1
|
Kahlman EJEM, van Heugten MH, Tholen LE, Verploegen MFA, Spruijt CG, Jansen PWTC, Vermeulen M, Hoenderop JGJ, Hoorn EJ, Nijenhuis T, de Baaij JHF. Proteomic analysis of urinary extracellular vesicles from patients with ADTKD-HNF1β identifies roles for cilia-related proteins and serpins. Am J Physiol Renal Physiol 2025; 328:F530-F541. [PMID: 40013955 DOI: 10.1152/ajprenal.00167.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 02/24/2025] [Indexed: 02/28/2025] Open
Abstract
Autosomal dominant tubulointerstitial kidney disease-subtype hepatocyte nuclear factor 1β (ADTKD-HNF1β) is caused by pathogenic variants in or deletions of the gene encoding transcription factor HNF1β. Patients with the same mutation have variable renal and extrarenal phenotypes, including renal cysts, diabetes, and electrolyte disturbances. The aim of this exploratory study was to provide insight whether pathophysiological effects in the kidney of patients with ADTKD-HNF1β are visible by analyzing their urinary extracellular vesicle (uEV) proteome. We isolated uEVs collected from patients with ADTKD-HNF1β and included patients with autosomal dominant polycystic kidney disease (ADPKD) and patients with chronic kidney disease (CKD) as controls. Subsequent LC-MS/MS proteomics and differential and pathway enrichment analyses were performed. Transcriptional targets of HNF1β were selected with ChIP sequencing to study changes in protein abundance due to loss of HNF1β, and correlation analyses with clinical features were performed. We found differential enrichment of five proteins, enrichment of pathways involved in cilia and cell-cell adhesion, and depletion of several Serpins in patients with ADTKD-HNF1β and ADPKD, compared with patients with CKD. We identified differential enrichment of nine HNF1β transcriptional targets between patients with ADTKD-HNF1β and patients with CKD, and we demonstrated that Serpin abundance negatively correlated with epidermal growth factor receptor (eGFR) in patients with ADTKD-HNF1β (R = -0.52). The uEV proteome of patients with ADTKD-HNF1β shows an enrichment in proteins involved in renal cysts development, with resemblance to ADPKD. These changes provide new insight into the pathophysiology of ADTKD-HNF1β. Their onset and association with cyst development and kidney function decline warrants further study.NEW & NOTEWORTHY Urinary extracellular vesicles (uEVs) present a new method to study ADTKD-HNF1β pathophysiology in the kidney as an alternative for kidney biopsies. Enrichment of pathways involved cytoskeletal organization and cilia in the uEV proteome of patients with ADTDK-HNF1β compared with CKD, which may indicate the presence of renal cysts. In this, we show that ADTKD-HNF1β more closely resembles ADPKD. Altogether, the uEV proteome captures the biological changes that are caused by pathogenic variants in HNF1β.
Collapse
Affiliation(s)
- Eveline J E M Kahlman
- Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Martijn H van Heugten
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Lotte E Tholen
- Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Cornelia G Spruijt
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Bahari F, Dzhala V, Balena T, Lillis KP, Staley KJ. Intraventricular haemorrhage in premature infants: the role of immature neuronal salt and water transport. Brain 2024; 147:3216-3233. [PMID: 38815055 PMCID: PMC11370806 DOI: 10.1093/brain/awae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024] Open
Abstract
Intraventricular haemorrhage is a common complication of premature birth. Survivors are often left with cerebral palsy, intellectual disability and/or hydrocephalus. Animal models suggest that brain tissue shrinkage, with subsequent vascular stretch and tear, is an important step in the pathophysiology, but the cause of this shrinkage is unknown. Clinical risk factors for intraventricular haemorrhage are biomarkers of hypoxic-ischaemic stress, which causes mature neurons to swell. However, immature neuronal volume might shift in the opposite direction in these conditions. This is because immature neurons express the chloride, salt and water transporter NKCC1, which subserves regulatory volume increases in non-neural cells, whereas mature neurons express KCC2, which subserves regulatory volume decreases. When hypoxic-ischaemic conditions reduce active ion transport and increase the cytoplasmic membrane permeability, the effects of these transporters are diminished. Consequentially, mature neurons swell (cytotoxic oedema), whereas immature neurons might shrink. After hypoxic-ischaemic stress, in vivo and in vitro multi-photon imaging of perinatal transgenic mice demonstrated shrinkage of viable immature neurons, bulk tissue shrinkage and blood vessel displacement. Neuronal shrinkage was correlated with age-dependent membrane salt and water transporter expression using immunohistochemistry. Shrinkage of immature neurons was prevented by prior genetic or pharmacological inhibition of NKCC1 transport. These findings open new avenues of investigation for the detection of acute brain injury by neuroimaging, in addition to prevention of neuronal shrinkage and the ensuing intraventricular haemorrhage, in premature infants.
Collapse
Affiliation(s)
- Fatemeh Bahari
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Volodymyr Dzhala
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Trevor Balena
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Kyle P Lillis
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin J Staley
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Pan J, Wang M, Zhu J, Huang Y, Zhang F, Li E, Qin J, Chen L, Wang X. Quantitative proteomic and metabolomic profiling reveals different osmoregulation mechanisms of tilapia cells coping with different hyperosmotic stress. J Proteomics 2024; 296:105113. [PMID: 38346667 DOI: 10.1016/j.jprot.2024.105113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/13/2024] [Accepted: 02/03/2024] [Indexed: 02/18/2024]
Abstract
This study aimed to investigate the different regulatory mechanisms of euryhaline fish under regular hyperosmotic and extreme hyperosmotic stress. The OmB (Oreochromis mossambicus brain) cells were exposed to three treatments: control, regular hyperosmotic stress and extreme hyperosmotic stress. After 12 h exposure, proteomics, metabolomics analyses and integrative analyses were explored. Both kinds of stress lead to lowering cell growth and morphology changes, while under regular hyperosmotic stress, the up-regulated processes related with compatible organic osmolytes synthesis are crucial strategy for the euryhaline fish cell line to survive; On the other hand, under extreme hyperosmotic stress, the processes related with cell apoptosis and cell cycle arrest are dominant. Furthermore, down-regulated pyrimidine metabolism and several ribosomal proteins partially participated in the lowered cell metabolism and increased cell death under both kinds of hyperosmotic stress. The PI3K-Akt and p53 signaling pathways were involved in the stagnant stage of cell cycles and induction of cell apoptosis under both kinds of hyperosmotic stress. However, HIF-1, FoxO, JAK-STAT and Hippo signaling pathways mainly contribute to disrupting the cell cycle, metabolism and induction of cell apoptosis under extreme hyperosmotic stress. SIGNIFICANCE: In the past, the research on fish osmoregulation mainly focused on the transcription factors and ion transporters of osmoregulation, the processes between osmotic sensing and signal transduction, and the associations between signaling pathways and regulation processes have been poorly understood. Investigating fish cell osmoregulation and potential signal transduction pathways is necessary. With the advancements in omics research, it is now feasible to investigate the relationship between environmental stress and molecular responses. In this study, we aimed to explore the signaling pathways and substance metabolism mode during hyper-osmoregulation in OmB cell line, to reveal the key factors that are critical to cell osmoregulation.
Collapse
Affiliation(s)
- Jingyu Pan
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Minxu Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiahua Zhu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuxing Huang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fan Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Hao S, Zhao H, Hao DH, Ferreri NR. MicroRNA-195a-5p Regulates Blood Pressure by Inhibiting NKCC2A. Hypertension 2023; 80:426-439. [PMID: 36448465 PMCID: PMC9852070 DOI: 10.1161/hypertensionaha.122.19794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Previous studies showed that miR-195a-5p was among the most abundant microRNAs (miRNAs) expressed in the kidney. METHODS Lentivirus silencing of tumor necrosis factor-α (TNF) was performed in vivo and in vitro. Luciferase reporter assays confirmed that bumetanide-sensitive Na+-K+-2Cl- cotransporter isoform A (NKCC2A) mRNA is targeted and repressed by miR-195a-5p. Radiotelemetry was used to measure mean arterial pressure. RESULTS TNF upregulates mmu-miR-195a-5p, and -203 and downregulates mmu-miR-30c and -100 in the medullary thick ascending limb of male mice. miR-195a-5p was >3-fold higher in the renal outer medulla of mice given an intrarenal injection of murine recombinant TNF, whereas silencing TNF inhibited miR-195a-5p expression by ≈51%. Transient transfection of a miR-195a-5p mimic into medullary thick ascending limb cells suppressed NKCC2A mRNA by ≈83%, whereas transfection with Anti-miR-195a-5p increased NKCC2A mRNA. Silencing TNF in medullary thick ascending limb cells prevented increases in miR-195 induced by 400 mosmol/kg H2O medium, an effect reversed by transfection with a miR-195a-5p mimic. Expression of phosphorylated NKCC2 increased 1.5-fold in medullary thick ascending limb cells transfected with Anti-miR-195a-5p and a miR-195a-5p mimic prevented the increase, which was induced by silencing TNF in cells exposed to 400 mosmol/kg H2O medium after osmolality was increased by adding NaCl. Intrarenal injection of TNF suppressed NKCC2A mRNA, whereas injection of miR-195a-5p prevented the increase of NKCC2A mRNA abundance and phosphorylated NKCC2 expression when TNF was silenced. Intrarenal injection with miR-195a-5p markedly attenuated MAP after renal silencing of TNF in mice given 1% NaCl. CONCLUSIONS The study identifies miR-195a-5p as a salt-sensitive and TNF-inducible miRNA that attenuates NaCl-mediated increases in blood pressure by inhibiting NKCC2A.
Collapse
Affiliation(s)
- Shoujin Hao
- Department of Pharmacology, New York Medical College, Valhalla
| | - Hong Zhao
- Department of Pharmacology, New York Medical College, Valhalla
| | - David H Hao
- Department of Pharmacology, New York Medical College, Valhalla
| | | |
Collapse
|
5
|
Liu J, Mao Y, Li Q, Qiu Z, Li J, Li X, Liang W, Xu M, Li A, Cai X, Wu W, Chen H, Yan R, Li J, Gu W, Li H. Efficient Gene Transfer to Kidney Using a Lentiviral Vector Pseudotyped with Zika Virus Envelope Glycoprotein. Hum Gene Ther 2022; 33:1269-1278. [PMID: 35904396 DOI: 10.1089/hum.2022.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gene therapy's entrance into clinical settings has made it an ever more attractive field of study for various diseases. However, relatively little progress has been made in targeting kidney diseases due to poor gene delivery efficiency in renal cells. The development of novel gene therapy vectors for medical intervention to treat kidney diseases is needed. In this study, we designed and produced a pseudotyped lentiviral vector with envelope glycoproteins of Zika virus (ZIKV), and evaluated its potential use in viral vector entry, neutralization assay, and gene delivery especially in the renal context. The lentiviral vector, simplified as ZIKV-E, is pseudotyped with Env/G-TC representing the transmembrane (TM) and cytoplasmic (CY) domains of Env replaced with the TM and CY domains of the glycoprotein (G) of the vesicular stomatitis virus. In vivo results show that ZIKV-E induced efficient transduction in tubular epithelial cells in mouse kidneys, demonstrating >100-fold higher expression of exogenous green fluorescent protein gene compared with that achieved by vesicular stomatitis virus G (VSV-G) protein pseudotyped lentiviral vector. The results also showed that the vector ZIKV-E transduced cells in a pH-independent manner and the transduction was inhibited by anti-ZIKV Env domain III antibodies. Results also show that ZIKV-E can be used as a surrogate for studies of ZIKV entry mechanisms and neutralization antibody assay. In all, this study successfully demonstrated a novel pseudotyped lentiviral vector ZIKV-E for inducing high transduction efficiency in renal tubular epithelial cells that could serve as a foundation for gene therapy for the treatment of inherited renal diseases in humans.
Collapse
Affiliation(s)
- Jun Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Institute of Dermatology and Venereology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yingying Mao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qingqing Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.,Clinical Laboratory, Foshan Women and Children Hospital, Foshan, China
| | - Zhenzhen Qiu
- Guangzhou Bioneeds Biotechnology Co., Ltd, Guangzhou, China
| | - Jingjing Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaoxin Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wenhan Liang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Mingyu Xu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Andrew Li
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiangsheng Cai
- Center for Medical Experiments, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China; and
| | - Wangsheng Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Huangyao Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Renhe Yan
- Guangzhou Bioneeds Biotechnology Co., Ltd, Guangzhou, China
| | - Jinlong Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Weiwang Gu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Tholen LE, Hoenderop JGJ, de Baaij JHF. Mechanisms of ion transport regulation by HNF1β in the kidney: beyond transcriptional regulation of channels and transporters. Pflugers Arch 2022; 474:901-916. [PMID: 35554666 PMCID: PMC9338905 DOI: 10.1007/s00424-022-02697-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/01/2023]
Abstract
Hepatocyte nuclear factor 1β (HNF1β) is a transcription factor essential for the development and function of the kidney. Mutations in and deletions of HNF1β cause autosomal dominant tubule interstitial kidney disease (ADTKD) subtype HNF1β, which is characterized by renal cysts, diabetes, genital tract malformations, and neurodevelopmental disorders. Electrolyte disturbances including hypomagnesemia, hyperuricemia, and hypocalciuria are common in patients with ADTKD-HNF1β. Traditionally, these electrolyte disturbances have been attributed to HNF1β-mediated transcriptional regulation of gene networks involved in ion transport in the distal part of the nephron including FXYD2, CASR, KCNJ16, and FXR. In this review, we propose additional mechanisms that may contribute to the electrolyte disturbances observed in ADTKD-HNF1β patients. Firstly, kidney development is severely affected in Hnf1b-deficient mice. HNF1β is required for nephron segmentation, and the absence of the transcription factor results in rudimentary nephrons lacking mature proximal tubule, loop of Henle, and distal convoluted tubule cluster. In addition, HNF1β is proposed to be important for apical-basolateral polarity and tight junction integrity in the kidney. Interestingly, cilia formation is unaffected by Hnf1b defects in several models, despite the HNF1β-mediated transcriptional regulation of many ciliary genes. To what extent impaired nephron segmentation, apical-basolateral polarity, and cilia function contribute to electrolyte disturbances in HNF1β patients remains elusive. Systematic phenotyping of Hnf1b mouse models and the development of patient-specific kidney organoid models will be essential to advance future HNF1β research.
Collapse
Affiliation(s)
- Lotte E Tholen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P. O. Box 9101, Nijmegen, 6500 HB, The Netherlands.
| |
Collapse
|
7
|
Serranilla M, Woodin MA. Striatal Chloride Dysregulation and Impaired GABAergic Signaling Due to Cation-Chloride Cotransporter Dysfunction in Huntington’s Disease. Front Cell Neurosci 2022; 15:817013. [PMID: 35095429 PMCID: PMC8795088 DOI: 10.3389/fncel.2021.817013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Intracellular chloride (Cl–) levels in mature neurons must be tightly regulated for the maintenance of fast synaptic inhibition. In the mature central nervous system (CNS), synaptic inhibition is primarily mediated by gamma-amino butyric acid (GABA), which binds to Cl– permeable GABAA receptors (GABAARs). The intracellular Cl– concentration is primarily maintained by the antagonistic actions of two cation-chloride cotransporters (CCCs): Cl–-importing Na+-K+-Cl– co-transporter-1 (NKCC1) and Cl– -exporting K+-Cl– co-transporter-2 (KCC2). In mature neurons in the healthy brain, KCC2 expression is higher than NKCC1, leading to lower levels of intracellular Cl–, and Cl– influx upon GABAAR activation. However, in neurons of the immature brain or in neurological disorders such as epilepsy and traumatic brain injury, impaired KCC2 function and/or enhanced NKCC1 expression lead to intracellular Cl– accumulation and GABA-mediated excitation. In Huntington’s disease (HD), KCC2- and NKCC1-mediated Cl–-regulation are also altered, which leads to GABA-mediated excitation and contributes to the development of cognitive and motor impairments. This review summarizes the role of Cl– (dys)regulation in the healthy and HD brain, with a focus on the basal ganglia (BG) circuitry and CCCs as potential therapeutic targets in the treatment of HD.
Collapse
|
8
|
Sakai K, Yamazaki O, Ishizawa K, Tamura Y, Wang Q, Ueno M, Hayama Y, Fujigaki Y, Shibata S. Upregulation of renal Na-K-2Cl cotransporter 2 in obese diabetes mellitus via a vasopressin receptor 2-dependent pathway. Biochem Biophys Res Commun 2020; 524:710-715. [PMID: 32035616 DOI: 10.1016/j.bbrc.2020.01.142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/26/2020] [Indexed: 11/30/2022]
Abstract
Na-K-2Cl cotransporter 2 (NKCC2) in thick ascending limb (TAL) in the kidney plays a central role in tubuloglomerular feedback (TGF) system by sensing NaCl delivery to the distal tubules. Although accumulating data indicate that dysregulated TGF contributes to the progression of diabetic complications, the regulation of NKCC2 in diabetes mellitus (DM) remains unclear. We here show that NKCC2 is overactivated via a vasopressin receptor 2 (V2R)-dependent mechanism in db/db mice, a mouse model of obese DM. Compared with db/+ mice, we found that both aquaporin 2 and NKCC2 levels were significantly increased in the kidney in db/db mice. Immunohistochemical analysis of V2R and NKCC2 in the kidney demonstrated that V2R is present in the TAL, as well as in the collecting duct. Moreover, the administration of tolvaptan, a selective V2R antagonist, sharply decreased aquaporin 2 and NKCC2 in db/db mice, confirming the causal role of V2R signaling in NKCC2 induction in this model. Although tolvaptan reduced aquaporin 2 abundance also in db/+ mice, its effect on NKCC2 was modest compared with db/db mice. In total kidney lysates, uromodulin expression was not altered between db/+ and db/db mice, suggesting that V2R signaling alters NKCC2 without altering uromodulin levels. These data implicate the dysregulation of NKCC2 in the pathophysiology of type 2 DM, and underscore the complex nature of fluid volume disorders in diabetic kidney disease.
Collapse
Affiliation(s)
- Kazuhiro Sakai
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Osamu Yamazaki
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Kenichi Ishizawa
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Yoshifuru Tamura
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Qin Wang
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, 173-8605, Japan; Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Masaki Ueno
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Yuto Hayama
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Yoshihide Fujigaki
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, 173-8605, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, 173-8605, Japan.
| |
Collapse
|
9
|
Luo R, Hu S, Liu Q, Han M, Wang F, Qiu M, Li S, Li X, Yang T, Fu X, Wang W, Li C. Hydrogen sulfide upregulates renal AQP-2 protein expression and promotes urine concentration. FASEB J 2018; 33:469-483. [PMID: 30036087 DOI: 10.1096/fj.201800436r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Increasing evidence supports the important role of H2S in renal physiology and the pathogenesis of kidney injury. Whether H2S regulates water metabolism in the kidney and the potential mechanism are still unknown. The present study was conducted to determine the role of H2S in urine concentration. Inhibition of both cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS), 2 major enzymes for endogenous H2S production, with propargylglycine (PPG) and amino-oxyacetate (AOAA), respectively, caused increased urine output and reduced urine osmolality in mice that was associated with decreased expression of aquaporin (AQP)-2 in the renal inner medulla. Mice treated with both PPG and AOAA developed a urine concentration defect in response to dehydration that was accompanied by reduced AQP-2 protein expression. Inhibition of CSE alone was associated with a mild decrease in AQP-2 protein level in the renal medulla of heterozygous CBS mice. GYY4137, a slow H2S donor, markedly improved urine concentration and prevented the down-regulation of renal AQP-2 protein expression in mice with lithium-induced nephrogenic diabetes insipidus (NDI). GYY4137 significantly increased cAMP levels in cell lysates prepared from inner medullary collecting duct (IMCD) suspensions. AQP-2 protein expression was also upregulated, but was significantly inhibited by the adenyl cyclase inhibitor MDL12330A or the PKA inhibitor H89, but not the vasopressin 2 receptor (V2R) antagonist tolvaptan. Inhibition of endogenous H2S production impaired urine concentration in mice, whereas an exogenous H2S donor improved urine concentration in lithium-induced NDI by increasing AQP-2 expression in the collecting duct principal cells. H2S upregulated AQP-2 protein expression, probably via the cAMP-PKA pathway.-Luo, R., Hu, S., Liu, Q., Han, M., Wang, F., Qiu, M., Li, S., Li, X., Yang, T., Fu, X., Wang, W., Li, C. Hydrogen sulfide upregulates renal AQP-2 protein expression and promotes urine concentration.
Collapse
Affiliation(s)
- Renfei Luo
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shan Hu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiaojuan Liu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengke Han
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Feifei Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Miaojuan Qiu
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Suchun Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaosa Li
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; and
| | - Tianxin Yang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Department of Medicine, Veterans Affairs Medical Center, University of Utah, Salt Lake City, Utah, USA
| | - Xiaodong Fu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; and
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Delpire E, Gagnon KB. Na + -K + -2Cl - Cotransporter (NKCC) Physiological Function in Nonpolarized Cells and Transporting Epithelia. Compr Physiol 2018; 8:871-901. [PMID: 29687903 DOI: 10.1002/cphy.c170018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two genes encode the Na+ -K+ -2Cl- cotransporters, NKCC1 and NKCC2, that mediate the tightly coupled movement of 1Na+ , 1K+ , and 2Cl- across the plasma membrane of cells. Na+ -K+ -2Cl- cotransport is driven by the chemical gradient of the three ionic species across the membrane, two of them maintained by the action of the Na+ /K+ pump. In many cells, NKCC1 accumulates Cl- above its electrochemical potential equilibrium, thereby facilitating Cl- channel-mediated membrane depolarization. In smooth muscle cells, this depolarization facilitates the opening of voltage-sensitive Ca2+ channels, leading to Ca2+ influx, and cell contraction. In immature neurons, the depolarization due to a GABA-mediated Cl- conductance produces an excitatory rather than inhibitory response. In many cell types that have lost water, NKCC is activated to help the cells recover their volume. This is specially the case if the cells have also lost Cl- . In combination with the Na+ /K+ pump, the NKCC's move ions across various specialized epithelia. NKCC1 is involved in Cl- -driven fluid secretion in many exocrine glands, such as sweat, lacrimal, salivary, stomach, pancreas, and intestine. NKCC1 is also involved in K+ -driven fluid secretion in inner ear, and possibly in Na+ -driven fluid secretion in choroid plexus. In the thick ascending limb of Henle, NKCC2 activity in combination with the Na+ /K+ pump participates in reabsorbing 30% of the glomerular-filtered Na+ . Overall, many critical physiological functions are maintained by the activity of the two Na+ -K+ -2Cl- cotransporters. In this overview article, we focus on the functional roles of the cotransporters in nonpolarized cells and in epithelia. © 2018 American Physiological Society. Compr Physiol 8:871-901, 2018.
Collapse
Affiliation(s)
- Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee, USA
| | - Kenneth B Gagnon
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Keystone, USA
| |
Collapse
|
11
|
Asico LD, Cuevas S, Ma X, Jose PA, Armando I, Konkalmatt PR. Nephron segment-specific gene expression using AAV vectors. Biochem Biophys Res Commun 2018; 497:19-24. [PMID: 29407172 PMCID: PMC5893140 DOI: 10.1016/j.bbrc.2018.01.169] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/27/2018] [Indexed: 11/02/2022]
Abstract
AAV9 vector provides efficient gene transfer in all segments of the renal nephron, with minimum expression in non-renal cells, when administered retrogradely via the ureter. It is important to restrict the transgene expression to the desired cell type within the kidney, so that the physiological endpoints represent the function of the transgene expressed in that specific cell type within kidney. We hypothesized that segment-specific gene expression within the kidney can be accomplished using the highly efficient AAV9 vectors carrying the promoters of genes that are expressed exclusively in the desired segment of the nephron in combination with administration by retrograde infusion into the kidney via the ureter. We constructed AAV vectors carrying eGFP under the control of: kidney-specific cadherin (KSPC) gene promoter for expression in the entire nephron; Na+/glucose co-transporter (SGLT2) gene promoter for expression in the S1 and S2 segments of the proximal tubule; sodium, potassium, 2 chloride co-transporter (NKCC2) gene promoter for expression in the thick ascending limb of Henle's loop (TALH); E-cadherin (ECAD) gene promoter for expression in the collecting duct (CD); and cytomegalovirus (CMV) early promoter that provides expression in most of the mammalian cells, as control. We tested the specificity of the promoter constructs in vitro for cell type-specific expression in mouse kidney cells in primary culture, followed by retrograde infusion of the AAV vectors via the ureter in the mouse. Our data show that AAV9 vector, in combination with the segment-specific promoters administered by retrograde infusion via the ureter, provides renal nephron segment-specific gene expression.
Collapse
Affiliation(s)
- Laureano D Asico
- Department of Medicine, The George Washington University, Washington, DC, USA
| | - Santiago Cuevas
- Department of Medicine, The George Washington University, Washington, DC, USA
| | - Xiaobo Ma
- Department of Medicine, The George Washington University, Washington, DC, USA
| | - Pedro A Jose
- Department of Medicine, The George Washington University, Washington, DC, USA; Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
| | - Ines Armando
- Department of Medicine, The George Washington University, Washington, DC, USA
| | - Prasad R Konkalmatt
- Department of Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
12
|
Teng F, Guo M, Liu F, Wang C, Dong J, Zhang L, Zou Y, Chen R, Sun K, Fu H, Fu Z, Guo W, Ding G. Treatment with an SLC12A1 antagonist inhibits tumorigenesis in a subset of hepatocellular carcinomas. Oncotarget 2018; 7:53571-53582. [PMID: 27447551 PMCID: PMC5288206 DOI: 10.18632/oncotarget.10670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 07/06/2016] [Indexed: 01/23/2023] Open
Abstract
A central aim in cancer research is to identify genes with altered expression patterns in tumor specimens and their potential role in tumorigenesis. Most types of tumors, including hepatocellular carcinoma (HCC), are heterogeneous in terms of genotype and phenotype. Thus, traditional analytical methods like the t-test fail to identify all oncogenes from expression profiles. In this study, we performed a meta-Cancer Outlier Profile Analysis (meta-COPA) across six microarray datasets for HCC from the GEO database. We found that gene SLC12A1 was overexpressed in the Hep3B cell line, compared with five other HCC cell lines and L02 cells. We also found that the upregulation of SLC12A1 was mediated by histone methylation within its promoter region, and that SLC12A1 is a positive regulator of the WNK1/ERK5 pathway. Consistent with in vitro results, treatment with the SLC12A1 antagonist Bumetanide delayed tumor formation and reduced Hep3B cell tumor size in mouse xenografts. In summary, our research reveals a novel subset of HCCs that are sensitive to SLC12A1 antagonist treatment, thereby offering a new strategy for precision HCC treatment.
Collapse
Affiliation(s)
- Fei Teng
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Meng Guo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Fang Liu
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Ce Wang
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiayong Dong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Lei Zhang
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - You Zou
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Rui Chen
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Keyan Sun
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Hong Fu
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhiren Fu
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Wenyuan Guo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guoshan Ding
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
13
|
Bachmann S, Mutig K. Regulation of renal Na-(K)-Cl cotransporters by vasopressin. Pflugers Arch 2017; 469:889-897. [DOI: 10.1007/s00424-017-2002-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|
14
|
Aboudehen K, Noureddine L, Cobo-Stark P, Avdulov S, Farahani S, Gearhart MD, Bichet DG, Pontoglio M, Patel V, Igarashi P. Hepatocyte Nuclear Factor-1 β Regulates Urinary Concentration and Response to Hypertonicity. J Am Soc Nephrol 2017; 28:2887-2900. [PMID: 28507058 DOI: 10.1681/asn.2016101095] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/16/2017] [Indexed: 12/18/2022] Open
Abstract
The transcription factor hepatocyte nuclear factor-1β (HNF-1β) is essential for normal kidney development and function. Inactivation of HNF-1β in mouse kidney tubules leads to early-onset cyst formation and postnatal lethality. Here, we used Pkhd1/Cre mice to delete HNF-1β specifically in renal collecting ducts (CDs). CD-specific HNF-1β mutant mice survived long term and developed slowly progressive cystic kidney disease, renal fibrosis, and hydronephrosis. Compared with wild-type littermates, HNF-1β mutant mice exhibited polyuria and polydipsia. Before the development of significant renal structural abnormalities, mutant mice exhibited low urine osmolality at baseline and after water restriction and administration of desmopressin. However, mutant and wild-type mice had similar plasma vasopressin and solute excretion levels. HNF-1β mutant kidneys showed increased expression of aquaporin-2 mRNA but mislocalized expression of aquaporin-2 protein in the cytoplasm of CD cells. Mutant kidneys also had decreased expression of the UT-A urea transporter and collectrin, which is involved in apical membrane vesicle trafficking. Treatment of HNF-1β mutant mIMCD3 cells with hypertonic NaCl inhibited the induction of osmoregulated genes, including Nr1h4, which encodes the transcription factor FXR that is required for maximal urinary concentration. Chromatin immunoprecipitation and sequencing experiments revealed HNF-1β binding to the Nr1h4 promoter in wild-type kidneys, and immunoblot analysis revealed downregulated expression of FXR in HNF-1β mutant kidneys. These findings reveal a novel role of HNF-1β in osmoregulation and identify multiple mechanisms, whereby mutations of HNF-1β produce defects in urinary concentration.
Collapse
Affiliation(s)
- Karam Aboudehen
- Departments of Medicine and.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lama Noureddine
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Patricia Cobo-Stark
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | - Micah D Gearhart
- Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Daniel G Bichet
- Departments of Medicine and.,Molecular and Integrative Physiology, Université de Montréal, Montreal, Quebec, Canada; and
| | - Marco Pontoglio
- Department of Development, Reproduction and Cancer, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016/Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Université Paris-Descartes, Paris, France
| | - Vishal Patel
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peter Igarashi
- Departments of Medicine and .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
15
|
Watanabe S, Ogasawara T, Tamura Y, Saito T, Ikeda T, Suzuki N, Shimosawa T, Shibata S, Chung UI, Nangaku M, Uchida S. Targeting gene expression to specific cells of kidney tubules in vivo, using adenoviral promoter fragments. PLoS One 2017; 12:e0168638. [PMID: 28253301 PMCID: PMC5333796 DOI: 10.1371/journal.pone.0168638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/05/2016] [Indexed: 01/11/2023] Open
Abstract
Although techniques for cell-specific gene expression via viral transfer have advanced, many challenges (e.g., viral vector design, transduction of genes into specific target cells) still remain. We investigated a novel, simple methodology for using adenovirus transfer to target specific cells of the kidney tubules for the expression of exogenous proteins. We selected genes encoding sodium-dependent phosphate transporter type 2a (NPT2a) in the proximal tubule, sodium-potassium-2-chloride cotransporter (NKCC2) in the thick ascending limb of Henle (TALH), and aquaporin 2 (AQP2) in the collecting duct. The promoters of the three genes were linked to a GFP-coding fragment, the final constructs were then incorporated into an adenovirus vector, and this was then used to generate gene-manipulated viruses. After flushing circulating blood, viruses were directly injected into the renal arteries of rats and were allowed to site-specifically expression in tubule cells, and rats were then euthanized to obtain kidney tissues for immunohistochemistry. Double staining with adenovirus-derived EGFP and endogenous proteins were examined to verify orthotopic expression, i.e. "adenovirus driven NPT2a-EGFP and endogenous NHE3 protein", "adenovirus driven NKCC2-EGFP and endogenous NKCC2 protein" and "adenovirus driven AQP2-EGFP and endogenous AQP2 protein". Owing to a lack of finding good working anti-NPT2a antibody, an antibody against a different protein (sodium-hydrogen exchanger 3 or NHE3) that is also specifically expressed in the proximal tubule was used. Kidney structures were well-preserved, and other organ tissues did not show EGFP staining. Our gene transfer method is easier than using genetically engineered animals, and it confers the advantage of allowing the manipulation of gene transfer after birth. This is the first method to successfully target gene expression to specific cells in the kidney tubules. This study may serve as the first step for safe and effective gene therapy in the kidney tubule diseases.
Collapse
Affiliation(s)
- Sumiyo Watanabe
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan
- Division of Nephrology and Endocrinology, The University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan
- * E-mail:
| | - Toru Ogasawara
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, The University of Tokyo, Hongo, Bunkyo-Ku, Tokyo, Japan
| | - Yoshifuru Tamura
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan
| | - Taku Saito
- Department of Orthopaedic Surgery, Faculty of Medicine, The University of Tokyo, Japan
| | - Toshiyuki Ikeda
- Department of Blood Transfusion, Faculty of Medicine, The University of Tokyo, Japan
| | - Nobuchika Suzuki
- Department of Bioregulation, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Tatsuo Shimosawa
- Division of Nephrology and Endocrinology, The University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shigeru Shibata
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan
| | - Ung-il Chung
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Hongo Bunkyo-ku, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shunya Uchida
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
16
|
Stankewich MC, Moeckel GW, Ji L, Ardito T, Morrow JS. Isoforms of Spectrin and Ankyrin Reflect the Functional Topography of the Mouse Kidney. PLoS One 2016; 11:e0142687. [PMID: 26727517 PMCID: PMC4703142 DOI: 10.1371/journal.pone.0142687] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/26/2015] [Indexed: 11/24/2022] Open
Abstract
The kidney displays specialized regions devoted to filtration, selective reabsorption, and electrolyte and metabolite trafficking. The polarized membrane pumps, channels, and transporters responsible for these functions have been exhaustively studied. Less examined are the contributions of spectrin and its adapter ankyrin to this exquisite functional topography, despite their established contributions in other tissues to cellular organization. We have examined in the rodent kidney the expression and distribution of all spectrins and ankyrins by qPCR, Western blotting, immunofluorescent and immuno electron microscopy. Four of the seven spectrins (αΙΙ, βΙ, βΙΙ, and βΙΙΙ) are expressed in the kidney, as are two of the three ankyrins (G and B). The levels and distribution of these proteins vary widely over the nephron. αΙΙ/βΙΙ is the most abundant spectrin, found in glomerular endothelial cells; on the basolateral membrane and cytoplasmic vesicles in proximal tubule cells and in the thick ascending loop of Henle; and less so in the distal nephron. βΙΙΙ spectrin largely replaces βΙΙ spectrin in podocytes, Bowman’s capsule, and throughout the distal tubule and collecting ducts. βΙ spectrin is only marginally expressed; its low abundance hinders a reliable determination of its distribution. Ankyrin G is the most abundant ankyrin, found in capillary endothelial cells and all tubular segments. Ankyrin B populates Bowman’s capsule, podocytes, the ascending thick loop of Henle, and the distal convoluted tubule. Comparison to the distribution of renal protein 4.1 isoforms and various membrane proteins indicates a complex relationship between the spectrin scaffold, its adapters, and various membrane proteins. While some proteins (e.g. ankyrin B, βΙΙΙ spectrin, and aquaporin 2) tend to share a similar distribution, there is no simple mapping of different spectrins or ankyrins to most membrane proteins. The implications of this data are discussed.
Collapse
Affiliation(s)
- Michael C. Stankewich
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States of America
- * E-mail:
| | - Gilbert W. Moeckel
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States of America
| | - Lan Ji
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States of America
| | - Thomas Ardito
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States of America
| | - Jon S. Morrow
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States of America
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
| |
Collapse
|
17
|
Hajarnis SS, Patel V, Aboudehen K, Attanasio M, Cobo-Stark P, Pontoglio M, Igarashi P. Transcription Factor Hepatocyte Nuclear Factor-1β (HNF-1β) Regulates MicroRNA-200 Expression through a Long Noncoding RNA. J Biol Chem 2015; 290:24793-805. [PMID: 26292219 DOI: 10.1074/jbc.m115.670646] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Indexed: 12/31/2022] Open
Abstract
The transcription factor hepatocyte nuclear factor-1β (HNF-1β) regulates tissue-specific gene expression in the kidney and other epithelial organs. Mutations of HNF-1β produce kidney cysts, and previous studies have shown that HNF-1β regulates the transcription of cystic disease genes, including Pkd2 and Pkhd1. Here, we combined chromatin immunoprecipitation and next-generation sequencing (ChIP-Seq) with microarray analysis to identify microRNAs (miRNAs) that are directly regulated by HNF-1β in renal epithelial cells. These studies identified members of the epithelial-specific miR-200 family (miR-200b/200a/429) as novel transcriptional targets of HNF-1β. HNF-1β binds to two evolutionarily conserved sites located 28 kb upstream to miR-200b. Luciferase reporter assays showed that the HNF-1β binding sites were located within a promoter that was active in renal epithelial cells. Mutations of the HNF-1β binding sites abolished promoter activity. RT-PCR analysis revealed that a long noncoding RNA (lncRNA) is transcribed from the promoter and encodes the miR-200 cluster. Inhibition of the lncRNA with siRNAs decreased the levels of miR-200 but did not affect expression of the Ttll10 host gene. The expression of the lncRNA and miR-200 was decreased in kidneys from HNF-1β knock-out mice and renal epithelial cells expressing dominant-negative mutant HNF-1β. The expression of miR-200 targets, Zeb2 and Pkd1, was increased in HNF-1β knock-out kidneys and in cells expressing mutant HNF-1β. Overexpression of miR-200 decreased the expression of Zeb2 and Pkd1 in HNF-1β mutant cells. These studies reveal a novel pathway whereby HNF-1β directly contributes to the control of miRNAs that are involved in epithelial-mesenchymal transition and cystic kidney disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Marco Pontoglio
- Départment de Génétique et Développement, INSERM U1016, CNRS UMR 8104, Université Paris-Descartes. Institut Cochin, 75014 Paris, France
| | - Peter Igarashi
- From the Departments of Internal Medicine and Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390 and
| |
Collapse
|
18
|
Kortenoeven MLA, Pedersen NB, Rosenbaek LL, Fenton RA. Vasopressin regulation of sodium transport in the distal nephron and collecting duct. Am J Physiol Renal Physiol 2015; 309:F280-99. [DOI: 10.1152/ajprenal.00093.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022] Open
Abstract
Arginine vasopressin (AVP) is released from the posterior pituitary gland during states of hyperosmolality or hypovolemia. AVP is a peptide hormone, with antidiuretic and antinatriuretic properties. It allows the kidneys to increase body water retention predominantly by increasing the cell surface expression of aquaporin water channels in the collecting duct alongside increasing the osmotic driving forces for water reabsorption. The antinatriuretic effects of AVP are mediated by the regulation of sodium transport throughout the distal nephron, from the thick ascending limb through to the collecting duct, which in turn partially facilitates osmotic movement of water. In this review, we will discuss the regulatory role of AVP in sodium transport and summarize the effects of AVP on various molecular targets, including the sodium-potassium-chloride cotransporter NKCC2, the thiazide-sensitive sodium-chloride cotransporter NCC, and the epithelial sodium channel ENaC.
Collapse
Affiliation(s)
- M. L. A. Kortenoeven
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark
| | - N. B. Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; and
| | - L. L. Rosenbaek
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R. A. Fenton
- Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Wong MKS, Ozaki H, Suzuki Y, Iwasaki W, Takei Y. Discovery of osmotic sensitive transcription factors in fish intestine via a transcriptomic approach. BMC Genomics 2014; 15:1134. [PMID: 25520040 PMCID: PMC4377849 DOI: 10.1186/1471-2164-15-1134] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/09/2014] [Indexed: 11/10/2022] Open
Abstract
Background Teleost intestine is crucial for seawater acclimation by sensing osmolality of imbibed seawater and regulating drinking and water/ion absorption. Regulatory genes for transforming intestinal function have not been identified. A transcriptomic approach was used to search for such genes in the intestine of euryhaline medaka. Results Quantitative RNA-seq by Illumina Hi-Seq Sequencing method was performed to analyze intestinal gene expression 0 h, 1 h, 3 h, 1 d, and 7 d after seawater transfer. Gene ontology (GO) enrichment results showed that cell adhesion, signal transduction, and protein phosphorylation gene categories were augmented soon after transfer, indicating a rapid reorganization of cellular components and functions. Among >50 transiently up-regulated transcription factors selected via co-expression correlation and GO selection, five transcription factors, including CEBPB and CEBPD, were confirmed by quantitative PCR to be specific to hyperosmotic stress, while others were also up-regulated after freshwater control transfer, including some well-known osmotic-stress transcription factors such as SGK1 and TSC22D3/Ostf1. Protein interaction networks suggest a high degree of overlapping among the signaling of transcription factors that respond to osmotic and general stresses, which sheds light on the interpretation of their roles during hyperosmotic stress and emergency. Conclusions Since cortisol is an important hormone for seawater acclimation as well as for general stress in teleosts, emergency and osmotic challenges could have been evolved in parallel and resulted in the overlapped signaling networks. Our results revealed important interactions among transcription factors and offer a multifactorial perspective of genes involved in seawater acclimation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1134) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Castrop H, Schießl IM. Physiology and pathophysiology of the renal Na-K-2Cl cotransporter (NKCC2). Am J Physiol Renal Physiol 2014; 307:F991-F1002. [PMID: 25186299 DOI: 10.1152/ajprenal.00432.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Na-K-2Cl cotransporter (NKCC2; BSC1) is located in the apical membrane of the epithelial cells of the thick ascending limb of the loop of Henle (TAL). NKCC2 facilitates ∼20–25% of the reuptake of the total filtered NaCl load. NKCC2 is therefore one of the transport proteins with the highest overall reabsorptive capacity in the kidney. Consequently, even subtle changes in NKCC2 transport activity considerably alter the renal reabsorptive capacity for NaCl and eventually lead to perturbations of the salt and water homoeostasis. In addition to facilitating the bulk reabsorption of NaCl in the TAL, NKCC2 transport activity in the macula densa cells of the TAL constitutes the initial step of the tubular-vascular communication within the juxtaglomerular apparatus (JGA); this communications allows the TAL to modulate the preglomerular resistance of the afferent arteriole and the renin secretion from the granular cells of the JGA. This review provides an overview of our current knowledge with respect to the general functions of NKCC2, the modulation of its transport activity by different regulatory mechanisms, and new developments in the pathophysiology of NKCC2-dependent renal NaCl transport.
Collapse
Affiliation(s)
- Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Ina Maria Schießl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Markadieu N, Delpire E. Physiology and pathophysiology of SLC12A1/2 transporters. Pflugers Arch 2014; 466:91-105. [PMID: 24097229 PMCID: PMC3877717 DOI: 10.1007/s00424-013-1370-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 01/14/2023]
Abstract
The electroneutral Na(+)-K(+)-Cl(-) cotransporters NKCC1 (encoded by the SLC12A2 gene) and NKCC2 (SLC12A1 gene) belong to the Na(+)-dependent subgroup of solute carrier 12 (SLC12) family of transporters. They mediate the electroneutral movement of Na(+) and K(+), tightly coupled to the movement of Cl(-) across cell membranes. As they use the energy of the ion gradients generated by the Na(+)/K(+)-ATPase to transport Na(+), K(+), and Cl(-) from the outside to the inside of a cell, they are considered secondary active transport mechanisms. NKCC-mediated transport occurs in a 1Na(+), 1K(+), and 2Cl(-) ratio, although NKCC1 has been shown to sometimes mediate partial reactions. Both transporters are blocked by bumetanide and furosemide, drugs which are commonly used in clinical medicine. NKCC2 is the molecular target of loop diuretics as it is expressed on the apical membrane of thick ascending limb of Henle epithelial cells, where it mediates NaCl reabsorption. NKCC1, in contrast, is found on the basolateral membrane of Cl(-) secretory epithelial cells, as well as in a variety of non-epithelial cells, where it mediates cell volume regulation and participates in Cl(-) homeostasis. Following their molecular identification two decades ago, much has been learned about their biophysical properties, their mode of operation, their regulation by kinases and phosphatases, and their physiological relevance. However, despite this tremendous amount of new information, there are still so many gaps in our knowledge. This review summarizes information that constitutes consensus in the field, but it also discusses current points of controversy and highlights many unanswered questions.
Collapse
Affiliation(s)
- Nicolas Markadieu
- Department of Anesthesiology, Vanderbilt University School of Medicine, MCN T-4202, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | | |
Collapse
|
22
|
Abstract
UT-A and UT-B families of urea transporters consist of multiple isoforms that are subject to regulation of both acutely and by long-term measures. This chapter provides a brief overview of the expression of the urea transporter forms and their locations in the kidney. Rapid regulation of UT-A1 results from the combination of phosphorylation and membrane accumulation. Phosphorylation of UT-A1 has been linked to vasopressin and hyperosmolality, although through different kinases. Other acute influences on urea transporter activity are ubiquitination and glycosylation, both of which influence the membrane association of the urea transporter, again through different mechanisms. Long-term regulation of urea transport is most closely associated with the environment that the kidney experiences. Low-protein diets may influence the amount of urea transporter available. Conditions of osmotic diuresis, where urea concentrations are low, will prompt an increase in urea transporter abundance. Although adrenal steroids affect urea transporter abundance, conflicting reports make conclusions tenuous. Urea transporters are upregulated when P2Y2 purinergic receptors are decreased, suggesting a role for these receptors in UT regulation. Hypercalcemia and hypokalemia both cause urine concentration deficiencies. Urea transporter abundances are reduced in aging animals and animals with angiotensin-converting enzyme deficiencies. This chapter will provide information about both rapid and long-term regulation of urea transporters and provide an introduction into the literature.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, WMB Room 3319B, 1639 Pierce Drive, NE, Atlanta, GA, 30322, USA,
| |
Collapse
|
23
|
Laouari D, Burtin M, Phelep A, Bienaime F, Noel LH, Lee DC, Legendre C, Friedlander G, Pontoglio M, Terzi F. A transcriptional network underlies susceptibility to kidney disease progression. EMBO Mol Med 2012; 4:825-39. [PMID: 22711280 PMCID: PMC3494079 DOI: 10.1002/emmm.201101127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 05/02/2012] [Accepted: 05/07/2012] [Indexed: 01/28/2023] Open
Abstract
The molecular networks that control the progression of chronic kidney diseases (CKD) are poorly defined. We have recently shown that the susceptibility to development of renal lesions after nephron reduction is controlled by a locus on mouse chromosome 6 and requires epidermal growth factor receptor (EGFR) activation. Here, we identified microphthalmia-associated transcription factor A (MITF-A), a bHLH-Zip transcription factor, as a modifier of CKD progression. Sequence analysis revealed a strain-specific mutation in the 5' UTR that decreases MITF-A protein synthesis in lesion-prone friend virus B NIH (FVB/N) mice. More importantly, we dissected the molecular pathway by which MITF-A modulates CKD progression. MITF-A interacts with histone deacetylases to repress the transcription of TGF-α, a ligand of EGFR, and antagonizes transactivation by its related partner, transcription factor E3 (TFE3). Consistent with the key role of this network in CKD, Tgfa gene inactivation protected FVB/N mice from renal deterioration after nephron reduction. These data are relevant to human CKD, as we found that the TFE3/MITF-A ratio was increased in patients with damaged kidneys. Our study uncovers a novel transcriptional network and unveils novel potential prognostic and therapeutic targets for preventing human CKD progression.
Collapse
Affiliation(s)
- Denise Laouari
- INSERM U845, Centre de Recherche "Croissance et Signalisation", Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Battula S, Hao S, Pedraza PL, Stier CT, Ferreri NR. Tumor necrosis factor-alpha is an endogenous inhibitor of Na+-K+-2Cl- cotransporter (NKCC2) isoform A in the thick ascending limb. Am J Physiol Renal Physiol 2011; 301:F94-100. [PMID: 21511694 DOI: 10.1152/ajprenal.00650.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The effects of TNF gene deletion on renal Na(+)-K(+)-2Cl(-) cotransporter (NKCC2) expression and activity were determined. Outer medulla from TNF(-/-) mice exhibited a twofold increase in total NKCC2 protein expression compared with wild-type (WT) mice. This increase was not observed in TNF(-/-) mice treated with recombinant human TNF (hTNF) for 7 days. Administration of hTNF had no effect on total NKCC2 expression in WT mice. A fourfold increase in NKCC2A mRNA accumulation was observed in outer medulla from TNF(-/-) compared with WT mice; NKCC2F and NKCC2B mRNA accumulation was similar between genotypes. The increase in NKCC2A mRNA accumulation was attenuated when TNF(-/-) mice were treated with hTNF. Bumetanide-sensitive O(2) consumption, an in vitro correlate of NKCC2 activity, was 2.8 ± 0.2 nmol·min(-1)·mg(-1) in medullary thick ascending limb tubules from WT, representing ∼40% of total O(2) consumption, whereas, in medullary thick ascending limb tubules from TNF(-/-) mice, it was 5.6 ± 0.3 nmol·min(-1)·mg(-1), representing ∼60% of total O(2) consumption. Administration of hTNF to TNF(-/-) mice restored the bumetanide-sensitive component to ∼30% of total O(2) consumption. Ambient urine osmolality was higher in TNF(-/-) compared with WT mice (2,072 ± 104 vs. 1,696 ± 153 mosmol/kgH(2)O, P < 0.05). The diluting ability of the kidney, assessed by measuring urine osmolality before and after 1 h of water loading also was greater in TNF(-/-) compared with WT mice (174 ± 38 and 465 ± 81 mosmol/kgH(2)O, respectively, P < 0.01). Collectively, these findings suggest that TNF plays a role as an endogenous inhibitor of NKCC2 expression and function.
Collapse
Affiliation(s)
- Sailaja Battula
- Dept. of Pharmacology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Urea transport proteins were initially proposed to exist in the kidney in the late 1980s when studies of urea permeability revealed values in excess of those predicted by simple lipid-phase diffusion and paracellular transport. Less than a decade later, the first urea transporter was cloned. Currently, the SLC14A family of urea transporters contains two major subgroups: SLC14A1, the UT-B urea transporter originally isolated from erythrocytes; and SLC14A2, the UT-A group with six distinct isoforms described to date. In the kidney, UT-A1 and UT-A3 are found in the inner medullary collecting duct; UT-A2 is located in the thin descending limb, and UT-B is located primarily in the descending vasa recta; all are glycoproteins. These transporters are crucial to the kidney's ability to concentrate urine. UT-A1 and UT-A3 are acutely regulated by vasopressin. UT-A1 has also been shown to be regulated by hypertonicity, angiotensin II, and oxytocin. Acute regulation of these transporters is through phosphorylation. Both UT-A1 and UT-A3 rapidly accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long-term regulation involves altering protein abundance in response to changes in hydration status, low protein diets, adrenal steroids, sustained diuresis, or antidiuresis. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new animal models are being developed to study these transporters and search for active urea transporters. Here we introduce urea and describe the current knowledge of the urea transporter proteins, their regulation, and their role in the kidney.
Collapse
Affiliation(s)
- Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | | | | |
Collapse
|
26
|
Abstract
The renal medulla produces concentrated urine through the generation of an osmotic gradient extending from the cortico-medullary boundary to the inner medullary tip. This gradient is generated in the outer medulla by the countercurrent multiplication of a comparatively small transepithelial difference in osmotic pressure. This small difference, called a single effect, arises from active NaCl reabsorption from thick ascending limbs, which dilutes ascending limb flow relative to flow in vessels and other tubules. In the inner medulla, the gradient may also be generated by the countercurrent multiplication of a single effect, but the single effect has not been definitively identified. There have been important recent advances in our understanding of key components of the urine concentrating mechanism. In particular, the identification and localization of key transport proteins for water, urea, and sodium, the elucidation of the role and regulation of osmoprotective osmolytes, better resolution of the anatomical relationships in the medulla, and improvements in mathematic modeling of the urine concentrating mechanism. Continued experimental investigation of transepithelial transport and its regulation, both in normal animals and in knock-out mice, and incorporation of the resulting information into mathematic simulations, may help to more fully elucidate the inner medullary urine concentrating mechanism.
Collapse
Affiliation(s)
- Jeff M. Sands
- Renal Division, Department of Medicine, and Department of Physiology, Emory University School of Medicine, WMB Room 338, 1639 Pierce Drive, NE, Atlanta, GA, 30322, Phone: 404-727-2525, FAX: 404-727-3425, E-mail:
| | - Harold E. Layton
- Department of Mathematics, Duke University, Box 90320, Durham, NC 27708-0320, Phone: 919-660-2809, FAX: 919-660-2821, E-mail:
| |
Collapse
|
27
|
Bens M, Vandewalle A. Cell models for studying renal physiology. Pflugers Arch 2008; 457:1-15. [DOI: 10.1007/s00424-008-0507-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/22/2008] [Indexed: 12/24/2022]
|
28
|
Adler L, Efrati E, Zelikovic I. Molecular mechanisms of epithelial cell-specific expression and regulation of the human anion exchanger (pendrin) gene. Am J Physiol Cell Physiol 2008; 294:C1261-76. [PMID: 18322141 DOI: 10.1152/ajpcell.00486.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pendrin, a Cl(-)/anion exchanger encoded by the gene PDS, is highly expressed in the kidney, thyroid, and inner ear epithelia and is essential for bicarbonate secretion, iodide accumulation, and endolymph ion balance, respectively. This study aimed to define promoter regulatory elements essential for renal, thyroid, and inner ear epithelial cell-specific expression of human PDS (hPDS) and to explore the effect of ambient pH and aldosterone on hPDS promoter activity. Endogenous pendrin mRNA and protein were detected in renal HEK293, thyroid LA2, and inner ear VOT36 epithelial cell lines, but not in the fibroblast cell line, NIH3T3. A 4.2-kb hPDS 5'-flanking DNA sequence and consecutive 5'-deletion products were cloned into luciferase reporter vectors and transiently transfected into the above cell lines. Distinct differences in expression/activity of deduced positive/negative regulatory elements within the hPDS promoter between HEK293, LA2, and VOT36 cells were demonstrated, with only basal activity in NIH3T3 cells. Acidic pH (7.0-7.1) decreased and alkaline pH (7.6-7.7) increased hPDS promoter activity in transfected HEK293 and VOT36, but not in LA2 cells. Aldosterone (10(-8) M) reduced hPDS promoter activity in HEK293 but had no effect in LA2 and VOT36 cells. These pH and aldosterone-induced effects on the hPDS promoter occurred within 96-bp and 89-bp regions, respectively, which likely contain distinct response elements to these modulators. Acidic pH and aldosterone decreased, and alkaline pH increased, endogenous pendrin mRNA level in HEK293 cells. In conclusion, pendrin-mediated HCO3(-) secretion in the renal tubule and anion transport in the endolymph may be regulated transcriptionally by systemic pH and aldosterone.
Collapse
Affiliation(s)
- Lior Adler
- Department of Physiology and Biophysics, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
29
|
Chalfoun AT, Kreydiyyeh SI. Involvement of the cytoskeleton in the effect of PGE2 on ion transport in the rat distal colon. Prostaglandins Other Lipid Mediat 2007; 85:58-64. [PMID: 18096422 DOI: 10.1016/j.prostaglandins.2007.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 08/23/2007] [Accepted: 10/26/2007] [Indexed: 10/22/2022]
Abstract
This work aimed at studying the effect of PGE2 on water and chloride absorption from the rat distal colon and at investigating the involvement of the cytoskeleton in the modulation of colonic transporters. PGE2 increased significantly net water and chloride absorption. It increased also the activity of the Na+K+-ATPase and the expression of the Na+K+2Cl- cotransporter. The increase in pump activity was ascribed to its phosphorylation by PKA or PKC when activated upon binding of PGE2 to its receptors, and was deemed responsible for the increase in Cl- absorption. Cytochalasin B (CytoB), a disrupter of microfilaments, decreased net water and chloride absorption in presence or absence of PGE2. Furthermore it down-regulated both pump and cotransporter, and lowered Na+K+-ATPase activity. It was suggested that an intact actin cytoskeleton is required for the basal and the PGE2-elicited trafficking of both transporters. On the other hand, colchicine, an inhibitor of microtubule polymerization, had no effect on the absorption of water and chloride but abrogated the stimulatory effect of PGE2. Colchicine exerted a similar effect to that of cytochlasin on the expression of both pump and cotransporter in presence or absence of PGE2 except for the basal activity of the pump which was not altered by microtubule disruption. It was concluded that both microfilament and microtubular networks are involved in the basal and PGE2-elicited increase in colonic ion absorption.
Collapse
Affiliation(s)
- Antoine T Chalfoun
- Department of Biology, Faculty of Arts & Sciences, American University of Beirut, Bliss Street, Beirut, Lebanon
| | | |
Collapse
|
30
|
Torp M, Brønd L, Hadrup N, Nielsen JB, Praetorius J, Nielsen S, Christensen S, Jonassen TEN. Losartan decreases vasopressin-mediated cAMP accumulation in the thick ascending limb of the loop of Henle in rats with congestive heart failure. Acta Physiol (Oxf) 2007; 190:339-50. [PMID: 17635349 DOI: 10.1111/j.1748-1716.2007.01722.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Vasopressin (AVP) stimulates sodium reabsorption and Na,K,2Cl-cotransporter (NKCC2) protein level in the thick ascending limb (TAL) of Henle's loop in rats. Rats with congestive heart failure (CHF) have increased protein level of NKCC2, which can be normalized by angiotensin II receptor type-1 (AT(1)) blockade with losartan. AIM In this study, we investigated whether CHF rats displayed changes in AVP stimulated cAMP formation in the TAL and examined the role of AT(1) receptor blockade on this system. METHOD CHF was induced by ligation of the left anterior descending coronary artery (LAD). SHAM-operated rats were used as controls. Half of the rats were treated with losartan (10 mg kg day(-1) i.p.). RESULTS CHF rats were characterized by increased left ventricular end diastolic pressure. Measurement of cAMP in isolated outer medullary TAL showed that both basal and AVP (10(-6) m) stimulated cAMP levels were significantly increased in CHF rats (25.52 +/- 4.49 pmol cAMP microg(-1) protein, P < 0.05) compared to Sham rats (8.13 +/- 1.14 pmol cAMP microg(-1) protein), P < 0.05). Losartan significantly reduced the basal level of cAMP in CHF rats (CHF: 12.56 +/- 1.93 fmol microg(-1) protein vs. Los-CHF: 7.49 +/- 1.08, P < 0.05), but not in Sham rats (SHAM: 4.66 +/- 0.59 vs. Los-SHAM: 4.75 +/- 0.71). AVP-mediated cAMP accumulation was absent in both groups treated with losartan (Los-SHAM: 4.75 +/- 0.71 and Los-CHF: 7.49 +/- 1.08). CONCLUSION The results indicate that the increased NKCC2 protein level in the mTAL from CHF rats is associated with increased cAMP accumulation in this segment. Furthermore, the finding that AT(1) receptor blockade prevents AVP-mediated cAMP accumulation in both SHAM and CHF rats suggests an interaction between angiotensin II and AVP in regulation of mTAL Na reabsorption.
Collapse
Affiliation(s)
- M Torp
- Department of Pharmacology, University of Copenhagen, Copenhagen N, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sonalker PA, Jackson EK. Norepinephrine, via beta-adrenoceptors, regulates bumetanide-sensitive cotransporter type 1 expression in thick ascending limb cells. Hypertension 2007; 49:1351-7. [PMID: 17438304 DOI: 10.1161/hypertensionaha.107.088732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sympathetic nervous system, via norepinephrine, regulates renal sodium transport, and chronic sympathetic activation causes sustained increases in blood pressure by reducing sodium excretion. Our previous studies show that chronic norepinephrine infusion increases the abundance of the bumetanide-sensitive cotransporter type 1, the apical sodium transporter of the thick ascending limb of Henle's loop. The present study was initiated to elucidate the mechanisms by which norepinephrine regulates the protein levels of this transporter in an immortalized thick ascending limb epithelial cell line. Treatment with norepinephrine, either alone or in the presence of actinomycin D or cycloheximide, had no effect on cotransporter mRNA levels. Treatment with norepinephrine, however, increased bumetanide-sensitive cotransporter type 1 protein levels (70% increase versus control; P=0.012), and pretreatment with cycloheximide blocked the effect of norepinephrine on bumetanide-sensitive cotransporter type 1 protein levels. To further elucidate the mechanism, thick ascending limb cells were treated with norepinephrine in the presence of phentolamine (alpha-adrenoceptor blocker), propranolol (beta-adrenoceptor blocker), SQ22536 (adenylyl cyclase inhibitor), PD098059 (mitogen-activated protein kinase pathway inhibitor), H-89 (protein kinase A inhibitor), or staurosporine (protein kinase C inhibitor). Treatment with propranolol, SQ22536, and H-89 abolished the effects of norepinephrine on bumetanide-sensitive cotransporter type 1 protein levels, whereas staurosporine had no effect. Treatment with PD098059 partially inhibited the effects of norepinephrine (40% decrease versus norepinephrine; P=0.03), and treatment with phentolamine potentiated the effects of norepinephrine (30% increase versus norepinephrine; P=0.02) on bumetanide-sensitive cotransporter type 1 protein levels. We conclude that regulation of bumetanide-sensitive cotransporter type 1 by norepinephrine proceeds via the beta-adrenoceptor receptor-cAMP-protein kinase A pathway that involves in part mitogen-activated protein kinases and that alpha-adrenoceptor activation negatively regulates bumetanide-sensitive cotransporter type 1 protein levels.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate/pharmacology
- Animals
- Bumetanide/pharmacology
- Cell Line
- Colforsin/pharmacology
- Cyclic AMP/physiology
- Cyclic AMP-Dependent Protein Kinases/drug effects
- Cyclic AMP-Dependent Protein Kinases/physiology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Loop of Henle/cytology
- Loop of Henle/metabolism
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinases/physiology
- Norepinephrine/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/physiology
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/physiology
- Sodium Potassium Chloride Symporter Inhibitors/pharmacology
- Sodium-Potassium-Chloride Symporters/metabolism
- Solute Carrier Family 12, Member 1
- Vasopressins/pharmacology
Collapse
Affiliation(s)
- Prajakta A Sonalker
- Department of Pharmacology, Center for Clinical Pharmacology, University of Pittsburgh, School of Medicine, PA 15219, USA
| | | |
Collapse
|
32
|
Gallazzini M, Karim Z, Bichara M. Regulation of ROMK (Kir 1.1) Channel Expression in Kidney Thick Ascending Limb by Hypertonicity: Role of TonEBP and MAPK Pathways. ACTA ACUST UNITED AC 2006; 104:126-35. [PMID: 17003571 DOI: 10.1159/000095855] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 06/11/2006] [Indexed: 01/13/2023]
Abstract
The present study assessed the mechanisms by which hypertonicity caused by NaCl enhances the renal outer medullary potassium channel (ROMK) mRNA abundance in rat kidney medullary thick ascending limb (MTAL) and in cultured mouse TAL cells. Using the run-off technique, we observed that the ROMK gene transcription rate in nuclei isolated from MTAL fragments was enhanced approximately 40% by a high NaCl medium. In MTAL fragments, hypertonicity (450 mosm) caused by NaCl, not by mannitol or urea, enhanced both ROMK mRNA abundance and tonicity-responsive enhancer binding protein (TonEBP) total abundance and nuclear localization. In an immortalized mouse TAL cell culture in which ROMK is apically expressed, hypertonicity caused by both NaCl and mannitol, not urea, enhanced both ROMK mRNA abundance and TonEBP total abundance and nuclear localization. Confocal microscopy confirmed an increased nuclear translocation of TonEBP in response to NaCl-induced hypertonicity. Finally, inhibition of the p38 MAPK pathway by SB203580 and of the ERK pathway by PD98059 abolished the NaCl-induced stimulation of TonEBP and ROMK. These results establish that mRNA expression of ROMK is augmented in the MTAL by NaCl-induced hypertonicity through stimulation of ROMK gene transcription, and that TonEBP and the p38 MAPK and ERK pathways are involved in this effect.
Collapse
Affiliation(s)
- Morgan Gallazzini
- INSERM U426, Faculté de Médecine Xavier Bichat, et Université Paris 7, Paris, France
| | | | | |
Collapse
|
33
|
Sassen MC, Kim SW, Kwon TH, Knepper MA, Miller RT, Frøkiaer J, Nielsen S. Dysregulation of renal sodium transporters in gentamicin-treated rats. Kidney Int 2006; 70:1026-37. [PMID: 16850027 DOI: 10.1038/sj.ki.5001654] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We aimed to investigate the molecular mechanisms underlying the renal wasting of Na(+), K(+), Ca(2+), and Mg(2+) in gentamicin (GM)-treated rats. Male Wistar rats were injected with GM (40 or 80 mg/kg/day for 7 days, respectively; GM-40 or GM-80). The expression of NHE3, Na-K-ATPase, NKCC2, ROMK, NCC, alpha-, beta- and gamma-ENaC, and CaSR was examined in the kidney by immunoblotting and immunohistochemistry. Urinary fractional excretion of Na(+), K(+), Ca(2+), and Mg(2+) was increased and urinary concentration was decreased in both GM-40 and GM-80 rats. In cortex and outer stripe of outer medulla (cortex) in GM-80 rats, the expression of NHE3, Na-K-ATPase, and NKCC2 was decreased; NCC expression was unchanged; and CaSR was upregulated compared to controls. In the inner stripe of outer medulla (ISOM) in GM-80 rats, NKCC2 and Na-K-ATPase expression was decreased, whereas CaSR was upregulated, and NHE3 and ROMK expression remained unchanged. In GM-40 rats, NKCC2 expression was decreased in the cortex and ISOM, whereas NHE3, Na-K-ATPase, CaSR, ROMK, and NCC abundance was unchanged in both cortex and ISOM. Immunoperoxidase labeling confirmed decreased expression of NKCC2 in the thick ascending limb (TAL) in both GM-80- and GM-40-treated rats. Immunoblotting and immunohistochemical analysis revealed increased expression of alpha-, beta-, and gamma-ENaC in cortex in GM-80 rats, but not in GM-40 rats. These findings suggest that the decrease in NKCC2 in TAL seen in response to low-dose (40 mg/kg/day) gentamicin treatment may play an essential role for the increased urinary excretion of Mg(2+) and Ca(2+), and play a significant role for the development of the urinary concentrating defect, and increased urinary excretion of Na(+) and K(+). At high-dose gentamicin, both proximal and TAL sodium transporter downregulation is likely to contribute to this.
Collapse
Affiliation(s)
- M C Sassen
- The Water and Salt Research Center, University of Aarhus, Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Gamba G. Molecular Physiology and Pathophysiology of Electroneutral Cation-Chloride Cotransporters. Physiol Rev 2005; 85:423-93. [PMID: 15788703 DOI: 10.1152/physrev.00011.2004] [Citation(s) in RCA: 592] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Electroneutral cation-Cl−cotransporters compose a family of solute carriers in which cation (Na+or K+) movement through the plasma membrane is always accompanied by Cl−in a 1:1 stoichiometry. Seven well-characterized members include one gene encoding the thiazide-sensitive Na+−Cl−cotransporter, two genes encoding loop diuretic-sensitive Na+−K+−2Cl−cotransporters, and four genes encoding K+−Cl−cotransporters. These membrane proteins are involved in several physiological activities including transepithelial ion absorption and secretion, cell volume regulation, and setting intracellular Cl−concentration below or above its electrochemical potential equilibrium. In addition, members of this family play an important role in cardiovascular and neuronal pharmacology and pathophysiology. Some of these cotransporters serve as targets for loop diuretics and thiazide-type diuretics, which are among the most commonly prescribed drugs in the world, and inactivating mutations of three members of the family cause inherited diseases such as Bartter's, Gitelman's, and Anderman's diseases. Major advances have been made in the past decade as consequences of molecular identification of all members in this family. This work is a comprehensive review of the knowledge that has evolved in this area and includes molecular biology of each gene, functional properties of identified cotransporters, structure-function relationships, and physiological and pathophysiological roles of each cotransporter.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
36
|
Wu MS, Yang CW, Pan MJ, Chang CT, Chen YC. Reduced renal Na+-K+-Cl- co-transporter activity and inhibited NKCC2 mRNA expression by Leptospira shermani: from bed-side to bench. Nephrol Dial Transplant 2004; 19:2472-9. [PMID: 15388818 DOI: 10.1093/ndt/gfh452] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Renal involvement is common in leptospirosis. Interstitial nephritis with interstitial oedema and mononuclear cellular infiltration are the usual findings. Clinically, non-oligouric acute renal failure, hypokalaemia and sodium wasting appear frequently in leptospirosis. The outer membrane protein from leptospira has been thought to be responsible for the disorder. However, the exact mechanisms of renal involvement are still unclear. METHODS To address these questions, we first performed detailed in vivo clearance tests in three patients with leptospirosis (Leptospira shermani) and hypokalaemia to define the tubular lesion. These tests indicated a defective Na(+)-K(+)-Cl(-) co-transporter and a poor response to furosemide infusion. We performed further in vitro studies in a model of medullary thick ascending limb (mTAL) cultured cells derived from normal mouse. RESULTS Outer membrane protein extract from L.shermani (0.3 microg/ml) inhibited Na(+)-K(+)-Cl(-) co-transporter activity in mTAL cells (control, 10.15+/-0.52; L.shermani, 6.47+/-0.47 nmol/min/mg protein). The basolateral Na(+)-K(+) ATPase remained intact. Reverse transcription-polymerase chain reaction (RT-PCR) further revealed that the outer membrane protein extract from L.shermani downregulated Na(+)-K(+)-Cl(-) co-transporter (mNKCC2) mRNA expression. These changes were dose dependent and could be reversed by the antibody against outer membrane protein extract from L.shermani. Experiments with a less pathogenic strain of leptospira (L.bratislava) and Escherichia coli did not affect Na(+)-K(+)-Cl(-) co-transporter activity. CONCLUSIONS We conclude that L.shermani leptospirosis downregulates mNKCC2 mRNA expression and inhibits Na(+)-K(+)-Cl(-) co-transporter activity in TAL cells. These alterations may explain the observed electrolyte disorders in leptospirosis.
Collapse
Affiliation(s)
- Mai-Szu Wu
- Division of Nephrology, Chang Gung Memorial Hospital, 222, Mai-Chin Road, Keelung, Taiwan.
| | | | | | | | | |
Collapse
|
37
|
Kobayashi K, Yanagihara K, Ishiguro K, Fukuoka S. GP2/THP gene family of self-binding, GPI-anchored proteins forms a cluster at chromosome 7F1 region in mouse genome. Biochem Biophys Res Commun 2004; 322:659-64. [PMID: 15325280 DOI: 10.1016/j.bbrc.2004.07.197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Indexed: 10/26/2022]
Abstract
We investigated the genomic organization of pancreatic zymogen granule membrane-associated protein GP2, a GPI-anchored protein exhibiting self-aggregation at acidic pH, in order to construct a gene-knockout mouse. Cloning and analysis of lambda clones encoding GP2 from 129 Svj mouse genomic DNA libraries showed that the GP2 gene spans about 16.8 kb and includes 11 exons. Identifiable functional domains including a signal sequence, an EGF-like motif, a putative condensing ZP domain, a GPI-anchor attachment site, and a transmembrane sequence for GPI anchoring are encoded in separate exons. Using FISH, the GP2 gene was mapped to mouse chromosome 7F1 near the gene for THP, a GP2 homolog expressed in the cells of thick ascending loop of Henle (TALH) in the kidney. Further analysis of the mouse genome revealed that the THP and GP2 genes are adjacent to one another and are separated by only 3.5 kb in the 7F1 locus. Additionally, the overall structure of the THP gene, 16.2kb with 11 exons, was strikingly similar to that of GP2. This finding suggests that the GP2 and THP genes were generated by gene duplication and evolved separately to acquire regulatory elements leading to tissue-specific expression. Comparative analysis revealed that the 5' flanking region of the THP gene is similar to the first intron of NKCC2, a TALH cell-specific ion-transporter gene. The promoter region of the GP2 gene shares cis-elements found in other pancreas-specific genes. Using this genetic information, a GP2 null mutation was successfully introduced into an ES cell line, and an animal model was established without disruption of THP expression.
Collapse
Affiliation(s)
- K Kobayashi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Urea is transported across the kidney inner medullary collecting duct by urea-transporter proteins. Two urea-transporter genes have been cloned from humans and rodents: the UT-A (Slc14A2) gene encodes five protein and eight cDNA isoforms; the UT-B (Slc14A1) gene encodes a single isoform. In the past year, significant progress has been made in understanding the regulation of urea-transporter protein abundance in kidney, studies of genetically engineered mice that lack a urea transporter, identification of urea transporters outside of the kidney, cloning of urea transporters in nonmammalian species, and active urea transport in microorganisms. RECENT FINDINGS UT-A1 protein abundance is increased by 12 days of vasopressin, but not by 5 days. Analysis of the UT-A1 promoter suggests that vasopressin increases UT-A1 indirectly following a direct effect to increase the transcription of other genes, such as the Na(+)-K(+)-2Cl- cotransporter NKCC2/BSC1 and the aquaporin (AQP) 2 water channel, that begin to increase inner medullary osmolality. UT-A1 protein abundance is also increased by adrenalectomy, and is decreased by glucocorticoids or mineralocorticoids. However, each hormone works through its own receptor. Knockout mice that lack UT-A1 and UT-A3, or lack UT-B, have a urine-concentrating defect and a decrease in inner medullary interstitial urea content. SUMMARY Urea transporters play a critical role in the urine-concentrating mechanism. Their abundance is regulated by vasopressin, glucocorticoids, and mineralocorticoids. These regulatory mechanisms may be important in disease states such as diabetes because changes in urea-transporter abundance in diabetic rats require glucocorticoids and vasopressin.
Collapse
Affiliation(s)
- Jeff M Sands
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
39
|
Kim D, Sands JM, Klein JD. Role of vasopressin in diabetes mellitus-induced changes in medullary transport proteins involved in urine concentration in Brattleboro rats. Am J Physiol Renal Physiol 2004; 286:F760-6. [PMID: 14644754 DOI: 10.1152/ajprenal.00369.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rats with streptozotocin-induced diabetes mellitus for 10-20 days, we showed that the abundance of the major medullary transport proteins involved in the urinary concentrating mechanism, urea transporter (UT-A1), aquaporin-2 (AQP2), and the Na+-K+-2Cl- cotransporter (NKCC2/BSC1), is increased, despite the ongoing osmotic diuresis. To test whether vasopressin is necessary for these diabetes mellitus-induced changes in UT-A1, AQP2, or NKCC2/BSC1, we studied Brattleboro rats because they lack vasopressin. Brattleboro rats were given vasopressin (2.4 microg/day via osmotic minipump) for 5 or 12 days. At 5 days, vasopressin increased AQP2 protein abundance but decreased UT-A1 abundance compared with untreated Brattleboro rats. At 12 days, vasopressin increased the abundance of both UT-A1 and AQP2 proteins but did not alter NKCC2/BSC1. Next, untreated Brattleboro rats were made diabetic for 10 days by injecting them with streptozotocin (40 mg/kg). Diabetes mellitus increased the abundance of AQP2 and NKCC2/BSC1 proteins, but UT-A1 protein abundance did not increase. Third, vasopressin-treated Brattleboro rats were made diabetic with streptozotocin for 10 days. In vasopressin-treated Brattleboro rats, diabetes mellitus increased UT-A1, AQP2, and NKCC2/BSC1 protein abundances. Vasopressin significantly increased UT-A1 phosphorylation in vasopressin-treated diabetic Brattleboro rats but not in the other groups of Brattleboro rats. We conclude that 1) administering vasopressin to Brattleboro rats for 12 days, but not for 5 days, increases UT-A1 protein abundance and 2) vasopressin is necessary for the increase in UT-A1 protein in diabetic rats but is not necessary for the increase in AQP2 or NKCC2 proteins.
Collapse
Affiliation(s)
- Dongun Kim
- Emory Univ. School of Medicine, Renal Division, WMRB Rm. 338, 1639 Pierce Drive NE, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
40
|
Wang W, Li C, Kwon TH, Miller RT, Knepper MA, Frøkiaer J, Nielsen S. Reduced expression of renal Na+transporters in rats with PTH-induced hypercalcemia. Am J Physiol Renal Physiol 2004; 286:F534-45. [PMID: 14625199 DOI: 10.1152/ajprenal.00044.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to evaluate whether the natriuresis and polyuria seen in parathyroid hormone (PTH)-induced hypercalcemia are associated with dysregulation of renal Na transporters. Rats were infused with three different doses of human PTH [PTH ( 1 - 34 ); 7.5, 10, and 15 μg·kg-1·day-1sc] or vehicle for 48 h using osmotic minipumps. The rats treated with PTH developed significant hypercalcemia (plasma total calcium levels: 2.71 ± 0.03, 2.77 ± 0.02, and 3.42 ± 0.06 mmol/l, respectively, P < 0.05 compared with corresponding controls). The rats with severe hypercalcemia induced by high-dose PTH developed a decreased glomerular filtration rate (GFR), increased urine output, reduced urinary osmolality, increased urinary Na excretion, and fractional excretion of Na. This was associated with downregulation (calculated as a fraction of control levels) of whole kidney expression of type 2 Na-Picotransporter (NaPi-2; 16 ± 6%), type 3 Na/H exchanger (NHE3; 42 ± 7%), Na-K-ATPase (55 ± 2%), and bumetanide-sensitive Na-K-2Cl cotransporter (BSC-1; 25 ± 4%). In contrast, an upregulation of the Ca2+-sensing receptor (CaR) was observed. Rats treated with moderate-dose PTH exhibited unchanged GFR but decreased urinary concentration. The whole kidney expression of NHE3 (52 ± 8%) and NaPi-2 (26 ± 5%) was persistently decreased, whereas BSC-1 and Na-K-ATPase protein levels were not altered. CaR expression was also increased. Moreover, rats treated with low-dose PTH showed very mild hypercalcemia but unchanged GFR, normal urinary concentration, and unchanged expression of Na transporters and CaR. In conclusion, the reduced expression of major renal Na transporters is likely to play a role in the increased urinary Na excretion and decreased urinary concentration in rats with PTH-induced hypercalcemia. Moreover, the increase in the CaR in the thick ascending limb (TAL) may indicate a potential role of the CaR in inhibiting Na transport in the TAL.
Collapse
Affiliation(s)
- Weidong Wang
- The Water and Salt Research Center, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
41
|
Amlal H, Ledoussal C, Sheriff S, Shull GE, Soleimani M. Downregulation of renal AQP2 water channel and NKCC2 in mice lacking the apical Na+-H+ exchanger NHE3. J Physiol 2003; 553:511-22. [PMID: 14500765 PMCID: PMC2343572 DOI: 10.1113/jphysiol.2003.053363] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/14/2003] [Accepted: 09/16/2003] [Indexed: 11/08/2022] Open
Abstract
The apical Na+-H+ exchanger NHE3 plays an important role in fluid reabsorption in the proximal tubule. However, whether its deletion alters the salt and water transport in the distal nephron remains unknown. To answer these questions, wild-type (Nhe3+/+) and NHE3 null mice (Nhe3-/-) were placed in metabolic cages and their water balance and urine osmolality were examined. Nhe3-/- mice demonstrated a significant polydipsia (P < 0.03) and polyuria (P < 0.04), with a lower urine osmolality (P < 0.003) as compared to Nhe3+/+ mice. Northern hybridization and immunoblotting studies indicated that the mRNA expression and protein abundance of the collecting duct (CD) water channel AQP2 decreased by 52 % (P < 0.0003) and 73 % (P < 0.003) in the cortex, and by 53 % and 54 % (P < 0.002) in the inner medulla (IM) of Nhe3-/- vs. Nhe3+/+ mice. The expression of AQP2 in the outer medulla (OM) remained unchanged. Further, the mRNA expression and protein abundance of the medullary thick ascending limb (mTAL) apical Na+-K+-2Cl- cotransporter (NKCC2) decreased by 52 % (P < 0.02) and 44 % (P < 0.01), respectively, in the OM of Nhe3-/- vs. Nhe3+/+ mice. The circulating plasma levels of vasopressin as well as the mRNA expression of vasopressin prohormone were significantly increased in Nhe3-/- vs. Nhe3+/+ mice (P < 0.05). Studies in mice treated with acetazolamide indicated that increased bicarbonate and fluid delivery to distal nephron did not alter the expression of NKCC2 in mTAL and decreased AQP2 protein only in OM but not in the cortex or IM. In conclusion, mice lacking the apical NHE3 have impairment in their water balance and urine osmolality, which correlates with the downregulation of AQP2 expression. These defects occur despite increased circulating levels of vasopressin. We propose that an ADH-independent mechanism is responsible for the downregulation of AQP2 and the resulting polyuria in NHE3 null mice.
Collapse
Affiliation(s)
- Hassane Amlal
- Departments of Medicine, University of Cincinnati School of Medicine, Cincinnati, OH 45267, USA.
| | | | | | | | | |
Collapse
|
42
|
Li C, Wang W, Kwon TH, Knepper MA, Nielsen S, Frøkiaer J. Altered expression of major renal Na transporters in rats with bilateral ureteral obstruction and release of obstruction. Am J Physiol Renal Physiol 2003; 285:F889-901. [PMID: 12865255 DOI: 10.1152/ajprenal.00170.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urinary tract obstruction impairs urinary concentrating capacity and reabsorption of sodium. To clarify the molecular mechanisms of these defects, expression levels of renal sodium transporters were examined in rats with 24-h bilateral ureteral obstruction (BUO) or at day 3 or 14 after release of BUO (BUO-R). BUO resulted in downregulation of type 3 Na+/H+ exchanger (NHE3) to 41 +/- 14%, type 2 Na-Pi cotransporter (NaPi-2) to 26 +/- 6%, Na-K-ATPase to 67 +/- 8%, type 1 bumetanide-sensitive Na-K-2Cl cotransporter (BSC-1) to 20 +/- 7%, and thiazide-sensitive cotransporter (TSC) to 37 +/- 9%. Immunocytochemistry confirmed downregulation of NHE3, NaPi-2, Na-K-ATPase, BSC-1, and TSC. Consistent with this downregulation, BUO-R was associated with polyuria, reduced urinary osmolality, and increased urinary sodium and phosphate excretion. BUO-R for 3 days caused a persistant downregulation of NHE3 to 53 +/- 10%, NaPi-2 to 57 +/- 9%, Na-K-ATPase to 62 +/- 8%, BSC-1 to 50 +/- 12%, and TSC to 56 +/- 16%, which was associated with a marked reduction in the net renal reabsorption of sodium (616 +/- 54 vs. 944 +/- 24 micromol x min-1 x kg-1; P < 0.05) and phosphate (6.3 +/- 0.9 vs. 13.1 +/- 0.4 micromol x min-1. kg-1; P < 0.05) demonstrating a defect in renal sodium and phosphate reabsorption capacity. Moreover, downregulation of Na-K-ATPase and TSC persisted in BUO-R for 14 days, whereas NHE3, NaPi-2, and BSC-1 were normalized to control levels. In conclusion, downregulation of renal Na transporters in rats with BUO and release of BUO are likely to contribute to the associated urinary concentrating defect, increased urinary sodium excretion, and postobstructive polyuria.
Collapse
Affiliation(s)
- Chunling Li
- The Water and Salt Research Center, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
43
|
Ortiz PA, Hong NJ, Wang D, Garvin JL. Gene transfer of eNOS to the thick ascending limb of eNOS-KO mice restores the effects of L-arginine on NaCl absorption. Hypertension 2003; 42:674-9. [PMID: 12913056 DOI: 10.1161/01.hyp.0000085561.00001.81] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The thick ascending limb of the loop of Henle (THAL) plays an essential role in the regulation of sodium and water homeostasis by the kidney. l-Arginine, the substrate for nitric oxide synthase (NOS), decreases NaCl absorption by THALs. We hypothesized that eNOS produces the NO that regulates THAL NaCl transport and that selective expression of eNOS in the THAL of eNOS knockout(-/-) mice would restore the effects of l-arginine on NaCl absorption. eNOS-/- mice were anesthetized, the left kidney was exposed, and the renal interstitium was injected with recombinant adenoviral vectors that expressed green fluorescent protein (GFP) or eNOS driven by the promoter of the Na/K/2Cl cotransporter Ad-NKCC2GFP and Ad-NKCC2eNOS, respectively. In Ad-NKCC2eNOS-transduced kidneys, eNOS expression was detected 7 days after injection but was absent in Ad-NKCC2GFP-transduced kidneys. In THALs from eNOS-/- mice transduced with Ad-NKCC2eNOS, adding L-arginine increased DAF-2DA fluorescence, a measure of NO production, by 9.1+/-1.1% (P<0.05; n=5), but not in THALs transduced with Ad-NKCC2GFP. In THALs from eNOS-/- mice transduced with Ad-NKCC2eNOS, Cl absorption averaged 85.9+/-11.8 pmol/min per millimeter. Adding l-arginine (1 mmol/L) to the bath decreased Cl absorption to 59.7+/-11.0 pmol/min per millimeter (P<0.05; n=6). In THALs transduced with Ad-NKCC2GFP, Cl absorption averaged 96.0+/-21.0 pmol/min per millimeter. Adding L-arginine to the bath did not significantly affect Cl absorption (100.6+/-20.6 pmol/min per millimeter; n=4). We concluded that gene transfer of eNOS to the THAL of eNOS-/- mice restores L-arginine-induced inhibition of NaCl transport and NO production. These data indicate that eNOS is essential for the regulation of THAL NaCl transport by NO.
Collapse
Affiliation(s)
- Pablo A Ortiz
- Division of Hypertension and Vascular Research, Henry Ford Hospital, 2799 W Grand Blvd, Detroit, Mich 48202, USA.
| | | | | | | |
Collapse
|
44
|
Karim Z, Attmane-Elakeb A, Sibella V, Bichara M. Acid pH increases the stability of BSC1/NKCC2 mRNA in the medullary thick ascending limb. J Am Soc Nephrol 2003; 14:2229-36. [PMID: 12937298 DOI: 10.1097/01.asn.0000085023.73801.4a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chronic metabolic acidosis enhances the ability of the medullary thick ascending limb (MTAL) to absorb NH(4)(+) at least in part by stimulating the mRNA and protein expression of BSC1/NKCC2, the MTAL apical Na(+)-K(+)(NH(4)(+))-2Cl(-) co-transporter. For assessing the mechanism by which an acid pH enhances the BSC1 mRNA abundance, MTAL were harvested from adrenalectomized rats and incubated in control (pH 7.35) and acid (pH 7.10) 1:1 mixtures of Ham's nutrient mixture F-12 and DME. rBSC1 mRNA abundance and gene transcription rate were quantified by quantitative reverse transcription-PCR and run-off assay, respectively. Acid incubation enhanced mRNA abundance within 4 h in whole cell (P < 0.02) but not in nucleus. BSC1 gene transcription rate was not affected by acid incubation. In contrast, under conditions in which gene transcription was blocked, rBSC1 mRNA decreased within 6 h by 38 +/- 11% in control but only by 15 +/- 15% in acid medium (P < 0.02), which represented an increase in the BSC1 mRNA half-life from approximately 7 to approximately 17 h. Furthermore, in a mouse TAL cell line, acid incubation for 16 h significantly increased (P < 0.02) the amount of BSC1 mRNA in cells transfected with the full-length mBSC1 cDNA but not in cells transfected with a mBSC1 cDNA lacking the 3'-UTR. These results demonstrate that acid pH enhances the stability of BSC1 mRNA probably by activating pathways that act on the AU-rich 3'-UTR of BSC1 mRNA, which contributes to the renal response to metabolic acidosis.
Collapse
Affiliation(s)
- Zoubida Karim
- INSERM U.426, Institut Fédératif Régional Claude Bernard, Faculté de Médecine Xavier Bichat, Université Paris 7, Paris, France
| | | | | | | |
Collapse
|
45
|
Stricklett PK, Taylor D, Nelson RD, Kohan DE. Thick ascending limb-specific expression of Cre recombinase. Am J Physiol Renal Physiol 2003; 285:F33-9. [PMID: 12644440 DOI: 10.1152/ajprenal.00366.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Evaluation of thick ascending limb (TAL) function has been hindered by the limited ability to selectively examine the function of this nephron segment in vivo. To address this, a Cre/loxP strategy was employed whereby the Tamm-Horsfall (THP) promoter was used to drive Cre recombinase expression in transgenic mice. The THP gene was cloned from a mouse genomic library, and 3.7 kb of the mouse THP 5'-flanking region containing the first noncoding exon of the THP gene were inserted upstream of an epitope-tagged Cre recombinase (THP-CreTag). THP-CreTag transgenic mice were bred with ROSA26-enhanced yellow fluorescent protein (eYFP) mice (contain a loxP-flanked "STOP" sequence 5' to eYFP), and doubly heterozygous offspring were analyzed. THP and eYFP were expressed in an identical pattern with predominant localization to the renal outer medulla without expression in nonrenal tissues. eYFP did not colocalize with thiazide-sensitive cotransporter (distal tubule) or neuronal nitric oxide synthase (macula densa) expression. THP mRNA expression was detected only in kidney, whereas CreTag mRNA was also present in testes. These data indicate that THP-CreTag transgenic mice can be used for TAL-specific gene recombination in the kidney.
Collapse
Affiliation(s)
- Peter K Stricklett
- Division of Adult, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | | | |
Collapse
|
46
|
Kwon TH, Nielsen J, Kim YH, Knepper MA, Frøkiaer J, Nielsen S. Regulation of sodium transporters in the thick ascending limb of rat kidney: response to angiotensin II. Am J Physiol Renal Physiol 2003; 285:F152-65. [PMID: 12657563 DOI: 10.1152/ajprenal.00307.2002] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of ANG II treatment of rats for 7 days was examined with respect to the abundance and subcellular localization of key thick ascending limb (TAL) Na+ transporters. Rats were on a fixed intake of Na+ and water and treated with 0, 12.5, 25, 50 (ANG II-50), 100 (ANG II-100), and 200 (ANG II-200) ng x min(-1) x kg(-1) ANG II (sc). Semiquantitative immunoblotting revealed that Na+/H+ exchanger 3 (NHE3) abundance in the inner stripe of the outer medulla (ISOM) of ANG II-treated rats was significantly increased: 179 +/- 28 (ANG II-50, n = 5), 166 +/- 23 (ANG II-100, n = 7), and 167 +/- 19% (ANG II-200, n = 4) of control levels (n = 6, P < 0.05), whereas lower doses of ANG II were ineffective. The abundance of the bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter (BSC-1) in the ISOM was also increased to 187 +/- 28 (ANG II-50), 162 +/- 23 (ANG II-100), and 166 +/- 19% (ANG II-200) of control levels (P < 0.05), but there were no changes in the abundance of Na(+)-K(+)-ATPase and the electroneutral Na(+)-HCO3 cotransporter NBCn1. Immunocytochemistry confirmed the increase in NHE3 and BSC-1 labeling in medullary TAL (mTAL). In the cortex and the outer strip of the outer medulla, NHE3 abundance was unchanged, whereas immunocytochemistry revealed markedly increased NHE3 labeling of the proximal tubule brush border, suggesting subcellular redistribution of NHE3 or differential protein-protein interaction. Despite this, ANG II-treated rats (50 ng x min(-1) x kg(-1) for 5 days, n = 6) had a higher urinary pH compared with controls. NH4Cl loading completely blocked all effects of ANG II infusion on NHE3 and BSC-1, suggesting a potential role of pH as a mediator of these effects. In conclusion, increased abundance of NHE3 and BSC-1 in mTAL cells as well as increased NHE3 in the proximal tubule brush border may contribute to enhanced renal Na+ and HCO3 reabsorption in response to ANG II.
Collapse
Affiliation(s)
- Tae-Hwan Kwon
- The Water and Salt Research Center, University of Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
A 10-kilobase (kb) lambda bacteriophage bovine genomic clone containing 5.4 kb of the 5'-flanking region, exons, and introns of bovine uromodulin gene was isolated. Transgenic mice containing 3.9 kb of the bovine uromodulin promoter and a lacZ reporter gene were generated by pronuclear microinjection. RT-PCR and northern blot analyses of transgene expression in various tissues of founder and F1 mice showed that the transgene was expressed exclusively in the kidney. In situ hybridization and histochemistry for lacZ demonstrated that transgene expression was restricted to tubule epithelial cells of the loop of Henle in the kidney. Stepwise 5' deletion analysis revealed that transfection of luciferase reporter constructs fused to various proximal 5'-flanking regions of the bovine uromodulin gene markedly increased luciferase activity in mouse renal epithelial cells but not in mesenchymal cells and that the most critical cis elements of the uromodulin gene are located within the 600 bp upstream region.
Collapse
Affiliation(s)
- Hun-Taek Kim
- In2Gen Co., Cancer Research Institute, Seoul National University College of Medicine, Yeongun-Dong 28, Jongro-Gu, Seoul 110-799, Republic of Korea.
| | | | | |
Collapse
|
48
|
Ortiz PA, Hong NJ, Plato CF, Varela M, Garvin JL. An in vivo method for adenovirus-mediated transduction of thick ascending limbs. Kidney Int 2003; 63:1141-9. [PMID: 12631099 DOI: 10.1046/j.1523-1755.2003.00827.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The thick ascending limb of the loop of Henle (THAL) plays an important role in the maintenance of salt, water, and acid-base balance. While techniques for gene transfer of renal vascular cells and some tubular segments have been described, in vivo transduction of THALs has not been successful. We hypothesized that in vivo injection of adenoviral vectors into the renal medulla would result in efficient transduction of THALs. METHODS We injected recombinant adenoviruses containing the reporter gene, green fluorescent protein (GFP), driven by either the cytomegalovirus promoter (Ad-CMVGFP) or the promoter for the Na/K/2 Cl cotransporter (Ad-NKCC2GFP), which is THAL-specific, into the outer medullary interstitium of Sprague-Dawley rat kidneys. Kidneys were removed at various times after viral injection and analyzed for GFP expression. RESULTS Western blots revealed strong GFP expression in the outer medulla (which is composed primarily of THALs) 5 days after Ad-CMVGFP injection. We quantified THAL transduction efficiency by scoring the number of fluorescent tubules in THALs suspensions, which showed that at least 77 +/- 3% of THAL expressed GFP. To specifically transduce THALs, we injected Ad-NKCC2GFP into the medullary interstitium. As determined by Western blot, GFP expression was only detected in the outer medulla. Immunohistochemistry and confocal microscopy showed that GFP was localized to tubular cells positive for Tamm-Horsfall protein. Thus, GFP fluorescence was only detected in THALs, not in cortical, inner medulla or vascular cells. Time-course studies showed that GFP expression in THALs was measurable from 4 to 14 days, peaked at 7 days, and had returned to background levels by 21 days. CONCLUSION This method facilitates highly efficient, THAL-specific transduction. While application of this technique for gene therapy in humans is unlikely due to the transient gene expression observed and the impossibility for repeated injections of adenoviral vectors, this method provides a valuable tool for investigators studying regulation and mechanisms of THAL ion transport and its relationship to whole-kidney physiology and pathophysiology.
Collapse
Affiliation(s)
- Pablo A Ortiz
- Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | |
Collapse
|
49
|
Elkjaer ML, Kwon TH, Wang W, Nielsen J, Knepper MA, Frøkiaer J, Nielsen S. Altered expression of renal NHE3, TSC, BSC-1, and ENaC subunits in potassium-depleted rats. Am J Physiol Renal Physiol 2002; 283:F1376-88. [PMID: 12388387 DOI: 10.1152/ajprenal.00186.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to examine whether hypokalemia is associated with altered abundance of major renal Na+ transporters that may contribute to the development of urinary concentrating defects. We examined the changes in the abundance of the type 3 Na+/H+ exchanger (NHE3), Na+ - K+-ATPase, the bumetanide-sensitive Na+ - K+ - 2Cl- cotransporter (BSC-1), the thiazide-sensitive Na+ - Cl- cotransporter (TSC), and epithelial sodium channel (ENaC) subunits in kidneys of hypokalemic rats. Semiquantitative immunoblotting revealed that the abundance of BSC-1 (57%) and TSC (46%) were profoundly decreased in the inner stripe of the outer medulla (ISOM) and cortex/outer stripe of the outer medulla (OSOM), respectively. These findings were confirmed by immunohistochemistry. Moreover, total kidney abundance of all ENaC subunits was significantly reduced in response to the hypokalemia: alpha-subunit (61%), beta-subunit (41%), and gamma-subunit (60%), and this was confirmed by immunohistochemistry. In contrast, the renal abundance of NHE3 in hypokalemic rats was dramatically increased in cortex/OSOM (736%) and ISOM (210%). Downregulation of BSC-1, TSC, and ENaC may contribute to the urinary concentrating defect, whereas upregulation of NHE3 may be compensatory to prevent urinary Na+ loss and/or to maintain intracellular pH levels.
Collapse
Affiliation(s)
- Marie-Louise Elkjaer
- The Water and Salt Research Center, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
50
|
Yoshida T, Yoshino J, Hayashi M, Saruta T. Identification of a renal proximal tubular cell-specific enhancer in the mouse 25-hydroxyvitamin d 1alpha-hydroxylase gene. J Am Soc Nephrol 2002; 13:1455-63. [PMID: 12039974 DOI: 10.1097/01.asn.0000013885.23734.ca] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The active form of vitamin D is synthesized by 25-hydroxyvitamin D 1alpha-hydroxylase (1alpha-hydroxylase), which is expressed predominantly in renal proximal tubular cells. To clarify the mechanism of cell-specific gene expression of this enzyme, the 5'-flanking region of the mouse 1alpha-hydroxylase gene was investigated. Investigation began with mRNA expression of 1alpha-hydroxylase in cultured cells, including LLC-PK1, NIH/3T3, HepG2, MDCK, and OK cells. Expression of 1alpha-hydroxylase mRNA was restricted in LLC-PK1 cells. Several lengths of the 5'-flanking region of 1alpha-hydroxylase gene were linked to a pGL3-basic luciferase vector and introduced into these cells. Only LLC-PK1 cells had a substantial luciferase activity. Deletion analyses revealed that luciferase activity was detected in constructs extending from the transcription initiation site to -1652 to -105 bp, whereas further deletion to -80 bp resulted in a marked decrease in activity. The region from -105 to -80 bp contained two ternary complex factor-1 (TCF-1) sites, and mutations in the proximal TCF-1 site decreased the activity. Electrophoretic mobility shift assay demonstrated binding of LLC-PK1 nuclear proteins to this region. Tests of enhancer function in LLC-PK1 cells indicated that the 26-bp fragment behaved as a classical enhancer, i.e., independently of position and orientation. Moreover, a decoy oligonucleotide corresponding to this region substantially inhibited the promoter activity of 1alpha-hydroxylase gene. This study suggests that the -105 to -80 bp element of mouse 1alpha-hydroxylase gene contains an enhancer to be necessary for renal proximal tubular cell-specific expression.
Collapse
Affiliation(s)
- Tadashi Yoshida
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | |
Collapse
|