1
|
Muhar MF, Farnung J, Cernakova M, Hofmann R, Henneberg LT, Pfleiderer MM, Denoth-Lippuner A, Kalčic F, Nievergelt AS, Peters Al-Bayati M, Sidiropoulos ND, Beier V, Mann M, Jessberger S, Jinek M, Schulman BA, Bode JW, Corn JE. C-terminal amides mark proteins for degradation via SCF-FBXO31. Nature 2025; 638:519-527. [PMID: 39880951 PMCID: PMC11821526 DOI: 10.1038/s41586-024-08475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/02/2024] [Indexed: 01/31/2025]
Abstract
During normal cellular homeostasis, unfolded and mislocalized proteins are recognized and removed, preventing the build-up of toxic byproducts1. When protein homeostasis is perturbed during ageing, neurodegeneration or cellular stress, proteins can accumulate several forms of chemical damage through reactive metabolites2,3. Such modifications have been proposed to trigger the selective removal of chemically marked proteins3-6; however, identifying modifications that are sufficient to induce protein degradation has remained challenging. Here, using a semi-synthetic chemical biology approach coupled to cellular assays, we found that C-terminal amide-bearing proteins (CTAPs) are rapidly cleared from human cells. A CRISPR screen identified FBXO31 as a reader of C-terminal amides. FBXO31 is a substrate receptor for the SKP1-CUL1-F-box protein (SCF) ubiquitin ligase SCF-FBXO31, which ubiquitylates CTAPs for subsequent proteasomal degradation. A conserved binding pocket enables FBXO31 to bind to almost any C-terminal peptide bearing an amide while retaining exquisite selectivity over non-modified clients. This mechanism facilitates binding and turnover of endogenous CTAPs that are formed after oxidative stress. A dominant human mutation found in neurodevelopmental disorders reverses CTAP recognition, such that non-amidated neosubstrates are now degraded and FBXO31 becomes markedly toxic. We propose that CTAPs may represent the vanguard of a largely unexplored class of modified amino acid degrons that could provide a general strategy for selective yet broad surveillance of chemically damaged proteins.
Collapse
Affiliation(s)
- Matthias F Muhar
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Jakob Farnung
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martina Cernakova
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Raphael Hofmann
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Annina Denoth-Lippuner
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Filip Kalčic
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ajse S Nievergelt
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Marwa Peters Al-Bayati
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Nikolaos D Sidiropoulos
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Viola Beier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jeffrey W Bode
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| | - Jacob E Corn
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Chauhan H, Carruthers NJ, Stemmer PM, Schneider BL, Moszczynska A. Interactions of VMAT2 with CDCrel-1 and Parkin in Methamphetamine Neurotoxicity. Int J Mol Sci 2024; 25:13070. [PMID: 39684782 DOI: 10.3390/ijms252313070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 12/18/2024] Open
Abstract
In recent years, methamphetamine (METH) misuse in the US has been rapidly increasing, and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including the dysfunction of the neuroprotective protein parkin. However, it is not known whether parkin loss of function within striatal dopaminergic (DAergic) terminals translates into decreased DA storage capacity. This study examined the relationship between parkin, its substrate cell division cycle related-1 (CDCrel-1) associated with synaptic vesicles, and vesicular monoamine transporter-2 (VMAT2) responsible for packaging DA in an in vivo model of METH neurotoxicity. To assess the individual differences in response to METH's neurotoxic effects, a large group of male Sprague Dawley rats were treated with binge METH or saline and sacrificed 1 h or 24 h later. This study is the first to show that CDCrel-1 interacts with VMAT2 in the rat striatum and that binge METH can alter this interaction as well as the levels and subcellular localization of CDCrel-1. The proteomic analysis of VMAT-2-associated proteins revealed the upregulation of several proteins involved in the exocytosis/endocytosis cycle and responses to stress. The results suggest that DAergic neurons are engaged in counteracting METH-induced toxic effects, including attempts to increase endocytosis and autophagy at 1 h after the METH binge, with the responses varying widely between individual rats. Studying CDCrel-1, VMAT2, and other proteins in large groups of outbred rats can help define individual genetic and molecular differences in responses to METH neurotoxicity, which, in turn, may aid treating humans suffering from MUD and its neurological consequences.
Collapse
Affiliation(s)
- Heli Chauhan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA
| | - Nicholas J Carruthers
- Institute of Environmental Health Sciences and Proteomics Core Facility, 540 East Canfield Ave., Detroit, MI 48202, USA
- Bioinformatics Core, Michigan Medicine, University of Michigan, NCRC Building 14, 2800 Plymouth Rd., Ann Arbor, MI 48109, USA
| | - Paul M Stemmer
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA
- Institute of Environmental Health Sciences and Proteomics Core Facility, 540 East Canfield Ave., Detroit, MI 48202, USA
| | - Bernard L Schneider
- Bertarelli Platform for Gene Therapy, École Polytechnique Fédérale de Lausanne, School of Life Sciences, Ch. Des Mines 9, CH-1202 Geneva, Switzerland
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA
| |
Collapse
|
3
|
Chauhan H, Carruthers N, Stemmer P, Schneider BP, Moszczynska A. Neurotoxic Methamphetamine Doses Alter CDCel-1 Levels and Its Interaction with Vesicular Monoamine Transporter-2 in Rat Striatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604458. [PMID: 39091864 PMCID: PMC11291068 DOI: 10.1101/2024.07.21.604458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
In recent years, methamphetamine METH misuse in the US has been rapidly increasing and there is no FDA-approved pharmacotherapy for METH use disorder (MUD). In addition to being dependent on the drug, people with MUD develop a variety of neurological problems related to the toxicity of this drug. A variety of molecular mechanisms underlying METH neurotoxicity has been identified, including dysfunction of the neuroprotective protein parkin. However, it is not known whether parkin loss of function within striatal dopaminergic (DAergic) terminals translates into a decrease in DA storage capacity. This study examined the relationship between parkin, its substrate cell division cycle related-1 (CDCrel-1), and vesicular monoamine transporter-2 (VMAT2) in METH neurotoxicity in male Sprague Dawley rats. To also assess individual differences in response to METH's neurotoxic effects, a large group of rats was treated with binge METH or saline and sacrificed 1h or 24h later. This study is the first to show that binge METH alters the levels and subcellular localization of CDCrel-1 and that CDCrel-1 interacts with VMAT2 and increases its levels at the plasma membrane. Furthermore, we found wide individual differences in the responses of measured indices to METH. Proteomic analysis of VMAT-2-associated proteins revealed upregulation of several proteins involved in the exocytosis/endocytosis cycle. The results suggest that at 1h after METH binge, DAergic neurons are engaged in counteracting METH-induced toxic effects, including oxidative stress- and hyperthermia-induced inhibition of synaptic vesicle cycling, with the responses varying between individual rats. Studying CDCrel-1, VMAT2, and other proteins in large groups of outbred rats can help define individual genetic and molecular differences in responses to METH neurotoxicity which, in turn, will aid treating humans suffering from METH use disorder and its neurological consequences.
Collapse
Affiliation(s)
- Heli Chauhan
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI, USA 48201
| | - Nick Carruthers
- Institute of Environmental Health Sciences and Proteomics Core Facility, 540 East Canfield Ave., Detroit, MI 48202
| | - Paul Stemmer
- Institute of Environmental Health Sciences and Proteomics Core Facility, 540 East Canfield Ave., Detroit, MI 48202
| | - Bernard P. Schneider
- Brain Mind Institute École Polytechnique Fédérale de Lausanne School of Life Sciences, Ch. Des Mines, 9, CH-1202 Geneve, Switzerland
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave, Detroit, MI, USA 48201
| |
Collapse
|
4
|
Chen L, Ma J, Xu W, Shen F, Yang Z, Sonne C, Dietz R, Li L, Jie X, Li L, Yan G, Zhang X. Comparative transcriptome and methylome of polar bears, giant and red pandas reveal diet-driven adaptive evolution. Evol Appl 2024; 17:e13731. [PMID: 38894980 PMCID: PMC11183199 DOI: 10.1111/eva.13731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Epigenetic regulation plays an important role in the evolution of species adaptations, yet little information is available on the epigenetic mechanisms underlying the adaptive evolution of bamboo-eating in both giant pandas (Ailuropoda melanoleuca) and red pandas (Ailurus fulgens). To investigate the potential contribution of epigenetic to the adaptive evolution of bamboo-eating in giant and red pandas, we performed hepatic comparative transcriptome and methylome analyses between bamboo-eating pandas and carnivorous polar bears (Ursus maritimus). We found that genes involved in carbohydrate, lipid, amino acid, and protein metabolism showed significant differences in methylation and expression levels between the two panda species and polar bears. Clustering analysis of gene expression revealed that giant pandas did not form a sister group with the more closely related polar bears, suggesting that the expression pattern of genes in livers of giant pandas and red pandas have evolved convergently driven by their similar diets. Compared to polar bears, some key genes involved in carbohydrate metabolism and biological oxidation and cholesterol synthesis showed hypomethylation and higher expression in giant and red pandas, while genes involved in fat digestion and absorption, fatty acid metabolism, lysine degradation, resistance to lipid peroxidation and detoxification showed hypermethylation and low expression. Our study elucidates the special nutrient utilization mechanism of giant pandas and red pandas and provides some insights into the molecular mechanism of their adaptive evolution of bamboo feeding. This has important implications for the breeding and conservation of giant pandas and red pandas.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Jinnan Ma
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
- College of Continuing EducationYunnan Normal UniversityKunmingChina
| | - Wencai Xu
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Fujun Shen
- Sichuan Key Laboratory for Conservation Biology of Endangered WildlifeChengdu Research Base of Giant Panda BreedingChengduChina
| | | | - Christian Sonne
- Arctic Research Centre, Faculty of Science and Technology, Department of EcoscienceAarhus UniversityRoskildeDenmark
| | - Rune Dietz
- Arctic Research Centre, Faculty of Science and Technology, Department of EcoscienceAarhus UniversityRoskildeDenmark
| | - Linzhu Li
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Xiaodie Jie
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Lu Li
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Guoqiang Yan
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
| | - Xiuyue Zhang
- Key Laboratory of bio‐Resources and eco‐Environment, Ministry of Education, College of Life ScienceSichuan UniversityChengduChina
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life SciencesSichuan UniversityChengduChina
| |
Collapse
|
5
|
Elgaabari A, Imatomi N, Kido H, Nakashima T, Okuda S, Manabe Y, Sawano S, Mizunoya W, Kaneko R, Tanaka S, Maeno T, Matsuyoshi Y, Seki M, Kuwakado S, Zushi K, Daneshvar N, Nakamura M, Suzuki T, Sunagawa K, Anderson JE, Allen RE, Tatsumi R. Age-related nitration/dysfunction of myogenic stem cell activator HGF. Aging Cell 2024; 23:e14041. [PMID: 37985931 PMCID: PMC10861216 DOI: 10.1111/acel.14041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023] Open
Abstract
Mechanical perturbation triggers activation of resident myogenic stem cells to enter the cell cycle through a cascade of events including hepatocyte growth factor (HGF) release from its extracellular tethering and the subsequent presentation to signaling-receptor c-met. Here, we show that with aging, extracellular HGF undergoes tyrosine-residue (Y) nitration and loses c-met binding, thereby disturbing muscle homeostasis. Biochemical studies demonstrated that nitration/dysfunction is specific to HGF among other major growth factors and is characterized by its locations at Y198 and Y250 in c-met-binding domains. Direct-immunofluorescence microscopy of lower hind limb muscles from three age groups of rat, provided direct in vivo evidence for age-related increases in nitration of ECM-bound HGF, preferentially stained for anti-nitrated Y198 and Y250-HGF mAbs (raised in-house) in fast IIa and IIx myofibers. Overall, findings highlight inhibitory impacts of HGF nitration on myogenic stem cell dynamics, pioneering a cogent discussion for better understanding age-related muscle atrophy and impaired regeneration with fibrosis (including sarcopenia and frailty).
Collapse
Affiliation(s)
- Alaa Elgaabari
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Department of Physiology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafrelsheikhEgypt
| | - Nana Imatomi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Hirochika Kido
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takashi Nakashima
- Department of Bioscience and Biotechnology, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Shoko Okuda
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Yoshitaka Manabe
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Present address:
Department of Food and Life Science, School of Life and Environmental ScienceAzabu UniversitySagamiharaJapan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
- Present address:
Department of Animal Science and Biotechnology, School of Veterinary MedicineAzabu UniversitySagamiharaJapan
| | - Ryuki Kaneko
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Sakiho Tanaka
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takahiro Maeno
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Yuji Matsuyoshi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Miyumi Seki
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - So Kuwakado
- Department of Orthopaedic Surgery, Faculty of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kahona Zushi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Graduate School of MedicineKyushu UniversityFukuokaJapan
| | - Judy E. Anderson
- Department of Biological Sciences, Faculty of ScienceUniversity of ManitobaWinnipegManitobaCanada
| | - Ronald E. Allen
- The School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of AgricultureKyushu UniversityFukuokaJapan
| |
Collapse
|
6
|
Tian HY, Huang BY, Nie HF, Chen XY, Zhou Y, Yang T, Cheng SW, Mei ZG, Ge JW. The Interplay between Mitochondrial Dysfunction and Ferroptosis during Ischemia-Associated Central Nervous System Diseases. Brain Sci 2023; 13:1367. [PMID: 37891735 PMCID: PMC10605666 DOI: 10.3390/brainsci13101367] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cerebral ischemia, a leading cause of disability and mortality worldwide, triggers a cascade of molecular and cellular pathologies linked to several central nervous system (CNS) disorders. These disorders primarily encompass ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and other CNS conditions. Despite substantial progress in understanding and treating the underlying pathological processes in various neurological diseases, there is still a notable absence of effective therapeutic approaches aimed specifically at mitigating the damage caused by these illnesses. Remarkably, ischemia causes severe damage to cells in ischemia-associated CNS diseases. Cerebral ischemia initiates oxygen and glucose deprivation, which subsequently promotes mitochondrial dysfunction, including mitochondrial permeability transition pore (MPTP) opening, mitophagy dysfunction, and excessive mitochondrial fission, triggering various forms of cell death such as autophagy, apoptosis, as well as ferroptosis. Ferroptosis, a novel type of regulated cell death (RCD), is characterized by iron-dependent accumulation of lethal reactive oxygen species (ROS) and lipid peroxidation. Mitochondrial dysfunction and ferroptosis both play critical roles in the pathogenic progression of ischemia-associated CNS diseases. In recent years, growing evidence has indicated that mitochondrial dysfunction interplays with ferroptosis to aggravate cerebral ischemia injury. However, the potential connections between mitochondrial dysfunction and ferroptosis in cerebral ischemia have not yet been clarified. Thus, we analyzed the underlying mechanism between mitochondrial dysfunction and ferroptosis in ischemia-associated CNS diseases. We also discovered that GSH depletion and GPX4 inactivation cause lipoxygenase activation and calcium influx following cerebral ischemia injury, resulting in MPTP opening and mitochondrial dysfunction. Additionally, dysfunction in mitochondrial electron transport and an imbalanced fusion-to-fission ratio can lead to the accumulation of ROS and iron overload, which further contribute to the occurrence of ferroptosis. This creates a vicious cycle that continuously worsens cerebral ischemia injury. In this study, our focus is on exploring the interplay between mitochondrial dysfunction and ferroptosis, which may offer new insights into potential therapeutic approaches for the treatment of ischemia-associated CNS diseases.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Xili Lake, Nanshan District, Shenzhen 518000, China;
| | - Bo-Yang Huang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hui-Fang Nie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiang-Yu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shao-Wu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Academy of Traditional Chinese Medicine, Changsha 410208, China
| |
Collapse
|
7
|
Alsaqr A, Alharbi M, Aldossary N, Alruwished A, Alharbi M, Alghaib K, Alabdulkarim A, Alhamdan S, Almutleb E, Abusharha A. Assessment of macular pigment optical density in Arab population and its relationship to people's anthropometric data: a cross-sectional study. Ther Adv Ophthalmol 2023; 15:25158414231189099. [PMID: 37599800 PMCID: PMC10436989 DOI: 10.1177/25158414231189099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
Background Anthropometry facilitates the evaluation of risks associated with reduced macular pigment optical density (MPOD). Objectives To investigate the predictors and anthropometric indices associated with MPOD in healthy adult in Arab population. Design This is a cross-sectional study. Methods The MPOD was measured at 0.5° from fovea using a heterochromatic flicker photometer. Healthy participants aged between 20 and 40 years were recruited. The study evaluated the following data of the participants: height, weight, body mass index, body fat percentage, basal metabolic rate, visceral fat level, muscle mass, bone mineral content, and percentage of protein and body water. The correlation between MPOD with anthropometrics and demographic data was evaluated using Spearman's correlation test. The differences among genders were investigated using the Mann-Whitney U test. The smoking effect on MPOD was analyzed using the Friedman test. Results In all, 143 participants were recruited. The median ± interquartile range was calculated for age (23 ± 4 years), visual acuity (0.00 ± 0.00 logMAR), and MPOD (0.41 ± 0.18). The average MPOD was higher in males than in females but it was not statistically significant (p > 0.05); on the other hand, they were statistically significantly different in most of the anthropometric data. A significant relationship was found between MPOD and percentage of body fat, protein, and body water (r = 0.30, p < 0.05). The observed median MPOD value was higher in this study than that found in previous studies in white populations, but lower than that found in studies investigating Asian populations. Conclusion One of the most important risk factors of age-related macular degeneration is associated with a relative absence of macular pigment. This study brought into focus percentage of protein and body water for further studies as well as the well-established links with body fat and obesity. Unknown predictors of MPOD remain uncovered. The study also provided first report on normative values of MPOD for Arab population and confirmed the differences from other ethnicities.
Collapse
Affiliation(s)
- Ali Alsaqr
- Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Manal Alharbi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Noura Aldossary
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz Alruwished
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alharbi
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Alghaib
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Alabdulkarim
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shatha Alhamdan
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Esam Almutleb
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Abusharha
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Ayed-Boussema I, Rjiba K, Hamdi H, M'nassri A, Azzebi A, Mokni M, Abid S. Evaluation of hepatotoxicity and nephrotoxicity induced by Fenpyroximate in subchronic-orally exposed Wistar rats. Biomarkers 2022; 27:648-658. [PMID: 35775504 DOI: 10.1080/1354750x.2022.2096928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Backgrounds. Fenpyroximate (FEN) is an acaricide that inhibits the complex I of the mitochondrial respiratory chain. The aim of this work was to explore the hepatotoxic and nephrotoxic effects of FEN on Wistar rats. Methods. The study involved five groups: a control group and four groups treated with FEN at 1, 2, 4, and 8 mg/Kg bw for 28 consecutive days. Histological examination and biochemical analysis of hepatic and renal biomarkers were performed. The malondialdehyde (MDA), protein carbonyl levels, and antioxidant enzymes activities were measured. Comet assay was conducted to explore FEN genotoxicity. Results. FEN induced a disturbance of the hepatic and renal functions as evidenced by an increase in AST, ALT, ALP, creatinine, and uric acid levels and histopathological modifications in the two examined tissues. FEN increased hepatic and renal lipid peroxidation and protein oxidation. The activities of liver and kidney SOD, CAT, GPX, and GST are increased significantly in FEN-treated rats at doses of 2 and 4 mg/kg bw. However, with the dose of 8 mg/kg bw of FEN, these activities are decreased. Moreover, FEN increased DNA damage in a dose-dependent manner. Conclusion. FEN was hepatotoxic and nephrotoxic very likely through induction of oxidative stress.
Collapse
Affiliation(s)
- Imen Ayed-Boussema
- Laboratory of Research on Biologically Compatible Compounds, LR01SE17. University of Monastir, Faculty of Dental Medicine, 5019, Monastir, Tunisia.,Faculty of Sciences of Gafsa. University of Gafsa
| | - Karima Rjiba
- Laboratory of Research on Biologically Compatible Compounds, LR01SE17. University of Monastir, Faculty of Dental Medicine, 5019, Monastir, Tunisia.,Faculty of Sciences of Gafsa. University of Gafsa
| | - Hiba Hamdi
- Laboratory of Research on Biologically Compatible Compounds, LR01SE17. University of Monastir, Faculty of Dental Medicine, 5019, Monastir, Tunisia
| | - Asma M'nassri
- Laboratory of Research on Biologically Compatible Compounds, LR01SE17. University of Monastir, Faculty of Dental Medicine, 5019, Monastir, Tunisia.,Faculty of Sciences of Gafsa. University of Gafsa
| | - Awatef Azzebi
- Department of Nephrology, Dialysis, and Transplant, University Hospital of Sahloul, Sousse, Tunisia
| | - Moncef Mokni
- Department of Anatomic Pathology and Histology, Hospital of Hached, Sousse, Tunisia
| | - Salwa Abid
- Laboratory of Research on Biologically Compatible Compounds, LR01SE17. University of Monastir, Faculty of Dental Medicine, 5019, Monastir, Tunisia
| |
Collapse
|
9
|
Zhao X, Xuan R, Wang A, Li Q, Zhao Y, Du S, Duan Q, Wang Y, Ji Z, Guo Y, Wang J, Chao T. High-Throughput Sequencing Reveals Transcriptome Signature of Early Liver Development in Goat Kids. Genes (Basel) 2022; 13:833. [PMID: 35627218 PMCID: PMC9141777 DOI: 10.3390/genes13050833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
As a vital metabolic and immune organ in animals, the liver plays an important role in protein synthesis, detoxification, metabolism, and immune defense. The primary research purpose of this study was to reveal the effect of breast-feeding, weaning transition, and weaning on the gene expression profile in the goat kid liver and to elucidate the transcriptome-level signatures associated with liver metabolic adaptation. Therefore, transcriptome sequencing was performed on liver tissues, which was collected at 1 day (D1), 2 weeks (W2), 4 weeks (W4), 8 weeks (W8), and 12 weeks (W12) after birth in Laiwu black goats at five different time-points, with five goats at each time point. From 25 libraries, a total of 37497 mRNAs were found to be expressed in goat kid livers, and 1271 genes were differentially expressed between at least two of the five time points. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that these genes were annotated as an extracellular region fraction, exhibiting monooxygenase activity, positive regulation of T cell activation, mitotic spindle mid-region assembly, cytokinesis, cytoskeleton-dependent cytokinesis, regulation of cytokinesis, regulation of lymphocyte proliferation, and so on. In addition, it mainly deals with metabolism, endocrine, cell proliferation and apoptosis, and immune processes. Finally, a gene regulatory network was constructed, and a total of 14 key genes were screened, which were mainly enriched for cell growth and development, endocrine, immune, and signal transduction-related pathways. Our results provide new information on the molecular mechanisms and pathways involved in liver development, metabolism, and immunity of goats.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Aili Wang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Yilin Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Shanfeng Du
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Qingling Duan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 261018, China; (X.Z.); (R.X.); (Q.L.); (Y.Z.); (S.D.); (Q.D.); (Y.W.); (Z.J.); (Y.G.); (J.W.)
| |
Collapse
|
10
|
Obiweluozo PE, Onwurah CN, Uzodinma UE, Dike IC, Onwurah AI. Particulate air-borne pollutants in Port Harcourt could contaminate recreational pools; toxicity evaluation and children's health risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2342-2352. [PMID: 34370197 DOI: 10.1007/s11356-021-15704-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Air pollution in Port Harcourt metropolis exacerbated by ambient air-borne black soot particles in the past 4 years has become a great concern especially for children who indulge in recreational pools' activities. This study was therefore carried out to evaluate the toxicities of recreational pools in Port Harcourt City and hence perform preliminary health risk assessment. Five recreational pools (4 outdoor and 1 indoor) were used out of the randomly selected 8, from 30 that were identified. Toxicity assessment was carried out using "Ostracods-linked mathematical model" while risk assessment was by analysing protein oxidation and hepatotoxicity in the hepatocytes of exposed rats. Questionnaire-based approach was used to elicit relevant information from children (10-13 years) who consistently engaged in recreational pool activities. The pH and temperature and bacteriological examination of the pools were also carried out. Results show that all the pools were in fairly good sanitary conditions based on the highest mean bacterial counts (2.33±0.57/100 ml), while all were slightly acidic and with normal temperature range. The toxicity indices of outdoor pools (SP 1) and (SP 5) are respectively 20.8 and 49.0 units, while that of outdoor pools (SP 2) and (SP 3) are the same (42.5 units). "No-observed-effect-toxicity" (NOET) was observed for the indoor pool (SP 4). Analysis of the structured questionnaires inferred that none of the children traced has or has had any of the recreational water illnesses. However, results of protein oxidation in rats and hepatotoxicity of rats' hepatocytes suggest that the exposed children may be at oxidative stress-related risks in future especially if the children continue, without adequate precaution, in the use of these pools. It is recommended that further monitoring of these children be continued while measures such as frequent changes of the pool water are ensured.
Collapse
Affiliation(s)
- Patience E Obiweluozo
- Childhood and Environmental Education Research Group, Department of Educational Foundations, University of Nigeria, Nsukka, Nigeria
| | - Chimezie N Onwurah
- Childhood and Environmental Education Research Group, Department of Educational Foundations, University of Nigeria, Nsukka, Nigeria
| | - Uche E Uzodinma
- Childhood and Environmental Education Research Group, Department of Educational Foundations, University of Nigeria, Nsukka, Nigeria
| | - Ibiwari C Dike
- Childhood and Environmental Education Research Group, Department of Educational Foundations, University of Nigeria, Nsukka, Nigeria
| | - Arinze I Onwurah
- Centre for Environmental Management and Control (CEMAC), University of Nigeria, Enugu Campus, Nsukka, Nigeria.
| |
Collapse
|
11
|
Decreased proteasomal cleavage at nitrotyrosine sites in proteins and peptides. Redox Biol 2021; 46:102106. [PMID: 34455147 PMCID: PMC8403764 DOI: 10.1016/j.redox.2021.102106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/05/2021] [Accepted: 08/15/2021] [Indexed: 11/22/2022] Open
Abstract
Removal of moderately oxidized proteins is mainly carried out by the proteasome, while highly modified proteins are no longer degradable. However, in the case of proteins modified by nitration of tyrosine residues to 3-nitrotyrosine (NO2Y), the role of the proteasome remains to be established. For this purpose, degradation assays and mass spectrometry analyses were performed using isolated proteasome and purified fractions of native cytochrome c (Cyt c) and tyrosine nitrated proteoforms (NO2Y74-Cyt c and NO2Y97-Cyt c). While Cyt c treated under mild conditions with hydrogen peroxide was preferentially degraded by the proteasome, NO2Y74- and NO2Y97-Cyt c species did not show an increased degradation rate with respect to native Cyt c. Peptide mapping analysis confirmed a decreased chymotrypsin-like cleavage at C-terminal of NO2Y sites within the protein, with respect to unmodified Y residues. Additionally, studies with the proteasome substrate suc-LLVY-AMC (Y-AMC) and its NO2Y-containing analog, suc-LLVNO2Y-AMC (NO2Y-AMC) were performed, both using isolated 20S-proteasome and astrocytoma cell lysates as the proteasomal source. Comparisons of both substrates showed a significantly decreased proteasome activity towards NO2Y-AMC. Moreover, NO2Y-AMC, but not Y-AMC degradation rates, were largely diminished by increasing the reaction pH, suggesting an inhibitory influence of the additional negative charge contained in NO2Y-AMC secondary to nitration. The mechanism of slowing of proteasome activity in NO2Y-contaning peptides was further substantiated in studies using the phenylalanine and nitro-phenylalanine peptide analog substrates. Finally, degradation rates of Y-AMC and NO2Y-AMC with proteinase K were the same, demonstrating the selective inability of the proteasome to readily cleave at nitrotyrosine sites. Altogether, data indicate that the proteasome has a decreased capability to cleave at C-terminal of NO2Y residues in proteins with respect to the unmodified residues, making this a possible factor that decreases the turnover of oxidized proteins, if they are not unfolded, and facilitating the accumulation of nitrated proteins.
Collapse
|
12
|
Yang C, Zhou X, Yang H, Gebeyew K, Yan Q, Zhou C, He Z, Tan Z. Transcriptome analysis reveals liver metabolism programming in kids from nutritional restricted goats during mid-gestation. PeerJ 2021; 9:e10593. [PMID: 33575124 PMCID: PMC7849524 DOI: 10.7717/peerj.10593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background Maternal nutrient restriction during pregnancy causes a metabolic disorder that threatens the offspring's health in humans and animals. However, the molecular mechanism of how undernutrition affecting hepatic metabolism of fetal or postnatal offspring is still unclear. We aimed to investigate transcriptomic changes of fetal livers in response to maternal malnutrition in goats during mid-gestation and to explore whether these changes would disappear when the nutrition was recovered to normal level during mid-gestation using goats (Capra hircus) as the experimental animals. Methods Fifty-three pregnant goats were subjected to a control (100% of the maintenance requirements, CON) or a restricted (60% of the maintenance requirements on day 45 to day 100 of gestation and then realimentation, RES) diet. A total of 16 liver samples were collected from fetal goats on day 100 of gestation and goat kids of postnatal day 90 to obtain hepatic transcriptional profiles using RNA-Seq. Results Principal component analysis of the hepatic transcriptomes presented a clear separation by growth phase (fetus and kid) rather than treatment. Maternal undernutrition up-regulated 86 genes and down-regulated 76 genes in the fetal liver of the FR group as compared to the FC group. KEGG pathway analysis showed the DEGs mainly enriched in protein digestion and absorption, steroid biosynthesis, carbohydrate digestion and absorption and bile secretion. A total of 118 significant DEGs (fold change > 1.2 and FDR < 0.1) within KR vs. KC comparison was identified with 79 up-regulated genes and down-regulated 39 genes, and these DEGs mainly enriched in the biosynthesis of amino acids, citrate cycle, valine, leucine and isoleucine biosynthesis and carbon metabolism. Conclusion Hepatic transcriptome analysis showed that maternal undernutrition promoted protein digestion and absorption in the fetal livers, while which restrained carbohydrate metabolism and citric acid cycle in the livers of kid goats after realimentation. The results indicate that maternal undernutrition during mid-gestation causes hepatic metabolism programming in kid goats on a molecular level.
Collapse
Affiliation(s)
- Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoling Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China.,College of Animal Science, Tarim University, Alaer, Xinjiang, China
| | - Hong Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiongxian Yan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China.,University of Chinese Academy of Sciences, Beijing, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, China
| |
Collapse
|
13
|
Bhat ZF, Morton JD, Mason SL, Jayawardena SR, Mungure T, Bekhit AEA. Cooking does not impair the impact of pulsed electric field on the protein digestion of venison (
Cervus elaphus
) during
in vitro
gastrointestinal digestion. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zuhaib F. Bhat
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Christchurch, Lincoln7647New Zealand
| | - James D. Morton
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Christchurch, Lincoln7647New Zealand
| | - Susan L. Mason
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Christchurch, Lincoln7647New Zealand
| | - Sasika Reshan Jayawardena
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Christchurch, Lincoln7647New Zealand
| | - Tanyaradzwa Mungure
- Department of Food Sciences University of Otago P.O. Box 56 Dunedin9054New Zealand
| | | |
Collapse
|
14
|
Reeg S, Castro JP, Hugo M, Grune T. Accumulation of polyubiquitinated proteins: A consequence of early inactivation of the 26S proteasome. Free Radic Biol Med 2020; 160:293-302. [PMID: 32822745 DOI: 10.1016/j.freeradbiomed.2020.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/18/2022]
Abstract
The proteasomal degradation system is one of the most important protein degradation systems in the cytosol and nucleus. This system is present in two major forms: the ATP-stimulated 26S/30 S proteasome or the ATP-independent 20S core proteasome. While the first recognize ubiquitin-tagged target proteins and degrade them, the 20S proteasome works also independent from ATP, but requires partially unfolded substrates. While the role of the proteasome in the selective removal of oxidized proteins is undoubted, the debate about a selective ubiquitination of oxidized proteins is still ongoing. Here we demonstrate, that under some conditions of oxidative stress an accumulation of oxidized and of K48-ubiquitinated proteins occurs. However, the removal of oxidized proteins seems not to be linked to ubiquitination. In further experiments, we could show that the accumulation of ubiquitinated proteins under certain oxidative stress conditions is rather a result of a different sensitivity of the 26S proteasome and the ubiquitination machinery towards oxidants.
Collapse
Affiliation(s)
- Sandra Reeg
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - José P Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Martin Hugo
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| |
Collapse
|
15
|
Olowe R, Sandouka S, Saadi A, Shekh-Ahmad T. Approaches for Reactive Oxygen Species and Oxidative Stress Quantification in Epilepsy. Antioxidants (Basel) 2020; 9:E990. [PMID: 33066477 PMCID: PMC7602129 DOI: 10.3390/antiox9100990] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress (OS) and excessive reactive oxygen species (ROS) production have been implicated in many neurological pathologies, including acute seizures and epilepsy. Seizure-induced damage has been demonstrated both in vitro and in several in vivo seizure and epilepsy models by direct determination of ROS, and by measuring indirect markers of OS. In this manuscript, we review the current reliable methods for quantifying ROS-related and OS-related markers in pre-clinical and clinical epilepsy studies. We first provide pieces of evidence for the involvement of different sources of ROS in epilepsy. We then discuss general methods and assays used for the ROS measurements, mainly superoxide anion, hydrogen peroxide, peroxynitrite, and hydroxyl radical in in vitro and in vivo studies. In addition, we discuss the role of these ROS and markers of oxidative injury in acute seizures and epilepsy pre-clinical studies. The indirect detection of secondary products of ROS such as measurements of DNA damage, lipid peroxidation, and protein oxidation will also be discussed. This review also discusses reliable methods for the assessment of ROS, OS markers, and their by-products in epilepsy clinical studies.
Collapse
Affiliation(s)
| | | | | | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (R.O.); (S.S.); (A.S.)
| |
Collapse
|
16
|
Raupbach J, Ott C, Koenig J, Grune T. Proteasomal degradation of glycated proteins depends on substrate unfolding: Preferred degradation of moderately modified myoglobin. Free Radic Biol Med 2020; 152:516-524. [PMID: 31760091 DOI: 10.1016/j.freeradbiomed.2019.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
The Maillard reaction generates protein modifications which can accumulate during hyperglycemia or aging and may have inflammatory consequences. The proteasome is one of the major intracellular systems involved in the proteolytic degradation of modified proteins but its role in the degradation of glycated proteins is scarcely studied. In this study, chemical and structural changes of glycated myoglobin were analyzed and its degradation by 20S proteasome was studied. Myoglobin was incubated with physiological (5-10 mM), moderate (50-100 mM) and severe levels (300 mM) of glucose or methylglyoxal (MGO, 50 mM). Glycation increased myoglobin's fluorescence and surface hydrophobicity. Severe glycation generated crosslinked proteins as shown by gel electrophoresis. The concentration of advanced glycation endproducts (AGEs) N-ε-carboxymethyl lysine (CML), N-ε-carboxyethyl lysine (CEL), methylglyoxal-derived hydroimidazolone-1 (MG-H1), pentosidine and pyrraline was analyzed after enzymatic hydrolysis followed by UPLC-MS/MS. Higher concentrations of glucose increased all analyzed AGEs and incubation with MGO led to a pronounced increase of CEL and MG-H1. The binding of the heme group to apo-myoglobin was decreased with increasing glycation indicating the loss of tertiary protein structure. Proteasomal degradation of modified myoglobin compared to native myoglobin depends on the degree of glycation: physiological conditions decreased proteasomal degradation whereas moderate glycation increased degradation. Severe glycation again decreased proteolytic cleavage which might be due to crosslinking of protein monomers. The activity of the proteasomal subunit β5 is influenced by the presence of glycated myoglobin. In conclusion, the role of the proteasome in the degradation of glycated proteins is highly dependent on the level of glycation and consequent protein unfolding.
Collapse
Affiliation(s)
- Jana Raupbach
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany
| | - Jeannette Koenig
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, 14458, Germany; German Center for Cardiovascular Research (DZHK), 10117, Berlin, Germany; University of Potsdam, Institute of Nutritional Science, 14558, Nuthetal, Germany.
| |
Collapse
|
17
|
Anis E, Zafeer MF, Firdaus F, Islam SN, Khan AA, Hossain MM. Perillyl Alcohol Mitigates Behavioural Changes and Limits Cell Death and Mitochondrial Changes in Unilateral 6-OHDA Lesion Model of Parkinson's Disease Through Alleviation of Oxidative Stress. Neurotox Res 2020; 38:461-477. [PMID: 32394056 DOI: 10.1007/s12640-020-00213-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
In this study, we aim to assess the phytomedicinal potential of perillyl alcohol (PA), a dietary monoterpenoid, in a unilateral 6-hydroxydopamine (6-OHDA) lesion rat model of Parkinson's disease (PD). We observed that PA supplementation alleviated behavioural abnormalities such as loss of coordination, reduced rearing and motor asymmetry in lesioned animals. We also observed that PA-treated animals exhibited reduced oxidative stress, DNA fragmentation and caspase 3 activity indicating alleviation of apoptotic cell death. We found reduced mRNA levels of pro-apoptotic regulator BAX and pro-inflammatory mediators IL18 and TNFα in PA-treated animals. Further, PA treatment successfully increased mRNA and protein levels of Bcl2, mitochondrial biogenesis regulator PGC1α and tyrosine hydroxylase (TH) in lesioned animals. We observed that PA treatment blocked BAX and Drp1 translocation to mitochondria, an event often associated with the inception of apoptosis. Further, 6-OHDA exposure reduced expression of electron transport chain complexes I and IV, thereby disturbing energy metabolism. Conversely, expression levels of both complexes were upregulated with PA treatment in lesioned rats. Finally, we found that protein levels of Nrf2, the transcription factor responsible for antioxidant gene expression, were markedly reduced in cytosolic and nuclear fraction on 6-OHDA exposure, and PA increased expression of Nrf2 in both fractions. We believe that our data hints towards PA having the ability to provide cytoprotection in a hemiparkinsonian rat model through alleviation of motor deficits, oxidative stress, mitochondrial dysfunction and apoptosis.
Collapse
Affiliation(s)
- Ehraz Anis
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| | - Mohd Faraz Zafeer
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fakiha Firdaus
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shireen Naaz Islam
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Azka Anees Khan
- Department of Pathology, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - M Mobarak Hossain
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
18
|
Pathways of protein synthesis and degradation in PD pathogenesis. PROGRESS IN BRAIN RESEARCH 2020; 252:217-270. [PMID: 32247365 DOI: 10.1016/bs.pbr.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of protein aggregates in the brains of individuals with Parkinson's disease (PD) in the early 20th century, the scientific community has been interested in the role of dysfunctional protein metabolism in PD etiology. Recent advances in the field have implicated defective protein handling underlying PD through genetic, in vitro, and in vivo studies incorporating many disease models alongside neuropathological evidence. Here, we discuss the existing body of research focused on understanding cellular pathways of protein synthesis and degradation, and how aberrations in either system could engender PD pathology with special attention to α-synuclein-related consequences. We consider transcription, translation, and post-translational modification to constitute protein synthesis, and protein degradation to encompass proteasome-, lysosome- and endoplasmic reticulum-dependent mechanisms. Novel findings connecting each of these steps in protein metabolism to development of PD indicate that deregulation of protein production and turnover remains an exciting area in PD research.
Collapse
|
19
|
Karmakar S, Datta K, Molla KA, Gayen D, Das K, Sarkar SN, Datta SK. Proteo-metabolomic investigation of transgenic rice unravels metabolic alterations and accumulation of novel proteins potentially involved in defence against Rhizoctonia solani. Sci Rep 2019; 9:10461. [PMID: 31320685 PMCID: PMC6639406 DOI: 10.1038/s41598-019-46885-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/24/2019] [Indexed: 12/20/2022] Open
Abstract
The generation of sheath blight (ShB)-resistant transgenic rice plants through the expression of Arabidopsis NPR1 gene is a significant development for research in the field of biotic stress. However, to our knowledge, regulation of the proteomic and metabolic networks in the ShB-resistant transgenic rice plants has not been studied. In the present investigation, the relative proteome and metabolome profiles of the non-transformed wild-type and the AtNPR1-transgenic rice lines prior to and subsequent to the R. solani infection were investigated. Total proteins from wild type and transgenic plants were investigated using two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (MS). The metabolomics study indicated an increased abundance of various metabolites, which draws parallels with the proteomic analysis. Furthermore, the proteome data was cross-examined using network analysis which identified modules that were rich in known as well as novel immunity-related prognostic proteins, particularly the mitogen-activated protein kinase 6, probable protein phosphatase 2C1, probable trehalose-phosphate phosphatase 2 and heat shock protein. A novel protein, 14-3-3GF14f was observed to be upregulated in the leaves of the transgenic rice plants after ShB infection, and the possible mechanistic role of this protein in ShB resistance may be investigated further.
Collapse
Affiliation(s)
- Subhasis Karmakar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Karabi Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | - Kutubuddin Ali Molla
- ICAR-National Rice Research Institute, Cuttack, 753 006, Odisha, India
- The Huck Institute of the Life Sciences and Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA-16802, USA
| | - Dipak Gayen
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY, 14853, USA
| | - Kaushik Das
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Sailendra Nath Sarkar
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Swapan K Datta
- Laboratory of Translational Research on Transgenic Crops, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| |
Collapse
|
20
|
Pulsed electric field: Effect on in-vitro simulated gastrointestinal protein digestion of deer Longissimus dorsi. Food Res Int 2019; 120:793-799. [DOI: 10.1016/j.foodres.2018.11.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 11/22/2022]
|
21
|
Pomatto LCD, Sun PY, Yu K, Gullapalli S, Bwiza CP, Sisliyan C, Wong S, Zhang H, Forman HJ, Oliver PL, Davies KE, Davies KJA. Limitations to adaptive homeostasis in an hyperoxia-induced model of accelerated ageing. Redox Biol 2019; 24:101194. [PMID: 31022673 PMCID: PMC6479762 DOI: 10.1016/j.redox.2019.101194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/11/2022] Open
Abstract
The Nrf2 signal transduction pathway plays a major role in adaptive responses to oxidative stress and in maintaining adaptive homeostasis, yet Nrf2 signaling undergoes a significant age-dependent decline that is still poorly understood. We used mouse embryonic fibroblasts (MEFs) cultured under hyperoxic conditions of 40% O2, as a model of accelerated ageing. Hyperoxia increased baseline levels of Nrf2 and multiple transcriptional targets (20S Proteasome, Immunoproteasome, Lon protease, NQO1, and HO-1), but resulted in loss of cellular ability to adapt to signaling levels (1.0 μM) of H2O2. In contrast, MEFs cultured at physiologically relevant conditions of 5% O2 exhibited a transient induction of Nrf2 Phase II target genes and stress-protective enzymes (the Lon protease and OXR1) following H2O2 treatment. Importantly, all of these effects have been seen in older cells and organisms. Levels of Two major Nrf2 inhibitors, Bach1 and c-Myc, were strongly elevated by hyperoxia and appeared to exert a ceiling on Nrf2 signaling. Bach1 and c-Myc also increase during ageing and may thus be the mechanism by which adaptive homeostasis is compromised with age.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Patrick Y Sun
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelsi Yu
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Sandhyarani Gullapalli
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Conscience P Bwiza
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Christina Sisliyan
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Sarah Wong
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Peter L Oliver
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK; MRC Harwell Institute, Harwell Campus, Didcot, Oxfordshire, OX11 0RD, UK
| | - Kay E Davies
- Oxford Centre for Gene Function, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, University of Southern California, University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
22
|
Ghanbari Movahed Z, Rastegari-Pouyani M, Mohammadi MH, Mansouri K. Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell? Biomed Pharmacother 2019; 112:108690. [PMID: 30798124 DOI: 10.1016/j.biopha.2019.108690] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer cells can adapt to low energy sources in the face of ATP depletion as well as to their high levels of ROS by altering their metabolism and energy production networks which might also have a role in determining cell fate and developing drug resistance. Cancer cells are generally characterized by increased glycolysis. This is while; cancer stem cells (CSCs) exhibit an enhanced pentose phosphate pathway (PPP) metabolism. Based on the current literature, we suggest that cancer cells when encountering ROS, first increase the glycolysis rate and then following the continuation of oxidative stress, the metabolic balance is skewed from glycolysis to PPP. Therefore, we hypothesize in this review that in cancer cells this metabolic deviation during persistent oxidative stress might be a sign of cancer cells' shift towards CSCs, an issue that might be pivotal in more effective targeting of cancer cells and CSCs.
Collapse
Affiliation(s)
- Zahra Ghanbari Movahed
- Medical Biology Research Center, Kermanshah University of Medical sciences, Kermanshah, Iran
| | - Mohsen Rastegari-Pouyani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Mohammadi
- HSCT research center, Laboratory Hematology and blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical sciences, Kermanshah, Iran; Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
23
|
Fernando R, Drescher C, Nowotny K, Grune T, Castro JP. Impaired proteostasis during skeletal muscle aging. Free Radic Biol Med 2019; 132:58-66. [PMID: 30194981 DOI: 10.1016/j.freeradbiomed.2018.08.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/03/2018] [Accepted: 08/30/2018] [Indexed: 01/03/2023]
Abstract
Aging is a complex phenomenon that has detrimental effects on tissue homeostasis. The skeletal muscle is one of the earliest tissues to be affected and to manifest age-related changes such as functional impairment and the loss of mass. Common to these alterations and to most of tissues during aging is the disruption of the proteostasis network by detrimental changes in the ubiquitin-proteasomal system (UPS) and the autophagy-lysosomal system (ALS). In fact, during aging the accumulation of protein aggregates, a process mainly driven by increased levels of oxidative stress, has been observed, clearly demonstrating UPS and ALS dysregulation. Since the UPS and ALS are the two most important pathways for the removal of misfolded and aggregated proteins and also of damaged organelles, we provide here an overview on the current knowledge regarding the connection between the loss of proteostasis and skeletal muscle functional impairment and also how redox regulation can play a role during aging. Therefore, this review serves for a better understanding of skeletal muscle aging in regard to the loss of proteostasis and how redox regulation can impact its function and maintenance.
Collapse
Affiliation(s)
- Raquel Fernando
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Cathleen Drescher
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Kerstin Nowotny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal, Germany
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; Faculty of Medicine, Department for Biomedicine, University of Porto, 4200-319, Portugal; Institute for Innovation and Health Research (I3S), Aging and Stress Group, R. Alfredo Allen, 4200-135 Porto, Portugal.
| |
Collapse
|
24
|
Non-enzymatic cleavage of Hsp90 by oxidative stress leads to actin aggregate formation: A novel gain-of-function mechanism. Redox Biol 2019; 21:101108. [PMID: 30660959 PMCID: PMC6348241 DOI: 10.1016/j.redox.2019.101108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 01/03/2023] Open
Abstract
Aging is accompanied by the accumulation of oxidized proteins. To remove them, cells employ the proteasomal and autophagy-lysosomal systems; however, if the clearance rate is inferior to its formation, protein aggregates form as a hallmark of proteostasis loss. In cells, during stress conditions, actin aggregates accumulate leading to impaired proliferation and reduced proteasomal activity, as observed in cellular senescence. The heat shock protein 90 (Hsp90) is a molecular chaperone that binds and protects the proteasome from oxidative inactivation. We hypothesized that in oxidative stress conditions a malfunction of Hsp90 occurs resulting in the aforementioned protein aggregates. Here, we demonstrate that upon oxidative stress Hsp90 loses its function in a highly specific non-enzymatic iron-catalyzed oxidation event and its breakdown product, a cleaved form of Hsp90 (Hsp90cl), acquires a new function in mediating the accumulation of actin aggregates. Moreover, the prevention of Hsp90 cleavage reduces oxidized actin accumulation, whereas transfection of the cleaved form of Hsp90 leads to an enhanced accumulation of oxidized actin. This indicates a clear role of the Hsp90cl in the aggregation of oxidized proteins.
Collapse
|
25
|
Nixon B, Bernstein IR, Cafe SL, Delehedde M, Sergeant N, Anderson AL, Trigg NA, Eamens AL, Lord T, Dun MD, De Iuliis GN, Bromfield EG. A Kinase Anchor Protein 4 Is Vulnerable to Oxidative Adduction in Male Germ Cells. Front Cell Dev Biol 2019; 7:319. [PMID: 31921838 PMCID: PMC6933317 DOI: 10.3389/fcell.2019.00319] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is a leading causative agent in the defective sperm function associated with male infertility. Such stress commonly manifests via the accumulation of pathological levels of the electrophilic aldehyde, 4-hydroxynonenal (4HNE), generated as a result of lipid peroxidation. This highly reactive lipid aldehyde elicits a spectrum of cytotoxic lesions owing to its propensity to form stable adducts with biomolecules. Notably however, not all elements of the sperm proteome appear to display an equivalent vulnerability to 4HNE modification, with only a small number of putative targets having been identified to date. Here, we validate one such target of 4HNE adduction, A-Kinase Anchor Protein 4 (AKAP4); a major component of the sperm fibrous sheath responsible for regulating the signal transduction and metabolic pathways that support sperm motility and capacitation. Our data confirm that both the precursor (proAKAP4), and mature form of AKAP4, are conserved targets of 4HNE adduction in primary cultures of post-meiotic male germ cells (round spermatids) and in mature mouse and human spermatozoa. We further demonstrate that 4HNE treatment of round spermatids and mature spermatozoa results in a substantial reduction in the levels of both proAKAP4 and AKAP4 proteins. This response proved refractory to pharmacological inhibition of proteolysis, but coincided with an apparent increase in the degree of protein aggregation. Further, we demonstrate that 4HNE-mediated protein degradation and/or aggregation culminates in reduced levels of capacitation-associated phosphorylation in mature human spermatozoa, possibly due to dysregulation of the signaling framework assembled around the AKAP4 scaffold. Together, these findings suggest that AKAP4 plays an important role in the pathophysiological responses to 4HNE, thus strengthening the importance of AKAP4 as a biomarker of sperm quality, and providing the impetus for the design of an efficacious antioxidant-based intervention strategy to alleviate sperm dysfunction.
Collapse
Affiliation(s)
- Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Brett Nixon,
| | - Ilana R. Bernstein
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Shenae L. Cafe
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | | | - Nicolas Sergeant
- SPQI – 4BioDx-Breeding Section, Lille, France
- University of Lille, INSERM UMRS, Lille, France
| | - Amanda L. Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Natalie A. Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Andrew L. Eamens
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
26
|
Demasi M, da Cunha FM. The physiological role of the free 20S proteasome in protein degradation: A critical review. Biochim Biophys Acta Gen Subj 2018; 1862:2948-2954. [PMID: 30297324 DOI: 10.1016/j.bbagen.2018.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/27/2018] [Accepted: 09/12/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND It has been almost three decades since the removal of oxidized proteins by the free 20S catalytic unit of the proteasome (20SPT) was proposed. Since then, experimental evidence suggesting a physiological role of proteolysis mediated by the free 20SPT has being gathered. SCOPE OF REVIEW Experimental data that favors the hypothesis of free 20SPT as playing a role in proteolysis are critically reviewed. MAJOR CONCLUSIONS Protein degradation by the proteasome may proceed through multiple proteasome complexes with different requirements though the unequivocal role of the free 20SPT in cellular proteolysis towards native or oxidized proteins remains to be demonstrated. GENERAL SIGNIFICANCE The biological significance of proteolysis mediated by the free 20SPT has been elusive since its discovery. The present review critically analyzes the available experimental data supporting the proteolytic role of the free or single capped 20SPT.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP, Brazil.
| | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
27
|
Pomatto LCD, Davies KJA. Adaptive homeostasis and the free radical theory of ageing. Free Radic Biol Med 2018; 124:420-430. [PMID: 29960100 PMCID: PMC6098721 DOI: 10.1016/j.freeradbiomed.2018.06.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
The Free Radical Theory of Ageing, was first proposed by Denham Harman in the mid-1950's, based largely on work conducted by Rebeca Gerschman and Daniel Gilbert. At its core, the Free Radical Theory of Ageing posits that free radical and related oxidants, from the environment and internal metabolism, cause damage to cellular constituents that, over time, result in an accumulation of structural and functional problems. Several variations on the original concept have been advanced over the past six decades, including the suggestion of a central role for mitochondria-derived reactive species, and the proposal of an age-related decline in the effectiveness of protein, lipid, and DNA repair systems. Such innovations have helped the Free Radical Theory of Aging to achieve widespread popularity. Nevertheless, an ever-growing number of apparent 'exceptions' to the Theory have seriously undermined its acceptance. In part, we suggest, this has resulted from a rather simplistic experimental approach of knocking-out, knocking-down, knocking-in, or overexpressing antioxidant-related genes to determine effects on lifespan. In some cases such experiments have yielded results that appear to support the Free Radical Theory of Aging, but there are just as many published papers that appear to contradict the Theory. We suggest that free radicals and related oxidants are but one subset of stressors with which all life forms must cope over their lifespans. Adaptive Homeostasis is the mechanism by which organisms dynamically expand or contract the homeostatic range of stress defense and repair systems, employing a veritable armory of signal transduction pathways (such as the Keap1-Nrf2 system) to generate a complex profile of inducible and enzymatic protection that best fits the particular need. Viewed as a component of Adaptive Homeostasis, the Free Radical Theory of Aging appears both viable and robust.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 00089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, the University of Southern California, Los Angeles, CA 00089-0191, USA; Molecular and Computational Biology Program of the Department of Biological Sciences, Dornsife College of Letters, Arts, and sciences, the University of Southern California, Los Angeles, CA 90089-0191, USA; Department of Biochemistry & Molecular Medicine, Keck School of Medicine of USC, the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 2018; 65:e12514. [PMID: 29888508 DOI: 10.1111/jpi.12514] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) represents a threat to the chemical integrity of biomolecules including lipids, proteins, and DNA. The associated molecular damage frequently results in serious health issues, which justifies our concern about this phenomenon. In addition to enzymatic defense mechanisms, there are compounds (usually referred to as antioxidants) that offer chemical protection against oxidative events. Among them, melatonin and its metabolites constitute a particularly efficient chemical family. They offer protection against OS as individual chemical entities through a wide variety of mechanisms including electron transfer, hydrogen transfer, radical adduct formation, and metal chelation, and by repairing biological targets. In fact, many of them including melatonin can be classified as multipurpose antioxidants. However, what seems to be unique to the melatonin's family is their collective effects. Because the members of this family are metabolically related, most of them are expected to be present in living organisms wherever melatonin is produced. Therefore, the protection exerted by melatonin against OS may be viewed as a result of the combined antioxidant effects of the parent molecule and its metabolites. Melatonin's family is rather exceptional in this regard, offering versatile and collective antioxidant protection against OS. It certainly seems that melatonin is one of the best nature's defenses against oxidative damage.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
29
|
Bromfield EG, Aitken RJ, McLaughlin EA, Nixon B. Proteolytic degradation of heat shock protein A2 occurs in response to oxidative stress in male germ cells of the mouse. Mol Hum Reprod 2018; 23:91-105. [PMID: 27932549 DOI: 10.1093/molehr/gaw074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/20/2016] [Indexed: 12/23/2022] Open
Abstract
STUDY QUESTION Does oxidative stress compromise the protein expression of heat shock protein A2 (HSPA2) in the developing germ cells of the mouse testis? SUMMARY ANSWER Oxidative stress leads to the modification of HSPA2 by the lipid aldehyde 4-hydroxynonenal (4HNE) and initiates its degradation via the ubiquitin-proteasome system. WHAT IS KNOWN ALREADY Previous work has revealed a deficiency in HSPA2 protein expression within the spermatozoa of infertile men that have failed fertilization in a clinical setting. While the biological basis of this reduction in HSPA2 remains to be established, we have recently shown that the HSPA2 expressed in the spermatozoa of normozoospermic individuals is highly susceptible to adduction, a form of post-translational modification, by the lipid aldehyde 4HNE that has been causally linked to the degradation of its substrates. This modification of HSPA2 by 4HNE adduction dramatically reduced human sperm-egg interaction in vitro. Moreover, studies in a mouse model offer compelling evidence that the co-chaperone BCL2-associated athanogene 6 (BAG6) plays a key role in regulating the stability of HSPA2 in the testis, by preventing its ubiquitination and subsequent proteolytic degradation. STUDY DESIGN, SIZE, DURATION Dose-dependent studies were used to establish a 4HNE-treatment regime for primary culture(s) of male mouse germ cells. The influence of 4HNE on HSPA2 protein stability was subsequently assessed in treated germ cells. Additionally, sperm lysates from infertile patients with established zona pellucida recognition defects were examined for the presence of 4HNE and ubiquitin adducts. A minimum of three biological replicates were performed to test statistical significance. PARTICIPANTS/MATERIALS, SETTING, METHODS Oxidative stress was induced in pachytene spermatocytes and round spermatids isolated from the mouse testis, as well as a GC-2 cell line, using 50-200 µM 4HNE or hydrogen peroxide (H2O2), and the expression of HSPA2 was monitored via immunocytochemistry and immunoblotting approaches. Using the GC-2 cell line as a model, the ubiquitination and degradation of HSPA2 was assessed using immunoprecipitation techniques and pharmacological inhibition of proteasomal and lysosomal degradation pathways. Finally, the interaction between BAG6 and HSPA2 was examined in response to 4HNE exposure via proximity ligation assays. MAIN RESULTS AND THE ROLE OF CHANCE HSPA2 protein levels were significantly reduced compared with controls after 4HNE treatment of round spermatids (P < 0.01) and GC-2 cells (P < 0.001) but not pachytene spermatocytes. Using GC-2 cells as a model, HSPA2 was shown to be both adducted by 4HNE and targeted for ubiquitination in response to cellular oxidative stress. Inhibition of the proteasome with MG132 prevented HSPA2 degradation after 4HNE treatment indicating that the degradation of HSPA2 is likely to occur via a proteasomal pathway. Moreover, our assessment of proteasome activity provided evidence that 4HNE treatment can significantly increase the proteasome activity of GC-2 cells (P < 0.05 versus control). Finally, 4HNE exposure to GC-2 cells resulted in the dissociation of HSPA2 from its regulatory co-chaperone BAG6, a key mediator of HSPA2 stability in male germ cells. LIMITATIONS, REASONS FOR CAUTION While these experiments were performed using a mouse germ cell-model system, our analyses of patient sperm lysate imply that these mechanisms are conserved between mouse and human germ cells. WIDER IMPLICATIONS OF THE FINDINGS This study suggests a causative link between non-enzymatic post-translational modifications and the relative levels of HSPA2 in the spermatozoa of a specific sub-class of infertile males. In doing so, this work enhances our understanding of failed sperm-egg recognition and may assist in the development of targeted antioxidant-based approaches for ameliorating the production of cytotoxic lipid aldehydes in the testis in an attempt to prevent this form of infertility. LARGE SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the National Health and Medical Research Council of Australia (APP1101953). The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Elizabeth G Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Eileen A McLaughlin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
30
|
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Biochemistry of Peroxynitrite and Protein Tyrosine Nitration. Chem Rev 2018; 118:1338-1408. [DOI: 10.1021/acs.chemrev.7b00568] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gerardo Ferrer-Sueta
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Nicolás Campolo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Silvina Bartesaghi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Sebastián Carballal
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Romero
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Laboratorio
de Fisicoquímica Biológica, Facultad de
Ciencias, ‡Center for Free Radical and Biomedical Research, §Departamento de Bioquímica,
Facultad de Medicina, ∥Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Yeles C, Vlachavas EI, Papadodima O, Pilalis E, Vorgias CE, Georgakilas AG, Chatziioannou A. Integrative Bioinformatic Analysis of Transcriptomic Data Identifies Conserved Molecular Pathways Underlying Ionizing Radiation-Induced Bystander Effects (RIBE). Cancers (Basel) 2017; 9:E160. [PMID: 29186820 PMCID: PMC5742808 DOI: 10.3390/cancers9120160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022] Open
Abstract
Ionizing radiation-induced bystander effects (RIBE) encompass a number of effects with potential for a plethora of damages in adjacent non-irradiated tissue. The cascade of molecular events is initiated in response to the exposure to ionizing radiation (IR), something that may occur during diagnostic or therapeutic medical applications. In order to better investigate these complex response mechanisms, we employed a unified framework integrating statistical microarray analysis, signal normalization, and translational bioinformatics functional analysis techniques. This approach was applied to several microarray datasets from Gene Expression Omnibus (GEO) related to RIBE. The analysis produced lists of differentially expressed genes, contrasting bystander and irradiated samples versus sham-irradiated controls. Furthermore, comparative molecular analysis through BioInfoMiner, which integrates advanced statistical enrichment and prioritization methodologies, revealed discrete biological processes, at the cellular level. For example, the negative regulation of growth, cellular response to Zn2+-Cd2+, and Wnt and NIK/NF-kappaB signaling, thus refining the description of the phenotypic landscape of RIBE. Our results provide a more solid understanding of RIBE cell-specific response patterns, especially in the case of high-LET radiations, like α-particles and carbon-ions.
Collapse
Affiliation(s)
- Constantinos Yeles
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15701 Athens, Greece; (C.Y.); (C.E.V.)
- Metabolic Engineering and Bioinformatics Research Team, Institute of Biology Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece; (E.-I.V); (O.P.)
| | - Efstathios-Iason Vlachavas
- Metabolic Engineering and Bioinformatics Research Team, Institute of Biology Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece; (E.-I.V); (O.P.)
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Dragana, Greece
- Enios Applications Private Limited Company, A17671 Athens, Greece;
| | - Olga Papadodima
- Metabolic Engineering and Bioinformatics Research Team, Institute of Biology Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece; (E.-I.V); (O.P.)
| | | | - Constantinos E. Vorgias
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15701 Athens, Greece; (C.Y.); (C.E.V.)
| | - Alexandros G. Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece;
| | - Aristotelis Chatziioannou
- Metabolic Engineering and Bioinformatics Research Team, Institute of Biology Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece; (E.-I.V); (O.P.)
- Enios Applications Private Limited Company, A17671 Athens, Greece;
| |
Collapse
|
32
|
Lee DY, Jung DE, Yu SS, Lee YS, Choi BK, Lee YC. Regulation of SIRT3 signal related metabolic reprogramming in gastric cancer by Helicobacter pylori oncoprotein CagA. Oncotarget 2017; 8:78365-78378. [PMID: 29108235 PMCID: PMC5667968 DOI: 10.18632/oncotarget.18695] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Injection of the Helicobacter pylori cytotoxin-associated gene A (CagA) is closely associated with the development of chronic gastritis and gastric cancer. Individuals infected with H. pylori possessing the CagA protein produce more reactive oxygen species (ROS) and show an increased risk of developing gastric cancer. Sirtuins (SIRTs) are nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases and mitochondrial SIRT3 is known to be a tumor suppressor via its ability to suppress ROS and hypoxia inducible factor 1α (HIF-1α). However, it is unclear whether increased ROS production by H. pylori is regulated by SIRT3 followed by HIF-1α regulation and whether intracellular CagA acts as a regulator thereof. In this study, we investigated correlations among SIRT3, ROS, and HIF-1α in H. pylori-infected gastric epithelial cells. We observed that SIRT3-deficient AGS cells induce HIF-1α protein stabilization and augmented transcriptional activity under hypoxic conditions. In CagA+H. pylori infected cells, CagA protein localized to mitochondria where it subsequently suppressed SIRT3 proteins. CagA+H. pylori infection also increased HIF-1α activity through the ROS production induced by the downregulated SIRT3 activity, which is similar to the hypoxic condition in gastric epithelial cells. In contrast, overexpression of SIRT3 inhibited the HIF-1α protein stabilization and attenuated the increase in HIF-1α transcriptional activity under hypoxic conditions. Moreover, CagA+H. pylori attenuated HIF-1α stability and decreased transcriptional activity in SIRT3-overexpressing gastric epithelial cells. Taken together, these findings provide valuable insights into the potential role of SIRT3 in CagA+H. pylori-mediated gastric carcinogenesis and a possible target for cancer prevention via inhibition of HIF-1α.
Collapse
Affiliation(s)
- Do Yeon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dawoon E Jung
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Sook Yu
- Department of Biomedical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | - Beom Ku Choi
- Immune & Cell Therapy Branch, Division of Cancer Biology, National Cancer Center, Gyeonggi-do, Korea
| | - Yong Chan Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Eid W, Abdel-Rehim W. Neferine Enhances the Antitumor Effect of Mitomycin-C in Hela Cells Through the Activation of p38-MAPK Pathway. J Cell Biochem 2017; 118:3472-3479. [PMID: 28328092 DOI: 10.1002/jcb.26006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/21/2017] [Indexed: 01/07/2023]
Abstract
Current treatment options for patients with cervical cancer are far from desirable, with cervical cancer remaining to be one of the leading causes of cancer-related deaths; this highlights the need to formulate strategies that enhance the efficacy of available therapies. Mitomycin C (MMC) possesses antitumor effect in different cancers. However, the efficacy of MMC depends on other drugs in the combinational therapy and is often hampered by side-effects. Neferine, a natural alkaloid, exhibits antitumor effects in various cancers. In this study, we questioned the antitumor efficacy of a combinational treatment of neferine and MMC in cervical cancer cells. We found that neferine prominently enhanced the antitumor effects of MMC; this effect was dependent on the induction of apoptosis. Furthermore, we also provide a mechanistic insight and show that the enhanced apoptosis was a result of at least in part, a sustained activation of the p38 MAPK pathway in a ROS-dependent mechanism. Our results therefore demonstrate the potentiated antitumor effect of neferine and MMC on cervical cancer cells and may offer a potential treatment strategy for patients with cervical cancer. J. Cell. Biochem. 118: 3472-3479, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wassim Eid
- Division of Endocrinology, Department of Medicine, University of Fribourg, Fribourg, 1700, Switzerland.,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Wafaa Abdel-Rehim
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| |
Collapse
|
34
|
Lin HC, Liu SY, Yen EY, Li TK, Lai IR. microRNA-183 Mediates Protective Postconditioning of the Liver by Repressing Apaf-1. Antioxid Redox Signal 2017; 26:583-597. [PMID: 27580417 DOI: 10.1089/ars.2016.6679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS Ischemic postconditioning (iPoC) is known to mitigate ischemia-reperfusion (IR) injury of the liver, the mechanisms of which remain to be elucidated. This study explored the role of microRNA-183 (miR-183) in the protective mechanism of iPoC. RESULTS Microarray analysis showed miR-183 was robustly expressed in rats' livers with iPoC. miR-183 repressed the mRNA expression of Apaf-1, which is an apoptosis promoting factor. Using an oxygen-glucose deprivation (OGD) injury model in Clone 9 cells, hypoxic postconditioning (HPoC) and an miR-183 mimetic significantly decreased cell death after OGD, but miR-183 inhibitors eliminated the protection of HPoC. The increased expression of Apaf-1 and the downstream activation of capsase-3/9 after OGD were mitigated by HPoC or the addition of miR-183 mimetics, whereas miR-183 inhibitor diminished the effect of HPoC on Apaf-1-caspase signaling. In the in vivo experiment, iPoC and agomiR-183 decreased the expression of serum ALT after liver IR in the mice, but antagomiR-183 mitigated the effect of iPoC. The results of hematoxylin and eosin and TUNEL staining were compatible with the biochemical assay. Moreover, iPoC and agomiR-183 decreased the expression of Apaf-1 and 4-HNE after IR injury in mouse livers, whereas the antagomiR-mediated prevention of miR-183 expression led to increased protein expression of Apaf-1 and 4-HNE in the postischemic livers. INNOVATION Our experiment showed the first time that miR-183 was induced in protective postconditioning and reduced reperfusion injury of the livers via the targeting of apoptotic signaling. CONCLUSION miR-183 mediated the tolerance induced by iPoC in livers via Apaf-1 repressing. Antioxid. Redox Signal. 26, 583-597.
Collapse
Affiliation(s)
- Han-Chen Lin
- 1 Department of Anatomy and Cell Biology, Medical College, National Taiwan University , Taipei, Taiwan .,2 Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shin-Yun Liu
- 1 Department of Anatomy and Cell Biology, Medical College, National Taiwan University , Taipei, Taiwan
| | - Er-Yen Yen
- 1 Department of Anatomy and Cell Biology, Medical College, National Taiwan University , Taipei, Taiwan
| | - Tsai-Kun Li
- 3 Graduate Institute of Microbiology, Medical College, National Taiwan University , Taipei, Taiwan
| | - I-Rue Lai
- 1 Department of Anatomy and Cell Biology, Medical College, National Taiwan University , Taipei, Taiwan .,4 Department of Surgery, National Taiwan University Hospital , Taipei, Taiwan
| |
Collapse
|
35
|
Kaplan GS, Torcun CC, Grune T, Ozer NK, Karademir B. Proteasome inhibitors in cancer therapy: Treatment regimen and peripheral neuropathy as a side effect. Free Radic Biol Med 2017; 103:1-13. [PMID: 27940347 DOI: 10.1016/j.freeradbiomed.2016.12.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/22/2016] [Accepted: 12/04/2016] [Indexed: 01/10/2023]
Abstract
Proteasomal system plays an important role in protein turnover, which is essential for homeostasis of cells. Besides degradation of oxidized proteins, it is involved in the regulation of many different signaling pathways. These pathways include mainly cell differentiation, proliferation, apoptosis, transcriptional activation and angiogenesis. Thus, proteasomal system is a crucial target for treatment of several diseases including neurodegenerative diseases, cystic fibrosis, atherosclerosis, autoimmune diseases, diabetes and cancer. Over the last fifteen years, proteasome inhibitors have been tested to highlight their mechanisms of action and used in the clinic to treat different types of cancer. Proteasome inhibitors are mainly used in combinational therapy along with classical chemo-radiotherapy. Several studies have proved their significant effects but serious side effects such as peripheral neuropathy, limits their use in required effective doses. Recent studies focus on peripheral neuropathy as the primary side effect of proteasome inhibitors. Therefore, it is important to delineate the underlying mechanisms of peripheral neuropathy and develop new inhibitors according to obtained data. This review will detail the role of proteasome inhibition in cancer therapy and development of peripheral neuropathy as a side effect. Additionally, new approaches to prevent treatment-limiting side effects will be discussed in order to help researchers in developing effective strategies to overcome side effects of proteasome inhibitors.
Collapse
Affiliation(s)
- Gulce Sari Kaplan
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Ceyda Corek Torcun
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Tilman Grune
- Department for Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Nesrin Kartal Ozer
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey
| | - Betul Karademir
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34854 Maltepe, Istanbul, Turkey.
| |
Collapse
|
36
|
Effect of parenteral selenium administration on oxidative status of weaned piglets. ACTA VET BRNO 2017. [DOI: 10.2754/avb201685040377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the study was to evaluate the effect of additional selenium injection after weaning on the selenium (Se) status of piglets and to find whether the selected dose would be appropriate with respect to the level of oxidative stress. Another goal was to compare the efficacy and safety of sodium selenite and selenopyran as selenium sources for parenteral administration to piglets. Altogether 30 piglets were divided equally into three groups. Piglets in group 1 were injected i.m. with sodium selenite, piglets in group 2 were injected with selenopyran. The dose was 0.42 mg Se/kg body weight for both groups. Piglets in group 3 were given only saline. As expected, the study revealed low Se serum concentrations in weaned piglets. The injection of sodium selenite increased Se serum concentrations but did not have a positive effect on the peroxidase activities. Administration of selenopyran did not influence Se concentrations and gluthation peroxidase activities. The selected dose did not have a significant impact on the level of the oxidative stress. The piglets receiving Se only from the feed achieved comparable gluthation peroxidase activities during the trial. It seems that despite initially low Se concentrations, the physiological requirements for gluthation peroxidase synthesis were met with the feed consumption as the only Se source. The results of the study are important because until now it was unclear whether the selected dose would have negative effects on the organism with respect to the induction of oxidative stress in piglets.
Collapse
|
37
|
Li W, Yang S. Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies. Brain Circ 2016; 2:153-163. [PMID: 30276293 PMCID: PMC6126224 DOI: 10.4103/2394-8108.195279] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/04/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
Excessive oxygen and its chemical derivatives, namely reactive oxygen species (ROS), produce oxidative stress that has been known to lead to cell injury in ischemic stroke. ROS can damage macromolecules such as proteins and lipids and leads to cell autophagy, apoptosis, and necrosis to the cells. This review describes studies on the generation of ROS, its role in the pathogenesis of ischemic stroke, and recent development in therapeutic strategies in reducing oxidative stress after ischemic stroke.
Collapse
Affiliation(s)
- Wenjun Li
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shaohua Yang
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
38
|
Ott C, König J, Höhn A, Jung T, Grune T. Reduced autophagy leads to an impaired ferritin turnover in senescent fibroblasts. Free Radic Biol Med 2016; 101:325-333. [PMID: 27789294 DOI: 10.1016/j.freeradbiomed.2016.10.492] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 01/18/2023]
Abstract
Changes in the two main intracellular degradation systems, the Ubiquitin-Proteasome System and the Autophagy-Lysosome pathway (ALP) are widely discussed as a hallmark of the aging process. To follow the age-related behavior of both degradation systems we examined their impact on ferritin, known to be degradable by both. Ferritin H was analyzed in young and senescent human fibroblasts, revealing a higher steady-state level in the senescent cells. By blocking both proteolytic systems, we confirmed that particularly the ALP plays a crucial role in ferritin H turnover. However, an unexpected increase in lysosomal activity in the senescent cells, suggests a dysregulation in the autophagy pathway. To further investigate the impaired ferritin H turnover, confocal microscopic colocalization studies of ferritin H with lysosomal-associated membrane protein 2a (Lamp2a) and monodansylcadaverine (MDC) were performed and clearly revealed the degradation of ferritin by macroautophagy. By induction of autophagy via inhibition of mTOR using rapamycin an increase of ferritin H turnover was obtained in senescent cells, demonstrating a mTOR dependent reduction of autophagy in senescent human fibroblasts.
Collapse
Affiliation(s)
- Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany.
| | - Jeannette König
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany.
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany.
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| |
Collapse
|
39
|
Reeg S, Jung T, Castro JP, Davies KJA, Henze A, Grune T. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radic Biol Med 2016; 99:153-166. [PMID: 27498116 PMCID: PMC5201141 DOI: 10.1016/j.freeradbiomed.2016.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/19/2016] [Accepted: 08/01/2016] [Indexed: 01/23/2023]
Abstract
One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome.
Collapse
Affiliation(s)
- Sandra Reeg
- German Institute of Human Nutrition Potsdam Rehbruecke (DIfE), Department of Molecular Toxicology, 14588 Nuthetal, Germany
| | - Tobias Jung
- German Institute of Human Nutrition Potsdam Rehbruecke (DIfE), Department of Molecular Toxicology, 14588 Nuthetal, Germany; German Center for Diabetes Research (DZD), Germany
| | - José P Castro
- German Institute of Human Nutrition Potsdam Rehbruecke (DIfE), Department of Molecular Toxicology, 14588 Nuthetal, Germany; German Center for Diabetes Research (DZD), Germany
| | - Kelvin J A Davies
- University of Southern California, Leonard Davis School of Gerontology, and Division of Molecular & Computational Biology, Dornsife College of Letters, Arts, and Sciences, Los Angeles, CA 90089-0191, USA
| | - Andrea Henze
- University Potsdam, Institute of Nutritional Science, Department of Physiology and Pathophysiology, 14588 Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition Potsdam Rehbruecke (DIfE), Department of Molecular Toxicology, 14588 Nuthetal, Germany; German Center for Diabetes Research (DZD), Germany.
| |
Collapse
|
40
|
Peroxynitrite: From interception to signaling. Arch Biochem Biophys 2016; 595:153-60. [PMID: 27095233 DOI: 10.1016/j.abb.2015.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022]
Abstract
Peroxynitrite is a strong oxidant and nitrating species that mediates certain biological effects of superoxide and nitrogen monoxide. These biological effects include oxidative damage to proteins as well as the formation of 3-nitrotyrosyl moieties in proteins. As a consequence, such proteins may lose their activity, gain altered function, or become prone to proteolytic degradation - resulting in modulation of cellular protein turnover and in the modulation of signaling cascades. In analogy to hydrogen peroxide, peroxynitrite may be scavenged by selenoproteins like glutathione peroxidase-1 (GPx-1) or by selenocompounds with a GPx-like activity, such as ebselen; in further analogy to H2O2, peroxiredoxins have also been established as contributors to peroxynitrite reduction. This review covers three aspects of peroxynitrite biochemistry, (i) the interaction of selenocompounds/-proteins with peroxynitrite, (ii) peroxynitrite-induced modulation of cellular proteolysis, and (iii) peroxynitrite-induced modulation of cellular signaling.
Collapse
|
41
|
Castro JP, Grune T, Speckmann B. The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction. Biol Chem 2016; 397:709-24. [DOI: 10.1515/hsz-2015-0305] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
Abstract
White adipose tissue (WAT) is actively involved in the regulation of whole-body energy homeostasis via storage/release of lipids and adipokine secretion. Current research links WAT dysfunction to the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). The expansion of WAT during oversupply of nutrients prevents ectopic fat accumulation and requires proper preadipocyte-to-adipocyte differentiation. An assumed link between excess levels of reactive oxygen species (ROS), WAT dysfunction and T2D has been discussed controversially. While oxidative stress conditions have conclusively been detected in WAT of T2D patients and related animal models, clinical trials with antioxidants failed to prevent T2D or to improve glucose homeostasis. Furthermore, animal studies yielded inconsistent results regarding the role of oxidative stress in the development of diabetes. Here, we discuss the contribution of ROS to the (patho)physiology of adipocyte function and differentiation, with particular emphasis on sources and nutritional modulators of adipocyte ROS and their functions in signaling mechanisms controlling adipogenesis and functions of mature fat cells. We propose a concept of ROS balance that is required for normal functioning of WAT. We explain how both excessive and diminished levels of ROS, e.g. resulting from over supplementation with antioxidants, contribute to WAT dysfunction and subsequently insulin resistance.
Collapse
|
42
|
Chaiswing L, Cole MP, St Clair DK, Ittarat W, Szweda LI, Oberley TD. Oxidative Damage Precedes Nitrative Damage in Adriamycin-Induced Cardiac Mitochondrial Injury. Toxicol Pathol 2016; 32:536-47. [PMID: 15605432 DOI: 10.1080/01926230490502601] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The purpose of the present study was to determine if elevated reactive oxygen (ROS)/nitrogen species (RNS) reported to be present in adriamycin (ADR)-induced cardiotoxicity actually resulted in cardiomyocyte oxidative/nitrative damage, and to quantitatively determine the time course and subcellular localization of these postulated damage products using an in vivo approach. B6C3 mice were treated with a single dose of 20 mg/kg ADR. Ultrastructural damage and levels of 4-hydroxy-2-nonenal (4HNE)-protein adducts and 3-nitrotyrosine (3NT) were analyzed. Quantitative ultrastructural damage using computerized image techniques showed cardiomyocyte injury as early as 3 hours, with mitochondria being the most extensively and progressively injured subcellular organelle. Analysis of 4HNE protein adducts by immunogold electron microscopy showed appearance of 4HNE protein adducts in mitochondria as early as 3 hours, with a peak at 6 hours and subsequent decline at 24 hours. 3NT levels were significantly increased in all subcellular compartments at 6 hours and subsequently declined at 24 hours. Our data showed ADR induced 4HNE-protein adducts in mitochondria at the same time point as when mitochondrial injury initially appeared. These results document for the first time in vivo that mitochondrial oxidative damage precedes nitrative damage. The progressive nature of mitochondrial injury suggests that mitochondria, not other subcellular organelles, are the major site of intracellular injury.
Collapse
Affiliation(s)
- Luksana Chaiswing
- Department of Pathology and Laboratory Medicine, William S. Middleton Memorial Veterans Administration Hospital and University of Wisconsin Medical School, Madison WI 53705, USA
| | | | | | | | | | | |
Collapse
|
43
|
O'Brien KM. New Lessons from an Old Fish: What Antarctic Icefishes May Reveal about the Functions of Oxygen-Binding Proteins. Integr Comp Biol 2016; 56:531-41. [PMID: 27252192 DOI: 10.1093/icb/icw062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The loss of expression of the oxygen-binding protein hemoglobin (Hb) in the family Channichthyidae (suborder Notothenioidei) of Antarctic fishes is considered a disaptation that has persisted because of the unusual conditions prevailing in the Southern Ocean during the evolution of the family. The loss of expression of the intracellular oxygen-binding protein myoglobin (Mb) in heart ventricles is more of a conundrum because it occurred at four points during the radiation of the family, suggesting weakened selective pressure maintaining expression of the protein. Yet, studies have shown that when present, Mb enhances function. Here, I discuss potential reasons for weakened selective pressure maintaining Mb expression in light of the multiple functions proposed for Mb. Additionally, I discuss results from recent studies exploring the possibility that the loss of Hb and Mb may be advantageous because it reduces the production of reactive oxygen species, levels of oxidized proteins, and the energetic costs associated with replacing oxidatively damaged proteins.
Collapse
Affiliation(s)
- Kristin M O'Brien
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology and Wildlife, Fairbanks, AK 99775, USA
| |
Collapse
|
44
|
Raynes R, Pomatto LCD, Davies KJA. Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Mol Aspects Med 2016; 50:41-55. [PMID: 27155164 DOI: 10.1016/j.mam.2016.05.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/29/2016] [Accepted: 05/02/2016] [Indexed: 12/11/2022]
Abstract
The proteasome is a ubiquitous and highly plastic multi-subunit protease with multi-catalytic activity that is conserved in all eukaryotes. The most widely known function of the proteasome is protein degradation through the 26S ubiquitin-proteasome system, responsible for the vast majority of protein degradation during homeostasis. However, the proteasome also plays an important role in adaptive immune responses and adaptation to oxidative stress. The unbound 20S proteasome, the core common to all proteasome conformations, is the main protease responsible for degrading oxidized proteins. During periods of acute stress, the 19S regulatory cap of the 26S proteasome disassociates from the proteolytic core, allowing for immediate ATP/ubiquitin-independent protein degradation by the 20S proteasome. Despite the abundance of unbound 20S proteasome compared to other proteasomal conformations, many publications fail to distinguish between the two proteolytic systems and often regard the 26S proteasome as the dominant protease. Further confounding the issue are the differential roles these two proteolytic systems have in adaptation and aging. In this review, we will summarize the increasing evidence that the 20S core proteasome constitutes the major conformation of the proteasome system and that it is far from a latent protease requiring activation by binding regulators.
Collapse
Affiliation(s)
- Rachel Raynes
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, USA; Division of Molecular and Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
45
|
Abstract
The α,β polyunsaturated lipid aldehydes are potent lipid electrophiles that covalently modify lipids, proteins, and nucleic acids. Recent work highlights the critical role these lipids play under both physiological and pathological conditions. Protein carbonylation resulting from nucleophilic attack of lysine, histidine, and cysteine residues is a major outcome of oxidative stress and functions as a redox-sensitive signaling mechanism with roles in autophagy, cell proliferation, transcriptional control, and apoptosis. In addition, protein carbonylation is implicated as an initiating factor in mitochondrial dysfunction and endoplasmic reticulum stress, providing a mechanistic connection between oxidative stress and metabolic disease. In this review, we discuss the generation and metabolism of reactive lipid aldehydes, as well as their signaling roles.
Collapse
Affiliation(s)
- Amy K Hauck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN 55455
| |
Collapse
|
46
|
Keith SA, Maddux SK, Zhong Y, Chinchankar MN, Ferguson AA, Ghazi A, Fisher AL. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway. PLoS Genet 2016; 12:e1005823. [PMID: 26828939 PMCID: PMC4734690 DOI: 10.1371/journal.pgen.1005823] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/31/2015] [Indexed: 12/30/2022] Open
Abstract
The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique platform to explore these possibilities.
Collapse
Affiliation(s)
- Scott A. Keith
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah K. Maddux
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Yayu Zhong
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Meghna N. Chinchankar
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Annabel A. Ferguson
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Arjumand Ghazi
- Rangos Research Center, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alfred L. Fisher
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- San Antonio GRECC, South Texas VA Healthcare System, San Antonio, Texas, United States of America
| |
Collapse
|
47
|
Zheng A, Luo J, Meng K, Li J, Bryden WL, Chang W, Zhang S, Wang LXN, Liu G, Yao B. Probiotic (Enterococcus faecium) induced responses of the hepatic proteome improves metabolic efficiency of broiler chickens (Gallus gallus). BMC Genomics 2016; 17:89. [PMID: 26830196 PMCID: PMC4736614 DOI: 10.1186/s12864-016-2371-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The liver plays important roles in nutrient metabolism, detoxification and immunity. Enterococcus faecium (E. faecium) is a probiotic that has been shown to have positive effects on broiler production. However, its molecular effects on liver metabolism have not been characterized. This study aims to further identify the biological roles of E. faecium by characterizing the hepatic proteomic changes of broilers (Gallus gallus) fed E. faecium using two-dimensional fluorescence difference gel electrophoresis (2-D DIGE) and mass spectrometry (MS). RESULTS Thirty-three proteins (50 protein spots) involved in nutrient metabolism, immunity and the antioxidant system were shown to be differentially expressed in the liver of broilers fed E. faecium than from birds not fed the probiotic. The biological processes of sulphur amino acids, vitamin and cellular hormone metabolism, sulphur compound biosynthesis and protein tetramerization were enhanced in the liver of broilers fed E. faecium. However, proteins involved in calcium ion flux, cell redox homeostasis and platelet activation related to hepatic immune responses were down-regulated in broilers fed E. faecium. These results indicate that the supplementation of poultry feed with E. faecium may alter the partitioning of nutrients and promote optimal nutrient utilization. CONCLUSIONS This study assists in unraveling the molecular effects of the dietary probiotic, E. faecium, in the liver of broiler chickens. It shows that the probiotic improves the metabolism of nutrients and decreases inflammatory responses. Our findings extend previous knowledge of the mechanism of dietary probiotic action and provide new findings for research and future probiotic development.
Collapse
Affiliation(s)
- Aijuan Zheng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Jianjie Luo
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Jianke Li
- Key Laboratory of Pollinating Insect Biology of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, People's Republic of China.
| | - Wayne L Bryden
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, 4343, Australia.
| | - Wenhuan Chang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Shu Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - L X N Wang
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, 4343, Australia.
| | - Guohua Liu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Bin Yao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
48
|
Todorović A, Pejić S, Stojiljković V, Gavrilović L, Popović N, Pavlović I, Saičić ZS, Pajović SB. Antioxidative enzymes in irradiated rat brain-indicators of different regional radiosensitivity. Childs Nerv Syst 2015; 31:2249-56. [PMID: 26143278 DOI: 10.1007/s00381-015-2807-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 06/23/2015] [Indexed: 12/01/2022]
Abstract
PURPOSE Previously, we examined manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), and catalase (CAT) activities in rat brain irradiated with 2 or 3 Gy of γ-rays. The results indicated that lower MnSOD activity and inducibility found in hippocampus might explain higher radiosensitivity of this brain region. Thus, in this study, we wanted to determine changes of MnSOD, CuZnSOD, and CAT activities after dose of 5 Gy and to find out if differences in MnSOD activity are caused by changes in its expression. METHODS Heads of 4-day-old female rats were irradiated with γ-rays, using (60)Co. Animals were sacrificed 1/24 h after exposure. Hippocampus and cortex tissues were prepared for enzyme activity measurements and Western blot analysis. RESULTS One hour after exposure, γ-rays significantly decreased MnSOD activity in both examined brain regions. Twenty-four hours later, MnSOD recovery showed dose and regional dependence. It was weaker at higher doses and in hippocampal region. MnSOD expression changed in the similar manner as MnSOD activity only at lower doses of γ-rays. In both examined brain regions, gamma radiation significantly decreased CuZnSOD activity and did not change activity of CAT. CONCLUSIONS Our results confirmed that MnSOD plays an important role in different regional radiosensitivity but also showed that depending on dose, radiation affects MnSOD level by utterly different mechanisms. Postradiation changes of CuZnSOD and CAT are not regionally specific and therefore, cannot account for the different radiosensitivity of the hippocampus and cortex.
Collapse
Affiliation(s)
- Ana Todorović
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia.
| | - Snežana Pejić
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| | - Vesna Stojiljković
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| | - Ljubica Gavrilović
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| | - Nataša Popović
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| | - Ivan Pavlović
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| | - Zorica S Saičić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia
| | - Snežana B Pajović
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| |
Collapse
|
49
|
Zhang W, Zhang Y, Wang Z, Xu T, Huang C, Yin W, Wang J, Xiong W, Lu W, Zheng H, Yuan J. Tris(2-chloroethyl)phosphate-induced cell growth arrest via attenuation of SIRT1-independent PI3K/Akt/mTOR pathway. J Appl Toxicol 2015; 36:914-24. [DOI: 10.1002/jat.3223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/29/2015] [Accepted: 07/16/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Wenjuan Zhang
- Department of Occupational and Environmental Health; Wuhan Hubei People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China
| | - Youjian Zhang
- Department of Occupational and Environmental Health; Wuhan Hubei People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China
| | - Zhiyuan Wang
- Department of Occupational and Environmental Health; Wuhan Hubei People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China
| | - Tian Xu
- Department of Occupational and Environmental Health; Wuhan Hubei People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China
| | - Cheng Huang
- Department of Occupational and Environmental Health; Wuhan Hubei People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China
| | - Wenjun Yin
- Department of Occupational and Environmental Health; Wuhan Hubei People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China
| | - Jing Wang
- Department of Occupational and Environmental Health; Wuhan Hubei People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China
| | - Wei Xiong
- Department of Occupational and Environmental Health; Wuhan Hubei People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China
| | - Wenhong Lu
- Department of Occupational and Environmental Health; Wuhan Hubei People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China
| | - Hongyan Zheng
- Department of Occupational and Environmental Health; Wuhan Hubei People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China
| | - Jing Yuan
- Department of Occupational and Environmental Health; Wuhan Hubei People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China
| |
Collapse
|
50
|
Elgawish RAR, Rahman HGA, Abdelrazek HMA. Green tea extract attenuates CCl4-induced hepatic injury in male hamsters via inhibition of lipid peroxidation and p53-mediated apoptosis. Toxicol Rep 2015; 2:1149-1156. [PMID: 28962456 PMCID: PMC5598372 DOI: 10.1016/j.toxrep.2015.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
Keeping in mind the beneficial effects of GTE administration on liver damage, the present study was undertaken to evaluate the hepatoprotective effect of green tea extract (GTE) against carbon tetrachloride (CCl4)-induced liver injuries in male hamsters for 8 weeks. Twenty hamsters were equally divided into 4 groups, the control ones (group I) received only dis. water. Hamsters of group II had free access to 10% of GTE, while hamsters of group III received 1 ml/kg of 50% CCl4 in corn oil via gavage daily. Hamsters of group IV (GTE + CCl4) received a free access to GTE supplementation in combination with 1 ml/kg of 50% CCl4 in corn oil via gavage daily. Lipid profile, hepatic enzyme levels and apoptosis molecular marker (p53) were investigated in hamsters. GTE + CCl4 treated hamsters showed lower levels of hepatic malondialdehyde (MDA) than CCl4 exposed hamsters. Hepatic activity levels of GSH, ALD and cytochrome 450 reductase were declined after CCl4 administration while they were remarkably improved with GTE administration. Serum lipid profiles as T-cholesterol (TC), triglyceride (TG) and low density lipoproteins (LDL) were improved in GTE and CCl4 treated hamsters than CCl4 group. Moreover, hepatic tissue damage and p53 expression induced with CCl4 were improved with the treatment of GTE. These results suggested that GTE possesses hepatoprotective properties against the effect of CCl4.
Collapse
Affiliation(s)
- Rania Abdel Rahman Elgawish
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Haidy G Abdel Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|