1
|
High P, Guernsey C, Subramanian S, Jacob J, Carmon KS. The Evolving Paradigm of Antibody-Drug Conjugates Targeting the ErbB/HER Family of Receptor Tyrosine Kinases. Pharmaceutics 2024; 16:890. [PMID: 39065587 PMCID: PMC11279420 DOI: 10.3390/pharmaceutics16070890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Current therapies targeting the human epidermal growth factor receptor (HER) family, including monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs), are limited by drug resistance and systemic toxicities. Antibody-drug conjugates (ADCs) are one of the most rapidly expanding classes of anti-cancer therapeutics with 13 presently approved by the FDA. Importantly, ADCs represent a promising therapeutic option with the potential to overcome traditional HER-targeted therapy resistance by delivering highly potent cytotoxins specifically to HER-overexpressing cancer cells and exerting both mAb- and payload-mediated antitumor efficacy. The clinical utility of HER-targeted ADCs is exemplified by the immense success of HER2-targeted ADCs including trastuzumab emtansine and trastuzumab deruxtecan. Still, strategies to improve upon existing HER2-targeted ADCs as well as the development of ADCs against other HER family members, particularly EGFR and HER3, are of great interest. To date, no HER4-targeting ADCs have been reported. In this review, we extensively detail clinical-stage EGFR-, HER2-, and HER3-targeting monospecific ADCs as well as novel clinical and pre-clinical bispecific ADCs (bsADCs) directed against this receptor family. We close by discussing nascent trends in the development of HER-targeting ADCs, including novel ADC payloads and HER ligand-targeted ADCs.
Collapse
Affiliation(s)
- Peyton High
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Cara Guernsey
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Shraddha Subramanian
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and UTHealth Houston, Houston, TX 77030, USA
| | - Joan Jacob
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
| | - Kendra S. Carmon
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (P.H.); (C.G.); (S.S.); (J.J.)
| |
Collapse
|
2
|
Hai-Na Z, Jun-Jie J, Guang-Meng X. Peptides derived from growth factors: Exploring their diverse impact from antimicrobial properties to neuroprotection. Biomed Pharmacother 2024; 176:116830. [PMID: 38824833 DOI: 10.1016/j.biopha.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Growth factor-derived peptides are bioactive molecules that play a crucial role in various physiological processes within the human body. Over the years, extensive research has revealed their diverse applications, ranging from antimicrobial properties to their potential in neuroprotection and treating various diseases. These peptides exhibit innate immune responses and have been found to possess potent antimicrobial properties against a wide range of pathogens. Growth factor-derived peptides have demonstrated the ability to promote neuronal survival, prevent cell death, and stimulate neural regeneration. As a result, they hold immense promise in the treatment of various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, as well as in the management of traumatic brain injuries. Moreover, growth factor-derived peptides have shown potential for supporting tissue repair and wound healing processes. By enhancing cell proliferation and migration, these peptides contribute to the regeneration of damaged tissues and promote a more efficient healing response. The applications of growth factor-derived peptides extend beyond their therapeutic potential in health; they also have a role in various disease conditions. For example, researchers have explored their influence on cancer cells, where some peptides have demonstrated anti-cancer properties, inhibiting tumor growth and promoting apoptosis in cancer cells. Additionally, their immunomodulatory properties have been investigated for potential applications in autoimmune disorders. Despite the immense promise shown by growth factor-derived peptides, some challenges need to be addressed. Nevertheless, ongoing research and advancements in biotechnology offer promising avenues to overcome these obstacles. The review summarizes the foundational biology of growth factors and the intricate signaling pathways in various physiological processes as well as diseases such as cancer, neurodegenerative disorders, cardiovascular ailments, and metabolic syndromes.
Collapse
Affiliation(s)
- Zhang Hai-Na
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Jiang Jun-Jie
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Xu Guang-Meng
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, PR China.
| |
Collapse
|
3
|
Yu J, Li M, Liu X, Wu S, Li R, Jiang Y, Zheng J, Li Z, Xin K, Xu Z, Li S, Chen X. Implementation of antibody-drug conjugates in HER2-positive solid cancers: Recent advances and future directions. Biomed Pharmacother 2024; 174:116522. [PMID: 38565055 DOI: 10.1016/j.biopha.2024.116522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
In recent decades, there has been a surge in the approval of monoclonal antibodies for treating a wide range of hematological and solid malignancies. These antibodies exhibit exceptional precision in targeting the surface antigens of tumors, heralding a groundbreaking approach to cancer therapy. Nevertheless, monoclonal antibodies alone do not show sufficient lethality against cancerous cells compared to chemotherapy. Consequently, a new class of anti-tumor medications, known as antibody-drug conjugates (ADCs), has been developed to bridge the divide between monoclonal antibodies and cytotoxic drugs, enhancing their therapeutic potential. ADCs are chemically synthesized by binding tumor-targeting monoclonal antibodies with cytotoxic payloads through linkers that are susceptible to cleavage by intracellular proteases. They combined the accurate targeting of monoclonal antibodies with the potent efficacy of cytotoxic chemotherapy drugs while circumventing systemic toxicity and boasting superior lethality over standalone targeted drugs. The human epidermal growth factor receptor (HER) family, which encompasses HER1 (also known as EGFR), HER2, HER3, and HER4, plays a key role in regulating cellular proliferation, survival, differentiation, and migration. HER2 overexpression in various tumors is one of the most frequently targeted antigens for ADC therapy in HER2-positive cancers. HER2-directed ADCs have emerged as highly promising treatment modalities for patients with HER2-positive cancers. This review focuses on three approved anti-HER2 ADCs (T-DM1, DS-8201a, and RC48) and reviews ongoing clinical trials and failed trials based on anti-HER2 ADCs. Finally, we address the notable challenges linked to ADC development and underscore potential future avenues for tackling these hurdles.
Collapse
Affiliation(s)
- Jiazheng Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Xiandong Liu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Siyu Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Rong Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Yuanhong Jiang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China.
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, People's Republic of China.
| |
Collapse
|
4
|
Trenker R, Diwanji D, Bingham T, Verba KA, Jura N. Structural dynamics of the active HER4 and HER2/HER4 complexes is finely tuned by different growth factors and glycosylation. eLife 2024; 12:RP92873. [PMID: 38498590 PMCID: PMC10948148 DOI: 10.7554/elife.92873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Human Epidermal growth factor Receptor 4 (HER4 or ERBB4) carries out essential functions in the development and maintenance of the cardiovascular and nervous systems. HER4 activation is regulated by a diverse group of extracellular ligands including the neuregulin (NRG) family and betacellulin (BTC), which promote HER4 homodimerization or heterodimerization with other HER receptors. Important cardiovascular functions of HER4 are exerted via heterodimerization with its close homolog and orphan receptor, HER2. To date structural insights into ligand-mediated HER4 activation have been limited to crystallographic studies of HER4 ectodomain homodimers in complex with NRG1β. Here, we report cryo-EM structures of near full-length HER2/HER4 heterodimers and full-length HER4 homodimers bound to NRG1β and BTC. We show that the structures of the heterodimers bound to either ligand are nearly identical and that in both cases the HER2/HER4 heterodimer interface is less dynamic than those observed in structures of HER2/EGFR and HER2/HER3 heterodimers. In contrast, structures of full-length HER4 homodimers bound to NRG1β and BTC display more large-scale dynamics mirroring states previously reported for EGFR homodimers. Our structures also reveal the presence of multiple glycan modifications within HER4 ectodomains, modeled for the first time in HER receptors, that distinctively contribute to the stabilization of HER4 homodimer interfaces over those of HER2/HER4 heterodimers.
Collapse
Affiliation(s)
- Raphael Trenker
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Devan Diwanji
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
- Medical Scientist Training Program, University of California, San FranciscoSan FranciscoUnited States
| | - Tanner Bingham
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
- Medical Scientist Training Program, University of California, San FranciscoSan FranciscoUnited States
| | - Kliment A Verba
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Quantitative Biosciences Institute, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
5
|
Trenker R, Diwanji D, Bingham T, Verba KA, Jura N. Structural dynamics of the active HER4 and HER2/HER4 complexes is finely tuned by different growth factors and glycosylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561161. [PMID: 38260342 PMCID: PMC10802258 DOI: 10.1101/2023.10.06.561161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human Epidermal growth factor Receptor 4 (HER4 or ERBB4) carries out essential functions in the development and maintenance of the cardiovascular and nervous systems. HER4 activation is regulated by a diverse group of extracellular ligands including the neuregulin (NRG) family and betacellulin (BTC), which promote HER4 homodimerization or heterodimerization with other HER receptors. Important cardiovascular functions of HER4 are exerted via heterodimerization with its close homolog and orphan receptor, HER2. To date structural insights into ligand-mediated HER4 activation have been limited to crystallographic studies of HER4 ectodomain homodimers in complex with NRG1β. Here we report cryo-EM structures of near full-length HER2/HER4 heterodimers and full-length HER4 homodimers bound to NRG1β and BTC. We show that the structures of the heterodimers bound to either ligand are nearly identical and that in both cases the HER2/HER4 heterodimer interface is less dynamic than those observed in structures of HER2/EGFR and HER2/HER3 heterodimers. In contrast, structures of full-length HER4 homodimers bound to NRG1β and BTC display more large-scale dynamics mirroring states previously reported for EGFR homodimers. Our structures also reveal the presence of multiple glycan modifications within HER4 ectodomains, modeled for the first time in HER receptors, that distinctively contribute to the stabilization of HER4 homodimer interfaces over those of HER2/HER4 heterodimers.
Collapse
Affiliation(s)
- Raphael Trenker
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Devan Diwanji
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Tanner Bingham
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Kliment A. Verba
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Hsu CY, Faisal Mutee A, Porras S, Pineda I, Ahmed Mustafa M, J Saadh M, Adil M, H A Z. Amphiregulin in infectious diseases: Role, mechanism, and potential therapeutic targets. Microb Pathog 2024; 186:106463. [PMID: 38036111 DOI: 10.1016/j.micpath.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Sandra Porras
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Indira Pineda
- Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Iraq; Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Iraq.
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Zainab H A
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
7
|
Shirman Y, Lubovsky S, Shai A. HER2-Low Breast Cancer: Current Landscape and Future Prospects. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:605-616. [PMID: 37600670 PMCID: PMC10439285 DOI: 10.2147/bctt.s366122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
More than 50% of breast cancers are currently defined as "Human epidermal growth factor receptor 2 (HER2) low breast cancer (BC)", with HER2 immunohistochemistry (IHC) scores of +1 or +2 with a negative fluorescence in situ hybridization (FISH) test. In most studies that compared the clinical and biological characteristics of HER2-low BC with HER2-negative BC, HER2-low was not associated with unique clinical and molecular characteristics, and it seems that the importance of HER2 in these tumors is being a docking site for the antibody portion of antibody drug conjugates (ADCs). Current pathological methods may underestimate the proportion of BCs that express low levels of HER2 due to analytical limitations and tumor heterogeneity. In this review we summarize and contextualize the most recent literature on HER2-low breast cancers, including clinical and translational studies We also review the challenges of assessing low HER2 expression in BC and discuss the current and future therapeutic landscape for these tumors.
Collapse
Affiliation(s)
- Yelena Shirman
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | | | - Ayelet Shai
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
8
|
Chava S, Bugide S, Zhang X, Gupta R, Wajapeyee N. Betacellulin promotes tumor development and EGFR mutant lung cancer growth by stimulating the EGFR pathway and suppressing apoptosis. iScience 2022; 25:104211. [PMID: 35494243 PMCID: PMC9048069 DOI: 10.1016/j.isci.2022.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Oncogenic mutations in the EGFR gene account for 15-20% of lung adenocarcinoma (LUAD) cases. However, the mechanism for EGFR driven tumor development and growth is not fully understood. Here, using an mRNA expression profiling-based approach we identified betacellulin (BTC) as one the gene upregulated by oncogenic EGFR in an MAP kinase-dependent manner. BTC protein expression was markedly increased in LUAD patient samples compared to normal lung tissue, with higher expression in EGFR-mutant LUAD. BTC was sufficient to transform immortalized mouse cells, initiate tumor development in mice, and promote the survival of immortalized human lung epithelial cells. Conversely, knockdown of BTC inhibited the growth of EGFR-mutant human LUAD cells in culture and their tumor-forming ability in mice. Mechanistically, BTC knockdown resulted in attenuated EGFR signaling and apoptosis induction. Collectively, these results demonstrate a key role of BTC in EGFR-mutant LUAD, with potential therapeutic implications in LUAD and other EGFR-mutant cancers.
Collapse
Affiliation(s)
- Suresh Chava
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Bugide
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Xuchen Zhang
- Department of Pathology, Yale University, New Haven, CT 06510, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
9
|
Ferreira AS, Lopacinski A, Batista M, Hiraiwa PM, Guimarães BG, Zanchin NIT. A toolkit for recombinant production of seven human EGF family growth factors in active conformation. Sci Rep 2022; 12:5034. [PMID: 35322149 PMCID: PMC8943033 DOI: 10.1038/s41598-022-09060-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/14/2022] [Indexed: 12/17/2022] Open
Abstract
Epidermal growth factors (EGF) play a wide range of roles in embryogenesis, skin development, immune response homeostasis. They are involved in several pathologies as well, including several cancer types, psoriasis, chronic pain and chronic kidney disease. All members share the structural EGF domain, which is responsible for receptor interaction, thereby initiating transduction of signals. EGF growth factors have intense use in fundamental research and high potential for biotechnological applications. However, due to their structural organization with three disulfide bonds, recombinant production of these factors in prokaryotic systems is not straightforward. A significant fraction usually forms inclusion bodies. For the fraction remaining soluble, misfolding and incomplete disulfide bond formation may affect the amount of active factor in solution, which can compromise experimental conclusions and biotechnological applications. In this work, we describe a reliable procedure to produce seven human growth factors of the EGF family in Escherichia coli. Biophysical and stability analyses using limited proteolysis, light scattering, circular dichroism and nanoDSF show that the recombinant factors present folded and stable conformation. Cell proliferation and scratch healing assays confirmed that the recombinant factors are highly active at concentrations as low as 5 ng/ml.
Collapse
Affiliation(s)
- Arthur Schveitzer Ferreira
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, Curitiba, PR, Brazil
- Cellular and Molecular Biology Graduate Program, Federal University of Paraná, Curitiba, PR, Brazil
| | - Amanda Lopacinski
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, Curitiba, PR, Brazil
- Cellular and Molecular Biology Graduate Program, Federal University of Paraná, Curitiba, PR, Brazil
| | - Michel Batista
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, FIOCRUZ Paraná, Curitiba, PR, Brazil
| | - Priscila Mazzocchi Hiraiwa
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, Curitiba, PR, Brazil
| | - Beatriz Gomes Guimarães
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, Curitiba, PR, Brazil
| | - Nilson Ivo Tonin Zanchin
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, Curitiba, PR, Brazil.
- Cellular and Molecular Biology Graduate Program, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
10
|
Zhang X, Huang AC, Chen F, Chen H, Li L, Kong N, Luo W, Fang J. Novel development strategies and challenges for anti-Her2 antibody-drug conjugates. Antib Ther 2022; 5:18-29. [PMID: 35146330 PMCID: PMC8826051 DOI: 10.1093/abt/tbac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/16/2021] [Accepted: 01/02/2022] [Indexed: 11/24/2022] Open
Abstract
Antibody-drug conjugates (ADCs) combining potent cytotoxicity of small-molecule drugs with the selectivity and excellent pharmacokinetic profile of monoclonal antibody (mAb) are promising therapeutic modalities for a diverse range of cancers. Owing to overexpression in a wide range of tumors, human epidermal growth factor receptor 2 (Her2) is one of the most utilized targeting antigens for ADCs to treat Her2-positive cancers. Owing to the high density of Her2 antigens on the tumor cells and high affinity and high internalization capacity of corresponding antibodies, 56 anti-Her2 ADCs which applied >10 different types of novel payloads had entered preclinical or clinical trials. Seven of 12 Food and Drug Administration (FDA)-approved ADCs including Polivy (2019), Padcev (2019), EnHertu (2019), Trodelvy (2020), Blenrep (2020), Zynlonta (2021), and Tivdak) (2021) have been approved by FDA in the past three years alone, indicating that the maturing of ADC technology brings more productive clinical outcomes. This review, focusing on the anti-Her2 ADCs in clinical trials or on the market, discusses the strategies to select antibody formats, the linkages between linker and mAb, and effective payloads with particular release and action mechanisms for a good clinical outcome.
Collapse
Affiliation(s)
- Xinling Zhang
- ADC R&D Department, RemeGen Co., Ltd, 58 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Andrew C Huang
- Innovation Research Center, MabPlex International Ltd, 60 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Fahai Chen
- CEO Office, RemeGen Co., Ltd, 58 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Hu Chen
- ADC R&D Department, RemeGen Co., Ltd, 58 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Lele Li
- Innovation Research Center, MabPlex International Ltd, 60 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Nana Kong
- Innovation Research Center, MabPlex International Ltd, 60 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Wenting Luo
- ADC R&D Department, RemeGen Co., Ltd, 58 Middle Beijing Road, Yantai, ShanDong 264006, China
| | - Jianmin Fang
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Hwang K, Yoon JH, Lee JH, Lee S. Recent Advances in Monoclonal Antibody Therapy for Colorectal Cancers. Biomedicines 2021; 9:39. [PMID: 33466394 PMCID: PMC7824816 DOI: 10.3390/biomedicines9010039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. Recent advances in recombinant DNA technology have led to the development of numerous therapeutic antibodies as major sources of blockbuster drugs for CRC therapy. Simultaneously, increasing numbers of therapeutic targets in CRC have been identified. In this review, we first highlight the physiological and pathophysiological roles and signaling mechanisms of currently known and emerging therapeutic targets, including growth factors and their receptors as well as immune checkpoint proteins, in CRC. Additionally, we discuss the current status of monoclonal antibodies in clinical development and approved by US Food and Drug Administration for CRC therapy.
Collapse
Affiliation(s)
| | | | | | - Sukmook Lee
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea; (K.H.); (J.H.Y.); (J.H.L.)
| |
Collapse
|
12
|
Montagna E, Colleoni M. Hormonal treatment combined with targeted therapies in endocrine-responsive and HER2-positive metastatic breast cancer. Ther Adv Med Oncol 2019; 11:1758835919894105. [PMID: 31897091 PMCID: PMC6918494 DOI: 10.1177/1758835919894105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 09/04/2019] [Indexed: 01/03/2023] Open
Abstract
Approximately 50% of HER2 positive breast cancer cases are also estrogen receptor (ER) positive. Data supports a role for close cross-talk between the ER and HER2 signaling pathways as an important contributor to the development of de novo or acquired resistance to hormone therapies. Therefore a strategy that simultaneously blocks both signaling pathways is a reasonable approach to prevent or overcome either endocrine or anti-HER2 therapy resistance. Moreover, preclinical data support the idea that PI3K inhibitors and CDK4/6 could be an attractive target that functions downstream of both ER and HER2 pathways. We conducted a literature review of the results of phase II and III studies testing targeted therapies in metastatic breast cancer with HER2-positive and hormonal-receptor-positive disease. The analyses included efficacy and toxicity data from earlier studies with a single anti-HER2 drug combined with hormonal therapy up to more recent studies testing new molecules targeting these signaling pathways. The aims of this review are to summarize current knowledge and to discuss research development including the possibility to spare chemotherapy in this subgroup of HER2-positive breast cancer patients.
Collapse
Affiliation(s)
- Emilia Montagna
- Division of Medical Senology, European Institute of Oncology, Via Ripamonti 435, Milan, 20141, Italy
| | - Marco Colleoni
- Division of Medical Senology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
13
|
Maisel SA, Broka D, Atwell B, Bunch T, Kupp R, Singh SK, Mehta S, Schroeder J. Stapled EGFR peptide reduces inflammatory breast cancer and inhibits additional HER-driven models of cancer. J Transl Med 2019; 17:201. [PMID: 31215437 PMCID: PMC6582486 DOI: 10.1186/s12967-019-1939-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background The human epidermal growth factor receptor (HER) family of transmembrane tyrosine kinases is overexpressed and correlates with poor prognosis and decreased survival in many cancers. The receptor family has been therapeutically targeted, yet tyrosine kinase inhibitors (TKIs) do not inhibit kinase-independent functions and antibody-based targeting does not affect internalized receptors. We have previously demonstrated that a peptide mimicking the internal juxtamembrane domain of HER1 (EGFR; EJ1) promotes the formation of non-functional HER dimers that inhibit kinase-dependent and kinase-independent functions of HER1 (ERBB1/EGFR), HER2 (ERBB2) and HER3 (ERBB3). Despite inducing rapid HER-dependent cell death in vitro, EJ1 peptides are rapidly cleared in vivo, limiting their efficacy. Method To stabilize EJ1 activity, hydrocarbon staples (SAH) were added to the active peptide (SAH-EJ1), resulting in a 7.2-fold increase in efficacy and decreased in vivo clearance. Viability assays were performed across HER1 and HER2 expressing cell lines, therapeutic-resistant breast cancer cells, clinically relevant HER1-mutated lung cancer cells, and patient-derived glioblastoma cells, in all cases demonstrating improved efficacy over standard of care pan-HER therapeutics. Tumor burden studies were also performed in lung, glioblastoma, and inflammatory breast cancer mouse models, evaluating tumor growth and overall survival. Results When injected into mouse models of basal-like and inflammatory breast cancers, EGFRvIII-driven glioblastoma, and lung adenocarcinoma with Erlotinib resistance, tumor growth is inhibited and overall survival is extended. Studies evaluating the toxicity of SAH-EJ1 also demonstrate a broad therapeutic window. Conclusions Taken together, these data indicate that SAH-EJ1 may be an effective therapeutic for HER-driven cancers with the potential to eliminate triple negative inflammatory breast cancer. Electronic supplementary material The online version of this article (10.1186/s12967-019-1939-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina A Maisel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Derrick Broka
- Arizona Cancer Therapeutics/Alliance Therapeutics, Tucson, AZ, USA
| | - Benjamin Atwell
- Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave 3945, Tucson, AZ, 85724, USA.,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Thomas Bunch
- Arizona Cancer Therapeutics/Alliance Therapeutics, Tucson, AZ, USA
| | - Robert Kupp
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Shiv K Singh
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Shwetal Mehta
- Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Joyce Schroeder
- Arizona Cancer Center, University of Arizona, 1515 N Campbell Ave 3945, Tucson, AZ, 85724, USA. .,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA. .,Arizona Cancer Therapeutics/Alliance Therapeutics, Tucson, AZ, USA.
| |
Collapse
|
14
|
Rush JS, Peterson JL, Ceresa BP. Betacellulin (BTC) Biases the EGFR To Dimerize with ErbB3. Mol Pharmacol 2018; 94:1382-1390. [PMID: 30249613 PMCID: PMC6207915 DOI: 10.1124/mol.118.113399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
There are 13 known endogenous ligands for the epidermal growth factor receptor (EGFR) and its closely related ErbB receptor family members. We previously reported that betacellulin (BTC) is more efficacious than epidermal growth factor (EGF) in mediating corneal wound healing, although the molecular basis for this difference was unknown. For the most part, differences between ligands can be attributed to variability in binding properties, such as the unique rate of association and dissociation, pH sensitivity, and selective binding to individual ErbB family members of each ligand. However, this was not the case for BTC. Despite being better at promoting wound healing via enhanced cell migration, BTC has reduced receptor affinity and weaker induction of EGFR phosphorylation. These data indicate that the response of BTC is not due to enhanced affinity or kinase activity. Receptor phosphorylation and proximity ligation assays indicate that BTC treatment significantly increases ErbB3 phosphorylation and EGFR-ErbB3 heterodimers when compared with EGF treatment. We observed that EGFR-ErbB3 heterodimers contribute to cell migration, because the addition of an ErbB3 antagonist (MM-121) or RNA interference-mediated knockdown of ErbB3 attenuates BTC-stimulated cell migration compared with EGF. Thus, we demonstrate that, despite both ligands binding to the EGFR, BTC biases the EGFR to dimerize with ErbB3 to regulate the biologic response.
Collapse
Affiliation(s)
- Jamie S Rush
- Departments of Pharmacology and Toxicology (J.S.R., J.L.P., B.P.C.) and Visual Science (B.P.C.), University of Louisville, Louisville, Kentucky
| | - Joanne L Peterson
- Departments of Pharmacology and Toxicology (J.S.R., J.L.P., B.P.C.) and Visual Science (B.P.C.), University of Louisville, Louisville, Kentucky
| | - Brian P Ceresa
- Departments of Pharmacology and Toxicology (J.S.R., J.L.P., B.P.C.) and Visual Science (B.P.C.), University of Louisville, Louisville, Kentucky
| |
Collapse
|
15
|
Proietti CJ, Cenciarini ME, Elizalde PV. Revisiting progesterone receptor (PR) actions in breast cancer: Insights into PR repressive functions. Steroids 2018; 133:75-81. [PMID: 29317254 DOI: 10.1016/j.steroids.2017.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/08/2017] [Accepted: 12/23/2017] [Indexed: 12/18/2022]
Abstract
Progesterone receptor (PR) is a master regulator in female reproductive tissues that controls developmental processes and proliferation and differentiation during the reproductive cycle and pregnancy. PR also plays a role in progression of endocrine-dependent breast cancer. As a member of the nuclear receptor family of ligand-dependent transcription factors, the main action of PR is to regulate networks of target gene expression in response to binding its cognate steroid hormone, progesterone. Liganded-PR transcriptional activation has been thoroughly studied and associated mechanisms have been described while progesterone-mediated repression has remained less explored. The present work summarizes recent advances in the understanding of how PR-mediated repression is accomplished in breast cancer cells and highlights the significance of fully understanding the determinants of context-dependent PR action.
Collapse
Affiliation(s)
- Cecilia J Proietti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina.
| | - Mauro E Cenciarini
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina
| | - Patricia V Elizalde
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490, Buenos Aires C1428ADN, Argentina
| |
Collapse
|
16
|
Efferth T. Cancer combination therapy of the sesquiterpenoid artesunate and the selective EGFR-tyrosine kinase inhibitor erlotinib. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 37:58-61. [PMID: 29174651 DOI: 10.1016/j.phymed.2017.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The shift from cytotoxic to targeted chemotherapy led to improved treatment outcomes in oncology. Nevertheless, many cancer patients cannot be cured from their disease because of the development of drug resistance and side effects. PURPOSE There is an ongoing quest for novel compounds, which raised not only the interest in natural products but also in novel combination therapy regimens. STUDY DESIGN In this review, we report on the inhibition epidermal growth factor receptor (EGFR) by targeted small molecules and their combination with natural products from medicinal plants. RESULTS The combination of erlotinib with artesunate leads to synergistic inhibition of cell growth in isobologram analyses. Artesunate is an approved anti-malaria drug, which is also active against cancer as shown in vitro, in vivo and in preliminary clinical phase I/II trials. CONCLUSION The combination of natural products (e.g. the sesquiterpenoid artesunate) and synthetic compounds (e.g. the small molecule EGFR tyrosine kinase inhibitor erlotinib) may lead to improved clinical success rates in oncology.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
17
|
Ødegård J, Sondresen JE, Aasrum M, Tveteraas IH, Guren TK, Christoffersen T, Thoresen GH. Differential effects of epidermal growth factor (EGF) receptor ligands on receptor binding, downstream signalling pathways and DNA synthesis in hepatocytes. Growth Factors 2017; 35:239-248. [PMID: 29582692 DOI: 10.1080/08977194.2018.1453506] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hepatocytes are responsive to mitogenic effects of several ligands acting via EGFR. Studying primary cultures of rat hepatocytes, we found that, as compared to EGF, HB-EGF had a markedly higher affinity of the EGFR, while AR and TGFα had lower affinity. HB-EGF was also more potent compared to the other growth factors regarding phosphorylation of EGFR, Shc, ERK1/2 and Akt. All ligands induced phosphorylation of ErbB2, indicating receptor heterodimerization. TGFα, despite having much lower receptor affinity, was about equally potent and efficacious as HB-EGF as a stimulator of DNA synthesis. In contrast, EGF had relatively high affinity but markedly lower efficacy in stimulation of DNA synthesis. The results suggest that amplifying and/or inhibitory mechanisms may modulate the mitogenic responses downstream of the initial signalling steps, and that this may affect the effects of the EGFR ligands differentially.
Collapse
Affiliation(s)
- J Ødegård
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - J E Sondresen
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - M Aasrum
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - I H Tveteraas
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
- b Department of Pharmacology , Oslo University Hospital , Oslo , Norway
| | - T K Guren
- c Department of Oncology , Oslo University Hospital , Oslo , Norway
| | - T Christoffersen
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| | - G H Thoresen
- a Department of Pharmacology , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
- d Department of Pharmaceutical Biosciences, School of Pharmacy , University of Oslo , Oslo , Norway
| |
Collapse
|
18
|
Louhivuori LM, Turunen PM, Louhivuori V, Yellapragada V, Nordström T, Uhlén P, Åkerman KE. Regulation of radial glial process growth by glutamate via mGluR5/TRPC3 and neuregulin/ErbB4. Glia 2017; 66:94-107. [PMID: 28887860 DOI: 10.1002/glia.23230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022]
Abstract
Radial glial cells play an essential role through their function as guides for neuronal migration during development. Disruption of metabotropic glutamate receptor 5 (mGluR5) function retards the growth of radial glial processes in vitro. Neuregulins (NRG) are activated by proteolytic cleavage and regulate (radial) glial maintenance via ErbB3/ErbB4 receptors. We show here that blocking ErbB4 disrupts radial process extension. Soluble NRG acting on ErbB4 receptors is able to promote radial process extension in particular where process elongation has been impeded by blockade of mGluR5, the nonselective cation channel canonical transient receptor potential 3 (TRPC3), or matrix metalloproteases (MMP). NRG does not restore retarded process growth caused by ErbB4 blockade. Stimulation of muscarinic receptors restores process elongation due to mGluR5 blockade but not that caused by TRPC3, MMP or ErbB4 blockade suggesting that muscarinic receptors can replace mGluR5 with respect to radial process extension. Additionally, NRG/ErbB4 causes Ca2+ mobilization in a population of cells through cooperation with ErbB1 receptors. Our results indicate that mGluR5 promotes radial process growth via NRG activation by a mechanism involving TRPC3 channels and MMPs. Thus neurotransmitters acting on G-protein coupled receptors could play a central role in the maintenance of the radial glial scaffold through activation of NRG/ErbB4 signaling.
Collapse
Affiliation(s)
- Lauri M Louhivuori
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Pauli M Turunen
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| | - Verna Louhivuori
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| | | | - Tommy Nordström
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Karl E Åkerman
- University of Helsinki, Biomedicum, Medicum/Physiology, Helsinki, FIN-00014, Finland
| |
Collapse
|
19
|
Zeng F, Kloepfer LA, Finney C, Diedrich A, Harris RC. Specific endothelial heparin-binding EGF-like growth factor deletion ameliorates renal injury induced by chronic angiotensin II infusion. Am J Physiol Renal Physiol 2016; 311:F695-F707. [PMID: 27226110 DOI: 10.1152/ajprenal.00377.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 05/18/2016] [Indexed: 12/28/2022] Open
Abstract
Transactivation of EGF receptor (EGFR) by angiotensin II (Ang II) plays important roles in the initiation and progression of chronic kidney diseases. Studies suggest that heparin-binding EGF-like factor (HB-EGF) may be a critical mediator in this process, but its role in vivo has not been investigated. In the current study, we found that in response to Ang II infusion, kidneys from endothelial HB-EGF deletion mice had significantly reduced EGFR activation compared with controls. Meanwhile, deletion of endothelial HB-EGF expression decreased Ang II infusion related renal injury, as demonstrated by 1) less albuminuria; 2) less glomerulosclerosis; 3) preserved endothelial integrity and decreased podocyte injury, as shown by greater glomerular tuft area and WT1-positive cells, and fewer apoptotic cells measured by cleaved caspase 3 staining; 4) reduced inflammation in the perivascular area and interstitium measured by F4/80 and CD3 immunostaining; and 5) reduced renal fibrosis. In conclusion, our results suggest that shedding of HB-EGF from endothelium plays an important role in Ang II-induced renal injury by linking Ang II-AT1R with EGFR transactivation. Inhibition of HB-EGF shedding could be a potential therapeutic strategy for chronic kidney disease.
Collapse
Affiliation(s)
- Fenghua Zeng
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lance A Kloepfer
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Charlene Finney
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - André Diedrich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee; Department of Veterans Affairs, Nashville, Tennessee
| |
Collapse
|
20
|
Gong C, Zhang Y, Shankaran H, Resat H. Integrated analysis reveals that STAT3 is central to the crosstalk between HER/ErbB receptor signaling pathways in human mammary epithelial cells. MOLECULAR BIOSYSTEMS 2015; 11:146-58. [PMID: 25315124 PMCID: PMC4540226 DOI: 10.1039/c4mb00471j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human epidermal growth factor receptors (HER, also known as ErbB) drive cellular proliferation, pro-survival and stress responses by activating several downstream kinases, in particular ERK, p38 MAPK, JNK (SAPK), the PI3K/AKT, as well as various transcriptional regulators such as STAT3. When co-expressed, the first three members of HER family (HER1-3) can form homo- and hetero-dimers, and there is considerable evidence suggesting that the receptor dimers differentially activate intracellular signaling pathways. To better understand the interactions in this system, we pursued multi-factorial experiments where HER dimerization patterns and signaling pathways were rationally perturbed. We measured the activation of HER1-3 receptors and of the sentinel signaling proteins ERK, AKT, p38 MAPK, JNK, STAT3 as a function of time in a panel of human mammary epithelial (HME) cells expressing different levels of HER1-3 stimulated with various ligand combinations. We hypothesized that the HER dimerization pattern is a better predictor of downstream signaling than the total receptor activation levels. We validated this hypothesis using a combination of model-based analysis to quantify the HER dimerization patterns, and by clustering the activation data in multiple ways to confirm that the HER receptor dimer is a better predictor of the signaling through p38 MAPK, ERK and AKT pathways than the total HER receptor expression and activation levels. We then pursued combinatorial inhibition studies to identify the causal regulatory interactions between sentinel signaling proteins. Quantitative analysis of the collected data using the modular response analysis (MRA) and its Bayesian Variable Selection Algorithm (BVSA) version allowed us to obtain a consensus regulatory interaction model, which revealed that STAT3 occupies a central role in the crosstalk between the studied pathways in HME cells. Results of the BVSA/MRA and cluster analysis were in agreement with each other.
Collapse
Affiliation(s)
- Chunhong Gong
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yi Zhang
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Harish Shankaran
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Haluk Resat
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
21
|
Santosa MM, Low BSJ, Pek NMQ, Teo AKK. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands. Front Endocrinol (Lausanne) 2015; 6:194. [PMID: 26834702 PMCID: PMC4712272 DOI: 10.3389/fendo.2015.00194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/25/2015] [Indexed: 11/13/2022] Open
Abstract
In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1(+) pancreatic progenitors, much less is known about the transition toward Ngn3(+) pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.
Collapse
Affiliation(s)
- Munirah Mohamad Santosa
- Stem Cells and Diabetes Laboratory, Discovery Research Division, Institute of Molecular and Cell Biology, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Blaise Su Jun Low
- Stem Cells and Diabetes Laboratory, Discovery Research Division, Institute of Molecular and Cell Biology, Singapore
| | - Nicole Min Qian Pek
- Stem Cells and Diabetes Laboratory, Discovery Research Division, Institute of Molecular and Cell Biology, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Discovery Research Division, Institute of Molecular and Cell Biology, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- *Correspondence: Adrian Kee Keong Teo, ,
| |
Collapse
|
22
|
Targeting epidermal growth factor receptors and downstream signaling pathways in cancer by phytochemicals. Target Oncol 2014; 10:337-53. [DOI: 10.1007/s11523-014-0339-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/25/2014] [Indexed: 12/27/2022]
|
23
|
Shepard JB, Jeong JW, Maihle NJ, O'Brien S, Dealy CN. Transient anabolic effects accompany epidermal growth factor receptor signal activation in articular cartilage in vivo. Arthritis Res Ther 2014; 15:R60. [PMID: 23705804 PMCID: PMC4060279 DOI: 10.1186/ar4233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/17/2013] [Accepted: 05/25/2013] [Indexed: 02/06/2023] Open
Abstract
Introduction Signals from the epidermal growth factor receptor (EGFR) have typically been considered to provide catabolic activities in articular cartilage, and accordingly have been suggested to have a causal role in osteoarthritis progression. The aim of this study was to determine in vivo roles for endogenous EGFR signal activation in articular cartilage. Methods Transgenic mice with conditional, limb-targeted deletion of the endogenous intracellular EGFR inhibitor Mig-6 were generated using CreLoxP (Mig-6-flox; Prx1Cre) recombination. Histology, histochemical staining and immunohistochemistry were used to confirm activation of EGFR signaling in the articular cartilage and joints, and to analyze phenotypic consequences of Mig-6 loss on articular cartilage morphology, proliferation, expression of progenitor cell markers, presence of chondrocyte hypertrophy and degradation of articular cartilage matrix. Results The articular cartilage of Mig-6-conditional knockout (Mig-6-cko) mice was dramatically and significantly thicker than normal articular cartilage at 6 and 12 weeks of age. Mig-6-cko articular cartilage contained a population of chondrocytes in which EGFR signaling was activated, and which were three to four times more proliferative than normal Mig-6-flox articular chondrocytes. These cells expressed high levels of the master chondrogenic regulatory factor Sox9, as well as high levels of putative progenitor cell markers including superficial zone protein (SZP), growth and differentiation factor-5 (GDF-5) and Notch1. Expression levels were also high for activated β-catenin and the transforming growth factor beta (TGF-β) mediators phospho-Smad2/3 (pSmad2/3). Anabolic effects of EGFR activation in articular cartilage were followed by catabolic events, including matrix degradation, as determined by accumulation of aggrecan cleavage fragments, and onset of hypertrophy as determined by type × collagen expression. By 16 weeks of age, the articular cartilage of Mig-6-cko knees was no longer thickened and was degenerating. Conclusions These results demonstrate unexpected anabolic effects of EGFR signal activation in articular cartilage, and suggest the hypothesis that these effects may promote the expansion and/or activity of an endogenous EGFR-responsive cell population within the articular cartilage.
Collapse
|
24
|
Kappler CS, Guest ST, Irish JC, Garrett-Mayer E, Kratche Z, Wilson RC, Ethier SP. Oncogenic signaling in amphiregulin and EGFR-expressing PTEN-null human breast cancer. Mol Oncol 2014; 9:527-43. [PMID: 25454348 PMCID: PMC4304881 DOI: 10.1016/j.molonc.2014.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/31/2022] Open
Abstract
A subset of triple negative breast cancer (TNBC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) and loss of PTEN, and patients with these determinants have a poor prognosis. We used cell line models of EGFR‐positive/PTEN null TNBC to elucidate the signaling networks that drive the malignant features of these cells and cause resistance to EGFR inhibitors. In these cells, amphiregulin (AREG)‐mediated activation of EGFR results in up‐regulation of fibronectin (FN1), which is known to be a mediator of invasive capacity via interaction with integrin β1. EGFR activity in this PTEN null background also results in Wnt/beta‐catenin signaling and activation of NF‐κB. In addition, AKT is constitutively phosphorylated in these cells and is resistant to gefitinib. Expression profiling demonstrated that AREG‐activated EGFR regulates gene expression differently than EGF‐activated EGFR, and functional analysis via genome‐scale shRNA screening identified a set of genes, including PLK1 and BIRC5, that are essential for survival of SUM‐149 cells, but are uncoupled from EGFR signaling. Thus, our results demonstrate that in cells with constitutive EGFR activation and PTEN loss, critical survival genes are uncoupled from regulation by EGFR, which likely mediates resistance to EGFR inhibitors. Activation of EGFR by AREG alters signaling and gene expression compared to EGF. Activation of EGFR by AREG reduces mTORC1 pathway expression and phosphorylation. EGF‐positive, PTEN‐null TNBC cells are poised for Wnt/beta‐catenin signaling. Wnt/beta‐catenin activity occurs in a subset of cells and is enhanced in mammospheres. Regulation of growth/survival genes is uncoupled from EGFR in PTEN‐null TNBC cells.
Collapse
Affiliation(s)
- Christiana S Kappler
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Stephen T Guest
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jonathan C Irish
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Science, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zachary Kratche
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephen P Ethier
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
25
|
Watkins DJ, Zhou Y, Matthews MAB, Chen L, Besner GE. HB-EGF augments the ability of mesenchymal stem cells to attenuate intestinal injury. J Pediatr Surg 2014; 49:938-44; discussion 944. [PMID: 24888839 PMCID: PMC4044538 DOI: 10.1016/j.jpedsurg.2014.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/27/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND We have previously demonstrated that heparin-binding EGF-like growth factor (HB-EGF) and mesenchymal stem cell (MSC) administration protect the intestines from ischemia/reperfusion (I/R) injury in vivo, with amniotic fluid-derived MSC (AF-MSC) being more efficacious than bone marrow-derived MSC (BM-MSC). The goal of the current study was to determine whether the protective effects of HB-EGF were from direct effects on MSC or via alternative mechanisms. METHODS Murine MSC were transfected with an HB-EGF plasmid or control plasmid by electroporation. Mice were subjected to segmental intestinal I/R injury and received either BM-MSC or AF-MSC either with or without exogenous HB-EGF, or BM-MSC or AF-MSC that endogenously over-expressed HB-EGF. MSC engraftment, intestinal histologic injury, and intestinal permeability were quantified. RESULTS There was increased MSC engraftment into injured compared to uninjured intestine. HB-EGF increased AF-MSC engraftment into injured intestine. Administration of HB-EGF and MSC improved intestinal histology and intestinal permeability after I/R injury, with AF-MSC being most efficacious. The effect of HB-EGF on MSC was similar when the growth factor was administered exogenously, or when it was overexpressed endogenously. CONCLUSIONS The effect of HB-EGF on AF-MSC was similar with both exogenous administration and endogenous overexpression of the growth factor, implying that HB-EGF has a direct effect on AF-MSC. This information may assist in guiding potential future AF-MSC-based therapies for patients at risk of intestinal ischemic injuries.
Collapse
Affiliation(s)
- Daniel J Watkins
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, Ohio
| | - Yu Zhou
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, Ohio
| | - Mika A B Matthews
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, Ohio
| | - Li Chen
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, Ohio
| | - Gail E Besner
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Department of Pediatric Surgery, Nationwide Children's Hospital, and The Ohio State University College of Medicine, Columbus, Ohio.
| |
Collapse
|
26
|
Peterson JL, Phelps ED, Doll MA, Schaal S, Ceresa BP. The role of endogenous epidermal growth factor receptor ligands in mediating corneal epithelial homeostasis. Invest Ophthalmol Vis Sci 2014; 55:2870-80. [PMID: 24722692 DOI: 10.1167/iovs.13-12943] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To provide a comprehensive study of the biological role and therapeutic potential of six endogenous epidermal growth factor receptor (EGFR) ligands in corneal epithelial homeostasis. METHODS Kinetic analysis and dose response curves were performed by using in vitro and in vivo wound-healing assays. Biochemical assays were used to determine receptor expression and activity. Human tears were collected and quantitatively analyzed by multianalyte profiling for endogenous EGFR ligands. RESULTS Epidermal growth factor receptor ligands improved wound closure and activated EGFR, but betacellulin (BTC) was the most efficacious promoter of wound healing in vitro. In contrast, only epidermal growth factor (EGF) promoted wound healing in vivo. Human tears from 25 healthy individuals showed EGFR ligands at these average concentrations: EGF at 2053 ± 312.4 pg/mL, BTC at 207 ± 39.4 pg/mL, heparin-binding EGF at 44 ± 5.8 pg/mL, amphiregulin at 509 ± 28.8 pg/mL, transforming growth factor-α at 84 ± 19 pg/mL, and epiregulin at 52 ± 15 pg/mL. CONCLUSIONS Under unwounded conditions, only EGF was present at concentrations near the ligand's Kd for the receptor, indicating it is the primary mediator of corneal epithelial homeostasis. Other ligands were present but at concentrations 11- to 7500-fold less their Kd, preventing significant ligand binding. Further, the high levels of EGF and its predicted binding preclude receptor occupancy by exogenous ligand and can explain the discrepancy between the in vitro and in vivo data. Therefore, therapeutic use of EGFR ligands may be unpredictable and impractical.
Collapse
Affiliation(s)
- Joanne L Peterson
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, United States
| | | | | | | | | |
Collapse
|
27
|
Berasain C, Avila MA. Amphiregulin. Semin Cell Dev Biol 2014; 28:31-41. [PMID: 24463227 DOI: 10.1016/j.semcdb.2014.01.005] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
Amphiregulin (AREG) is a ligand of the epidermal growth factor receptor (EGFR), a widely expressed transmembrane tyrosine kinase. AREG is synthesized as a membrane-anchored precursor protein that can engage in juxtacrine signaling on adjacent cells. Alternatively, after proteolytic processing by cell membrane proteases, mainly TACE/ADAM17, AREG is secreted and behaves as an autocrine or paracrine factor. AREG gene expression and release is induced by a plethora of stimuli including inflammatory lipids, cytokines, hormones, growth factors and xenobiotics. Through EGFR binding AREG activates major intracellular signaling cascades governing cell survival, proliferation and motility. Physiologically, AREG plays an important role in the development and maturation of mammary glands, bone tissue and oocytes. Chronic elevation of AREG expression is increasingly associated with different pathological conditions, mostly of inflammatory and/or neoplastic nature. Here we review the essential aspects of AREG structure, function and regulation, discuss the basis for its differential role within the EGFR family of ligands, and identify emerging aspects in AREG research with translational potential.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain; CIBERehd, Clinica Universidad de Navarra, Avda. Pio XII, n55, 31008 Pamplona, Spain.
| |
Collapse
|
28
|
The ABC of BTC: structural properties and biological roles of betacellulin. Semin Cell Dev Biol 2014; 28:42-8. [PMID: 24440602 DOI: 10.1016/j.semcdb.2014.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/08/2014] [Indexed: 12/17/2022]
Abstract
Betacellulin was initially detected as a growth-promoting factor in the conditioned medium of a mouse pancreatic β-cell tumor cell line. Sequencing of the purified protein and of the cloned cDNA supported the assumption that betacellulin is a new ligand of the epidermal growth factor receptor (EGFR), which was later confirmed experimentally. As a typical EGFR ligand, betacellulin is expressed by a variety of cell types and tissues, and the soluble growth factor is proteolytically cleaved from a larger membrane-anchored precursor. Importantly, BTC can - in addition to the EGFR - bind and activate all possible heterodimeric combinations of the related ERBB receptors including the highly oncogenic ERBB2/3 dimer, as well as homodimers of ERBB4. While a large number of studies attest a role for betacellulin in the differentiation of pancreatic β-cells, the last decade witnessed the association of betacellulin with a large number of additional biological processes, ranging from reproduction to the control of neural stem cells.
Collapse
|
29
|
Targeting tumor micro-environment for design and development of novel anti-angiogenic agents arresting tumor growth. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:333-54. [PMID: 24139944 DOI: 10.1016/j.pbiomolbio.2013.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022]
Abstract
Angiogenesis: a process of generation of new blood vessels has been proved to be necessary for sustained tumor growth and cancer progression. Inhibiting angiogenesis pathway has long been remained a significant hope for the development of novel, effective and target orientated antitumor agents arresting the tumor proliferation and metastasis. The process of neoangiogenesis as a biological process is regulated by several pro- and anti-angiogenic factors, especially vascular endothelial growth factor, fibroblast growth factor, epidermal growth factor, hypoxia inducible factor 1 and transforming growth factor. Every endothelial cell destined for vessel formation is equipped with receptors for these angiogenic peptides. Moreover, numerous other angiogenic cytokines such as platelet derived growth factor (PGDF), placenta growth factor (PGF), nerve growth factor (NGF), stem-cell factor (SCF), and interleukins-2, 4, 6 etc. These molecular players performs critical role in regulating the angiogenic switch. Couple of decade's research in molecular aspects of tumor biology has unraveled numerous structural and functional mysteries of these angiogenic peptides. In present article, a detailed update on the functional and structural peculiarities of the various angiogenic peptides is described focusing on structural opportunities made available that has potential to be used to modulate function of these angiogenic peptides in developing therapeutic agents targeting neoplastic angiogenesis. The data may be useful in the mainstream of developing novel anticancer agents targeting tumor angiogenesis. We also discuss major therapeutic agents that are currently used in angiogenesis associated therapies as well as those are subject of active research or are in clinical trials.
Collapse
|
30
|
Sollome JJ, Thavathiru E, Camenisch TD, Vaillancourt RR. HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal 2013; 26:70-82. [PMID: 24036211 DOI: 10.1016/j.cellsig.2013.08.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 08/30/2013] [Indexed: 12/13/2022]
Abstract
Human MAP3K4 (MTK1) functions upstream of mitogen activated protein kinases (MAPKs). In this study we show MTK1 is required for human epidermal growth factor receptor 2/3 (HER2/HER3)-heregulin beta1 (HRG) induced cell migration in MCF-7 breast cancer cells. We demonstrate that HRG stimulation leads to association of MTK1 with activated HER3 in MCF-7 and T-47D breast cancer cells. Activated HER3 association with MTK1 is dependent on HER2 activation and is decreased by pre-treatment with the HER2 inhibitor, lapatinib. Moreover, we also identify the actin interacting region (AIR) on MTK1. Disruption of actin cytoskeletal polymerization with cytochalasin D inhibited HRG induced MTK1/HER3 association. Additionally, HRG stimulation leads to extracellular acidification that is independent of cellular proliferation. HRG induced extracellular acidification is significantly inhibited when MTK1 is knocked down in MCF-7 cells. Similarly, pre-treatment with lapatinib significantly decreased HRG induced extracellular acidification. Extracellular acidification is linked with cancer cell migration. We performed scratch assays that show HRG induced cell migration in MCF-7 cells. Knockdown of MTK1 significantly inhibited HRG induced cell migration. Furthermore, pre-treatment with lapatinib also significantly decreased cell migration. Cell migration is required for cancer cell metastasis, which is the major cause of cancer patient mortality. We identify MTK1 in the HER2/HER3-HRG mediated extracellular acidification and cell migration pathway in breast cancer cells.
Collapse
Affiliation(s)
- James J Sollome
- The Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
31
|
Crosstalk between HER2 signaling and angiogenesis in breast cancer: molecular basis, clinical applications and challenges. Curr Opin Oncol 2013; 25:313-24. [PMID: 23518595 DOI: 10.1097/cco.0b013e32835ff362] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Angiogenesis is an essential hallmark of cancer. Targeting angiogenesis has proven its efficacy in the modern therapeutic paradigm. HER2 positive breast cancer, in particular, is a challenging disease in which resistance to standard therapy has been attributed to parallel and downstream signaling cascades including angiogenesis. This review explores the molecular mechanisms underlying crosstalk between HER2 signaling and angiogenesis. It highlights the role of angiogenesis in the emerging resistance to anti-HER2 therapy. It surveys the current repertoire of clinical trials involving use of combination of anti-HER2 and antiangiogenic therapies. Finally, it entertains the hopes and challenges posed by this novel therapeutic approach. RECENT FINDINGS HER2 signaling upregulates angiogenesis at different levels and by different mechanisms. A large number of clinical trials were conducted in attempt to exploit the potential benefit of the combination. Results of early phase trials were promising. However, in the late phase clinical trials, the AVEREL trial did not demonstrate a consistent benefit for bevacizumab in the HER2 positive breast cancer patient population. The BETH trial is ongoing and recruiting patients. Safety issues regarding cardiovascular toxicity of the combination have been already raised. Negative experience of dual EGFR and VEGF targeting in colon cancer cannot be overlooked. SUMMARY Angiogenesis and HER2 signaling are closely related at the molecular level. Appraisal of efficacy of antiangiogenic therapies requires revisit of the current literature as well as following the results of ongoing trials.
Collapse
|
32
|
Watkins DJ, Yang J, Matthews MAB, Besner GE. Synergistic effects of HB-EGF and mesenchymal stem cells in a murine model of intestinal ischemia/reperfusion injury. J Pediatr Surg 2013; 48:1323-9. [PMID: 23845626 PMCID: PMC3710437 DOI: 10.1016/j.jpedsurg.2013.03.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/08/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND We have previously demonstrated that heparin-binding EGF-like growth factor (HB-EGF) administration protects the intestines from ischemia/reperfusion (I/R) injury in vivo. We have also shown that HB-EGF promotes mesenchymal stem cell (MSC) proliferation and migration in vitro. The goals of the current study were to examine the effects of HB-EGF and both bone marrow (BM)- and amniotic fluid (AF)-derived MSC on intestinal I/R injury in vivo. MATERIALS AND METHODS MSC were isolated from pan-EGFP mice, expanded, and purified. Pluripotency was confirmed by induced differentiation. Mice were subjected to terminal ileum I/R and received either: (1) no therapy; (2) HB-EGF; (3) BM-MSC; (4) HB-EGF+BM-MSC; (5) AF-MSC; or (6) HB-EGF+AF-MSC. MSC engraftment, histologic injury, and intestinal permeability were quantified. RESULTS There was increased MSC engraftment into injured compared to uninjured intestine for all experimental groups, with significantly increased engraftment for AF-MSC+HB-EGF compared to AF-MSC alone. Administration of HB-EGF and MSC improved intestinal histology and intestinal permeability after I/R injury. The greatest improvement was with combined administration of HB-EGF+AF-MSC. CONCLUSIONS Both HB-EGF alone and MSC alone can protect the intestines from I/R injury, with synergistic efficacy occurring when HB-EGF and AF-MSC are administered together.
Collapse
Affiliation(s)
- Daniel J Watkins
- The Research Institute at Nationwide Children's Hospital, Center for Perinatal Research, Columbus, OH 43205, USA
| | | | | | | |
Collapse
|
33
|
Identification of the cancer cell proliferation and survival functions of proHB-EGF by using an anti-HB-EGF antibody. PLoS One 2013; 8:e54509. [PMID: 23349913 PMCID: PMC3549951 DOI: 10.1371/journal.pone.0054509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/12/2012] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family. The membrane-bound proHB-EGF is known to be a precursor of the soluble form of HB-EGF (sHB-EGF), which promotes cell proliferation and survival. While the functions of sHB-EGF have been extensively studied, it is not yet fully understood if proHB-EGF is also involved in cellular signaling events. In this study, we utilized the anti-HB-EGF monoclonal antibodies Y-142 and Y-073, which have differential specificities toward proHB-EGF, in order to elucidate proHB-EGF functions in cancer cells. EXPERIMENTAL DESIGN The biological activities of proHB-EGF were assessed in cell proliferation, caspase activation, and juxtacrine activity assays by using a 3D spheroid culture of NUGC-3 cells. RESULTS Y-142 and Y-073 exhibited similar binding and neutralizing activities for sHB-EGF. However, only Y-142 bound to proHB-EGF. We could detect the function of endogenously expressed proHB-EGF in a 3D spheroid culture. Blocking proHB-EGF with Y-142 reduced spheroid formation, suppressed cell proliferation, and increased caspase activation in the 3D spheroid culture of NUGC-3 cells. CONCLUSIONS Our results show that proHB-EGF acts as a cell proliferation and cell survival factor in cancer cells. The results suggest that proHB-EGF may play an important role in tumor progression.
Collapse
|
34
|
Versteyhe S, Klaproth B, Borup R, Palsgaard J, Jensen M, Gray SG, De Meyts P. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor. Front Endocrinol (Lausanne) 2013; 4:98. [PMID: 23950756 PMCID: PMC3738877 DOI: 10.3389/fendo.2013.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/26/2013] [Indexed: 01/02/2023] Open
Abstract
Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it. We used microarray gene expression profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after stimulation of the IGF-I receptor. Fibroblasts from mice, knockout for IGF-II and the IGF-II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts that was not regulated by the other two ligands. Many of the functions and pathways these regulated genes were involved in, were consistent with the known biological effects of these ligands. The differences in gene expression might therefore account for some of the different biological effects of insulin, IGF-I, and IGF-II. This work adds to the evidence that not only the affinity of a ligand determines its biological response, but also its nature, even through the same receptor.
Collapse
Affiliation(s)
- Soetkin Versteyhe
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
- *Correspondence: Soetkin Versteyhe, Faculty of Health Sciences, The Novo Nordisk Foundation Center for Basic Metabolic Research, Integrative Physiology, University of Copenhagen, Blegdamsvej 3B, 2200 København N, Denmark e-mail:
| | - Birgit Klaproth
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Rehannah Borup
- Genomic Medicine, Microarray Center, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jane Palsgaard
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Maja Jensen
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| | - Steven G. Gray
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
- Thoracic Oncology Research Group, Trinity Centre for Health Sciences, Institute of Molecular Medicine, St. James’s Hospital, Dublin, Ireland
| | - Pierre De Meyts
- Receptor Systems Biology Laboratory, Hagedorn Research Institute, Novo Nordisk A/S, Gentofte, Denmark
| |
Collapse
|
35
|
Bolin C, Tawara K, Sutherland C, Redshaw J, Aranda P, Moselhy J, Anderson R, Jorcyk CL. Oncostatin m promotes mammary tumor metastasis to bone and osteolytic bone degradation. Genes Cancer 2012; 3:117-30. [PMID: 23050044 DOI: 10.1177/1947601912458284] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/25/2012] [Indexed: 01/24/2023] Open
Abstract
Oncostatin M (OSM) is an interleukin-6 (IL-6) family cytokine that has been implicated in a number of biological processes including inflammation, hematopoiesis, immune responses, development, and bone homeostasis. Recent evidence suggests that OSM may promote breast tumor invasion and metastasis. We investigated the role of OSM in the formation of bone metastases in vivo using the 4T1.2 mouse mammary tumor model in which OSM expression was knocked down using shRNA (4T1.2-OSM). 4T1.2-OSM cells were injected orthotopically into Balb/c mice, resulting in a greater than 97% decrease in spontaneous metastasis to bone compared to control cells. Intratibial injection of these same 4T1.2-OSM cells also dramatically reduced the osteolytic destruction of trabecular bone volume compared to control cells. Furthermore, in a tumor resection model, mice bearing 4T1.2-OSM tumors showed an increase in survival by a median of 10 days. To investigate the specific cellular mechanisms important for OSM-induced osteolytic metastasis to bone, an in vitro model was developed using the RAW 264.7 preosteoclast cell line co-cultured with 4T1.2 mouse mammary tumor cells. Treatment of co-cultures with OSM resulted in a 3-fold induction of osteoclastogenesis using the TRAP assay. We identified several tumor cell-induced factors including vascular endothelial growth factor, IL-6, and a previously uncharacterized OSM-regulated bone metastasis factor, amphiregulin (AREG), which increased osteoclast differentiation by 4.5-fold. In addition, pretreatment of co-cultures with an anti-AREG neutralizing antibody completely reversed OSM-induced osteoclastogenesis. Our results suggest that one mechanism for OSM-induced osteoclast differentiation is via an AREG autocrine loop, resulting in decreased osteoprotegerin secretion by the 4T1.2 cells. These data provide evidence that OSM might be an important therapeutic target for the prevention of breast cancer metastasis to bone.
Collapse
Affiliation(s)
- Celeste Bolin
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tsuji I, Sato S, Otake K, Watanabe T, Kamada H, Kurokawa T. Characterization of a variety of neutralizing anti-heparin-binding epidermal growth factor-like growth factor monoclonal antibodies by different immunization methods. MAbs 2012; 4:732-9. [PMID: 23007682 DOI: 10.4161/mabs.21929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family. The accumulated evidence on the tumor-progressing roles of HB-EGF has suggested that HB-EGF-targeted cancer therapy is expected to be promising. However, the generation of neutralizing anti-HB-EGF monoclonal antibodies (mAbs) has proved difficult. To overcome this difficulty, we performed a hybridoma approach using mice from different genetic backgrounds, as well as different types of HB-EGF immunogens. To increase the number of hybridoma clones to screen, we used an electrofusion system to generate hybridomas and a fluorometric microvolume assay technology to screen anti-HB-EGF mAbs. We succeeded in obtaining neutralizing anti-HB-EGF mAbs, primarily from BALB/c and CD1 mice, and these were classified into 7 epitope bins based on their competitive binding to the soluble form of HB-EGF (sHB-EGF). The mAbs showed several epitope bin-dependent characteristics, including neutralizing and binding activity to human sHB-EGF, cross-reactivity to mouse/rat sHB-EGF and binding activity to the precursor form of HB-EGF. The neutralizing activity was also validated in colony formation assays. Interestingly, we found that the populations of mAb bins and the production rates of the neutralizing mAbs were strikingly different by mouse strain and by immunogen type. We succeeded in generating a variety of neutralizing anti-HB-EGF mAbs, including potent sHB-EGF neutralizers that may have potential as therapeutic agents for treating HB-EGF-dependent cancers. Our results also suggest that immunization approaches using different mouse strains and immunogen types affect the biological activity of individual neutralizing antibodies.
Collapse
Affiliation(s)
- Isamu Tsuji
- Pharmaceutical Research Division, Takeda Pharmaceutical Company, Limited, Fujisawa, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Drucker AM, Wu S, Dang CT, Lacouture ME. Risk of rash with the anti-HER2 dimerization antibody pertuzumab: a meta-analysis. Breast Cancer Res Treat 2012; 135:347-54. [PMID: 22782294 DOI: 10.1007/s10549-012-2157-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
Pertuzumab is a novel humanized monoclonal antibody that blocks human epidermal growth factor receptor 2 (HER2) dimerization. It was recently approved by the US FDA for use in combination with trastuzumab and docetaxel for patients with HER2-positive metastatic breast cancer who have not received prior anti-HER2 therapy or chemotherapy for metastatic disease. Rash is inconsistently reported as a common adverse event in most clinical trials of pertuzumab, at varying incidences. In this study, we have investigated the overall incidence and risk of rash with pertuzumab. Relevant studies were identified from the PubMed database (1966-2012), abstracts presented at the American Society of Clinical Oncology annual conference (2004-2011), and Web of Science database (1998-2012). Eligible studies were prospective phase II-III clinical trials using pertuzumab in cancer patients. Incidence, relative risk (RR), and 95 % confidence intervals (CIs) were calculated using random-effects or fixed-effects models based on the heterogeneity of included studies. Data from a total of 1,726 patients (pertuzumab, n = 1,157; controls, n = 569) with breast, ovarian, and prostate cancers from eight clinical trials were included for analysis. The incidence of all-grade and high-grade rash with pertuzumab were 24.6 % (95 % CI 19.3-30.8 %) and 1.1 % (95 % CI 0.5-2.2 %), respectively. The risk varied with tumor types, as patients with prostate cancer had a lower incidence of rash (13.2 %; 95 % CI 8.0-21.1 %) than those with breast, ovarian, fallopian tube, and peritoneal cancer (P = 0.001). Overall, pertuzumab significantly increased the risk of rash in comparison with controls (RR 1.53; 95 % CI 1.12-2.09; P = 0.007). Pertuzumab is associated with a significant risk of rash, and the incidence varies among different tumor types. Prevention, early recognition, and appropriate treatment of this rash may lead to improvement in patient quality of life, adherence to therapy, and possibly optimize clinical outcomes.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents, Hormonal/adverse effects
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Breast Neoplasms/drug therapy
- Breast Neoplasms/epidemiology
- Clinical Trials as Topic
- Exanthema/chemically induced
- Exanthema/epidemiology
- Female
- Humans
- Incidence
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Risk
Collapse
Affiliation(s)
- Aaron M Drucker
- Division of Dermatology, Department of Medicine, University of Toronto, 2075 Bayview Avenue, Toronto, ON M4N 3M5, Canada
| | | | | | | |
Collapse
|
38
|
Knutson TP, Daniel AR, Fan D, Silverstein KAT, Covington KR, Fuqua SAW, Lange CA. Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression. Breast Cancer Res 2012; 14:R95. [PMID: 22697792 PMCID: PMC3446358 DOI: 10.1186/bcr3211] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/21/2012] [Accepted: 06/14/2012] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Progesterone receptors (PR) are emerging as important breast cancer drivers. Phosphorylation events common to breast cancer cells impact PR transcriptional activity, in part by direct phosphorylation. PR-B but not PR-A isoforms are phosphorylated on Ser294 by mitogen activated protein kinase (MAPK) and cyclin dependent kinase 2 (CDK2). Phospho-Ser294 PRs are resistant to ligand-dependent Lys388 SUMOylation (that is, a repressive modification). Antagonism of PR small ubiquitin-like modifier (SUMO)ylation by mitogenic protein kinases suggests a mechanism for derepression (that is, transcriptional activation) of target genes. As a broad range of PR protein expression is observed clinically, a PR gene signature would provide a valuable marker of PR contribution to early breast cancer progression. METHODS Global gene expression patterns were measured in T47D and MCF-7 breast cancer cells expressing either wild-type (SUMOylation-capable) or K388R (SUMOylation-deficient) PRs and subjected to pathway analysis. Gene sets were validated by RT-qPCR. Recruitment of coregulators and histone methylation levels were determined by chromatin immunoprecipitation. Changes in cell proliferation and survival were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and western blotting. Finally, human breast tumor cohort datasets were probed to identify PR-associated gene signatures; metagene analysis was employed to define survival rates in patients whose tumors express a PR gene signature. RESULTS 'SUMO-sensitive' PR target genes primarily include genes required for proliferative and pro-survival signaling. DeSUMOylated K388R receptors are preferentially recruited to enhancer regions of derepressed genes (that is, MSX2, RGS2, MAP1A, and PDK4) with the steroid receptor coactivator, CREB-(cAMP-response element-binding protein)-binding protein (CBP), and mixed lineage leukemia 2 (MLL2), a histone methyltransferase mediator of nucleosome remodeling. PR SUMOylation blocks these events, suggesting that SUMO modification of PR prevents interactions with mediators of early chromatin remodeling at 'closed' enhancer regions. SUMO-deficient (phospho-Ser294) PR gene signatures are significantly associated with human epidermal growth factor 2 (ERBB2)-positive luminal breast tumors and predictive of early metastasis and shortened survival. Treatment with antiprogestin or MEK inhibitor abrogated expression of SUMO-sensitive PR target-genes and inhibited proliferation in BT-474 (estrogen receptor (ER)+/PR+/ERBB2+) breast cancer cells. CONCLUSIONS We conclude that reversible PR SUMOylation/deSUMOylation profoundly alters target gene selection in breast cancer cells. Phosphorylation-induced PR deSUMOylation favors a permissive chromatin environment via recruitment of CBP and MLL2. Patients whose ER+/PR+ tumors are driven by hyperactive (that is, derepressed) phospho-PRs may benefit from endocrine (antiestrogen) therapies that contain an antiprogestin.
Collapse
Affiliation(s)
- Todd P Knutson
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| | - Andrea R Daniel
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| | - Danhua Fan
- Biostatistics and Bioinformatics Core, Masonic Cancer Center, 425 Delaware St SE, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kevin AT Silverstein
- Biostatistics and Bioinformatics Core, Masonic Cancer Center, 425 Delaware St SE, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kyle R Covington
- Department of Medicine, Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Suzanne AW Fuqua
- Department of Medicine, Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | - Carol A Lange
- Departments of Medicine (Division of Hematology, Oncology, and Transplantation) and Pharmacology, Masonic Cancer Center, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455 USA
| |
Collapse
|
39
|
Watkins DJ, Zhou Y, Chen CL, Darbyshire A, Besner GE. Heparin-binding epidermal growth factor-like growth factor protects mesenchymal stem cells. J Surg Res 2012; 177:359-64. [PMID: 22658491 DOI: 10.1016/j.jss.2012.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/23/2012] [Accepted: 05/03/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND We have previously demonstrated that mesenchymal stem cell (MSC) administration protects the intestines from injury in a mouse model of intestinal ischemia/reperfusion injury. We have also shown that heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a potent intestinal cytoprotective agent in vivo that can protect the intestines by way of its effects on stem cells. The goal of the present study was to examine the effects of HB-EGF on both amniotic fluid (AF)- and bone marrow (BM)-derived MSCs in vitro. METHODS MSCs were isolated from the AF and BM of pan-EGFP mice, grown in MSC-specific culture medium, and purified by sequential passages according to their adherence properties. Pluripotency was confirmed by induced differentiation. After incubation of MSCs with HB-EGF, proliferation was quantified using the CyQuant cell proliferation assay kit under normoxic and anoxic conditions. Chemotaxis was quantified using the CHEMICON QCM cell migration kit, and apoptosis was determined using caspase-3 immunohistochemistry after exposure of the MSCs to anoxic stress. RESULTS AF-MSCs and BM-MSCs showed significantly increased proliferation and migration in response to HB-EGF. HB-EGF significantly protected AF-MSCs and BM-MSCs from anoxia-induced apoptosis. The proliferative and anti-apoptotic effects of HB-EGF were even more pronounced in AF-MSCs than in BM-MSCs. CONCLUSIONS These results have demonstrated that HB-EGF acts as a mitogenic and chemotactic agent for MSCs that protects MSCs from injury. These findings could have important implications for future experiments designed to use MSCs to protect the intestines from injury.
Collapse
Affiliation(s)
- Daniel J Watkins
- Department of Pediatric Surgery, Research Institute at Nationwide Children's Hospital, Nationwide Children's Hospital, Center for Perinatal Research, Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
40
|
Yu X, Radulescu A, Chen CL, James IO, Besner GE. Heparin-binding EGF-like growth factor protects pericytes from injury. J Surg Res 2012; 172:165-76. [PMID: 20863525 PMCID: PMC3010346 DOI: 10.1016/j.jss.2010.07.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/24/2010] [Accepted: 07/28/2010] [Indexed: 01/27/2023]
Abstract
BACKGROUND We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) promotes angiogenesis and preserves mesenteric microvascular blood flow in several models of intestinal injury. The current study was designed to evaluate the effect of HB-EGF on pericytes, since these cells function to regulate capillary blood flow and new capillary growth. MATERIALS AND METHODS C3H/10T1/2 mouse mesenchymal cells were differentiated into pericyte-like cells in vitro using transforming growth factor-β1 (TGF-β1). In addition, primary pericyte cultures were established from rat brain. The effect of HB-EGF on pericyte proliferation was assessed. In addition, cells were stressed by exposure to anoxia, and apoptosis determined. In vivo, we examined the effect of HB-EGF on pericytes in a model of intestinal I/R injury based on superior mesenteric artery occlusion (SMAO) in mice. RESULTS Differentiated C3H/10T1/2 cells (pericyte-like cells) demonstrated morphologic characteristics of pericytes, and expressed pericyte specific markers. Addition of HB-EGF led to significant cell proliferation in differentiated pericyte-like cells, even under conditions of anoxic stress. Addition of the EGF receptor inhibitor AG 1478 led to complete inhibition of the proliferative effects of HB-EGF on pericyte-like cells. In addition, HB-EGF protected pericyte-like cells from anoxia-induced apoptosis. In addition, HB-EGF promoted cell proliferation in primary pericyte cultures. In vivo, administration of HB-EGF to mice subjected to intestinal I/R injury led to protection of pericytes from injury. CONCLUSIONS These results suggest that HB-EGF may function as a microcirculatory blood flow regulator, at least in part, via its effects on pericytes.
Collapse
Affiliation(s)
- Xiaoyi Yu
- Department of Pediatric Surgery, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
41
|
Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A. The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:119-31. [PMID: 21658434 DOI: 10.1016/j.bbcan.2011.05.003] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 12/21/2022]
Abstract
Amphiregulin (AREG) is one of the ligands of the epidermal growth factor receptor (EGFR). AREG plays a central role in mammary gland development and branching morphogenesis in organs and is expressed both in physiological and in cancerous tissues. Various studies have highlighted the functional role of AREG in several aspects of tumorigenesis, including self-sufficiency in generating growth signals, limitless replicative potential, tissue invasion and metastasis, angiogenesis, and resistance to apoptosis. The oncogenic activity of AREG has already been described in the most common human epithelial malignancies, such as lung, breast, colorectal, ovary and prostate carcinomas, as well as in some hematological and mesenchymal cancers. Furthermore, AREG is also involved in resistance to several cancer treatments. In this review, we describe the various roles of AREG in oncogenesis and discuss its translational potential, such as the development of anti-AREG treatments, based on AREG activity. In the last decade, independent groups have reported successful but sometimes contradictory results in relation to the potential of AREG to serve as a prognostic and/or predictive marker for oncology, especially with regard to anti-EGFR therapies. Thus, we also discuss the potential usefulness of using AREG as a therapeutic target and validated biomarker for predicting cancer outcomes or treatment efficacy.
Collapse
Affiliation(s)
- Benoit Busser
- INSERM, U823, Institut Albert Bonniot, Grenoble, France, Université Joseph Fourier, Grenoble, France.
| | | | | | | | | |
Collapse
|
42
|
ck2-dependent phosphorylation of progesterone receptors (PR) on Ser81 regulates PR-B isoform-specific target gene expression in breast cancer cells. Mol Cell Biol 2011; 31:2439-52. [PMID: 21518957 DOI: 10.1128/mcb.01246-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Progesterone receptors (PR) are critical mediators of mammary gland development and contribute to breast cancer progression. Progestin-induced rapid activation of cytoplasmic protein kinases leads to selective regulation of growth-promoting genes by phospho-PR species. Herein, we show that phosphorylation of PR Ser81 is ck2 dependent and progestin regulated in intact cells but also occurs in the absence of PR ligands when cells enter the G(1)/S phase of the cell cycle. T47D breast cancer cells stably expressing a PR-B mutant receptor that cannot be phosphorylated at Ser79/81 (S79/81A) formed fewer soft agar colonies. Regulation of selected genes by PR-B, but not PR-A, also required Ser79/81 phosphorylation for basal and/or progestin-regulated (BIRC3, HSD11β2, and HbEGF) expression. Additionally, wild-type (wt) PR-B, but not S79/81A mutant PR, was robustly recruited to a progesterone response element (PRE)-containing transcriptional enhancer region of BIRC3; abundant ck2 also associated with this region in cells expressing wt but not S79/81A PR. We conclude that phospho-Ser81 PR provides a platform for ck2 recruitment and regulation of selected PR-B target genes. Understanding how ligand-independent PRs function in the context of high levels of kinase activities characteristic of breast cancer is critical to understanding the basis of tumor-specific changes in gene expression and will speed the development of highly selective treatments.
Collapse
|
43
|
EGFR/erB-1, HER2/erB-2, CK7, LP34, Ki67 and P53 expression in preneoplastic lesions of bronchial epithelium: an immunohistochemical and genetic study. Virchows Arch 2011; 458:571-81. [DOI: 10.1007/s00428-011-1062-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/20/2011] [Accepted: 02/16/2011] [Indexed: 01/02/2023]
|
44
|
Abstract
BACKGROUND Therapies targeting ERBB2 have shown success in the clinic. However, response is not determined solely by expression of ERBB2. Levels of ERBB3, its preferred heterodimerisation partner and ERBB ligands may also have a role. METHODS We measured NRG1 expression by real-time quantitative RT-PCR and ERBB receptors by western blotting and immunohistochemistry in bladder tumours and cell lines. RESULTS NRG1α and NRG1β showed significant coordinate expression. NRG1β was upregulated in 78% of cell lines. In tumours, there was a greater range of expression with a trend towards increased NRG1α with higher stage and grade. Increased expression of ERBB proteins was detected in 15% (EGFR), 20% (ERBB2), 41% (ERBB3) and 0% (ERBB4) of cell lines. High EGFR expression was detected in 28% of tumours, associated with grade and stage (P=0.05; P=0.04). Moderate or high expression of ERBB2 was detected in 22% and was associated with stage (P=0.025). Cytoplasmic ERBB3 was associated with high tumour grade (P=0.01) and with ERBB2 positivity. In cell lines, NRG1β expression was significantly inversely related to ERBB3, but this was not confirmed in tumours. CONCLUSION There is a wide spectrum of NRG1 and ERBB receptor expression in bladder cancer. In advanced tumours, EGFR, ERBB2 and ERBB3 upregulation is common and there is a relationship between expression of ERBB2 and ERBB3 but not the NRG1 ligand.
Collapse
|
45
|
Astrocytic transactivation by α2A-adrenergic and 5-HT2B serotonergic signaling. Neurochem Int 2010; 57:421-31. [DOI: 10.1016/j.neuint.2010.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/24/2010] [Accepted: 04/28/2010] [Indexed: 12/11/2022]
|
46
|
Scharl M, Rudenko I, McCole DF. Loss of protein tyrosine phosphatase N2 potentiates epidermal growth factor suppression of intestinal epithelial chloride secretion. Am J Physiol Gastrointest Liver Physiol 2010; 299:G935-45. [PMID: 20689057 PMCID: PMC2957338 DOI: 10.1152/ajpgi.00106.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Crohn's disease candidate gene, protein tyrosine phosphatase nonreceptor type 2 (PTPN2), has been shown to regulate epidermal growth factor (EGF)-induced phosphatidylinositol 3-kinase (PI3K) activation in fibroblasts. In intestinal epithelial cells (IECs), EGF-induced EGF receptor (EGFR) activation and recruitment of PI3K play a key role in regulating many cellular functions including Ca(2+)-dependent Cl(-) secretion. Moreover, EGFR also serves as a conduit for signaling by other non-growth factor receptor ligands such as the proinflammatory cytokine, IFN-γ. Here we investigated a possible role for PTPN2 in the regulation of EGFR signaling and Ca(2+)-dependent Cl(-) secretion in IECs. PTPN2 knockdown enhanced EGF-induced EGFR tyrosine phosphorylation in T(84) cells. In particular, PTPN2 knockdown promoted EGF-induced phosphorylation of EGFR residues Tyr-992 and Tyr-1068 and led subsequently to increased association of the catalytic PI3K subunit, p110, with EGFR and elevated phosphorylation of the downstream marker, Akt. As a functional consequence, loss of PTPN2 potentiated EGF-induced inhibition of carbachol-stimulated Ca(2+)-dependent Cl(-) secretion. In contrast, PTPN2 knockdown affected neither IFN-γ-induced EGFR transactivation nor EGF- or IFN-γ-induced phosphorylation of ERK1/2. In summary, our data establish a role for PTPN2 in the regulation of EGFR signaling in IECs in response to EGF but not IFN-γ. Knockdown of PTPN2 directs EGFR signaling toward increased PI3K activation and increased suppression of epithelial chloride secretory responses. Moreover, our findings suggest that PTPN2 dysfunction in IECs leads to altered control of intestinal epithelial functions regulated by EGFR.
Collapse
Affiliation(s)
- Michael Scharl
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Ivan Rudenko
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| | - Declan F. McCole
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California
| |
Collapse
|
47
|
Kiguchi K, Kitamura T, Moore T, Rumi M, Chang HC, Treece D, Ruffino L, Connolly K, DiGiovanni J. Dual inhibition of both the epidermal growth factor receptor and erbB2 effectively inhibits the promotion of skin tumors during two-stage carcinogenesis. Cancer Prev Res (Phila) 2010; 3:940-52. [PMID: 20682802 PMCID: PMC2940063 DOI: 10.1158/1940-6207.capr-10-0010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The erbB family of receptor tyrosine kinases are known to play important roles in normal epithelial development and epithelial neoplasia. Considerable evidence also suggests that signaling through the epidermal growth factor receptor (EGFR) plays an important role in multistage skin carcinogenesis in mice; however, less is known about the role of erbB2. In this study, to further examine the role of both erbB2 and EGFR in epithelial carcinogenesis, we examined the effect of a dual erbB2/EGFR tyrosine kinase inhibitor, GW2974, given in the diet on skin tumor promotion during two-stage carcinogenesis in wild-type and BK5.erbB2 mice. In BK5.erbB2 mice, erbB2 is overexpressed in the basal layer of epidermis and leads to heightened sensitivity to skin tumor development. GW2974 effectively inhibited skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in wild-type and BK5.erbB2 mice, although a more marked effect was seen in BK5.erbB2 mice. In addition, this inhibitory effect was reversible when GW2974 treatment was withdrawn. GW2974 inhibited 12-O-tetradecanoylphorbol-13-acetate-induced epidermal hyperproliferation, which correlated with reduced activation of both the EGFR and erbB2. These results support the hypothesis that both the EGFR and erbB2 play an important role in the development of skin tumors during two-stage skin carcinogenesis, especially during the tumor promotion stage. Furthermore, the marked sensitivity of BK5.erbB2 mice to the inhibitory effects of GW2974 during tumor promotion suggest greater efficacy for this compound when erbB2 is overexpressed or amplified as an early event in the carcinogenic process.
Collapse
MESH Headings
- Algorithms
- Animals
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Disease Progression
- Drug Evaluation, Preclinical
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Mice
- Mice, Transgenic
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/pathology
- Protein Kinase Inhibitors/therapeutic use
- Quinazolines/therapeutic use
- Receptor, ErbB-2/antagonists & inhibitors
- Receptor, ErbB-2/genetics
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Treatment Outcome
Collapse
Affiliation(s)
- Kaoru Kiguchi
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | - Takuya Kitamura
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | - Tricia Moore
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | - Mohammad Rumi
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | - Hsiang-Chun Chang
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | - Devon Treece
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | - Lynnsie Ruffino
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | - Kevin Connolly
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
| | - John DiGiovanni
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas, USA
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin
| |
Collapse
|
48
|
Eto K, Hommyo A, Yonemitsu R, Abe SI. ErbB4 signals Neuregulin1-stimulated cell proliferation and c-fos gene expression through phosphorylation of serum response factor by mitogen-activated protein kinase cascade. Mol Cell Biochem 2010; 339:119-25. [DOI: 10.1007/s11010-009-0375-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 12/21/2009] [Indexed: 11/24/2022]
|
49
|
Zhang Y, Opresko L, Shankaran H, Chrisler WB, Wiley HS, Resat H. HER/ErbB receptor interactions and signaling patterns in human mammary epithelial cells. BMC Cell Biol 2009; 10:78. [PMID: 19878579 PMCID: PMC2776588 DOI: 10.1186/1471-2121-10-78] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/31/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Knowledge about signaling pathways is typically compiled based on data gathered using different cell lines. This approach implicitly assumes that the cell line dependence is not important. However, different cell lines do not always respond to a particular stimulus in the same way, and lack of coherent data collected from closely related cellular systems can be detrimental to the efforts to understand the regulation of biological processes. To address this issue, we created a clone library of human mammary epithelial (HME) cells that expresses different levels of HER2 and HER3 receptors in combination with endogenous EGFR/HER1. Using our clone library, we have quantified the receptor activation patterns and systematically tested the validity of the existing hypotheses about the interaction patterns between HER1-3 receptors. RESULTS Our study identified HER2 as the dominant dimerization partner for both EGFR and HER3. Contrary to earlier suggestions, we find that lateral interactions with HER2 do not lead to strong transactivation between EGFR and HER3, i.e., EGFR activation and HER3 activation are only weakly linked in HME cells. We also find that observed weak transactivation is uni-directional where stimulation of EGFR leads to HER3 activation whereas HER3 stimulation does not activate the EGFR. Repeating our experiments at lower cell confluency established that cell confluency is not a major factor in the observed interaction patterns. We have also quantified the dependence of the kinetics of Erk and Akt activation on different HER receptors. We found that HER3 signaling makes the strongest contribution to Akt activation and that, stimulation of either EGFR or HER3 leads to significant Erk activation. CONCLUSION Our study shows that clone cell libraries can be a powerful resource in systems biology research by making it possible to differentiate between various hypotheses in a consistent cellular background. Using our constructed clone library we profiled the cell signaling patterns to establish the role of HER2 in the crosstalk between EGFR and HER3 receptors in HME cells. Our results for HME cells show that the weak linkage between EGFR and HER3 pathways can lead to distinct downstream cellular signaling patterns in response to the ligands of these two receptors.
Collapse
Affiliation(s)
- Yi Zhang
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Montañez-Wiscovich ME, Seachrist DD, Landis MD, Visvader J, Andersen B, Keri RA. LMO4 is an essential mediator of ErbB2/HER2/Neu-induced breast cancer cell cycle progression. Oncogene 2009; 28:3608-18. [PMID: 19648968 PMCID: PMC2762490 DOI: 10.1038/onc.2009.221] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/30/2009] [Accepted: 06/19/2009] [Indexed: 01/02/2023]
Abstract
ErbB2/HER2/Neu-overexpressing breast cancers are characterized by poor survival due to high proliferation and metastasis rates and identifying downstream targets of ErbB2 should facilitate developing novel therapies for this disease. Gene expression profiling revealed the transcriptional regulator LIM-only protein 4 (LMO4) is upregulated during ErbB2-induced mouse mammary gland tumorigenesis. Although LMO4 is frequently overexpressed in breast cancer and LMO4-overexpressing mice develop mammary epithelial tumors, the mechanisms involved are unknown. In this study, we report that LMO4 is a downstream target of ErbB2 and PI3K in ErbB2-dependent breast cancer cells. Furthermore, LMO4 silencing reduces proliferation of these cells, inducing a G2/M arrest that was associated with decreased cullin-3, an E3-ubiquitin ligase component important for mitosis. Loss of LMO4 subsequently results in reduced Cyclin D1 and Cyclin E. Further supporting a role for LMO4 in modulating proliferation by regulating cullin-3 expression, we found that LMO4 expression oscillates throughout the cell cycle with maximum expression occurring during G2/M and these changes precede oscillations in cullin-3 levels. LMO4 levels are also highest in high-grade/less differentiated breast cancers, which are characteristically highly proliferative. We conclude that LMO4 is a novel cell cycle regulator with a key role in mediating ErbB2-induced proliferation, a hallmark of ErbB2-positive disease.
Collapse
Affiliation(s)
- M E Montañez-Wiscovich
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | | | | | | | | | | |
Collapse
|