1
|
Ellermann C, Mengel C, Wolfes J, Wegner FK, Rath B, Reinke F, Eckardt L, Frommeyer G. Divergent Electrophysiologic Effects of Sacubitril in Digitalis- and Pinacidil-Related Shortened Repolarization: Experimental Evidence for Harmful Effects of Digitalis Glycosides. Pharmaceutics 2025; 17:338. [PMID: 40143002 PMCID: PMC11944348 DOI: 10.3390/pharmaceutics17030338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Recent studies reported an abbreviation of cardiac repolarization induced by sacubitril. Thus, the purpose of this study was to evaluate the electrophysiologic effects of sacubitril in the presence of drugs that shorten the QT interval. Methods and Results: 25 rabbit hearts were retrogradely perfused. After generating baseline data, hearts were allocated to two groups. In the first group (n = 12), the IK,ATP opener pinacidil (1 µM) significantly reduced action potential duration at 90% of repolarization (APD90), QT intervals and effective refractory periods (ERP). Additional administration of sacubitril (5 µM) slightly reduced APD90. The digitalis glycoside ouabain (0.2 µM) significantly shortened repolarization duration and refractory periods. Additional infusion of sacubitril abbreviated repolarization duration and ERP. Ventricular vulnerability was assessed by delivering premature extra stimuli and burst stimulation. Significantly more ventricular arrhythmias occurred with pinacidil (26 episodes vs. 5 episodes under baseline conditions, p < 0.05). Additional sacubitril treatment had no significant proarrhythmic effect (24 episodes). Ouabain alone did not provoke ventricular arrhythmias (6 episodes vs. 3 under baseline conditions, p = ns) whereas additional sacubitril treatment significantly increased the occurrence of VT episodes (29 episodes, p < 0.01). Conclusions: Sacubitril abbreviates cardiac repolarization in ouabain-pretreated hearts. While sacubitril had no proarrhythmic effect in the presence of pinacidil, the combination of sacubitril and ouabain amplified the arrhythmic risk. The underlying mechanism is a further abbreviation of refractory periods and cardiac repolarization that facilitate ventricular arrhythmias. These findings add further evidence to the proarrhythmic capacity of digitalis glycosides in the presence of other drugs that influence cardiac repolarization.
Collapse
Affiliation(s)
- Christian Ellermann
- Department of Cardiology II (Electrophysiology), University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Herbertz M, Dalla S, Wagschal V, Turjalei R, Heiser M, Dobler S. Coevolutionary escalation led to differentially adapted paralogs of an insect's Na,K-ATPase optimizing resistance to host plant toxins. Mol Ecol 2024; 33:e17041. [PMID: 37296537 DOI: 10.1111/mec.17041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Cardiac glycosides are chemical defence toxins known to fatally inhibit the Na,K-ATPase (NKA) throughout the animal kingdom. Several animals, however, have evolved target-site insensitivity through substitutions in the otherwise highly conserved cardiac glycoside binding pocket of the NKA. The large milkweed bug, Oncopeltus fasciatus, shares a long evolutionary history with cardiac glycoside containing plants that led to intricate adaptations. Most strikingly, several duplications of the bugs' NKA1α gene provided the opportunity for differential resistance-conferring substitutions and subsequent sub-functionalization of the enzymes. Here, we analysed cardiac glycoside resistance and ion pumping activity of nine functional NKA α/β-combinations of O. fasciatus expressed in cell culture. We tested the enzymes with two structurally distinct cardiac glycosides, calotropin, a host plant compound, and ouabain, a standard cardiac glycoside. The identity and number of known resistance-conferring substitutions in the cardiac glycoside binding site significantly impacted activity and toxin resistance in the three α-subunits. The β-subunits also influenced the enzymes' characteristics, yet to a lesser extent. Enzymes containing the more ancient αC-subunit were inhibited by both compounds but much more strongly by the host plant toxin calotropin than by ouabain. The sensitivity to calotropin was diminished in enzymes containing the more derived αB and αA, which were only marginally inhibited by both cardiac glycosides. This trend culminated in αAβ1 having higher resistance against calotropin than against ouabain. These results support the coevolutionary escalation of plant defences and herbivore tolerance mechanisms. The possession of multiple paralogs additionally mitigates pleiotropic effects by compromising between ion pumping activity and resistance.
Collapse
Affiliation(s)
- Marlena Herbertz
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Safaa Dalla
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Vera Wagschal
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Rohin Turjalei
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Marlies Heiser
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| | - Susanne Dobler
- Institute of Cell and Systems Biology of Animals, Molecular Evolutionary Biology, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
3
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Xu Y, Xu J, Zhu W, Yan Y, Jiang X, Xie Z, Feng F, Zhang J. Bioassay-Guided Fractionation and Biological Activity of Cardenolides from Streptocaulon juventas. PLANTA MEDICA 2023; 89:1444-1456. [PMID: 37709286 DOI: 10.1055/a-2114-5371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The discovery that Na/K-ATPase acts as a signal transducer led us to investigate the structural diversity of cardiotonic steroids and study their ligand effects. By applying Na/K-ATPase activity assay-guided fractionation, we isolated a total of 20 cardiotonic steroids from Streptocaulon juventas, including an undescribed juventasoside B (10: ) and 19 known cardiotonic steroids. Their structures have been elucidated. Using our platform of purified Na/K-ATPase and an LLC-PK1 cell model, we found that 10: , at a concentration that induces less than 10% Na/K-ATPase inhibition, can stimulate the Na/K-ATPase/Src receptor complex and selectively activate downstream pathways, ultimately altering prostate cancer cell growth. By assessing the ligand effect of the isolated cardiotonic steroids, we found that the regulation of cell viability by the isolated cardiotonic steroids was not associated with their inhibitory potencies against Na/K-ATPase activity but reflected their ligand-binding affinity to the Na/K-ATPase receptor. Based on this discovery, we identified a unique active cardiotonic steroid, digitoxigenin (1: ), and verified that it can protect LLC-PK1 cells from hypoxic injury, implicating its potential use in ischemia/reperfusion injury and inducing collagen synthesis in primary human dermal fibroblast cells, and implicating that compound 2: is the molecular basis of the wound healing activity of S. juventas.
Collapse
Affiliation(s)
- Yunhui Xu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Wanfang Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yanling Yan
- Departments of Clinical & Translational Sciences, Biomedical Sciences and Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Xueyang Jiang
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei, China
| | - Zijian Xie
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Jie Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Peluffo RD, Hernández JA. The Na +,K +-ATPase and its stoichiometric ratio: some thermodynamic speculations. Biophys Rev 2023; 15:539-552. [PMID: 37681108 PMCID: PMC10480117 DOI: 10.1007/s12551-023-01082-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/18/2023] [Indexed: 09/09/2023] Open
Abstract
Almost seventy years after its discovery, the sodium-potassium adenosine triphosphatase (the sodium pump) located in the cell plasma membrane remains a source of novel mechanistic and physiologic findings. A noteworthy feature of this enzyme/transporter is its robust stoichiometric ratio under physiological conditions: it sequentially counter-transports three sodium ions and two potassium ions against their electrochemical potential gradients per each hydrolyzed ATP molecule. Here we summarize some present knowledge about the sodium pump and its physiological roles, and speculate whether energetic constraints may have played a role in the evolutionary selection of its characteristic stoichiometric ratio.
Collapse
Affiliation(s)
- R. Daniel Peluffo
- Group of Biophysical Chemistry, Department of Biological Sciences, CENUR Litoral Norte, Universidad de La República, Rivera 1350, CP: 50000 Salto, Uruguay
| | - Julio A. Hernández
- Biophysics and Systems Biology Section, Department of Cell and Molecular Biology, Facultad de Ciencias, Universidad de La República, Iguá 4225, CP: 11400 Montevideo, Uruguay
| |
Collapse
|
6
|
Abstract
The sodium pump (Na+, K+-ATPase, NKA) is vital for animal cells, as it actively maintains Na+ and K+ electrochemical gradients across the cell membrane. It is a target of cardiotonic steroids (CTSs) such as ouabain and digoxin. As CTSs are almost unique strong inhibitors specific to NKA, a wide range of derivatives has been developed for potential therapeutic use. Several crystal structures have been published for NKA-CTS complexes, but they fail to explain the largely different inhibitory properties of the various CTSs. For instance, although CTSs are thought to inhibit ATPase activity by binding to NKA in the E2P state, we do not know if large conformational changes accompany binding, as no crystal structure is available for the E2P state free of CTS. Here, we describe crystal structures of the BeF3 - complex of NKA representing the E2P ground state and then eight crystal structures of seven CTSs, including rostafuroxin and istaroxime, two new members under clinical trials, in complex with NKA in the E2P state. The conformations of NKA are virtually identical in all complexes with and without CTSs, showing that CTSs bind to a preformed cavity in NKA. By comparing the inhibitory potency of the CTSs measured under four different conditions, we elucidate how different structural features of the CTSs result in different inhibitory properties. The crystal structures also explain K+-antagonism and suggest a route to isoform specific CTSs.
Collapse
|
7
|
Norris MJ, Malhi M, Duan W, Ouyang H, Granados A, Cen Y, Tseng YC, Gubbay J, Maynes J, Moraes TJ. Targeting Intracellular Ion Homeostasis for the Control of Respiratory Syncytial Virus. Am J Respir Cell Mol Biol 2019; 59:733-744. [PMID: 30095982 DOI: 10.1165/rcmb.2017-0345oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of mortality in infants and young children. Despite the RSV disease burden, no vaccine is available, and treatment remains nonspecific. New drug candidates are needed to combat RSV. Toward this goal, we screened over 2,000 compounds to identify approved drugs with novel anti-RSV activity. Cardiac glycosides, inhibitors of the membrane-bound Na+/K+-ATPase, were identified to have anti-RSV activity. Cardiac glycosides diminished RSV infection in human epithelial type 2 cells and in primary human airway epithelial cells grown at an air-liquid interface. Digoxin, a U.S. Food and Drug Administration-approved cardiac glycoside, was also able to inhibit infection of primary nasal epithelial cells with community isolates of RSV. Our results suggest that the antiviral effects of cardiac glycosides may be dependent on changes in the intracellular Na+ and K+ composition. Consistent with this mechanism, we demonstrated that the ionophoric antibiotics salinomycin, valinomycin, and monensin inhibited RSV in human epithelial type 2 cells and primary nasal epithelial cells. Our data indicate that the K+/Na+-sensitive steps in the RSV life cycle occur within the initial 4 hours of viral infection but do not include virus binding/entry. Rather, our findings demonstrated a negative effect on the RSV transcription and/or replication process. Overall, this work suggests that targeting intracellular ion concentrations offers a novel antiviral strategy.
Collapse
Affiliation(s)
- Michael J Norris
- 1 Department of Laboratory Medicine and Pathobiology and.,2 Program in Translational Medicine
| | - Manpreet Malhi
- 3 Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.,4 Program in Molecular Medicine
| | | | | | - Andrea Granados
- 1 Department of Laboratory Medicine and Pathobiology and.,5 Public Health Ontario, Toronto, Ontario, Canada
| | | | | | | | - Jason Maynes
- 4 Program in Molecular Medicine.,6 Department of Anesthesia and Pain Medicine, and
| | - Theo J Moraes
- 1 Department of Laboratory Medicine and Pathobiology and.,2 Program in Translational Medicine.,7 Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada; and
| |
Collapse
|
8
|
Jones PL, Petschenka G, Flacht L, Agrawal AA. Cardenolide Intake, Sequestration, and Excretion by the Monarch Butterfly along Gradients of Plant Toxicity and Larval Ontogeny. J Chem Ecol 2019; 45:264-277. [PMID: 30793231 DOI: 10.1007/s10886-019-01055-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/24/2018] [Accepted: 02/12/2019] [Indexed: 11/29/2022]
Abstract
Monarch butterflies, Danaus plexippus, migrate long distances over which they encounter host plants that vary broadly in toxic cardenolides. Remarkably little is understood about the mechanisms of sequestration in Lepidoptera that lay eggs on host plants ranging in such toxins. Using closely-related milkweed host plants that differ more than ten-fold in cardenolide concentrations, we mechanistically address the intake, sequestration, and excretion of cardenolides by monarchs. We show that on high cardenolide plant species, adult butterflies saturate in cardenolides, resulting in lower concentrations than in leaves, while on low cardenolide plants, butterflies concentrate toxins. Butterflies appear to focus their sequestration on particular compounds, as the diversity of cardenolides is highest in plant leaves, lower in frass, and least in adult butterflies. Among the variety of cardenolides produced by the plant, sequestered compounds may be less toxic to the butterflies themselves, as they are more polar on average than those in leaves. In accordance with this, results from an in vitro assay based on inhibition of Na+/K+ ATPase (the physiological target of cardenolides) showed that on two milkweed species, including the high cardenolide A. perennis, extracts from butterflies have lower inhibitory effects than leaves when standardized by cardenolide concentration, indicating selective sequestration of less toxic compounds from these host plants. To understand how ontogeny shapes sequestration, we examined cardenolide concentrations in caterpillar body tissues and hemolymph over the course of development. Caterpillars sequestered higher concentrations of cardenolides as early instars than as late instars, but within the fifth instar, concentration increased with body mass. Although it appears that large amounts of sequestration occurs in early instars, a host switching experiment revealed that caterpillars can compensate for feeding on low cardenolide host plants with substantial sequestration in the fifth instar. We highlight commonalities and striking differences in the mechanisms of sequestration depending on host plant chemistry and developmental stage, which have important implications for monarch defense.
Collapse
Affiliation(s)
| | - Georg Petschenka
- Institute for Insect Biotechnology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Lara Flacht
- Department for Structural Infection Biology, Centre for Structural Systems Biology, Hamburg, Germany & Helmholtz-Centre for Infection Research, Braunschweig, Germany
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Anurag A Agrawal
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Department of Entomology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Petrushanko IY, Mitkevich VA, Lakunina VA, Anashkina AA, Spirin PV, Rubtsov PM, Prassolov VS, Bogdanov NB, Hänggi P, Fuller W, Makarov AA, Bogdanova A. Cysteine residues 244 and 458-459 within the catalytic subunit of Na,K-ATPase control the enzyme's hydrolytic and signaling function under hypoxic conditions. Redox Biol 2017; 13:310-319. [PMID: 28601781 PMCID: PMC5470536 DOI: 10.1016/j.redox.2017.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/16/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022] Open
Abstract
Our previous findings suggested that reversible thiol modifications of cysteine residues within the actuator (AD) and nucleotide binding domain (NBD) of the Na,K-ATPase may represent a powerful regulatory mechanism conveying redox- and oxygen-sensitivity of this multifunctional enzyme. S-glutathionylation of Cys244 in the AD and Cys 454-458-459 in the NBD inhibited the enzyme and protected cysteines' thiol groups from irreversible oxidation under hypoxic conditions. In this study mutagenesis approach was used to assess the role these cysteines play in regulation of the Na,K-ATPase hydrolytic and signaling functions. Several constructs of mouse α1 subunit of the Na,K-ATPase were produced in which Cys244, Cys 454-458-459 or Cys 244-454-458-459 were replaced by alanine. These constructs were expressed in human HEK293 cells. Non-transfected cells and those expressing murine α1 subunit were exposed to hypoxia or treated with oxidized glutathione (GSSG). Both conditions induced inhibition of the wild type Na,K-ATPase. Enzymes containing mutated mouse α1 lacking Cys244 or all four cysteines (Cys 244-454-458-459) were insensitive to hypoxia. Inhibitory effect of GSSG was observed for wild type murine Na,K-ATPase, but was less pronounced in Cys454-458-459Ala mutant and completely absent in the Cys244Ala and Cys 244-454-458-459Ala mutants. In cells, expressing wild type enzyme, ouabain induced activation of Src and Erk kinases under normoxic conditions, whereas under hypoxic conditions this effect was inversed. Cys454-458-459Ala substitution abolished Src kinase activation in response to ouabain treatment, uncoupled Src from Erk signaling, and interfered with O2-sensitivity of Na,K-ATPase signaling function. Moreover, modeling predicted that S-glutathionylation of Cys 458 and 459 should prevent inhibitory binding of Src to NBD. Our data indicate for the first time that cysteine residues within the AD and NBD influence hydrolytic as well as receptor function of the Na,K-ATPase and alter responses of the enzyme to hypoxia or upon treatment with cardiotonic steroids.
Collapse
Affiliation(s)
- Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valentina A Lakunina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia A Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel V Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Peter M Rubtsov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir S Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay B Bogdanov
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Pascal Hänggi
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - William Fuller
- Cardiovascular and Diabetes Medicine, School of Medicine, University of Dundee, Dundee, UK
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Lestari SW, Miati DN, Seoharso P, Sugiyanto R, Pujianto DA. Sperm Na+, K+-ATPase α4 and plasma membrane Ca2+-ATPase (PMCA) 4 regulation in asthenozoospermia. Syst Biol Reprod Med 2017; 63:294-302. [DOI: 10.1080/19396368.2017.1348565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Silvia W. Lestari
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Dessy Noor Miati
- Master Program for Biomedical Sciences, Faculty of Medicine, Universitas Indonesi, Jakara, Indonesia
| | - P. Seoharso
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - R. Sugiyanto
- Department of Medical Biochemistry, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Dwi A. Pujianto
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
11
|
Wei X, Shao B, He Z, Ye T, Luo M, Sang Y, Liang X, Wang W, Luo S, Yang S, Zhang S, Gong C, Gou M, Deng H, Zhao Y, Yang H, Deng S, Zhao C, Yang L, Qian Z, Li J, Sun X, Han J, Jiang C, Wu M, Zhang Z. Cationic nanocarriers induce cell necrosis through impairment of Na(+)/K(+)-ATPase and cause subsequent inflammatory response. Cell Res 2015; 25:237-53. [PMID: 25613571 PMCID: PMC4650577 DOI: 10.1038/cr.2015.9] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/18/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022] Open
Abstract
Nanocarriers with positive surface charges are known for their toxicity which has limited their clinical applications. The mechanism underlying their toxicity, such as the induction of inflammatory response, remains largely unknown. In the present study we found that injection of cationic nanocarriers, including cationic liposomes, PEI, and chitosan, led to the rapid appearance of necrotic cells. Cell necrosis induced by cationic nanocarriers is dependent on their positive surface charges, but does not require RIP1 and Mlkl. Instead, intracellular Na+ overload was found to accompany the cell death. Depletion of Na+ in culture medium or pretreatment of cells with the Na+/K+-ATPase cation-binding site inhibitor ouabain, protected cells from cell necrosis. Moreover, treatment with cationic nanocarriers inhibited Na+/K+-ATPase activity both in vitro and in vivo. The computational simulation showed that cationic carriers could interact with cation-binding site of Na+/K+-ATPase. Mice pretreated with a small dose of ouabain showed improved survival after injection of a lethal dose of cationic nanocarriers. Further analyses suggest that cell necrosis induced by cationic nanocarriers and the resulting leakage of mitochondrial DNA could trigger severe inflammation in vivo, which is mediated by a pathway involving TLR9 and MyD88 signaling. Taken together, our results reveal a novel mechanism whereby cationic nanocarriers induce acute cell necrosis through the interaction with Na+/K+-ATPase, with the subsequent exposure of mitochondrial damage-associated molecular patterns as a key event that mediates the inflammatory responses. Our study has important implications for evaluating the biocompatibility of nanocarriers and designing better and safer ones for drug delivery.
Collapse
Affiliation(s)
- Xiawei Wei
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Bin Shao
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Zhiyao He
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Tinghong Ye
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Min Luo
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Yaxiong Sang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Xiao Liang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Wei Wang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Shuntao Luo
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Shengyong Yang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Shuang Zhang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Changyang Gong
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Maling Gou
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Hongxing Deng
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Yinglan Zhao
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Hanshuo Yang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Senyi Deng
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Chengjian Zhao
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Li Yang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Zhiyong Qian
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Jiong Li
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry and Molecular Biology, Peking Union Medical College, Beijing 100005, China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting of Ministry of Education, State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, China
| |
Collapse
|
12
|
Morrill GA, Kostellow AB, Gupta RK. A computational analysis of non-genomic plasma membrane progestin binding proteins: signaling through ion channel-linked cell surface receptors. Steroids 2013; 78:1233-44. [PMID: 24012561 DOI: 10.1016/j.steroids.2013.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 12/18/2022]
Abstract
A number of plasma membrane progestin receptors linked to non-genomic events have been identified. These include: (1) α1-subunit of the Na(+)/K(+)-ATPase (ATP1A1), (2) progestin binding PAQR proteins, (3) membrane progestin receptor alpha (mPRα), (4) progesterone receptor MAPR proteins and (5) the association of nuclear receptor (PRB) with the plasma membrane. This study compares: the pore-lining regions (ion channels), transmembrane (TM) helices, caveolin binding (CB) motifs and leucine-rich repeats (LRRs) of putative progesterone receptors. ATP1A1 contains 10 TM helices (TM-2, 4, 5, 6 and 8 are pores) and 4 CB motifs; whereas PAQR5, PAQR6, PAQR7, PAQRB8 and fish mPRα each contain 8 TM helices (TM-3 is a pore) and 2-4 CB motifs. MAPR proteins contain a single TM helix but lack pore-lining regions and CB motifs. PRB contains one or more TM helices in the steroid binding region, one of which is a pore. ATP1A1, PAQR5/7/8, mPRα, and MAPR-1 contain highly conserved leucine-rich repeats (LRR, common to plant membrane proteins) that are ligand binding sites for ouabain-like steroids associated with LRR kinases. LRR domains are within or overlap TM helices predicted to be ion channels (pore-lining regions), with the variable LRR sequence either at the C-terminus (PAQR and MAPR-1) or within an external loop (ATP1A1). Since ouabain-like steroids are produced by animal cells, our findings suggest that ATP1A1, PAQR5/7/8 and mPRα represent ion channel-linked receptors that respond physiologically to ouabain-like steroids (not progestin) similar to those known to regulate developmental and defense-related processes in plants.
Collapse
Affiliation(s)
- Gene A Morrill
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
13
|
Petschenka G, Fandrich S, Sander N, Wagschal V, Boppré M, Dobler S. STEPWISE EVOLUTION OF RESISTANCE TO TOXIC CARDENOLIDES VIA GENETIC SUBSTITUTIONS IN THE NA+/K+-ATPASE OF MILKWEED BUTTERFLIES (LEPIDOPTERA: DANAINI). Evolution 2013; 67:2753-61. [DOI: 10.1111/evo.12152] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Georg Petschenka
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| | - Steffi Fandrich
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| | - Nils Sander
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| | - Vera Wagschal
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| | - Michael Boppré
- Forstzoologisches Institut; Albert-Ludwigs-Universität; 79085; Freiburg; Germany
| | - Susanne Dobler
- Biozentrum Grindel; Martin-Luther-King-Platz 3; 20146; Hamburg; Germany
| |
Collapse
|
14
|
Zhen Y, Aardema ML, Medina EM, Schumer M, Andolfatto P. Parallel molecular evolution in an herbivore community. Science 2012; 337:1634-7. [PMID: 23019645 PMCID: PMC3770729 DOI: 10.1126/science.1226630] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Numerous insects have independently evolved the ability to feed on plants that produce toxic secondary compounds called cardenolides and can sequester these compounds for use in their defense. We surveyed the protein target for cardenolides, the alpha subunit of the sodium pump, Na(+),K(+)-ATPase (ATPα), in 14 species that feed on cardenolide-producing plants and 15 outgroups spanning three insect orders. Despite the large number of potential targets for modulating cardenolide sensitivity, amino acid substitutions associated with host-plant specialization are highly clustered, with many parallel substitutions. Additionally, we document four independent duplications of ATPα with convergent tissue-specific expression patterns. We find that unique substitutions are disproportionately associated with recent duplications relative to parallel substitutions. Together, these findings support the hypothesis that adaptation tends to take evolutionary paths that minimize negative pleiotropy.
Collapse
Affiliation(s)
- Ying Zhen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Matthew L. Aardema
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Edgar M. Medina
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá 11001, Colombia
| | - Molly Schumer
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Peter Andolfatto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
15
|
Community-wide convergent evolution in insect adaptation to toxic cardenolides by substitutions in the Na,K-ATPase. Proc Natl Acad Sci U S A 2012; 109:13040-5. [PMID: 22826239 DOI: 10.1073/pnas.1202111109] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The extent of convergent molecular evolution is largely unknown, yet is critical to understanding the genetics of adaptation. Target site insensitivity to cardenolides is a prime candidate for studying molecular convergence because herbivores in six orders of insects have specialized on these plant poisons, which gain their toxicity by blocking an essential transmembrane carrier, the sodium pump (Na,K-ATPase). We investigated gene sequences of the Na,K-ATPase α-subunit in 18 insects feeding on cardenolide-containing plants (spanning 15 genera and four orders) to screen for amino acid substitutions that might lower sensitivity to cardenolides. The replacement N122H that was previously shown to confer resistance in the monarch butterfly (Danaus plexippus) and Chrysochus leaf beetles was found in four additional species, Oncopeltus fasciatus and Lygaeus kalmii (Heteroptera, Lygaeidae), Labidomera clivicollis (Coleoptera, Chrysomelidae), and Liriomyza asclepiadis (Diptera, Agromyzidae). Thus, across 300 Myr of insect divergence, specialization on cardenolide-containing plants resulted in molecular convergence for an adaptation likely involved in coevolution. Our screen revealed a number of other substitutions connected to cardenolide binding in mammals. We confirmed that some of the particular substitutions provide resistance to cardenolides by introducing five distinct constructs of the Drosophila melanogaster gene into susceptible eucaryotic cells under an ouabain selection regime. These functional assays demonstrate that combined substitutions of Q(111) and N(122) are synergistic, with greater than twofold higher resistance than either substitution alone and >12-fold resistance over the wild type. Thus, even across deep phylogenetic branches, evolutionary degrees of freedom seem to be limited by physiological constraints, such that the same molecular substitutions confer adaptation.
Collapse
|
16
|
Xiong C, Li JX, Guo HC, Zhang LN, Guo W, Meng J, Wang YL. The H1–H2 domain of the α1 isoform of Na+–K+–ATPase is involved in ouabain toxicity in rat ventricular myocytes. Toxicol Appl Pharmacol 2012; 262:32-42. [DOI: 10.1016/j.taap.2012.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
|
17
|
Aardema ML, Zhen Y, Andolfatto P. The evolution of cardenolide-resistant forms of Na⁺,K⁺ -ATPase in Danainae butterflies. Mol Ecol 2011; 21:340-9. [PMID: 22126595 DOI: 10.1111/j.1365-294x.2011.05379.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cardenolides are a class of plant secondary compounds that inhibit the proper functioning of the Na(+) , K(+) -ATPase enzyme in susceptible animals. Nonetheless, many insect species are able to sequester cardenolides for their own defence. These include butterflies in the subfamily Danainae (Family: Nymphalidae) such as the monarch (Danaus plexippus). Previous studies demonstrated that monarchs harbour an asparagine (N) to histidine (H) substitution (N122H) in the α subunit of Na(+) , K(+) -ATPase (ATPα) that reduces this enzyme's sensitivity to cardenolides. More recently, it has been suggested that at ATPα position 111, monarchs may also harbour a leucine (L)/glutamine (Q) polymorphism. This later amino acid could also contribute to cardenolide insensitivity. However, here we find that incorrect annotation of the initially reported DNA sequence for ATPα has led to several erroneous conclusions. Using a population genetic and phylogenetic analysis of monarchs and their close relatives, we show that an ancient Q111L substitution occurred prior to the radiation of all Danainae, followed by a second substitution at the same site to valine (V), which arose before the diversification of the Danaus genus. In contrast, N122H appears to be a recent substitution specific to monarchs. Surprisingly, examination of a broader insect phylogeny reveals that the same progression of amino acid substitutions (Q111L → L111V + N122H) has also occurred in Chyrsochus beetles (Family: Chrysomelidae, Subfamily: Eumolpinae) that feed on cardenolide-containing host plants. The parallel pattern of amino acid substitution in these two distantly related lineages is consistent with an adaptive role for these substitutions in reducing cardenolide sensitivity and suggests that their temporal order may be limited by epistatic interactions.
Collapse
Affiliation(s)
- Matthew L Aardema
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | |
Collapse
|
18
|
Dobler S, Petschenka G, Pankoke H. Coping with toxic plant compounds--the insect's perspective on iridoid glycosides and cardenolides. PHYTOCHEMISTRY 2011; 72:1593-1604. [PMID: 21620425 DOI: 10.1016/j.phytochem.2011.04.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 03/30/2011] [Accepted: 04/20/2011] [Indexed: 05/27/2023]
Abstract
Specializing on host plants with toxic secondary compounds enforces specific adaptation in insect herbivores. In this review, we focus on two compound classes, iridoid glycosides and cardenolides, which can be found in the food plants of a large number of insect species that display various degrees of adaptation to them. These secondary compounds have very different modes of action: Iridoid glycosides are usually activated in the gut of the herbivores by β-glucosidases that may either stem from the food plant or be present in the gut as standard digestive enzymes. Upon cleaving, the unstable aglycone is released that unspecifically acts by crosslinking proteins and inhibiting enzymes. Cardenolides, on the other hand, are highly specific inhibitors of an essential ion carrier, the sodium pump. In insects exposed to both kinds of toxins, carriers either enabling the safe storage of the compounds away from the activating enzymes or excluding the toxins from sensitive tissues, play an important role that deserves further analysis. To avoid toxicity of iridoid glycosides, repression of activating enzymes emerges as a possible alternative strategy. Cardenolides, on the other hand, may lose their toxicity if their target site is modified and this strategy has evolved multiple times independently in cardenolide-adapted insects.
Collapse
Affiliation(s)
- Susanne Dobler
- Biocenter Grindel, Hamburg University, Martin-Luther-King Platz 3, 20146 Hamburg, Germany.
| | | | | |
Collapse
|
19
|
Shin JT, Pomerantsev EV, Mably JD, MacRae CA. High-resolution cardiovascular function confirms functional orthology of myocardial contractility pathways in zebrafish. Physiol Genomics 2010; 42:300-9. [PMID: 20388839 PMCID: PMC3032279 DOI: 10.1152/physiolgenomics.00206.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 04/08/2010] [Indexed: 11/22/2022] Open
Abstract
Phenotype-driven screens in larval zebrafish have transformed our understanding of the molecular basis of cardiovascular development. Screens to define the genetic determinants of physiological phenotypes have been slow to materialize as a result of the limited number of validated in vivo assays with relevant dynamic range. To enable rigorous assessment of cardiovascular physiology in living zebrafish embryos, we developed a suite of software tools for the analysis of high-speed video microscopic images and validated these, using established cardiomyopathy models in zebrafish as well as modulation of the nitric oxide (NO) pathway. Quantitative analysis in wild-type fish exposed to NO or in a zebrafish model of dilated cardiomyopathy demonstrated that these tools detect significant differences in ventricular chamber size, ventricular performance, and aortic flow velocity in zebrafish embryos across a large dynamic range. These methods also were able to establish the effects of the classic pharmacological agents isoproterenol, ouabain, and verapamil on cardiovascular physiology in zebrafish embryos. Sequence conservation between zebrafish and mammals of key amino acids in the pharmacological targets of these agents correlated with the functional orthology of the physiological response. These data provide evidence that the quantitative evaluation of subtle physiological differences in zebrafish can be accomplished at a resolution and with a dynamic range comparable to those achieved in mammals and provides a mechanism for genetic and small-molecule dissection of functional pathways in this model organism.
Collapse
Affiliation(s)
- Jordan T Shin
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Cardiovascular Research Center, 149 13th Street, Charlestown, MA 02129, USA.
| | | | | | | |
Collapse
|
20
|
Harrington MG, Fonteh AN, Arakaki X, Cowan RP, Ecke LE, Foster H, Hühmer AF, Biringer RG. Capillary endothelial Na(+), K(+), ATPase transporter homeostasis and a new theory for migraine pathophysiology. Headache 2010; 50:459-78. [PMID: 19845787 PMCID: PMC8020446 DOI: 10.1111/j.1526-4610.2009.01551.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Cerebrospinal fluid sodium concentration ([Na(+)](csf)) increases during migraine, but the cause of the increase is not known. OBJECTIVE Analyze biochemical pathways that influence [Na(+)](csf) to identify mechanisms that are consistent with migraine. METHOD We reviewed sodium physiology and biochemistry publications for links to migraine and pain. RESULTS Increased capillary endothelial cell (CEC) Na(+), K(+), -ATPase transporter (NKAT) activity is probably the primary cause of increased [Na(+)](csf). Physiological fluctuations of all NKAT regulators in blood, many known to be involved in migraine, are monitored by receptors on the luminal wall of brain CECs; signals are then transduced to their abluminal NKATs that alter brain extracellular sodium ([Na(+)](e)) and potassium ([K(+)](e)). CONCLUSIONS We propose a theoretical mechanism for aura and migraine when NKAT activity shifts outside normal limits: (1) CEC NKAT activity below a lower limit increases [K(+)](e), facilitates cortical spreading depression, and causes aura; (2) CEC NKAT activity above an upper limit elevates [Na(+)](e), increases neuronal excitability, and causes migraine; (3) migraine-without-aura may arise from CEC NKAT over-activity without requiring a prior decrease in activity and its consequent spreading depression; (4) migraine triggers disturb, and treatments improve, CEC NKAT homeostasis; (5) CEC NKAT-induced regulation of neural and vasomotor excitability coordinates vascular and neuronal activities, and includes occasional pathology from CEC NKAT-induced apoptosis or cerebral infarction.
Collapse
Affiliation(s)
- Michael G Harrington
- Huntington Medical Research Institutes - Molecular Neurology, Pasadena, CA 91101, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
NEWTON LARISSAD, KRISHNAKUMAR SULOCHANA, MENON AJITKUMARGOPINADHA, KASTELIC JOHNP, VAN DER HOORN FRANSA, THUNDATHIL JACOBC. Na+/K+ATPase regulates sperm capacitation through a mechanism involving kinases and redistribution of its testis-specific isoform. Mol Reprod Dev 2010; 77:136-48. [PMID: 19834983 PMCID: PMC5059152 DOI: 10.1002/mrd.21114] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Incubation of bovine sperm with ouabain, an endogenous cardiac glycoside that inhibits both the ubiquitous (ATP1A1) and testis-specific alpha4 (ATP1A4) isoforms of Na(+)/K(+)ATPase, induces tyrosine phosphorylation and capacitation. The objectives of this study were to investigate: (1) fertilizing ability of bovine sperm capacitated by incubating with ouabain; (2) involvement of ATP1A4 in this process; and (3) signaling mechanisms involved in the regulation of sperm capacitation induced by inhibition of Na(+)/K(+)ATPase activity. Fresh sperm capacitated by incubating with ouabain (inhibits both ATP1A1 and ATP1A4) or with anti-ATP1A4 immunoserum fertilized bovine oocytes in vitro. Capacitation was associated with relocalization of ATP1A4 from the entire sperm head to the post-acrosomal region. To investigate signaling mechanisms involved in oubain-induced regulation of sperm capacitation, sperm preparations were pre-incubated with inhibitors of specific signaling molecules, followed by incubation with ouabain. The phosphotyrosine content of sperm preparations was determined by immunoblotting, and capacitation status of these sperm preparations were evaluated through an acrosome reaction assay. We inferred that Na(+)/K(+)ATPase was involved in the regulation of tyrosine phosphorylation in sperm proteins through receptor tyrosine kinase, nonreceptor type protein kinase, and protein kinases A and C. In conclusion, inhibition of Na(+)/K(+)ATPase induced tyrosine phosphorylation and capacitation through multiple signal transduction pathways, imparting fertilizing ability in bovine sperm. To our knowledge, this is the first report documenting both the involvement of ATP1A4 in the regulation of bovine sperm capacitation and that fresh bovine sperm capacitated by the inhibition of Na(+)/K(+)ATPase can fertilize oocytes in vitro.
Collapse
Affiliation(s)
- LARISSA D. NEWTON
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - SULOCHANA KRISHNAKUMAR
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - AJITKUMAR GOPINADHA MENON
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - JOHN P. KASTELIC
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - FRANS A. VAN DER HOORN
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - JACOB C. THUNDATHIL
- Faculty of Veterinary Medicine, Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
22
|
Crystal structure of the sodium-potassium pump (Na+,K+-ATPase) with bound potassium and ouabain. Proc Natl Acad Sci U S A 2009; 106:13742-7. [PMID: 19666591 DOI: 10.1073/pnas.0907054106] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sodium-potassium pump (Na(+),K(+)-ATPase) is responsible for establishing Na(+) and K(+) concentration gradients across the plasma membrane and therefore plays an essential role in, for instance, generating action potentials. Cardiac glycosides, prescribed for congestive heart failure for more than 2 centuries, are efficient inhibitors of this ATPase. Here we describe a crystal structure of Na(+),K(+)-ATPase with bound ouabain, a representative cardiac glycoside, at 2.8 A resolution in a state analogous to E2.2K(+).Pi. Ouabain is deeply inserted into the transmembrane domain with the lactone ring very close to the bound K(+), in marked contrast to previous models. Due to antagonism between ouabain and K(+), the structure represents a low-affinity ouabain-bound state. Yet, most of the mutagenesis data obtained with the high-affinity state are readily explained by the present crystal structure, indicating that the binding site for ouabain is essentially the same. According to a homology model for the high affinity state, it is a closure of the binding cavity that confers a high affinity.
Collapse
|
23
|
Wang L, Dennis AT, Trieu P, Charron F, Ethier N, Hebert TE, Wan X, Ficker E. Intracellular potassium stabilizes human ether-à-go-go-related gene channels for export from endoplasmic reticulum. Mol Pharmacol 2009; 75:927-37. [PMID: 19139152 PMCID: PMC2684933 DOI: 10.1124/mol.108.053793] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 01/12/2009] [Indexed: 11/22/2022] Open
Abstract
Several therapeutic compounds have been identified that prolong the QT interval on the electrocardiogram and cause torsade de pointes arrhythmias not by direct block of the cardiac potassium channel human ether-à-go-go-related gene (hERG) but via disruption of hERG trafficking to the cell surface membrane. One example of a clinically important compound class that potently inhibits hERG trafficking are cardiac glycosides. We have shown previously that inhibition of hERG trafficking by cardiac glycosides is initiated via direct block of Na(+)/K(+) pumps and not via off-target interactions with hERG or any other protein. However, it was not known how pump inhibition at the cell surface is coupled to hERG processing in the endoplasmic reticulum. Here, we show that depletion of intracellular K(+)-either indirectly after long-term exposure to cardiac glycosides or directly after exposure to gramicidin in low sodium media-is sufficient to disrupt hERG trafficking. In K(+)-depleted cells, hERG trafficking can be restored by permeating K(+) or Rb(+) ions, incubation at low temperature, exposure to the pharmacological chaperone astemizole, or specific mutations in the selectivity filter of hERG. Our data suggest a novel mechanism for drug-induced trafficking inhibition in which cardiac glycosides produce a [K(+)](i)-mediated conformational defect directly in the hERG channel protein.
Collapse
Affiliation(s)
- Lu Wang
- Rammelkamp Center for Education and Research, MetroHealth Campus, Case Western Reserve University, Cleveland, Ohio 44109, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Petrushanko IY, Bogdanov NB, Lapina N, Boldyrev AA, Gassmann M, Bogdanova AY. Oxygen-induced Regulation of Na/K ATPase in cerebellar granule cells. ACTA ACUST UNITED AC 2007; 130:389-98. [PMID: 17893192 PMCID: PMC2151649 DOI: 10.1085/jgp.200709783] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adjustment of the Na/K ATPase activity to changes in oxygen availability is a matter of survival for neuronal cells. We have used freshly isolated rat cerebellar granule cells to study oxygen sensitivity of the Na/K ATPase function. Along with transport and hydrolytic activity of the enzyme we have monitored alterations in free radical production, cellular reduced glutathione, and ATP levels. Both active K(+) influx and ouabain-sensitive inorganic phosphate production were maximal within the physiological pO(2) range of 3-5 kPa. Transport and hydrolytic activity of the Na/K ATPase was equally suppressed under hypoxic and hyperoxic conditions. The ATPase response to changes in oxygenation was isoform specific and limited to the alpha1-containing isozyme whereas alpha2/3-containing isozymes were oxygen insensitive. Rapid activation of the enzyme within a narrow window of oxygen concentrations did not correlate with alterations in the cellular ATP content or substantial shifts in redox potential but was completely abolished when NO production by the cells was blocked by l-NAME. Taken together our observations suggest that NO and its derivatives are involved in maintenance of high Na/K ATPase activity under physiological conditions.
Collapse
Affiliation(s)
- Irina Yu Petrushanko
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Centre of Integrative Human Physiology, University of Zurich, Zurich CH-8057, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Two H(+), K(+)-adenosine triphosphatase (ATPase) proteins participate in K(+) absorption and H(+) secretion in the renal medulla. Both the gastric (HKalpha(1)) and colonic (HKalpha(2)) H(+),K(+)-ATPases have been localized and characterized by a number of techniques, and are known to be highly regulated in response to acid-base and electrolyte disturbances. Both ATPases are dimers of composition alpha/beta that localize to the apical membrane and both interact with the tetraspanin protein CD63. Although CD63 interacts with the carboxy-terminus of the alpha-subunit of the colonic H(+),K(+)-ATPase, it interacts with the beta-subunit of the gastric H(+),K(+)-ATPase. Pharmacologically, both ATPases are distinct; for example, the gastric H(+),K(+)-ATPase is inhibited by Sch-28080, but the colonic H(+),K(+)-ATPase is inhibited by ouabain (a classic inhibitor of the Na(+)-pump) and is completely insensitive to Sch-28080. The alpha-subunit of the colonic H(+),K(+)-ATPase is the only subunit of the X(+),K(+)-ATPase superfamily that has 3 different splice variants that emerge by deletion or elongation of the amino-terminus. The messenger RNA and protein of one of these splice variants (HKalpha(2C)) is specifically up-regulated in newborn rats and becomes undetectable in adult rats. Therefore, HKalpha(2), in addition to its role in potassium and acid-base homeostasis, appears to play a significant role in early growth and development. Finally, because chronic hypokalemia appears to be the most potent stimulus for upregulation of HKalpha(2), we propose that the HKalpha(2) participates importantly in the maintenance of chronic metabolic alkalosis.
Collapse
Affiliation(s)
- Juan Codina
- Section on Nephrology, Department of Internal Medicine, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
26
|
Jung J, Kim M, Choi S, Kim MJ, Suh JK, Choi EC, Lee K. Molecular mechanism of cofilin dephosphorylation by ouabain. Cell Signal 2006; 18:2033-40. [PMID: 16713181 DOI: 10.1016/j.cellsig.2006.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/20/2006] [Accepted: 03/24/2006] [Indexed: 01/15/2023]
Abstract
We previously reported that phosphorylated cofilin-triosephosphate isomerase (TPI) complex interacts with Na,K-ATPase and enhances the pump activity through the phosphorylation of cofilin via Rho-mediated signaling pathway. In this study, we tested the hypothesis that the dephosphorylation of cofilin may be induced through Na,K-ATPase inhibition by ouabain. The phosphorylation level of cofilin by ouabain which decreases in a time- and dose-dependent manner in various human cell lines, remains unchanged by pretreatment with Src inhibitor, PP2; epidermal growth factor receptor (EGFR) inhibitor, AG1478; Raf-1 kinase (Raf) inhibitor, GW5074; and ERK kinase (MEK) inhibitor, PD98059, and by transfection of Ras dominant negative mutant (RasN17). This suggests that ouabain dephosphorylates cofilin through the Src/EGFR/Ras/Raf/MEK pathway. Ouabain activates Ras/Raf/MEK pathway, but down-regulates Rho kinase (ROCK)/LIM kinase (LIMK)/cofilin pathway, implying that there may be a cross-talk by ouabain between the Ras/Raf/MEK and the ROCK/LIMK/cofilin pathways. Immunofluorescence and flow cytometry suggest that ouabain-induced active form of cofilin may be involved in cytoskeletal reorganization and cell volume regulation. Thus, these findings demonstrate a new molecular mechanism for the dephosphorylation of cofilin through the inhibition of Na,K-ATPase by ouabain.
Collapse
Affiliation(s)
- Jaehoon Jung
- College of Pharmacy, Center for Cell Signaling Research and Division of Molecular Life Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Artigas P, Gadsby DC. Ouabain affinity determining residues lie close to the Na/K pump ion pathway. Proc Natl Acad Sci U S A 2006; 103:12613-8. [PMID: 16894161 PMCID: PMC1567927 DOI: 10.1073/pnas.0602720103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Na/K pump establishes essential ion concentration gradients across animal cell membranes. Cardiotonic steroids, such as ouabain, are specific inhibitors of the Na/K pump. We exploited the marine toxin, palytoxin, to probe both the ion translocation pathway through the Na/K pump and the site of its interaction with ouabain. Palytoxin uncouples the pump's gates, which normally open strictly alternately, thus allowing both gates to sometimes be open, so transforming the pump into an ion channel. Palytoxin therefore permits electrophysiological analysis of even a single Na/K pump. We used outside-out patch recording of Xenopus alpha1beta3 Na/K pumps, which were made ouabain-resistant by point mutation, after expressing them in Xenopus oocytes. Endogenous, ouabain-sensitive, Xenopus alpha1beta3 Na/K pumps were silenced by continuous exposure to ouabain. We found that side-chain charge of two residues at either end of the alpha subunit's first extracellular loop, known to make a major contribution to ouabain affinity, strongly influenced conductance of single palytoxin-bound pump-channels by an electrostatic mechanism. The effects were mimicked by modification of cysteines introduced at those two positions with variously charged methanethiosulfonate reagents. The consequences of these modifications demonstrate that both residues lie in a wide vestibule near the mouth of the pump's ion pathway. Bound ouabain protects the site with the strongest influence on conductance from methanethiosulfonate modification, while leaving the site with the weaker influence unprotected. The results suggest a method for mapping the footprint of bound cardiotonic steroid on the extracellular surface of the Na/K pump.
Collapse
Affiliation(s)
- Pablo Artigas
- Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10021
| | - David C. Gadsby
- Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, New York, NY 10021
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Rodacker V, Toustrup-Jensen M, Vilsen B. Mutations Phe785Leu and Thr618Met in Na+,K+-ATPase, associated with familial rapid-onset dystonia parkinsonism, interfere with Na+ interaction by distinct mechanisms. J Biol Chem 2006; 281:18539-48. [PMID: 16632466 DOI: 10.1074/jbc.m601780200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na(+),K(+)-ATPase plays key roles in brain function. Recently, missense mutations in the Na(+),K(+)-ATPase were found associated with familial rapid-onset dystonia parkinsonism (FRDP). Here, we have characterized the functional consequences of FRDP mutations Phe785Leu and Thr618Met. Both mutations lead to functionally altered, but active, Na(+),K(+)-pumps, that display reduced apparent affinity for cytoplasmic Na(+), but the underlying mechanism differs between the mutants. In Phe785Leu, the interaction of the E(1) form with Na(+) is defective, and the E(1)-E(2) equilibrium is not displaced. In Thr618Met, the Na(+) affinity is reduced because of displacement of the conformational equilibrium in favor of the K(+)-occluded E(2)(K(2)) form. In both mutants, K(+) interaction at the external activating sites of the E(2)P phosphoenzyme is normal. The change of cellular Na(+) homeostasis is likely a major factor contributing to the development of FRDP in patients carrying the Phe785Leu or Thr618Met mutation. Phe785Leu moreover interferes with Na(+) interaction on the extracellular side and reduces the affinity for ouabain significantly. Analysis of two additional Phe(785) mutants, Phe785Leu/Leu786Phe and Phe785Tyr, demonstrated that the aromatic function of the side chain, as well as its exact position, is critical for Na(+) and ouabain binding. The effects of substituting Phe(785) could be explained by structural modeling, demonstrating that Phe(785) participates in a hydrophobic network between three transmembrane segments. Thr(618) is located in the cytoplasmic part of the molecule near the catalytic site, and the structural modeling indicates that the Thr618Met mutation interferes with the bonding pattern in the catalytic site in the E(1) form, thereby destabilizing E(1) relative to E(2)(K(2)).
Collapse
Affiliation(s)
- Vivien Rodacker
- Department of Physiology, Institute of Physiology and Biophysics, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
29
|
Abstract
The Na,K-pump was discovered about 50 years ago. Since then there has been a methodic investigation of its structure and functional characteristics. The development of the Albers-Post model for the transport cycle was a milestone that provided the framework for detailed understanding of the transport process. The pump is composed of 2 subunits that exist in the membrane as an alphabeta heterodimer. All known enzymatic functions of the pump occur through the alpha subunit. Although necessary for activity, the complete role of the beta subunit is not understood fully. Numerous studies have established that the alphabeta protomer is the minimal functional unit needed to perform the Albers-Post reaction cycle. However, higher orders of aggregation [(alphabeta)n] are commonly detected. There is little evidence that oligomerization has functional consequence for ion transport. The Na+,K+-adenosine triphosphatase (ATPase) is a member of the P-type ATPase family of transporters. Proteins within this family have common amino acid sequence motifs that share functional characteristics and structure. Low-resolution 3-dimensional reconstruction of 2-dimensional crystal diffractions provide evidence for the similarity in tertiary structure of the alpha subunit and the Ca2+ATPase (a closely related P-type ATPase). The spatial location of the beta subunit also is obvious in these reconstructions. Recent high-resolution reconstructions from 3-dimensional crystals of the Ca2+ATPase provide structural details at the atomic level. It now is possible to interpret structurally some of the key steps in the Albers-Post reaction. Some of these high-resolution interpretations are translatable to the Na+,K+-ATPase, but a high-resolution structure of the Na,K-pump is needed for the necessary details of those aspects that are unique to this transporter.
Collapse
Affiliation(s)
- Dwight W Martin
- Division of Hematology, Stony Brook University, Stony Brook, NY 11794-8151, USA.
| |
Collapse
|
30
|
Qiu LY, Krieger E, Schaftenaar G, Swarts HGP, Willems PHGM, De Pont JJHHM, Koenderink JB. Reconstruction of the Complete Ouabain-binding Pocket of Na,K-ATPase in Gastric H,K-ATPase by Substitution of Only Seven Amino Acids. J Biol Chem 2005; 280:32349-55. [PMID: 16051601 DOI: 10.1074/jbc.m505168200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although cardiac glycosides have been used as drugs for more than 2 centuries and their primary target, the sodium pump (Na,K-ATPase), has already been known for 4 decades, their exact binding site is still elusive. In our efforts to define the molecular basis of digitalis glycosides binding we started from the fact that a closely related enzyme, the gastric H,K-ATPase, does not bind glycosides like ouabain. Previously, we showed that a chimera of these two enzymes, in which only the M3-M4 and M5-M6 hairpins were of Na,K-ATPase, bound ouabain with high affinity (Koenderink, J. B., Hermsen, H. P. H., Swarts, H. G. P., Willems, P. H. G. M., and De Pont, J. J. H. H. M. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 11209-11214). We also demonstrated that only three amino acids (Phe(783), Thr(797), and Asp(804)) present in the M5-M6 hairpin of Na,K-ATPase were sufficient to confer high affinity ouabain binding to a chimera which contained in addition the M3-M4 hairpin of Na,K-ATPase (Qiu, L. Y., Koenderink, J. B., Swarts, H. G., Willems, P. H., and De Pont, J. J. H. H. M. (2003) J. Biol. Chem. 278, 47240-47244). To further pinpoint the ouabain-binding site here we used a chimera-based loss-of-function strategy and identified four amino acids (Glu(312), Val(314), Ile(315), Gly(319)), all present in M4, as being important for ouabain binding. In a final gain-of-function study we showed that a gastric H,K-ATPase that contained Glu(312), Val(314), Ile(315), Gly(319), Phe(783), Thr(797), and Asp(804) of Na,K-ATPase bound ouabain with the same affinity as the native enzyme. Based on the E(2)P crystal structure of Ca(2+)-ATPase we constructed a homology model for the ouabain-binding site of Na,K-ATPase involving all seven amino acids as well as several earlier postulated amino acids.
Collapse
Affiliation(s)
- Li Yan Qiu
- Department of Biochemistry (160), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Keenan SM, DeLisle RK, Welsh WJ, Paula S, Ball WJ. Elucidation of the Na+, K+-ATPase digitalis binding site. J Mol Graph Model 2005; 23:465-75. [PMID: 15886034 DOI: 10.1016/j.jmgm.2005.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/23/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
Despite controversy over their use and the potential for toxic side effects, cardiac glycosides have remained an important clinical component for the treatment for congestive heart failure (CHF) and supraventricular arrhythmias since the effects of Digitalis purpurea were first described in 1785. While there is a wealth of information available with regard to the effects of these drugs on their pharmacological receptor, the Na(+), K(+)-ATPase, the exact molecular mechanism of digitalis binding and inhibition of the enzyme has remained elusive. In particular, the absence of structural knowledge about Na(+), K(+)-ATPase has thwarted the development of improved therapeutic agents with larger therapeutic indices via rational drug design approaches. Here, we propose a binding mode for digoxin and several analogues to the Na(+), K(+)-ATPase. A 3D-structural model of the extracellular loop regions of the catalytic alpha1-subunit of the digitalis-sensitive sheep Na(+), K(+)-ATPase was constructed from the crystal structure of an E(1)Ca(2+) conformation of the SERCA1a and a consensus orientation for digitalis binding was inferred from the in silico docking of a series of steroid-based cardiotonic compounds. Analyses of species-specific enzyme affinities for ouabain were also used to validate the model and, for the first time, propose a detailed model of the digitalis binding site.
Collapse
Affiliation(s)
- Susan M Keenan
- Department of Pharmacology, University of Medicine and Dentistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
32
|
Paula S, Tabet MR, Ball WJ. Interactions between Cardiac Glycosides and Sodium/Potassium-ATPase: Three-Dimensional Structure−Activity Relationship Models for Ligand Binding to the E2-Pi Form of the Enzyme versus Activity Inhibition. Biochemistry 2004; 44:498-510. [PMID: 15641774 DOI: 10.1021/bi048680w] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sodium/potassium-ATPase (Na/K-ATPase) is a transmembrane enzyme that utilizes energy gained from ATP hydrolysis to transport sodium and potassium ions across cell membranes in opposite directions against their chemical and electrical gradients. Its transport activity is effectively inhibited by cardiac glycosides, which bind to the extracellular side of the enzyme and are of significant therapeutic value in the treatment of congestive heart failure. To determine the extent to which high-affinity binding of cardiac glycosides correlates with their potency in inhibiting pump activity, we determined experimentally both the binding affinities and inhibitory potencies of a series of 37 cardiac glycosides using radioligand binding and ATPase activity assays. The observed variations in key structural elements of these compounds correlating with binding and inhibition were analyzed by comparative molecular similarity index analysis (CoMSIA), which allowed a molecular level characterization and comparison of drug-Na/K-ATPase interactions that are important for ligand binding and activity inhibition. In agreement with our earlier comparative molecular field analysis studies [Farr, C. D., et al. (2002) Biochemistry 41, 1137-1148], the CoMSIA models predicted favorable inhibitor interactions primarily at the alpha-sugar and lactone ring moieties of the cardiac glycosides. Unfavorable interactions were located about the gamma-sugar group and at several positions about the steroid ring system. Whereas for most compounds a correlation between binding affinity and inhibitory potency was found, some notable exceptions were identified. Substitution of the five-membered lactone of cardenolides with the six-membered lactone of bufadienolides caused binding affinity to decline but inhibitory potency to increase. Furthermore, while the removal of ouabain's rhamnose moiety had little effect on inhibitory potency, it caused a dramatic decline in ligand binding affinity.
Collapse
Affiliation(s)
- Stefan Paula
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0575, USA
| | | | | |
Collapse
|
33
|
Abstract
The sodium pump (or Na-K-ATPase) is essential to the function of animal cells. Publication of the related calcium pump (SERCA) structure together with several recent results from a variety of approaches allow us to propose a mechanistic model to answer the question: “How does the sodium pump pump?”
Collapse
Affiliation(s)
- J-D Horisberger
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1005 Lausanne, Switzerland.
| |
Collapse
|
34
|
Qazzaz HMAM, Cao Z, Bolanowski DD, Clark BJ, Valdes R. De novo biosynthesis and radiolabeling of mammalian digitalis-like factors. Clin Chem 2004; 50:612-20. [PMID: 14981028 DOI: 10.1373/clinchem.2003.022715] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Digoxin-like immunoreactive factors (DLIFs) are endogenous mammalian cardenolides with structural features similar to those of the plant-derived digitalis compounds. DLIFs and their structurally related forms (Dh-DLIFs) may serve as effectors of ion-transport activity mediated by their interaction with Na,K-ATPase and thus play a role as a new hormonal axis. Although some evidence implicates the adrenal gland as a tissue source for the DLIFs, little is known about the biosynthetic pathway producing these compounds. We now demonstrate de novo biosynthesis of DLIF by incorporation of radioactive carbon ((14)C) into the structures of both DLIF and Dh-DLIF. METHODS We used a combination of reversed-phase HPLC techniques to separate the radioactive DLIF components after incorporation of (14)C into their structure by use of either [1,2-(14)C]acetic acid or [4-(14)C]cholesterol as precursors and a Y-1 mouse adrenocortical tumor cell line. We also stimulated and suppressed production of steroidogenesis by use of cAMP analogs and Mevastatin, respectively, to demonstrate the dependence of DLIF production on the cholesterol-dependent biosynthetic pathway. A combination of chromatographic mobility, immunoassays specific for digoxin and dihydrodigoxin, and deglycosylation using 5-sulfosalicylic acid were used to identify the DLIF and Dh-DLIF components. RESULTS With cholesterol as precursor, the cells produced DLIF (7.5 mCi/mmol) with a labeling efficiency of 10%, whereas with acetate the cells produced DLIF (72.2 mCi/mmol) with a labeling efficiency of 0.08% of the total DLIF produced. The radiolabeled DLIF and Dh-DLIF molecules had identical chromatographic mobilities and stoichiometric removal of sugars as the previously characterized DLIFs isolated from different mammalian species and tissues. With radioactive cholesterol as precursor, the (14)C was incorporated into the DLIF-genin portion of the compounds and not the sugars. Interestingly, treatment of Y-1 cells with 8-bromoadenosine 3':5'-cAMP to stimulate steroidogenesis did not increase production of DLIF or Dh-DLIF but did increase production of progesterone. Mevastatin (5 micromol), an inhibitor of the enzyme hydroxymethylglutaryl-CoA reductase and thus of cholesterol biosynthesis, gave an 85% decrease in the production of (14)C-DLIF and progesterone, but only a modest 15% decrease in (14)C-Dh-DLIF production. CONCLUSIONS These data demonstrate that the adrenal cell has the cellular machinery necessary for de novo biosynthesis of DLIF and Dh-DLIF starting from a simple carbon pool and also support the concept that cholesterol is a major precursor of the DLIF compounds. This cell culture model provides a source of radiolabeled DLIF compounds for future experimental work.
Collapse
Affiliation(s)
- Hassan M A M Qazzaz
- Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
35
|
Artigas P, Gadsby DC. Large diameter of palytoxin-induced Na/K pump channels and modulation of palytoxin interaction by Na/K pump ligands. ACTA ACUST UNITED AC 2004; 123:357-76. [PMID: 15024043 PMCID: PMC2217460 DOI: 10.1085/jgp.200308964] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Palytoxin binds to Na/K pumps to generate nonselective cation channels whose pore likely comprises at least part of the pump's ion translocation pathway. We systematically analyzed palytoxin's interactions with native human Na/K pumps in outside-out patches from HEK293 cells over a broad range of ionic and nucleotide conditions, and with or without cardiotonic steroids. With 5 mM internal (pipette) [MgATP], palytoxin activated the conductance with an apparent affinity that was highest for Na+-containing (K+-free) external and internal solutions, lowest for K+-containing (Na+-free) external and internal solutions, and intermediate for the mixed external Na+/internal K+, and external K+/internal Na+ conditions; with Na+ solutions and MgATP, the mean dwell time of palytoxin on the Na/K pump was about one day. With Na+ solutions, the apparent affinity for palytoxin action was low after equilibration of patches with nucleotide-free pipette solution. That apparent affinity was increased in two phases as the equilibrating [MgATP] was raised over the submicromolar, and submillimolar, ranges, but was increased by pipette MgAMPPNP in a single phase, over the submillimolar range; the apparent affinity at saturating [MgAMPPNP] remained ∼30-fold lower than at saturating [MgATP]. After palytoxin washout, the conductance decay that reflects palytoxin unbinding was accelerated by cardiotonic steroid. When Na/K pumps were preincubated with cardiotonic steroid, subsequent activation of palytoxin-induced conductance was greatly slowed, even after washout of the cardiotonic steroid, but activation could still be accelerated by increasing palytoxin concentration. These results indicate that palytoxin and a cardiotonic steroid can simultaneously occupy the same Na/K pump, each destabilizing the other. The palytoxin-induced channels were permeable to several large organic cations, including N-methyl-d-glucamine+, suggesting that the narrowest section of the pore must be ∼7.5 Å wide. Enhanced understanding of palytoxin action now allows its use for examining the structures and mechanisms of the gates that occlude/deocclude transported ions during the normal Na/K pump cycle.
Collapse
Affiliation(s)
- Pablo Artigas
- Laboratory of Cardiac/Membrane Physiology, Rockefeller University, New York, NY 10021-6399, USA
| | | |
Collapse
|
36
|
Qiu LY, Koenderink JB, Swarts HGP, Willems PHGM, De Pont JJHHM. Phe783, Thr797, and Asp804 in transmembrane hairpin M5-M6 of Na+,K+-ATPase play a key role in ouabain binding. J Biol Chem 2003; 278:47240-4. [PMID: 12972417 DOI: 10.1074/jbc.m308833200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ouabain is a glycoside that binds to and inhibits the action of Na+,K+-ATPase. Little is known, however, about the specific requirements of the protein surface for glycoside binding. Using chimeras of gastric H+,K+-ATPase and Na+,K+-ATPase, we demonstrated previously that the combined presence of transmembrane hairpins M3-M4 and M5-M6 of Na+,K+-ATPase in a backbone of H+,K+-ATPase (HN34/56) is both required and sufficient for high affinity ouabain binding. Since replacement of transmembrane hairpin M3-M4 by the N terminus up to transmembrane segment 3 (HNN3/56) resulted in a low affinity ouabain binding, hairpin M5-M6 seems to be essential for ouabain binding. To assess which residues of M5-M6 are required for ouabain action, we divided this transmembrane hairpin in seven parts and individually replaced these parts by the corresponding sequences of H+,K+-ATPase in chimera HN34/56. Three of these chimeras failed to bind ouabain following expression in Xenopus laevis oocytes. Altogether, these three chimeras contained 7 amino acids that were specific for Na+,K+-ATPase. Individual replacement of these 7 amino acids by the corresponding amino acids in H+,K+-ATPase revealed a dramatic loss of ouabain binding for F783Y, T797C, and D804E. As a proof of principle, the Na+,K+-ATPase equivalents of these 3 amino acids were introduced in different combinations in chimera HN34. The presence of all 3 amino acids appeared to be required for ouabain action. Docking of ouabain onto a three-dimensional-model of Na+,K+-ATPase suggests that Asp804, in contrast to Phe783 and Thr797, does not actually form part of the ouabain-binding pocket. Most likely, the presence of this amino acid is required for adopting of the proper conformation for ouabain binding.
Collapse
Affiliation(s)
- Li Yan Qiu
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, University of Nijmegen, P. O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Jorgensen PL, Hakansson KO, Karlish SJD. Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annu Rev Physiol 2003; 65:817-49. [PMID: 12524462 DOI: 10.1146/annurev.physiol.65.092101.142558] [Citation(s) in RCA: 394] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cell membrane Na,K-ATPase is a member of the P-type family of active cation transport proteins. Recently the molecular structure of the related sarcoplasmic reticulum Ca-ATPase in an E1 conformation has been determined at 2.6 A resolution. Furthermore, theoretical models of the Ca-ATPase in E2 conformations are available. As a result of these developments, these structural data have allowed construction of homology models that address the central questions of mechanism of active cation transport by all P-type cation pumps. This review relates recent evidence on functional sites of Na,K-ATPase for the substrate (ATP), the essential cofactor (Mg(2+) ions), and the transported cations (Na(+) and K(+)) to the molecular structure. The essential elements of the Ca-ATPase structure, including 10 transmembrane helices and well-defined N, P, and A cytoplasmic domains, are common to all PII-type pumps such as Na,K-ATPase and H,K-ATPases. However, for Na,K-ATPase and H,K-ATPase, which consist of both alpha- and beta-subunits, there may be some detailed differences in regions of subunit interactions. Mutagenesis, proteolytic cleavage, and transition metal-catalyzed oxidative cleavages are providing much evidence about residues involved in binding of Na(+), K(+), ATP, and Mg(2+) ions and changes accompanying E1-E2 or E1-P-E2-P conformational transitions. We discuss this evidence in relation to N, P, and A cytoplasmic domain interactions, and long-range interactions between the active site and the Na(+) and K(+) sites in the transmembrane segments, for the different steps of the catalytic cycle.
Collapse
Affiliation(s)
- Peter L Jorgensen
- Biomembrane Center, August Krogh Institute, Copenhagen University, Universitetsparken 13, 2100 Copenhagen OE, Denmark.
| | | | | |
Collapse
|
38
|
Post RL. How does conformation change ouabain binding from rejection (E1) to acceptance (E2)? Ann N Y Acad Sci 2003; 986:20-1. [PMID: 12763770 DOI: 10.1111/j.1749-6632.2003.tb07134.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert Lickely Post
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia 19104-6085, USA.
| |
Collapse
|
39
|
Qiu LY, Koenderink JB, Swarts HGP, Willems PHGM, De Pont JJHHM. Mutational analysis of ouabain interaction with the M5-M6 hairpin of Na,K-ATPase. Ann N Y Acad Sci 2003; 986:255-7. [PMID: 12763812 DOI: 10.1111/j.1749-6632.2003.tb07176.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- L Y Qiu
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, the Netherlands.
| | | | | | | | | |
Collapse
|
40
|
Abstract
The Na,K-ATPase or sodium pump carries out the coupled extrusion and uptake of Na and K ions across the plasma membranes of cells of most higher eukaryotes. It is a member of the P-type ATPase superfamily. This heterodimeric integral membrane protein is composed of a 100-kDa alpha-subunit with ten transmembrane segments and a heavily glycosylated beta subunit of about 55 kDa, which is a type II membrane protein. Current ideas on how the protein achieves active transport are based on a fusion of results of transport physiology, protein chemistry, and heterologous expression of mutant proteins. Recently acquired high resolution structural information provides an important new avenue for a more complete understanding of this protein. In this review, the current status of knowledge of Na,K-ATPase is discussed, and areas where there is still considerable uncertainty are highlighted.
Collapse
Affiliation(s)
- Jack H Kaplan
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201, USA.
| |
Collapse
|
41
|
Vagin O, Denevich S, Munson K, Sachs G. SCH28080, a K+-competitive inhibitor of the gastric H,K-ATPase, binds near the M5-6 luminal loop, preventing K+ access to the ion binding domain. Biochemistry 2002; 41:12755-62. [PMID: 12379118 DOI: 10.1021/bi025921w] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inhibition of the gastric H,K-ATPase by the imidazo[1,2-alpha]pyridine, SCH28080, is strictly competitive with respect to K+ or its surrogate, NH4+. The inhibitory kinetics [V(max), K(m,app)(NH4+), K(i)(SCH28080), and competitive, mixed, or noncompetitive] of mutants can define the inhibitor binding domain and the route to the ion binding region within M4-6. While mutations Y799F, Y802F, I803L, S806N, V807I (M5), L811V (M5-6), Y928H (M8), and Q905N (M7-8) had no effect on inhibitor kinetics, mutations P798C, Y802L, P810A, P810G, C813A or -S, I814V or -F, F818C, T823V (M5, M5-6, and M6), E914Q, F917Y, G918E, T929L, and F932L (M7-8 and M8) reduced the affinity for SCH28080 up to 10-fold without affecting the nature of the kinetics. In contrast, the L809F substitution in the loop between M5 and M6 resulted in an approximately 100-fold decrease in inhibitor affinity, and substitutions L809V, I816L, Y925F, and M937V (M5-6, M6, and M8) reduced the inhibitor affinity by 10-fold, all resulting in noncompetitive kinetics. The mutants L811F, Y922I, and I940A also reduced the inhibitor affinity up to 10-fold but resulted in mixed inhibition. The mutations I819L, Q923V, and Y925A also gave mixed inhibition but without a change in inhibitor affinity. These data, and the 9-fold loss of SCH28080 affinity in the C813T mutant, suggest that the binding domain for SCH28080 contains the surface between L809 in the M5-6 loop and C813 at the luminal end of M6, approximately two helical turns down from the ion binding region, where it blocks the normal ion access pathway. On the basis of a model of the Ca-ATPase in the E2 conformation (PDB entry 1kju), the mutants that change the nature of the kinetics are arranged on one side of M8 and on the adjacent side of the M5-6 loop and M6 itself. This suggests that mutations in this region modify the enzyme structure so that K+ can access the ion binding domain even with SCH28080 bound.
Collapse
Affiliation(s)
- O Vagin
- Department of Physiology and Medicine, University of California at Los Angeles and Veteran Administration of Greater Los Angeles Health System, Los Angeles, California 90073, USA
| | | | | | | |
Collapse
|
42
|
Mikhailova L, Mandal AK, Argüello JM. Catalytic phosphorylation of Na,K-ATPase drives the outward movement of its cation-binding H5-H6 hairpin. Biochemistry 2002; 41:8195-202. [PMID: 12069612 DOI: 10.1021/bi025721k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Na,K-ATPase undergoes conformational transitions during its catalytic cycle that mediate energy transduction between the phosphorylation and cation-binding sites. Structure-function studies have shown that transmembrane segments H5 and H6 in the alpha subunit of the enzyme participate in cation binding and transport. The Ca-ATPase crystal structure indicates that the H5 helix extends into the cytoplasmic ATP binding domain, finishing 4-5 A from the phosphorylation site. Here, we test whether the phosphorylation of the Na,K-ATPase leads to conformational changes in the cation-binding H5-H6 hairpin. Using as background an enzyme where all wild-type Cys in the transmembrane region were replaced, Cys were introduced in the joining loop and extracellular ends of H5 and H6. Mutated proteins were expressed in COS cells and probed with Hg(2+), [2-(trimethylammonium)ethyl]methanethiosulfonate (MTSET), and biotin-maleimide, applied to the extracellular media while placing the cells in two different media (K-medium and Na-medium). We assumed that under these treatment conditions most of the enzyme would be in one of two predominant conformations: E1 (K-medium) and E2P (Na-medium). The extent of enzyme inactivation by Hg(2+) or MTSET treatment was dependent on the targeted position; i.e., proteins carrying Cys in the outermost positions were more affected by treatment. Moreover, in the case of proteins carrying Cys at positions 785, 787, and 797, driving the enzyme to phosphorylated conformations (Na-media) led to a larger inactivation. Similarly, biotinylation of introduced Cys was also influenced by the enzyme conformation, with a larger extent of modification after treatment of cells in the Na-medium (E2P form). These results can be explained by the enzyme phosphorylation driving the outward movement of the H5 helix. Thus, they provide experimental evidence for a structure-function mechanism where, via H5, enzyme phosphorylation leads to a conformational change at the cation-binding site and the consequent cation translocation.
Collapse
Affiliation(s)
- Lyudmila Mikhailova
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | |
Collapse
|
43
|
Fietto LG, Pugliese L, Gomes SL. Characterization and expression of two genes encoding isoforms of a putative Na, K-ATPase in the chytridiomycete Blastocladiella emersonii. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:59-69. [PMID: 12031485 DOI: 10.1016/s0167-4781(02)00297-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A P-type ATPase gene (BePAT1) from the aquatic fungus Blastocladiella emersonii, which surprisingly showed high similarity with the alpha-subunit of Na, K-ATPases from animal cells, has been reported recently [Biochim. Biophys. Acta 1383 (1998) 183]. In the present study, we describe the characterization of a second gene, denominated BePAT2, and show that these two genes have a different intron-exon structure but encode putative proteins with greater than 90% amino acid identity. Northern blot and multiplex reverse transcription and polymerase chain reaction (RT-PCR) assays have revealed that BePAT1 and BePAT2 genes have a non-coordinate, developmentally regulated expression during B. emersonii life cycle. Phosphoenzyme formation experiments using the immunopurified enzymes have indicated the presence of a Na, K-ATPase-like activity. Furthermore, immunofluorescence studies using B. emersonii zoospores localized the ATPases on the plasma membrane of these cells.
Collapse
Affiliation(s)
- Luciano Gomes Fietto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748-São Paulo-SP 05508-900, Brazil
| | | | | |
Collapse
|
44
|
Aints A, Belusa R, Andersson RM, Güven H, Dilber MS. Enhanced ouabain resistance gene as a eukaryotic selection marker. Hum Gene Ther 2002; 13:969-77. [PMID: 12031129 DOI: 10.1089/10430340252939078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Current selection markers allow selection by antibiotics or fluorescent/magnetic sorting by green fluorescent protein or membrane antigens. Antibiotic selection proceeds on a time scale of weeks, and flourescence-activated cell sorting requires complex equipment and may generate false-positive results when selection is performed too early after transduction with membrane markers. We have characterized an endogenous eukaryotic selection marker, the ouabain resistance gene (Oua(r)), which has the potential for quick and efficient in vitro selection of target cells. The Oua(r) used by us is derived from the rat alpha(1) isoform of Na(+),K(+)-ATPase, where leucine at position 799 is substituted for cysteine by targeted mutagenesis. This mutation confers resistance to more than 1 mM ouabain in vitro. We show that cells transfected with plasmid or transduced with a retrovirus vector encoding Oua(r) can be selected efficiently with ouabain in 48 hr and that a pure population of cells can be obtained. The ouabain resistance gene may be useful as a selection marker in general molecular biology, preclinical, and clinical applications because of its short selection time and also because of the safety of ouabain for human use.
Collapse
Affiliation(s)
- Alar Aints
- Division of Hematology, Department of Medicine, Huddinge University Hospital, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
45
|
Farr CD, Burd C, Tabet MR, Wang X, Welsh WJ, Ball WJ. Three-dimensional quantitative structure-activity relationship study of the inhibition of Na(+),K(+)-ATPase by cardiotonic steroids using comparative molecular field analysis. Biochemistry 2002; 41:1137-48. [PMID: 11802712 DOI: 10.1021/bi011511g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Na(+),K(+)-ATPase is a transmembrane protein that transports sodium and potassium ions across cell membranes during an activity cycle that uses the energy released by ATP hydrolysis. Cardiotonic steroids (digitalis) inhibit this activity and consequently produce a positive inotropic response in the heart. To identify the structural features of the steroids that are important for this inhibition, we have tested the inhibitory properties of 47 cardiotonic and hormonal steroids and developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model for the inhibition of Na(+),K(+)-ATPase using comparative molecular field analysis (CoMFA). We also developed a 3D-QSAR model for the binding of digoxin to the murine anti-digoxin monoclonal antibody (mAb) 26-10 because we have previously shown that the environment of the binding sites of 26-10 and the enzyme are similar (Kasturi et al. (1998) Biochemistry 37, 6658-6666). These statistically predictive 3D-QSAR models indicate that both binding sites are about 20 A long and have a close fit or complementarity about the beta side of the lactone ring of digitalis. Furthermore, steric bulk about the lactone ring and the alpha sugar may be critical for drug binding. However, the binding site of Na(+),K(+)-ATPase differs from that of mAb in that it has a greater number of electrostatic interactions along the alpha-sugar, steroid, and lactone moieties. In addition, the availability of the structure of the 26-10 Fab-digoxin complex (Jeffrey et al. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 10310-10314) enabled us to compare the CoMFA-derived contour maps with the known locations for amino acid residues comprising the mAb ligand binding site.
Collapse
Affiliation(s)
- Carol D Farr
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, Ohio 45267-0575, USA
| | | | | | | | | | | |
Collapse
|
46
|
Watts JA, Watts A, Middleton DA. A model of reversible inhibitors in the gastric H+/K+-ATPase binding site determined by rotational echo double resonance NMR. J Biol Chem 2001; 276:43197-204. [PMID: 11479301 DOI: 10.1074/jbc.m104808200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several close analogues of the noncovalent H(+)/K(+)-ATPase inhibitor SCH28080 (2-methyl-3-cyanomethyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine) have been screened for activity and examined in the pharmacological site of action by solid-state NMR spectroscopy. TMPIP, the 1,2,3-trimethyl analogue of SCH28080, and variants of TMPIP containing fluorine in the phenylmethoxy ring exhibited IC(50) values for porcine H(+)/K(+)-ATPase inhibition falling in the sub-10 microm range. Deuterium NMR spectra of a (2)H-labeled inhibitor titrated into H(+)/K(+)-ATPase membranes revealed that 80-100% of inhibitor was bound to the protein, and K(+)-competition (2)H NMR experiments confirmed that the inhibitor lay within the active site. The active binding conformation of the pentafluorophenylmethoxy analogue of TMPIP was determined from (13)C-(19)F dipolar coupling measurements using the cross-polarization magic angle spinning NMR method, REDOR. It was found that the inhibitor adopts an energetically favorable extended conformation falling between fully planar and partially bowed extremes. These findings allowed a model to be proposed for the binding of this inhibitor to H(+)/K(+)-ATPase based on the results of independent site-directed mutagenesis studies. In the model, the partially bowed inhibitor interacts with Phe(126) close to the N-terminal membrane spanning helix M1 and residues in the extracellular loop bridging membrane helices M5 and M6 and is flanked by residues in M4.
Collapse
Affiliation(s)
- J A Watts
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
47
|
Sweadner KJ, Donnet C. Structural similarities of Na,K-ATPase and SERCA, the Ca(2+)-ATPase of the sarcoplasmic reticulum. Biochem J 2001; 356:685-704. [PMID: 11389677 PMCID: PMC1221896 DOI: 10.1042/0264-6021:3560685] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The crystal structure of SERCA1a (skeletal-muscle sarcoplasmic-reticulum/endoplasmic-reticulum Ca(2+)-ATPase) has recently been determined at 2.6 A (note 1 A = 0.1 nm) resolution [Toyoshima, Nakasako, Nomura and Ogawa (2000) Nature (London) 405, 647-655]. Other P-type ATPases are thought to share key features of the ATP hydrolysis site and a central core of transmembrane helices. Outside of these most-conserved segments, structural similarities are less certain, and predicted transmembrane topology differs between subclasses. In the present review the homologous regions of several representative P-type ATPases are aligned with the SERCA sequence and mapped on to the SERCA structure for comparison. Homology between SERCA and the Na,K-ATPase is more extensive than with any other ATPase, even PMCA, the Ca(2+)-ATPase of plasma membrane. Structural features of the Na,K-ATPase are projected on to the Ca(2+)-ATPase crystal structure to assess the likelihood that they share the same fold. Homology extends through all ten transmembrane spans, and most insertions and deletions are predicted to be at the surface. The locations of specific residues are examined, such as proteolytic cleavage sites, intramolecular cross-linking sites, and the binding sites of certain other proteins. On the whole, the similarity supports a shared fold, with some particular exceptions.
Collapse
Affiliation(s)
- K J Sweadner
- Neuroscience Center, Massachusetts General Hospital, 149-6118, 149 13th Street, Charlestown, MA 02129, USA.
| | | |
Collapse
|
48
|
Abstract
The positive inotropic and electrophysiological effects of cardiac glycosides on cardiac muscle are mediated through inhibition of Na+/K+ ATPase by binding to a specific extracytoplasmic site of the a-subunit of this enzyme. The inhibition of Na+/K+ ATPase affects ionic flux and produces direct local effects on cardiac contractility, electrical excitability and conduction, but also profound systemic effects mainly as a result of haemodynamic changes. These effects are responsible for beneficial therapeutic as well as toxic effects. Inhibition of Na+/K+ ATPase results in potentiation of K+ loss from cells and Na+ entry into cells, so consequently affects action potential generation and propagation. This also underlines the potentiation of certain effects of cardiac glycosides by hypokalemia and hypomagnesaemia, and the effects of changes in calcium homeostasis on the cardiac glycoside pharmacodynamics. Furthermore, inhibition of Na+/Ca++ exchange enhances Ca++ mobilization and promotes contractility. These effects (locally and systemically) differ greatly, depending on the haemodynamic status and myocardial oxygen supply. Cardiac glycosides have less affinity for Na+/K+ ATPases at other sites (e.g. skeletal muscle), but some extracardiac effects (vascular effects, effects on colour vision, CNS and autonomic effects, renal effects) may be related to Na+/K+ ATPase inhibition.
Collapse
Affiliation(s)
- P H Joubert
- Institute of Clinical Pharmacology, F. Hoffmann La Roche, Basel, Switzerland
| | | |
Collapse
|
49
|
Middleton DA, Rankin S, Esmann M, Watts A. Structural insights into the binding of cardiac glycosides to the digitalis receptor revealed by solid-state NMR. Proc Natl Acad Sci U S A 2000; 97:13602-7. [PMID: 11095733 PMCID: PMC17622 DOI: 10.1073/pnas.250471997] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2000] [Indexed: 11/18/2022] Open
Abstract
Several biologically active derivatives of the cardiotonic steroid ouabain have been made containing NMR isotopes ((13)C, (2)H, and (19)F) in the rhamnose sugar and steroid moieties, and examined at the digitalis receptor site of renal Na(+)/K(+)-ATPase by a combination of solid-state NMR methods. Deuterium NMR spectra of (2)H-labeled inhibitors revealed that the sugar group was only loosely associated with the binding site, whereas the steroid group was more constrained, probably because of hydrogen bonding to residues around the K(+)-channel region. Crosspolarization magic-angle spinning NMR showed that chemical shifts of inhibitors (13)C-labeled in the sugar group moved downfield by 0.5 ppm after binding to the digitalis site, suggesting that the sugar was close to aromatic side groups. A (19)F, (13)C- rotational-echo double-resonance NMR strategy was used to determine the structure of an inhibitor in the digitalis receptor site, and it showed that the ouabain derivatives adopt a conformation in which the sugar extends out of the plane of the steroid ring system. The combined structural and dynamic information favors a model for inhibition in which the ouabain analogues lie across the surface of the Na(+)/K(+)-ATPase alpha-subunit with the sugar group facing away from the surface of the membrane but free to move into contact with one or more aromatic residues.
Collapse
Affiliation(s)
- D A Middleton
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| | | | | | | |
Collapse
|
50
|
Zotzmann J, Hennig L, Welzel P, Müller D, Schäfer C, Zillikens S, Pusch H, Glitsch HG, Regenthal R. A Novel Cardenolide Photoaffinity Label for the Na/K-ATPase. Tetrahedron 2000. [DOI: 10.1016/s0040-4020(00)00916-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|