active site hydrolyzes mischarged tRNAs. Prolyl-tRNA synthetases (ProRS) have been shown to misacylate Cys onto tRNA(Pro), but lack a Cys-specific editing function. The synthetase-like Haemophilus influenzae YbaK protein was recently shown to hydrolyze misacylated Cys-tRNA(Pro) in trans. However, the mechanism of specific substrate selection by this single domain hydrolase is unknown. Here, we demonstrate that YbaK alone appears to lack specific tRNA recognition capabilities. Moreover, YbaK cannot compete for aminoacyl-tRNAs in the presence of elongation factor Tu, suggesting that YbaK acts before release of the aminoacyl-tRNA from the synthetase. In support of this idea, cross-linking studies reveal the formation of binary (ProRS.YbaK) and ternary (ProRS.YbaK.tRNA) complexes. The binding constants for the interaction between ProRS and YbaK are 550 nM and 45 nM in the absence and presence of tRNA(Pro), respectively. These results suggest that the specificity of trans-editing by YbaK is ensured through formation of a novel ProRS.YbaK.tRNA complex.
Collapse
Affiliation(s)
- Songon An
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
6
|
Ganoza MC, Kiel MC, Aoki H. Evolutionary conservation of reactions in translation. Microbiol Mol Biol Rev 2002; 66:460-85, table of contents. [PMID: 12209000 PMCID: PMC120792 DOI: 10.1128/mmbr.66.3.460-485.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Current X-ray diffraction and cryoelectron microscopic data of ribosomes of eubacteria have shed considerable light on the molecular mechanisms of translation. Structural studies of the protein factors that activate ribosomes also point to many common features in the primary sequence and tertiary structure of these proteins. The reconstitution of the complex apparatus of translation has also revealed new information important to the mechanisms. Surprisingly, the latter approach has uncovered a number of proteins whose sequence and/or structure and function are conserved in all cells, indicating that the mechanisms are indeed conserved. The possible mechanisms of a new initiation factor and two elongation factors are discussed in this context.
Collapse
Affiliation(s)
- M Clelia Ganoza
- C. H. Best Institute, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5G 1L6.
| | | | | |
Collapse
|
7
|
Ganoza MC, Kiel MC. A ribosomal ATPase is a target for hygromycin B inhibition on Escherichia coli ribosomes. Antimicrob Agents Chemother 2001; 45:2813-9. [PMID: 11557474 PMCID: PMC90736 DOI: 10.1128/aac.45.10.2813-2819.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrate that the transfer of fully charged aminoacyl-tRNAs into peptides directed by the MS2 RNA template requires both ATP and GTP, initiation factors (IF1, IF2, and IF3), elongation factors (EF-Tu, EF-Ts, and EF-G), and the ribosomal ATPase (RbbA). The nonhydrolyzable analogue AMPPCP inhibits the reactions, suggesting that hydrolysis of ATP is required for synthesis. The RbbA protein occurs bound to ribosomes and stimulates the ATPase activity of Escherichia coli 70S and 30S particles. The gene encoding RbbA harbors four ATP binding domains; the C-terminal half of the protein bears extensive sequence similarity to EF-3, a ribosome-dependent ATPase. Here, we show that the antibiotic hygromycin B selectively inhibits the ATPase activity of RbbA. Other antibiotics with similar effects on miscoding, streptomycin and neomycin, as well as antibiotics that impair peptide bond synthesis and translocation, had little effect on the ATPase activity of RbbA on 70S ribosomes. Immunoblot analysis indicates that at physiological concentrations, hygromycin B selectively releases RbbA from 70S ribosomes. Hygromycin B protects G1494 and A1408 in the decoding region, and RbbA enhances the reactivity of A889 and G890 of the 16S rRNA switch helix region. Cross-linking and X-ray diffraction data have revealed that this helix switch and the decoding region are in close proximity. Mutations in the switch helix (889-890) region affect translational fidelity and translocation. The binding site of hygromycin B and its known dual effect on the fidelity of decoding and translocation suggest a model for the action of this drug on ribosomes.
Collapse
Affiliation(s)
- M C Ganoza
- Banting and Best Department of Medical Research, University of Toronto, 112 College St., Toronto, Ontario M5G 1L6, Canada.
| | | |
Collapse
|
8
|
Kiel MC, Ganoza MC. Functional interactions of an Escherichia coli ribosomal ATPase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:278-86. [PMID: 11168361 DOI: 10.1046/j.1432-1033.2001.01873.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gene encoding ribosome-bound ATPase (RbbA), which occurs bound to 70S ribosomes and 30S subunits, has been identified. The amino-acid sequence of RbbA reveals the presence of two ATP-binding domains in the N-terminal half of the protein. RbbA harbors an intrinsic ATPase activity that is stimulated by both 70S ribosomes and 30S subunits. Here we show that purified recombinant RbbA markedly stimulates polyphenylalanine synthesis in the presence of the elongation factors Tu and G (EF-Tu and EF-G) and that the hydrolysis of ATP by RbbA is required to stimulate synthesis. RbbA is reported to have affinity for EF-Tu but not for EF-G. Additionally, RbbA copurifies with 30S ribosomal subunits and can be crosslinked to the ribosomal protein S1. Studies using a spectrum of antibiotics, including some of similar function, revealed that hygromycin, which binds to the 30S subunit, has a significant effect on the ATPase activity and on the affinity of RbbA for ribosomes. A possible role for RbbA in protein-chain elongation is proposed.
Collapse
Affiliation(s)
- M C Kiel
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, ON, Canada M5G 1L6
| | | |
Collapse
|
9
|
Abstract
The efp gene encodes a protein that is essential for the growth and for the viability of Escherichia coli cells. Interruption of this gene results in cell death due to a defect in protein synthesis. We report here that the EFP protein, encoded by the efp gene, is required for in vitro reconstitution of polypeptide synthesis in a system programmed by a native template which contains each of the purified initiation factors, IF1, IF2, IF3; the elongation factors, EFTu, EFTs and EFG, and a protein called W that is required to eject tRNAs from ribosomes. The EFP protein is required for enhancing the rate and the extent of synthesis in the presence of all of the above factors. The EFP protein stimulates synthesis of poly(Phe) programmed with poly(rU) only if N-acetyl Phe-tRNA initiates the reactions under conditions that foster the dissociation of the 70S ribosome. Study of the ability of the ribosome to synthesize a number of fMet-initiated dipeptides from CCA amino acyl acceptors suggests that EFP acts to promote synthesis with acceptors that are poor donors for the the reconstituted peptidyl transferase.
Collapse
Affiliation(s)
- M C Ganoza
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | |
Collapse
|
10
|
Lu J, Aoki H, Ganoza MC. Molecular characterization of a prokaryotic translation factor homologous to the eukaryotic initiation factor eIF4A. Int J Biochem Cell Biol 1999; 31:215-29. [PMID: 10216955 DOI: 10.1016/s1357-2725(98)00142-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Initiation of translation involves a complex series of reactions that result in the formation of an initiation complex at the proper start site of the mRNA. These reactions, particularly those that involve the binding of the mRNA to the small subunit of the ribosome, are not fully understood. Here we show that one of the factors (W2) required to reconstitute translation in E. coli is encoded by the deaD gene which harbors 87% amino acid sequence similarly to the eukaryotic (eIF4A). Antibodies against the eukaryotic eIF4A cross-react with the E. coli protein. We describe the overexpression of the W2 protein from recombinant clones and its purification in one step by the use of a His tag at the N-terminus of its sequence. We report a rapid assay for the W2 protein that scores for initiation and elongation programmed by a native mRNA template. The W2 protein promotes initiation programmed by the mRNA that harbors secondary structures. The W2 protein is not required in standard initiation assays programmed by synthetic mRNAs of defined sequence that lack this feature. We conclude that W2 is an important factor for initiation in eukaryotic and prokaryotic cells.
Collapse
Affiliation(s)
- J Lu
- Banting and Best Department of Medical Research, University of Toronto, Ont., Canada
| | | | | |
Collapse
|
11
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|