1
|
Richter EA, Bilan PJ, Klip A. A comprehensive view of muscle glucose uptake: regulation by insulin, contractile activity, and exercise. Physiol Rev 2025; 105:1867-1945. [PMID: 40173020 DOI: 10.1152/physrev.00033.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/07/2024] [Accepted: 03/08/2025] [Indexed: 04/04/2025] Open
Abstract
Skeletal muscle is the main site of glucose deposition in the body during meals and the major glucose utilizer during physical activity. Although in both instances the supply of glucose from the circulation to the muscle is of paramount importance, in most conditions the rate-limiting step in glucose uptake, storage, and utilization is the transport of glucose across the muscle cell membrane. This step is dependent upon the translocation of the insulin- and contraction-responsive glucose transporter GLUT4 from intracellular storage sites to the sarcolemma and T tubules. Here, we first analyze how glucose can traverse the capillary wall into the muscle interstitial space. We then review the molecular processes that regulate GLUT4 translocation in response to insulin and muscle contractions and the methodologies utilized to unravel them. We further discuss how physical activity and inactivity, respectively, lead to increased and decreased insulin action in muscle and touch upon sex differences in glucose metabolism. Although many key processes regulating glucose uptake in muscle are known, the advent of newer and bioinformatics tools has revealed further molecular signaling processes reaching a staggering level of complexity. Much of this molecular mapping has emerged from cellular and animal studies and more recently from application of a variety of -omics in human tissues. In the future, it will be imperative to validate the translatability of results drawn from experimental systems to human physiology.
Collapse
Affiliation(s)
- Erik A Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Tokarz VL, Mylvaganam S, Klip A. Palmitate-induced insulin resistance causes actin filament stiffness and GLUT4 mis-sorting without altered Akt signalling. J Cell Sci 2023; 136:jcs261300. [PMID: 37815440 DOI: 10.1242/jcs.261300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023] Open
Abstract
Skeletal muscle insulin resistance, a major contributor to type 2 diabetes, is linked to the consumption of saturated fats. This insulin resistance arises from failure of insulin-induced translocation of glucose transporter type 4 (GLUT4; also known as SLC2A4) to the plasma membrane to facilitate glucose uptake into muscle. The mechanisms of defective GLUT4 translocation are poorly understood, limiting development of insulin-sensitizing therapies targeting muscle glucose uptake. Although many studies have identified early insulin signalling defects and suggest that they are responsible for insulin resistance, their cause-effect has been debated. Here, we find that the saturated fat palmitate (PA) causes insulin resistance owing to failure of GLUT4 translocation in skeletal muscle myoblasts and myotubes without impairing signalling to Akt2 or AS160 (also known as TBC1D4). Instead, PA altered two basal-state events: (1) the intracellular localization of GLUT4 and its sorting towards a perinuclear storage compartment, and (2) actin filament stiffness, which prevents Rac1-dependent actin remodelling. These defects were triggered by distinct mechanisms, respectively protein palmitoylation and endoplasmic reticulum (ER) stress. Our findings highlight that saturated fats elicit muscle cell-autonomous dysregulation of the basal-state machinery required for GLUT4 translocation, which 'primes' cells for insulin resistance.
Collapse
Affiliation(s)
- Victoria L Tokarz
- Department of Physiology, University of Toronto, Ontario, M5S 1A8, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Sivakami Mylvaganam
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Biochemistry, University of Toronto, Ontario, M5S 1A8, Canada
| | - Amira Klip
- Department of Physiology, University of Toronto, Ontario, M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
3
|
Møller LLV, Ali MS, Davey J, Raun SH, Andersen NR, Long JZ, Qian H, Jeppesen JF, Henriquez-Olguin C, Frank E, Jensen TE, Højlund K, Wojtaszewski JFP, Nielsen J, Chiu TT, Jedrychowski MP, Gregorevic P, Klip A, Richter EA, Sylow L. The Rho guanine dissociation inhibitor α inhibits skeletal muscle Rac1 activity and insulin action. Proc Natl Acad Sci U S A 2023; 120:e2211041120. [PMID: 37364105 PMCID: PMC10318982 DOI: 10.1073/pnas.2211041120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
The molecular events governing skeletal muscle glucose uptake have pharmacological potential for managing insulin resistance in conditions such as obesity, diabetes, and cancer. With no current pharmacological treatments to target skeletal muscle insulin sensitivity, there is an unmet need to identify the molecular mechanisms that control insulin sensitivity in skeletal muscle. Here, the Rho guanine dissociation inhibitor α (RhoGDIα) is identified as a point of control in the regulation of insulin sensitivity. In skeletal muscle cells, RhoGDIα interacted with, and thereby inhibited, the Rho GTPase Rac1. In response to insulin, RhoGDIα was phosphorylated at S101 and Rac1 dissociated from RhoGDIα to facilitate skeletal muscle GLUT4 translocation. Accordingly, siRNA-mediated RhoGDIα depletion increased Rac1 activity and elevated GLUT4 translocation. Consistent with RhoGDIα's inhibitory effect, rAAV-mediated RhoGDIα overexpression in mouse muscle decreased insulin-stimulated glucose uptake and was detrimental to whole-body glucose tolerance. Aligning with RhoGDIα's negative role in insulin sensitivity, RhoGDIα protein content was elevated in skeletal muscle from insulin-resistant patients with type 2 diabetes. These data identify RhoGDIα as a clinically relevant controller of skeletal muscle insulin sensitivity and whole-body glucose homeostasis, mechanistically by modulating Rac1 activity.
Collapse
Affiliation(s)
- Lisbeth L. V. Møller
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200Copenhagen N, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Mona S. Ali
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Jonathan Davey
- The Centre for Muscle Research, Department of Physiology, The University of Melbourne, Parkville, VIC3010, Australia
| | - Steffen H. Raun
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200Copenhagen N, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Nicoline R. Andersen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Jonathan Z. Long
- Department of Pathology, Stanford University School of Medicine and Stanford, Stanford University, Stanford, CA94305
| | - Hongwei Qian
- The Centre for Muscle Research, Department of Physiology, The University of Melbourne, Parkville, VIC3010, Australia
| | - Jacob F. Jeppesen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Carlos Henriquez-Olguin
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200Copenhagen N, Denmark
- Exercise Science Laboratory, Faculty of Medicine, Universidad Finis Terrae, 7501015Santiago, Chile
| | - Emma Frank
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Thomas E. Jensen
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, 5000Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000Odense C, Denmark
- Department of Molecular Medicine, University of Southern Denmark, 5000Odense C, Denmark
| | - Jørgen F. P. Wojtaszewski
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, 5230Odense M, Denmark
| | - Tim T. Chiu
- Cell Biology Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A1, Canada
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A1, Canada
- Department of Paediatrics, University of Toronto, Toronto, ONM5S 1A1, Canada
| | - Mark P. Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA02215
| | - Paul Gregorevic
- The Centre for Muscle Research, Department of Physiology, The University of Melbourne, Parkville, VIC3010, Australia
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, ONM5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ONM5S 1A1, Canada
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A1, Canada
- Department of Paediatrics, University of Toronto, Toronto, ONM5S 1A1, Canada
| | - Erik A. Richter
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200Copenhagen N, Denmark
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200Copenhagen N, Denmark
- Department of Biomedical Sciences, Faculty of Medical and Health Sciences, University of Copenhagen, 2200Copenhagen N, Denmark
| |
Collapse
|
4
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
5
|
Audzeyenka I, Rogacka D, Rachubik P, Typiak M, Rychłowski M, Angielski S, Piwkowska A. The PKGIα-Rac1 pathway is a novel regulator of insulin-dependent glucose uptake in cultured rat podocytes. J Cell Physiol 2021; 236:4655-4668. [PMID: 33244808 DOI: 10.1002/jcp.30188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 11/09/2022]
Abstract
Insulin plays a major role in regulating glucose homeostasis in podocytes. Protein kinase G type Iα (PKGIα) plays an important role in regulating glucose uptake in these cells. Rac1 signaling plays an essential role in the reorganization of the actin cytoskeleton and is also essential for insulin-stimulated glucose transport. The experiments were conducted using primary rat podocytes. We performed western blot analysis, evaluated small GTPases activity assays, measured radioactive glucose uptake, and performed immunofluorescence imaging to analyze the role of PKGIα-Rac1 signaling in regulating podocyte function. We also utilized a small-interfering RNA-mediated approach to determine the role of PKGIα and Rac1 in regulating glucose uptake in podocytes. The present study investigated the influence of the PKGI pathway on the insulin-dependent regulation of activity and cellular localization of small guanosine triphosphatases in podocytes. We found that the PKGIα-dependent activation of Rac1 signaling induced activation of the PAK/cofilin pathway and increased insulin-mediated glucose uptake in podocytes. The downregulation of PKGIα or Rac1 expression abolished this effect. Rac1 silencing prevented actin remodeling and GLUT4 translocation close to the cell membrane. These data provide evidence that PKGIα-dependent activation of the Rac1 signaling pathways is a novel regulator of insulin-mediated glucose uptake in cultured rat podocytes.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdańsk, Poland
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdańsk, Poland
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdańsk, Poland
| | - Marlena Typiak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdańsk, Poland
| | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, University of Gdańsk, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, , Gdańsk, Poland
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdańsk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Gdańsk, Poland
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
6
|
Machin PA, Tsonou E, Hornigold DC, Welch HCE. Rho Family GTPases and Rho GEFs in Glucose Homeostasis. Cells 2021; 10:cells10040915. [PMID: 33923452 PMCID: PMC8074089 DOI: 10.3390/cells10040915] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/17/2022] Open
Abstract
Dysregulation of glucose homeostasis leading to metabolic syndrome and type 2 diabetes is the cause of an increasing world health crisis. New intriguing roles have emerged for Rho family GTPases and their Rho guanine nucleotide exchange factor (GEF) activators in the regulation of glucose homeostasis. This review summates the current knowledge, focusing in particular on the roles of Rho GEFs in the processes of glucose-stimulated insulin secretion by pancreatic β cells and insulin-stimulated glucose uptake into skeletal muscle and adipose tissues. We discuss the ten Rho GEFs that are known so far to regulate glucose homeostasis, nine of which are in mammals, and one is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and Plekhg4 were shown to mediate the insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane and/or insulin-stimulated glucose uptake in skeletal muscle or adipose tissue. The Rho GEFs P-Rex1, Vav2, Tiam1 and β-PIX were found to control the glucose-stimulated release of insulin by pancreatic β cells. In vivo studies demonstrated the involvement of the Rho GEFs P-Rex2, Vav2, Vav3 and PDZ-RhoGEF in glucose tolerance and/or insulin sensitivity, with deletion of these GEFs either contributing to the development of metabolic syndrome or protecting from it. This research is in its infancy. Considering that over 80 Rho GEFs exist, it is likely that future research will identify more roles for Rho GEFs in glucose homeostasis.
Collapse
Affiliation(s)
- Polly A. Machin
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
| | - Elpida Tsonou
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge CB22 3AT, UK;
| | - David C. Hornigold
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge CB22 3AT, UK;
| | - Heidi C. E. Welch
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; (P.A.M.); (E.T.)
- Correspondence: ; Tel.: +44-(0)1223-496-596
| |
Collapse
|
7
|
Møller LLV, Jaurji M, Kjøbsted R, Joseph GA, Madsen AB, Knudsen JR, Lundsgaard AM, Andersen NR, Schjerling P, Jensen TE, Krauss RS, Richter EA, Sylow L. Insulin-stimulated glucose uptake partly relies on p21-activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle. J Physiol 2020; 598:5351-5377. [PMID: 32844438 DOI: 10.1113/jp280294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Muscle-specific genetic ablation of p21-activated kinase (PAK)2, but not whole-body PAK1 knockout, impairs glucose tolerance in mice. Insulin-stimulated glucose uptake partly relies on PAK2 in glycolytic extensor digitorum longus muscle By contrast to previous reports, PAK1 is dispensable for insulin-stimulated glucose uptake in mouse muscle. ABSTRACT The group I p21-activated kinase (PAK) isoforms PAK1 and PAK2 are activated in response to insulin in skeletal muscle and PAK1/2 signalling is impaired in insulin-resistant mouse and human skeletal muscle. Interestingly, PAK1 has been suggested to be required for insulin-stimulated glucose transporter 4 translocation in mouse skeletal muscle. Therefore, the present study aimed to examine the role of PAK1 in insulin-stimulated muscle glucose uptake. The pharmacological inhibitor of group I PAKs, IPA-3 partially reduced (-20%) insulin-stimulated glucose uptake in isolated mouse soleus muscle (P < 0.001). However, because there was no phenotype with genetic ablation of PAK1 alone, consequently, the relative requirement for PAK1 and PAK2 in whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake was investigated. Whole-body respiratory exchange ratio was largely unaffected in whole-body PAK1 knockout (KO), muscle-specific PAK2 KO and in mice with combined whole-body PAK1 KO and muscle-specific PAK2 KO. By contrast, glucose tolerance was mildly impaired in mice lacking PAK2 specifically in muscle, but not PAK1 KO mice. Moreover, while PAK1 KO muscles displayed normal insulin-stimulated glucose uptake in vivo and in isolated muscle, insulin-stimulated glucose uptake was slightly reduced in isolated glycolytic extensor digitorum longus muscle lacking PAK2 alone (-18%) or in combination with PAK1 KO (-12%) (P < 0.05). In conclusion, glucose tolerance and insulin-stimulated glucose uptake partly rely on PAK2 in glycolytic mouse muscle, whereas PAK1 is dispensable for whole-body glucose homeostasis and insulin-stimulated muscle glucose uptake.
Collapse
Affiliation(s)
- Lisbeth L V Møller
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Merna Jaurji
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Giselle A Joseph
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Agnete B Madsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonas R Knudsen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Microsystems Laboratory 2, Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Anne-Marie Lundsgaard
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline R Andersen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark.,Center for Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Erik A Richter
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Møller LLV, Klip A, Sylow L. Rho GTPases-Emerging Regulators of Glucose Homeostasis and Metabolic Health. Cells 2019; 8:E434. [PMID: 31075957 PMCID: PMC6562660 DOI: 10.3390/cells8050434] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022] Open
Abstract
Rho guanosine triphosphatases (GTPases) are key regulators in a number of cellular functions, including actin cytoskeleton remodeling and vesicle traffic. Traditionally, Rho GTPases are studied because of their function in cell migration and cancer, while their roles in metabolism are less documented. However, emerging evidence implicates Rho GTPases as regulators of processes of crucial importance for maintaining metabolic homeostasis. Thus, the time is now ripe for reviewing Rho GTPases in the context of metabolic health. Rho GTPase-mediated key processes include the release of insulin from pancreatic β cells, glucose uptake into skeletal muscle and adipose tissue, and muscle mass regulation. Through the current review, we cast light on the important roles of Rho GTPases in skeletal muscle, adipose tissue, and the pancreas and discuss the proposed mechanisms by which Rho GTPases act to regulate glucose metabolism in health and disease. We also describe challenges and goals for future research.
Collapse
Affiliation(s)
- Lisbeth Liliendal Valbjørn Møller
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark.
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.
| | - Lykke Sylow
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2100 Copenhagen Oe, Denmark.
| |
Collapse
|
9
|
Zeng K, Tian L, Sirek A, Shao W, Liu L, Chiang YT, Chernoff J, Ng DS, Weng J, Jin T. Pak1 mediates the stimulatory effect of insulin and curcumin on hepatic ChREBP expression. J Mol Cell Biol 2017; 9:384-394. [PMID: 28992163 PMCID: PMC5907843 DOI: 10.1093/jmcb/mjx031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 11/14/2022] Open
Abstract
Insulin can stimulate hepatic expression of carbohydrate-responsive element-binding protein (ChREBP). As recent studies revealed potential metabolic beneficial effects of ChREBP, we asked whether its expression can also be regulated by the dietary polyphenol curcumin. We also aimed to determine mechanisms underlying ChREBP stimulation by insulin and curcumin. The effect of insulin on ChREBP expression was assessed in mouse hepatocytes, while the effect of curcumin was assessed in mouse hepatocytes and with curcumin gavage in mice. Chemical inhibitors for insulin signaling molecules were utilized to identify involved signaling molecules, and the involvement of p21-activated protein kinase 1 (Pak1) was determined with its chemical inhibitor and Pak1-/- hepatocytes. We found that both insulin and curcumin-stimulated ChREBP expression in Akt-independent but MEK/ERK-dependent manner, involving the inactivation of the transcriptional repressor Oct-1. Aged Pak1-/- mice showed reduced body fat volume. Pak1 inhibition or its genetic deletion attenuated the stimulatory effect of insulin or curcumin on ChREBP expression. Our study hence suggests the existence of a novel signaling cascade Pak1/MEK/ERK/Oct-1 for both insulin and curcumin in exerting their glucose-lowering effect via promoting hepatic ChREBP production, supports the recognition of beneficial functions of ChREBP, and brings us a new overview on dietary polyphenols.
Collapse
Affiliation(s)
- Kejing Zeng
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Lili Tian
- Toronto General Research Institutes, University Health Network, Toronto, Canada
| | - Adam Sirek
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Weijuan Shao
- Toronto General Research Institutes, University Health Network, Toronto, Canada
| | - Ling Liu
- Toronto General Research Institutes, University Health Network, Toronto, Canada
| | - Yu-Ting Chiang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Dominic S Ng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Keenan Research Centre, Li Ka Shing Knowledge Institute, Department of Medicine, St. Michael’s Hospital, Toronto, Canada
| | - Jianping Weng
- Department of Endocrinology and Metabolism, the Third Affiliated Hospital of Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| | - Tianru Jin
- Toronto General Research Institutes, University Health Network, Toronto, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Tunduguru R, Zhang J, Aslamy A, Salunkhe VA, Brozinick JT, Elmendorf JS, Thurmond DC. The actin-related p41ARC subunit contributes to p21-activated kinase-1 (PAK1)-mediated glucose uptake into skeletal muscle cells. J Biol Chem 2017; 292:19034-19043. [PMID: 28972183 DOI: 10.1074/jbc.m117.801340] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/21/2017] [Indexed: 02/04/2023] Open
Abstract
Defects in translocation of the glucose transporter GLUT4 are associated with peripheral insulin resistance, preclinical diabetes, and progression to type 2 diabetes. GLUT4 recruitment to the plasma membrane of skeletal muscle cells requires F-actin remodeling. Insulin signaling in muscle requires p21-activated kinase-1 (PAK1), whose downstream signaling triggers actin remodeling, which promotes GLUT4 vesicle translocation and glucose uptake into skeletal muscle cells. Actin remodeling is a cyclic process, and although PAK1 is known to initiate changes to the cortical actin-binding protein cofilin to stimulate the depolymerizing arm of the cycle, how PAK1 might trigger the polymerizing arm of the cycle remains unresolved. Toward this, we investigated whether PAK1 contributes to the mechanisms involving the actin-binding and -polymerizing proteins neural Wiskott-Aldrich syndrome protein (N-WASP), cortactin, and ARP2/3 subunits. We found that the actin-polymerizing ARP2/3 subunit p41ARC is a PAK1 substrate in skeletal muscle cells. Moreover, co-immunoprecipitation experiments revealed that insulin stimulates p41ARC phosphorylation and increases its association with N-WASP coordinately with the associations of N-WASP with cortactin and actin. Importantly, all of these associations were ablated by the PAK inhibitor IPA3, suggesting that PAK1 activation lies upstream of these actin-polymerizing complexes. Using the N-WASP inhibitor wiskostatin, we further demonstrated that N-WASP is required for localized F-actin polymerization, GLUT4 vesicle translocation, and glucose uptake. These results expand the model of insulin-stimulated glucose uptake in skeletal muscle cells by implicating p41ARC as a new component of the insulin-signaling cascade and connecting PAK1 signaling to N-WASP-cortactin-mediated actin polymerization and GLUT4 vesicle translocation.
Collapse
Affiliation(s)
- Ragadeepthi Tunduguru
- From the Departments of Biochemistry and Molecular Biology and.,the Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute and Beckman Research Institute of the City of Hope, Duarte, California 91010, and
| | - Jing Zhang
- the Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute and Beckman Research Institute of the City of Hope, Duarte, California 91010, and
| | - Arianne Aslamy
- the Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute and Beckman Research Institute of the City of Hope, Duarte, California 91010, and.,Cellular and Integrative Physiology, Center for Diabetes and Metabolic Diseases,Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Vishal A Salunkhe
- the Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute and Beckman Research Institute of the City of Hope, Duarte, California 91010, and
| | | | - Jeffrey S Elmendorf
- From the Departments of Biochemistry and Molecular Biology and.,Cellular and Integrative Physiology, Center for Diabetes and Metabolic Diseases,Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Debbie C Thurmond
- From the Departments of Biochemistry and Molecular Biology and .,the Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute and Beckman Research Institute of the City of Hope, Duarte, California 91010, and.,Cellular and Integrative Physiology, Center for Diabetes and Metabolic Diseases,Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
11
|
Thillai K, Lam H, Sarker D, Wells CM. Deciphering the link between PI3K and PAK: An opportunity to target key pathways in pancreatic cancer? Oncotarget 2017; 8:14173-14191. [PMID: 27845911 PMCID: PMC5355171 DOI: 10.18632/oncotarget.13309] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
The development of personalised therapies has ushered in a new and exciting era of cancer treatment for a variety of solid malignancies. Yet pancreatic ductal adenocarcinoma (PDAC) has failed to benefit from this paradigm shift, remaining notoriously refractory to targeted therapies. Chemotherapy is the cornerstone of management but can offer only modest survival benefits of a few months with 5-year survival rates rarely exceeding 3%. Despite these disappointing statistics, significant strides have been made towards understanding the complex biology of pancreatic cancer, with deep genomic sequencing identifying novel genetic aberrations and key signalling pathways. The PI3K-PDK1-AKT pathway has received great attention due to its prominence in carcinogenesis. However, efforts to target several components of this network have resulted in only a handful of drugs demonstrating any survival benefit in solid tumors; despite promising pre-clinical results. p-21 activated kinase 4 (PAK4) is a gene that is recurrently amplified or overexpressed in PDAC and both PAK4 and related family member PAK1, have been linked to aberrant RAS activity, a common feature in pancreatic cancer. As regulators of PI3K, PAKs have been highlighted as a potential prognostic marker and therapeutic target. In this review, we discuss the biology of pancreatic cancer and the close interaction between PAKs and the PI3K pathway. We also suggest proposals for future research that may see the development of effective targeted therapies that could finally improve outcomes for this disease.
Collapse
Affiliation(s)
- Kiruthikah Thillai
- Division of Cancer Studies, King's College London, London, United Kingdom.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Hoyin Lam
- Division of Cancer Studies, King's College London, London, United Kingdom
| | - Debashis Sarker
- Division of Cancer Studies, King's College London, London, United Kingdom.,Department of Medical Oncology, Guy's and St Thomas' NHS Trust, London, United Kingdom
| | - Claire M Wells
- Division of Cancer Studies, King's College London, London, United Kingdom
| |
Collapse
|
12
|
Regulation of a hitchhiking behavior by neuronal insulin and TGF-β signaling in the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2017; 484:323-330. [DOI: 10.1016/j.bbrc.2017.01.113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/21/2017] [Indexed: 12/11/2022]
|
13
|
Jin T, Weng J. Hepatic functions of GLP-1 and its based drugs: current disputes and perspectives. Am J Physiol Endocrinol Metab 2016; 311:E620-7. [PMID: 27507553 DOI: 10.1152/ajpendo.00069.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/08/2016] [Indexed: 12/17/2022]
Abstract
GLP-1 and its based drugs possess extrapancreatic metabolic functions, including that in the liver. These direct hepatic metabolic functions explain their therapeutic efficiency for subjects with insulin resistance. The direct hepatic functions could be mediated by previously assumed "degradation" products of GLP-1 without involving canonic GLP-1R. Although GLP-1 analogs were created as therapeutic incretins, extrapancreatic functions of these drugs, as well as native GLP-1, have been broadly recognized. Among them, the hepatic functions are particularly important. Postprandial GLP-1 release contributes to insulin secretion, which represses hepatic glucose production. This indirect effect of GLP-1 is known as the gut-pancreas-liver axis. Great efforts have been made to determine whether GLP-1 and its analogs possess direct metabolic effects on the liver, as the determination of the existence of direct hepatic effects may advance the therapeutic theory and clinical practice on subjects with insulin resistance. Furthermore, recent investigations on the metabolic beneficial effects of previously assumed "degradation" products of GLP-1 in the liver and elsewhere, including GLP-128-36 and GLP-132-36, have drawn intensive attention. Such investigations may further improve the development and the usage of GLP-1-based drugs. Here, we have reviewed the current advancement and the existing controversies on the exploration of direct hepatic functions of GLP-1 and presented our perspectives that the direct hepatic metabolic effects of GLP-1 could be a GLP-1 receptor-independent event involving Wnt signaling pathway activation.
Collapse
Affiliation(s)
- Tianru Jin
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; and
| | - Jianping Weng
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, China
| |
Collapse
|
14
|
PDK1: A signaling hub for cell migration and tumor invasion. Biochim Biophys Acta Rev Cancer 2015; 1856:178-88. [DOI: 10.1016/j.bbcan.2015.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 07/28/2015] [Indexed: 01/22/2023]
|
15
|
Barrows D, Schoenfeld SM, Hodakoski C, Silkov A, Honig B, Couvillon A, Shymanets A, Nürnberg B, Asara JM, Parsons R. p21-activated Kinases (PAKs) Mediate the Phosphorylation of PREX2 Protein to Initiate Feedback Inhibition of Rac1 GTPase. J Biol Chem 2015; 290:28915-31. [PMID: 26438819 DOI: 10.1074/jbc.m115.668244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 2 (PREX2) is a guanine nucleotide exchange factor (GEF) for the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase, facilitating the exchange of GDP for GTP on Rac1. GTP-bound Rac1 then activates its downstream effectors, including p21-activated kinases (PAKs). PREX2 and Rac1 are frequently mutated in cancer and have key roles within the insulin-signaling pathway. Rac1 can be inactivated by multiple mechanisms; however, negative regulation by insulin is not well understood. Here, we show that in response to being activated after insulin stimulation, Rac1 initiates its own inactivation by decreasing PREX2 GEF activity. Following PREX2-mediated activation of Rac1 by the second messengers PIP3 or Gβγ, we found that PREX2 was phosphorylated through a PAK-dependent mechanism. PAK-mediated phosphorylation of PREX2 reduced GEF activity toward Rac1 by inhibiting PREX2 binding to PIP3 and Gβγ. Cell fractionation experiments also revealed that phosphorylation prevented PREX2 from localizing to the cellular membrane. Furthermore, the onset of insulin-induced phosphorylation of PREX2 was delayed compared with AKT. Altogether, we propose that second messengers activate the Rac1 signal, which sets in motion a cascade whereby PAKs phosphorylate and negatively regulate PREX2 to decrease Rac1 activation. This type of regulation would allow for transient activation of the PREX2-Rac1 signal and may be relevant in multiple physiological processes, including diseases such as diabetes and cancer when insulin signaling is chronically activated.
Collapse
Affiliation(s)
- Douglas Barrows
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, the Department of Pharmacology, Columbia University, New York, New York 10032
| | - Sarah M Schoenfeld
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Cindy Hodakoski
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Antonina Silkov
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | - Barry Honig
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | | | - Aliaksei Shymanets
- the Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research, University of Tübingen, 72074 Tübingen, Germany
| | - Bernd Nürnberg
- the Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research, University of Tübingen, 72074 Tübingen, Germany
| | - John M Asara
- the Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Ramon Parsons
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| |
Collapse
|
16
|
Eller-Borges R, Batista WL, da Costa PE, Tokikawa R, Curcio MF, Strumillo ST, Sartori A, Moraes MS, de Oliveira GA, Taha MO, Fonseca FV, Stern A, Monteiro HP. Ras, Rac1, and phosphatidylinositol-3-kinase (PI3K) signaling in nitric oxide induced endothelial cell migration. Nitric Oxide 2015; 47:40-51. [PMID: 25819133 DOI: 10.1016/j.niox.2015.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
The small GTP-binding proteins Ras and Rac1 are molecular switches exchanging GDP for GTP and converting external signals in response to a variety of stimuli. Ras and Rac1 play an important role in cell proliferation, cell differentiation, and cell migration. Rac1 is directly involved in the reorganization and changes in the cytoskeleton during cell motility. Nitric oxide (NO) stimulates the Ras - ERK1/2 MAP kinases signaling pathway and is involved in the interaction between Ras and the phosphatidyl-inositol-3 Kinase (PI3K) signaling pathway and cell migration. This study utilizes bradykinin (BK), which promotes endogenous production of NO, in an investigation of the role of NO in the activation of Rac1 in rabbit aortic endothelial cells (RAEC). NO-derived from BK stimulation of RAEC and incubation of the cells with the s-nitrosothiol S-nitrosoglutathione (GSNO) activated Rac1. NO-derived from BK stimulation promoted RAEC migration over a period of 12 h. The use of RAEC permanently transfected with the dominant negative mutant of Ras (Ras(N17)) or with the non-nitrosatable mutant of Ras (Ras(C118S)); and the use of specific inhibitors of: Ras, PI3K, and Rac1 resulted in inhibition of NO-mediated Rac1 activation. BK-stimulated s-nitrosylation of Ras in RAEC mediates Rac1 activation and cell migration. Inhibition of NO-mediated Rac1 activation resulted in inhibition of endothelial cell migration. In conclusion, the NO indirect activation of Rac1 involves the direct participation of Ras and PI3K in the migration of endothelial cells stimulated with BK.
Collapse
Affiliation(s)
- Roberta Eller-Borges
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Wagner L Batista
- Department of Biological Sciences, Universidade Federal de São Paulo/Campus Diadema, SP, Brazil
| | - Paulo E da Costa
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Rita Tokikawa
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Marli F Curcio
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Scheilla T Strumillo
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Adriano Sartori
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Miriam S Moraes
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Graciele A de Oliveira
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil
| | - Murched O Taha
- Department of Surgery, Escola Paulista de Medicina/Universidade Federal de São Paulo, SP, Brazil
| | - Fábio V Fonseca
- Department of Medicine, Institute for Transformative Molecular Medicine, Case Western University, Cleveland, OH, USA
| | - Arnold Stern
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA; Escuela de Medicina, Universidad Espíritu Santo, Guayaquil, Ecuador.
| | - Hugo P Monteiro
- Department of Biochemistry, Center for Cellular and Molecular Therapy-CTCMOL, Escola Paulista de Medicina /Universidade Federal de São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Satoh T. Molecular mechanisms for the regulation of insulin-stimulated glucose uptake by small guanosine triphosphatases in skeletal muscle and adipocytes. Int J Mol Sci 2014; 15:18677-92. [PMID: 25325535 PMCID: PMC4227239 DOI: 10.3390/ijms151018677] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/28/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022] Open
Abstract
Insulin is a hormone that regulates the blood glucose level by stimulating various physiological responses in its target tissues. In skeletal muscle and adipose tissue, insulin promotes membrane trafficking of the glucose transporter GLUT4 from GLUT4 storage vesicles to the plasma membrane, thereby facilitating the uptake of glucose from the circulation. Detailed mechanisms underlying insulin-dependent intracellular signal transduction for glucose uptake remain largely unknown. In this article, I give an overview on the recently identified signaling network involving Rab, Ras, and Rho family small guanosine triphosphatases (GTPases) that regulates glucose uptake in insulin-responsive tissues. In particular, the regulatory mechanisms for these small GTPases and the cross-talk between protein kinase and small GTPase cascades are highlighted.
Collapse
Affiliation(s)
- Takaya Satoh
- Laboratory of Cell Biology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
18
|
Signaling of the p21-activated kinase (PAK1) coordinates insulin-stimulated actin remodeling and glucose uptake in skeletal muscle cells. Biochem Pharmacol 2014; 92:380-8. [PMID: 25199455 DOI: 10.1016/j.bcp.2014.08.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/26/2014] [Accepted: 08/28/2014] [Indexed: 11/22/2022]
Abstract
Skeletal muscle accounts for ∼ 80% of postprandial glucose clearance, and skeletal muscle glucose clearance is crucial for maintaining insulin sensitivity and euglycemia. Insulin-stimulated glucose clearance/uptake entails recruitment of glucose transporter 4 (GLUT4) to the plasma membrane (PM) in a process that requires cortical F-actin remodeling; this process is dysregulated in Type 2 Diabetes. Recent studies have implicated PAK1 as a required element in GLUT4 recruitment in mouse skeletal muscle in vivo, although its underlying mechanism of action and requirement in glucose uptake remains undetermined. Toward this, we have employed the PAK1 inhibitor, IPA3, in studies using L6-GLUT4-myc muscle cells. IPA3 fully ablated insulin-stimulated GLUT4 translocation to the PM, corroborating the observation of ablated insulin-stimulated GLUT4 accumulation in the PM of skeletal muscle from PAK1(-/-) knockout mice. IPA3-treatment also abolished insulin-stimulated glucose uptake into skeletal myotubes. Mechanistically, live-cell imaging of myoblasts expressing the F-actin biosensor LifeAct-GFP treated with IPA3 showed blunting of the normal insulin-induced cortical actin remodeling. This blunting was underpinned by a loss of normal insulin-stimulated cofilin dephosphorylation in IPA3-treated myoblasts. These findings expand upon the existing model of actin remodeling in glucose uptake, by placing insulin-stimulated PAK1 signaling as a required upstream step to facilitate actin remodeling and subsequent cofilin dephosphorylation. Active, dephosphorylated cofilin then provides the G-actin substrate for continued F-actin remodeling to facilitate GLUT4 vesicle translocation for glucose uptake into the skeletal muscle cell.
Collapse
|
19
|
Tse EYT, Ching YP. The role of p21-activated kinases in hepatocellular carcinoma metastasis. J Mol Signal 2014; 9:7. [PMID: 25093037 PMCID: PMC4121300 DOI: 10.1186/1750-2187-9-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/18/2014] [Indexed: 01/06/2023] Open
Abstract
The p21-activated kinases (PAKs) are downstream effectors of the Rho family small GTPases as well as a wide variety of mitogenic factors and have been implicated in cancer formation, development and metastasis. PAKs phosphorylate a wide spectrum of substrates to mediate extracellular signals and regulate cytoskeletal remodeling, cell motility and survival. In this review, we aim to summarize the findings regarding the oncogenic role and the underlying mechanisms of PAKs signaling in various cancers, and in particular highlight the prime importance of PAKs in hepatocellular carcinoma (HCC) progression and metastasis. Recent studies exploring the potential therapeutic application of PAK inhibitors will also be discussed.
Collapse
Affiliation(s)
- Edith Yuk Ting Tse
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yick Pang Ching
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China ; State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Chiang YTA, Ip W, Shao W, Song ZE, Chernoff J, Jin T. Activation of cAMP signaling attenuates impaired hepatic glucose disposal in aged male p21-activated protein kinase-1 knockout mice. Endocrinology 2014; 155:2122-32. [PMID: 24684301 DOI: 10.1210/en.2013-1743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
p21-activated protein kinase-1 (Pak1) plays a role in insulin secretion and glucagon-like peptide-1 (GLP-1) production. Pak1(-/-) mice were found to carry a defect in ip pyruvate tolerance test (IPPTT), leading us to speculate whether Pak1 represses hepatic gluconeogenesis. We show here that the defect in IPPTT became more severe in aged Pak1(-/-) mice. In primary hepatocytes, 2,2'-dihydroxy-1,1'-dinaphthyldisulfide, a potent inhibitor of group I Paks, reduced basal glucose production (GP), attenuated forskolin- or glucagon-stimulated GP, and attenuated the stimulation of forskolin on the expression of Pck1 and G6pc. In addition, the capacity of primary hepatocytes isolated from Pak1(-/-) mice in GP at the basal level is significantly lower than that of the control littermates. These in vitro observations imply that the direct effect of Paks in hepatocytes is the stimulation of gluconeogenesis and that the impairment in IPPTT in Pak1(-/-) mice is due to the lack of Pak1 elsewhere. Consecutive ip injection of forskolin for 2 weeks increased gut proglucagon expression, associated with improved IPPTT in aged Pak1(-/-) mice and wild-type controls. In addition, administration of the DPP-IV (dipeptidyl peptidase-4) inhibitor sitagliptin for 1 week reversed the defect in IPPTT in aged Pak1(-/-) mice, associated with increased plasma GLP-1 levels. Our observations indicate a potential role of Pak1 in the gut/pancreas/liver axis in controlling glucose disposal and affirmed the therapeutic application of GLP-1 and DPP-IV inhibitors in attenuating hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Yu-Ting Alex Chiang
- Division of Advanced Diagnostics (Y.-t.A.C., W.I., W.S., Z.E.S., T.J.), Toronto General Research Institute, University Health Network, Toronto, Canada M5G 1L7; Department of Physiology (Y.-t.A.C., T.J.), University of Toronto, Toronto, Canada M5S 1A8; and Institute of Medical Science (W.I., T.J.), University of Toronto, Canada; and Fox Chase Cancer Center (J.C.), Philadelphia, Pennsylvania 19111
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
p21-Activated protein kinases (PAKs) are centrally involved in a plethora of cellular processes and functions. Their function as effectors of small GTPases Rac1 and Cdc42 has been extensively studied during the past two decades, particularly in the realms of cell proliferation, apoptosis, and hence tumorigenesis, as well as cytoskeletal remodeling and related cellular events in health and disease. In recent years, a large number of studies have shed light onto the fundamental role of group I PAKs, most notably PAK1, in metabolic homeostasis. In skeletal muscle, PAK1 was shown to mediate the function of insulin on stimulating GLUT4 translocation and glucose uptake, while in pancreatic β-cells, PAK1 participates in insulin granule localization and vesicle release. Furthermore, we demonstrated that PAK1 mediates the cross talk between insulin and Wnt/β-catenin signaling pathways and hence regulates gut proglucagon gene expression and the production of the incretin hormone glucagon-like peptide-1 (GLP-1). The utilization of chemical inhibitors of PAK and the characterization of Pak1(-/-) mice enabled us to gain mechanistic insights as well as to assess the overall contribution of PAKs in metabolic homeostasis. This review summarizes our current understanding of PAKs, with an emphasis on the emerging roles of PAK1 in glucose homeostasis.
Collapse
|
22
|
Abstract
Insulin is secreted into blood vessels from β cells of pancreatic islets in response to high blood glucose levels. Insulin stimulates an array of physiological responses in target tissues, including liver, skeletal muscle, and adipose tissue, thereby reducing the blood glucose level. Insulin-dependent glucose uptake in skeletal muscle and adipose tissue is primarily mediated by the redistribution of the glucose transporter type 4 from intracellular storage sites to the plasma membrane. Evidence for the participation of the Rho family GTPase Rac1 in glucose uptake signaling in skeletal muscle has emerged from studies using cell cultures and genetically engineered mice. Herein, recent progress in understanding the function and regulation of Rac1, especially the cross-talk with the protein kinase Akt2, is highlighted. In addition, the role for another Rho family member TC10 and its regulatory mechanism in adipocyte insulin signaling are described.
Collapse
Affiliation(s)
- Takaya Satoh
- Laboratory of Cell Biology; Department of Biological Science; Graduate School of Science; Osaka Prefecture University; Osaka, Japan
| |
Collapse
|
23
|
Alsaad AMS, Zordoky BNM, Tse MMY, El-Kadi AOS. Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab Rev 2013; 45:173-95. [PMID: 23600686 DOI: 10.3109/03602532.2012.754460] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A plethora of studies have demonstrated the expression of cytochrome P450 (CYP) and soluble epoxide hydrolase (sEH) enzymes in the heart and other cardiovascular tissues. In addition, the expression of these enzymes is altered during several cardiovascular diseases (CVDs), including cardiac hypertrophy (CH). The alteration in CYP and sEH expression results in derailed CYP-mediated arachidonic acid (AA) metabolism. In animal models of CH, it has been reported that there is an increase in 20-hydroxyeicosatetraenoic acid (20-HETE) and a decrease in epoxyeicosatrienoic acids (EETs). Further, inhibiting 20-HETE production by CYP ω-hydroxylase inhibitors and increasing EET stability by sEH inhibitors have been proven to protect against CH as well as other CVDs. Therefore, CYP-mediated AA metabolites 20-HETE and EETs are potential key players in the pathogenesis of CH. Some studies have investigated the molecular mechanisms by which these metabolites mediate their effects on cardiomyocytes and vasculature leading to pathological CH. Activation of several intracellular signaling cascades, such as nuclear factor of activated T cells, nuclear factor kappa B, mitogen-activated protein kinases, Rho-kinases, Gp130/signal transducer and activator of transcription, extracellular matrix degradation, apoptotic cascades, inflammatory cytokines, and oxidative stress, has been linked to the pathogenesis of CH. In this review, we discuss how 20-HETE and EETs can affect these signaling pathways to result in, or protect from, CH, respectively. However, further understanding of these metabolites and their effects on intracellular cascades will be required to assess their potential translation to therapeutic approaches for the prevention and/or treatment of CH and heart failure.
Collapse
Affiliation(s)
- Abdulaziz M S Alsaad
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Center for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | |
Collapse
|
24
|
Motwani M, Li DQ, Horvath A, Kumar R. Identification of novel gene targets and functions of p21-activated kinase 1 during DNA damage by gene expression profiling. PLoS One 2013; 8:e66585. [PMID: 23950862 PMCID: PMC3741304 DOI: 10.1371/journal.pone.0066585] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/03/2013] [Indexed: 11/18/2022] Open
Abstract
P21-activated kinase 1 (PAK1), a serine/threonine protein kinase, modulates many cellular processes by phosphorylating its downstream substrates. In addition to its role in the cytoplasm, PAK1 also affects gene transcription due to its nuclear localization and association with chromatin. It is now recognized that PAK1 kinase activity and its nuclear translocation are rapidly stimulated by ionizing radiation (IR), and that PAK1 activation is a component of the DNA damage response. Owing to the role of PAK1 in the cell survival, its association with the chromatin, and now, stimulation by ionizing radiation, we hypothesize that PAK1 may be contributing to modulation of genes with roles in cellular processes that might be important in the DNA damage response. The purpose of this study was to identify new PAK1 targets in response to ionizing radiation with putative role in the DNA damage response. We examined the effect of IR on the gene expression patterns in the murine embryonic fibroblasts with or without Pak1 using microarray technology. Differentially expressed transcripts were identified using Gene Spring GX 10.0.2. Pathway, network, functional analyses and gene family classification were carried out using Kyoto Encyclopedia of Genes and Genomes (KEGG), Ingenuity Pathway, Gene Ontology and PANTHER respectively. Selective targets of PAK1 were validated by RT-qPCR. For the first time, we provide a genome-wide analysis of PAK1 and identify its targets with potential roles in the DNA damage response. Gene Ontology analysis identified genes in the IR-stimulated cells that were involved in cell cycle arrest and cell death. Pathway analysis revealed p53 pathway being most influenced by IR responsive, PAK1 targets. Gene family of transcription factors was over represented and gene networks involved in DNA replication, repair and cellular signaling were identified. In brief, this study identifies novel PAK1 dependent IR responsive genes which reveal new aspects of PAK1 biology.
Collapse
Affiliation(s)
- Mona Motwani
- McCormick Genomic and Proteomics Center, The George Washington University, Washington, District of Columbia, United States of America
| | - Da-Qiang Li
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, United States of America
| | - Anelia Horvath
- McCormick Genomic and Proteomics Center, The George Washington University, Washington, District of Columbia, United States of America
| | - Rakesh Kumar
- McCormick Genomic and Proteomics Center, The George Washington University, Washington, District of Columbia, United States of America
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Affiliation(s)
- Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Corresponding author: Amira Klip,
| |
Collapse
|
26
|
Pellegrino L, Stebbing J, Braga VM, Frampton AE, Jacob J, Buluwela L, Jiao LR, Periyasamy M, Madsen CD, Caley MP, Ottaviani S, Roca-Alonso L, El-Bahrawy M, Coombes RC, Krell J, Castellano L. miR-23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts. Nucleic Acids Res 2013; 41:5400-12. [PMID: 23580553 PMCID: PMC3664824 DOI: 10.1093/nar/gkt245] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 12/19/2022] Open
Abstract
Uncontrolled cell proliferation and cytoskeletal remodeling are responsible for tumor development and ultimately metastasis. A number of studies have implicated microRNAs in the regulation of cancer cell invasion and migration. Here, we show that miR-23b regulates focal adhesion, cell spreading, cell-cell junctions and the formation of lamellipodia in breast cancer (BC), implicating a central role for it in cytoskeletal dynamics. Inhibition of miR-23b, using a specific sponge construct, leads to an increase of cell migration and metastatic spread in vivo, indicating it as a metastatic suppressor microRNA. Clinically, low miR-23b expression correlates with the development of metastases in BC patients. Mechanistically, miR-23b is able to directly inhibit a number of genes implicated in cytoskeletal remodeling in BC cells. Through intracellular signal transduction, growth factors activate the transcription factor AP-1, and we show that this in turn reduces miR-23b levels by direct binding to its promoter, releasing the pro-invasive genes from translational inhibition. In aggregate, miR-23b expression invokes a sophisticated interaction network that co-ordinates a wide range of cellular responses required to alter the cytoskeleton during cancer cell motility.
Collapse
Affiliation(s)
- Loredana Pellegrino
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Justin Stebbing
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Vania M. Braga
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Adam E. Frampton
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Jimmy Jacob
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Lakjaya Buluwela
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Long R. Jiao
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Manikandan Periyasamy
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Chris D. Madsen
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Matthew P. Caley
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Silvia Ottaviani
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Laura Roca-Alonso
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mona El-Bahrawy
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - R. Charles Coombes
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Jonathan Krell
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Leandro Castellano
- Division of Oncology, Department of Surgery and Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM), Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0NN, UK, Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, SW7 2AZ, UK, HPB Surgical Unit, Department of Surgery and Cancer, Imperial College, Hammersmith Hospital campus, Du Cane Road, London, W12 0HS, UK, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX, UK, Blizard Institute Barts and The London School of Medicine and Dentistry, Centre for Cutaneous Research, 4 Newark Street, London, E1 2AT, UK and Department of Histopathology, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
27
|
Huynh N, Yim M, Chernoff J, Shulkes A, Baldwin GS, He H. p-21-Activated kinase 1 mediates gastrin-stimulated proliferation in the colorectal mucosa via multiple signaling pathways. Am J Physiol Gastrointest Liver Physiol 2013; 304:G561-7. [PMID: 23306081 PMCID: PMC3602683 DOI: 10.1152/ajpgi.00218.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrins, including amidated (Gamide) and glycine-extended (Ggly) forms, function as growth factors for the gastrointestinal mucosa. The p-21-activated kinase 1 (PAK1) plays important roles in growth factor signaling networks that control cell motility, proliferation, differentiation, and transformation. PAK1, activated by both Gamide and Ggly, mediates gastrin-stimulated proliferation and migration, and activation of β-catenin, in gastric epithelial cells. The aim of this study was to investigate the role of PAK1 in the regulation by gastrin of proliferation in the normal colorectal mucosa in vivo. Mucosal proliferation was measured in PAK1 knockout (PAK1 KO) mice by immunohistochemistry. The expression of phosphorylated and unphosphorylated forms of the signaling molecules PAK1, extracellular signal-regulated kinase (ERK), and protein kinase B (AKT), and the expression of β-catenin and its downstream targets c-Myc and cyclin D1, were measured in gastrin knockout (Gas KO) and PAK1 KO mice by Western blotting. The expression and activation of PAK1 are decreased in Gas KO mice, and these decreases are associated with reduced activation of ERK, AKT, and β-catenin. Proliferation in the colorectal mucosa of PAK1 KO mice is reduced, and the reduction is associated with reduced activation of ERK, AKT, and β-catenin. In compensation, antral gastrin mRNA and serum gastrin concentrations are increased in PAK1 KO mice. These results indicate that PAK1 mediates the stimulation of colorectal proliferation by gastrins via multiple signaling pathways involving activation of ERK, AKT, and β-catenin.
Collapse
Affiliation(s)
- Nhi Huynh
- 1Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia; and
| | - Mildred Yim
- 1Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia; and
| | | | - Arthur Shulkes
- 1Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia; and
| | - Graham S. Baldwin
- 1Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia; and
| | - Hong He
- 1Department of Surgery, University of Melbourne, Austin Health, Melbourne, Victoria, Australia; and
| |
Collapse
|
28
|
Chiang YA, Shao W, Xu XX, Chernoff J, Jin T. P21-activated protein kinase 1 (Pak1) mediates the cross talk between insulin and β-catenin on proglucagon gene expression and its ablation affects glucose homeostasis in male C57BL/6 mice. Endocrinology 2013. [PMID: 23183186 DOI: 10.1210/en.2012-1781] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In gut endocrine L cells, the Wnt signaling pathway effector β-catenin (β-cat)/transcription factor 7-like 2 mediates the stimulatory effect of insulin on proglucagon (gcg) expression and glucagon-like peptide-1 (GLP-1) production. In several other cell lineages, insulin is able to stimulate p21-activated protein kinase 1 (Pak1). Here we determined the role of Pak1 in gcg expression and the effect of Pak1 deletion on glucose homeostasis. Insulin stimulated Pak1 activation through increasing its Thr423 phosphorylation in gut gcg-expressing cell lines, associated with increased gcg mRNA levels. This stimulation was attenuated by the Pak inhibitor 2,2'-dihydroxy-1,1'-dinaphthyldisulfide (IPA3) or dominant-negative Pak1. Both insulin and cAMP-promoting agents activated β-cat Ser675 phosphorylation, which was attenuated by IPA3 or protein kinase A inhibition, respectively. Gut gcg levels were reduced in male Pak1(-/-) mice, associated with impaired glucose tolerance after an ip or oral glucose challenge. These mice had lower circulating active GLP-1 levels after a glucose challenge as well as reduced distal ileum GLP-1 content after insulin treatment. Finally, the Pak1(-/-) mice exhibited reduced brainstem gcg level and abolished β-cat Ser675 phosphorylation in brain neurons after insulin treatment. We suggest that Pak1 mediates the cross talk between insulin and Wnt signaling pathways on gut and brain gcg expression, and its ablation impairs glucose homeostasis.
Collapse
Affiliation(s)
- Yuting Alex Chiang
- Departments of Physiology, University of Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | |
Collapse
|
29
|
Sánchez-Solana B, Motwani M, Li DQ, Eswaran J, Kumar R. p21-activated kinase-1 signaling regulates transcription of tissue factor and tissue factor pathway inhibitor. J Biol Chem 2012; 287:39291-302. [PMID: 23038262 DOI: 10.1074/jbc.m112.404061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tissue factor (TF) is a cell-surface glycoprotein responsible for initiating the coagulation cascade. Besides its role in homeostasis, studies have shown the implication of TF in embryonic development, cancer-related events, and inflammation via coagulation-dependent and -independent (signaling) mechanisms. Tissue factor pathway inhibitor (TFPI) plays an important role in regulating TF-initiated blood coagulation. Therefore, transcriptional regulation of TF expression and its physiological inhibitor TFPI would allow us to understand the critical step that controls many different processes. From a gene profiling study aimed at identifying differentially regulated genes between wild-type (WT) and p21-activated kinase 1-null (PAK1-KO) mouse embryonic fibroblasts (MEFs), we found TF and TFPI are differentially expressed in the PAK1-KO MEFs in comparison with wild-type MEFs. Based on these findings, we further investigated in this study the transcriptional regulation of TF and TFPI by PAK1, a serine/threonine kinase. We found that the PAK1·c-Jun complex stimulates the transcription of TF and consequently its procoagulant activity. Moreover, PAK1 negatively regulates the expression of TFPI and additionally contributes to increased TF activity. For the first time, this study implicates PAK1 in coagulation processes, through its dual transcriptional regulation of TF and its inhibitor.
Collapse
Affiliation(s)
- Beatriz Sánchez-Solana
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | | | | | | | | |
Collapse
|
30
|
Regulation of insulin signaling by the phosphatidylinositol 3,4,5-triphosphate phosphatase SKIP through the scaffolding function of Pak1. Mol Cell Biol 2012; 32:3570-84. [PMID: 22751929 DOI: 10.1128/mcb.00636-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle and kidney-enriched inositol polyphosphate phosphatase (SKIP) has previously been implicated in the regulation of insulin signaling in skeletal muscle. Here, we present the first report of the mechanisms by which SKIP specifically suppresses insulin signaling and the subsequent glucose uptake. Upon insulin stimulation, SKIP is translocated to the membrane ruffles, where it binds to the active form of Pak1, which mediates multiple protein complex formation with phosphatidylinositol 3,4,5-triphosphate (PIP(3)) effectors such as Akt2, PDK1, and Rac1; this leads to inactivation of these proteins. SKIP also promotes the inhibition of Rac1-dependent kinase activity and the scaffolding function of Pak1, which results in the dissociation of Akt2 and PDK1 from Pak1. Thus, specific suppression of insulin signaling is achieved via the spatiotemporal regulation of SKIP through the scaffolding function of Pak1. These interactions are the foundation of the specific and prominent role of SKIP in the regulation of insulin signaling.
Collapse
|
31
|
Suga N, Sugimura M, Koshiishi T, Yorifuji T, Makino S, Takeda S. Heparin/heparan sulfate/CD44-v3 enhances cell migration in term placenta-derived immortalized human trophoblast cells. Biol Reprod 2012; 86:134, 1-8. [PMID: 22321833 DOI: 10.1095/biolreprod.111.093690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The function of CD44-v3 and heparin/heparan sulfate (HS) signaling was investigated during trophoblast cell migration to identify their role in the renewal of syncytial layer damage caused by increased hemodynamic turbulence in the intervillous space and maintenance of syncytial integrity in pre-eclampsia. We evaluated the effect of heparin/HS/CD44-v3-mediated processes during scratch wound closure in monolayer immortalized human trophoblast cells derived from term placenta (TCL-1 cells). Western blot analysis showed that these cultured human trophoblast cells express the epidermal growth factor receptor and CD44-v3 but do not express syndecan 4. An in vitro scratch wound healing assay showed enhanced migration of trophoblast cells in a dose-dependent manner in the presence of heparin compared with controls when cultured under serum-free conditions. Conversely, an anti-CD44 function-blocking antibody and CD44 siRNA suppressed the migration of trophoblast cells in the presence of heparin in a similar scratch assay. Furthermore, both heparin treatment and in vitro scratch wounding induced the phosphorylation of p21-activated kinase 1 (PAK1), whereas the anti-CD44-v3 antibody suppressed the heparin-induced phosphorylation of PAK1 in trophoblast cells. These results indicate that heparin/HS/CD44-v3-mediated signaling, in the absence of growth factor networks, enhances the direct repair of the damaged trophoblast layer through the migration of trophoblast cells. This renewed cell coverage may lead to the maintenance of syncytiotrophoblast cell function and an associated reduction in pathogenic soluble factors derived from the damaged trophoblast cells.
Collapse
Affiliation(s)
- Naoko Suga
- Department of Obstetrics and Gynecology, School of Medicine, Juntendo University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Wang Z, Oh E, Clapp DW, Chernoff J, Thurmond DC. Inhibition or ablation of p21-activated kinase (PAK1) disrupts glucose homeostatic mechanisms in vivo. J Biol Chem 2011; 286:41359-41367. [PMID: 21969371 DOI: 10.1074/jbc.m111.291500] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The p21-activated kinase PAK1 is implicated in tumorigenesis, and efforts to inhibit PAK1 signaling as a means to induce tumor cell apoptosis are underway. However, PAK1 has also been implicated as a positive effector of mechanisms in clonal pancreatic beta cells and skeletal myotubes that would be crucial to maintaining glucose homeostasis in vivo. Of relevance, human islets of Type 2 diabetic donors contained ~80% less PAK1 protein compared with non-diabetics, implicating PAK1 in islet signaling/scaffolding functions. Mimicking this, islets from PAK1(-/-) knock-out mice exhibited profound defects in the second/sustained-phase of insulin secretion. Reiteration of this specific defect by human islets treated with the PAK1 signaling inhibitor IPA3 revealed PAK1 signaling to be of primary functional importance. Analyses of human and mouse islet beta cell signaling revealed PAK1 activation to be 1) dependent upon Cdc42 abundance, 2) crucial for signaling downstream to activate ERK1/2, but 3) dispensable for cofilin phosphorylation. Importantly, the PAK1(-/-) knock-out mice were found to exhibit whole body glucose intolerance in vivo. Exacerbating this, the PAK1(-/-) knock-out mice also exhibited peripheral insulin resistance. Insulin resistance was coupled to ablation of insulin-stimulated GLUT4 translocation in skeletal muscle from PAK1(-/-) knock-out mice, and in sharp contrast to islet beta cells, skeletal muscle PAK1 loss was underscored by defective cofilin phosphorylation but normal ERK1/2 activation. Taken together, these data provide the first human islet and mammalian in vivo data unveiling the key and crucial roles for differential PAK1 signaling in the multi-tissue regulation of whole body glucose homeostasis.
Collapse
Affiliation(s)
- Zhanxiang Wang
- Basic Diabetes Group, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana 46202
| | - Eunjin Oh
- Basic Diabetes Group, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana 46202
| | - D Wade Clapp
- Basic Diabetes Group, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana 46202
| | | | - Debbie C Thurmond
- Basic Diabetes Group, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana 46202.
| |
Collapse
|
34
|
Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal 2011; 23:1546-54. [DOI: 10.1016/j.cellsig.2011.05.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/31/2011] [Indexed: 12/27/2022]
|
35
|
Ke Y, Solaro RJ. Use of a decoy peptide to purify p21 activated kinase-1 in cardiac muscle and identification of ceramide-related activation. Biologics 2011; 2:903-9. [PMID: 19707468 PMCID: PMC2727905 DOI: 10.2147/btt.s3870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The p21 activated kinase-1 (Pak1) is a serine-threonine protein kinase directly activated by Cdc42 and Rac1. In cardiac myocytes, Pak1 activation leads to dephosphorylation of cTnI and C-protein through upregulation of phosphatase-2A (PP2A). Pak1 activity is directly correlated with its autophosphorylation, which occurs upon binding to the small GTPases and to some small organic molecules as well. In this report, we describe a novel method for rapid purification of endogenous Pak1 from bovine ventricle muscle. The method is simple and easy to carry out. The purified Pak1 demonstrated autophosphorylation in vitro that was enhanced by D-erythro-sphingosine-1, N-acetyl-D-erythro-sphingosine (C2-ceramide), and N-hexanoyl-D-erythro-sphingosine (C6-ceramide). Dihydro-L-threo-sphingosine (saphingol) also had some effect on Pak1 autophosphorylation. The method we developed provides a useful tool to study Pak1 activity and regulation in the heart. Moreover, our results indicate a potential role of the sphingolipids as unique signaling molecules inducing a direct activation of Pak1 that may modulate different cardiac functions.
Collapse
Affiliation(s)
- Yunbo Ke
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
36
|
Abstract
IMPORTANCE OF THE FIELD Gastric cancer is one of the most common causes of cancer death worldwide. P21-activated kinases (PAKs), regulators of cancer-cell signalling networks, play fundamental roles in a range of cellular processes through their binding partners or kinase substrates. AREAS COVERED IN THIS REVIEW The complex regulation of PAKs through their upstream or downstream effectors in human cancers, especially in gastric cancer, are described and the identified inhibitors of PAKs are summarized. WHAT THE READERS WILL GAIN The structural differences and activation mechanisms between two subgroups of PAK are described. Both groups of PAKs play complicated and important roles in human gastric cancer, which indicated a possible way for us to identify the specific inhibitors targeting PAKs for gastric cancer. TAKE HOME MESSAGE PAKs play important roles in progression of many cancer types, the full mechanisms of PAKs in gastric cancer are still unclear. It seems there are different roles for two groups of PAKs in cancers. Group I PAKs play their functions mostly through their specific substrates, however, many binding partners that are independent of phosphorylation by group II PAKs were identified. Finding specific inhibitors of PAKs will help us discover the roles of PAKs and target these kinases in human gastric cancer.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Cell Biology, China Medical University, Key Laboratory of Cell Biology, Ministry of Public Health, Shenyang, Liaoning 110001, P. R. China.
| | | | | |
Collapse
|
37
|
Deguchi A, Miyoshi H, Kojima Y, Okawa K, Aoki M, Taketo MM. LKB1 suppresses p21-activated kinase-1 (PAK1) by phosphorylation of Thr109 in the p21-binding domain. J Biol Chem 2010; 285:18283-90. [PMID: 20400510 DOI: 10.1074/jbc.m109.079137] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine/threonine protein kinase LKB1 is a tumor suppressor gene mutated in Peutz-Jeghers syndrome patients. The mutations are found also in several types of sporadic cancer. Although LKB1 is implicated in suppression of cell growth and metastasis, the detailed mechanisms have not yet been elucidated. In this study, we investigated the effect of LKB1 on cell motility, whose acquisition occurs in early metastasis. The knockdown of LKB1 enhanced cell migration and PAK1 activity in human colon cancer HCT116 cells, whereas forced expression of LKB1 in Lkb1-null mouse embryonic fibroblasts suppressed PAK1 activity and PAK1-mediated cell migration simultaneously. Notably, LKB1 directly phosphorylated PAK1 at Thr(109) in the p21-binding domain in vitro. The phosphomimetic T109E mutant showed significantly lower protein kinase activity than wild-type PAK1, suggesting that the phosphorylation at Thr(109) by LKB1 was responsible for suppression of PAK1. Consistently, the nonphosphorylatable T109A mutant was resistant to suppression by LKB1. Furthermore, we found that PAK1 was activated in the hepatocellular carcinomas and the precancerous liver lesions of Lkb1(+/-) mice. Taken together, these results suggest that PAK1 is a direct downstream target of LKB1 and plays an essential role in LKB1-induced suppression of cell migration.
Collapse
Affiliation(s)
- Atsuko Deguchi
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Yi C, Maksimoska J, Marmorstein R, Kissil JL. Development of small-molecule inhibitors of the group I p21-activated kinases, emerging therapeutic targets in cancer. Biochem Pharmacol 2010; 80:683-9. [PMID: 20302846 DOI: 10.1016/j.bcp.2010.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 01/02/2023]
Abstract
The p21-activated kinases (PAKs), immediate downstream effectors of the small G-proteins of the Rac/cdc42 family, are critical mediators of signaling pathways regulating cellular behaviors and as such, have been implicated in pathological conditions including cancer. Recent studies have validated the requirement for PAKs in promoting tumorigenesis in breast carcinoma and neurofibromatosis. Thus, there has been considerable interest in the development of inhibitors to the PAKs, as biological markers and leads for the development of therapeutics. While initial approaches were based on screening for competitive organic inhibitors, more recent efforts have focused on the identification of allosteric inhibitors, organometallic ATP-competitive inhibitors and the use of PAK1/inhibitor crystal structures for inhibitor optimization. This has led to the identification of highly selective and potent inhibitors, which will serve as a basis for further development of inhibitors for therapeutic applications.
Collapse
Affiliation(s)
- Chunling Yi
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Some of the characteristics of cancer cells are high rates of cell proliferation, cell survival, and the ability to invade surrounding tissue. The cytoskeleton has an essential role in these processes. Dynamic changes in the cytoskeleton are necessary for cell motility and cancer cells are dependent on motility for invasion and metastasis. The signaling pathways behind the reshaping and migrating properties of the cytoskeleton in cancer cells involve a group of Ras-related small GTPases and their effectors, including the p21-activated kinases (Paks). Paks are a family of serine/threonine protein kinases comprised of six isoforms (Pak 1-6), all of which are direct targets of the small GTPases Rac and Cdc42. Besides their role in cytoskeletal dynamics, Paks have recently been shown to regulate various other cellular activities, including cell survival, mitosis, and transcription. Paks are overexpressed and/or hyperactivated in several human tumors and their role in cell transformation makes them attractive therapeutic targets. Pak-targeted therapeutics may efficiently inhibit certain types of tumors and efforts to identify selective Pak-inhibitors are underway.
Collapse
Affiliation(s)
- Bettina Dummler
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
40
|
Sun J, Khalid S, Rozakis-Adcock M, Fantus IG, Jin T. P-21-activated protein kinase-1 functions as a linker between insulin and Wnt signaling pathways in the intestine. Oncogene 2009; 28:3132-44. [DOI: 10.1038/onc.2009.167] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
p21-Activated kinase mediates rapid estradiol-negative feedback actions in the reproductive axis. Proc Natl Acad Sci U S A 2009; 106:7221-6. [PMID: 19359483 DOI: 10.1073/pnas.0812597106] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nonclassical estrogen receptor alpha (ERalpha) signaling can mediate E(2) negative feedback actions in the reproductive axis; however, downstream pathways conveying these effects remain unclear. These studies tested the hypothesis that p21-activated kinase 1 (PAK1), a serine/threonine kinase rapidly activated by E(2) in nonneural cells, functions as a downstream node for E(2) signaling pathways in cells of the preoptic area, and it may thereby mediate E(2) negative feedback effects. Treatment of ovariectomized (OVX) rats with estradiol benzoate (EB) caused rapid and transient induction of phosphorylated PAK1 immunoreactivity in the medial preoptic nucleus (MPN) but not the arcuate nucleus. To determine whether rapid induction of PAK phosphorylation by E(2) is mediated by nonclassical [estrogen response element (ERE)-independent] ERalpha signaling, we used female ERalpha null (ERalpha(-/-)) mice possessing an ER knock-in mutation (E207A/G208A; AA), in which the mutant ERalpha is incapable of binding DNA and can signal only through membrane-initiated or ERE-independent genotropic pathways (ERalpha(-/AA) mice). After 1-h EB treatment, the number of pPAK1-immunoreactive cells in the MPN was increased in both wild-type (ERalpha(+/+)) and ERalpha(-/AA) mice but was unchanged in ERalpha(-/-) mice. Serum luteinizing hormone (LH) was likewise suppressed within 1 h after EB treatment in ERalpha(+/+) and ERalpha(-/AA) but not ERalpha(-/ -) mice. In OVX rats, 5-min intracerebroventricular infusion of a PAK inhibitor peptide but not control peptide blocked rapid EB suppression of LH secretion. Taken together, our findings implicate PAK1 activation subsequent to nonclassical ERalpha signaling as an important component of the negative feedback actions of E(2) in the brain.
Collapse
|
42
|
MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clin Sci (Lond) 2008; 115:203-18. [PMID: 18752467 DOI: 10.1042/cs20070430] [Citation(s) in RCA: 391] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Intracellular MAPK (mitogen-activated protein kinase) signalling cascades probably play an important role in the pathogenesis of cardiac and vascular disease. A substantial amount of basic science research has defined many of the details of MAPK pathway organization and activation, but the role of individual signalling proteins in the pathogenesis of various cardiovascular diseases is still being elucidated. In the present review, the role of the MAPKs ERK (extracellular signal-regulated kinase), JNK (c-Jun N-terminal kinase) and p38 MAPK in cardiac hypertrophy, cardiac remodelling after myocardial infarction, atherosclerosis and vascular restenosis will be examined, with attention paid to genetically modified murine model systems and to the use of pharmacological inhibitors of protein kinases. Despite the complexities of this field of research, attractive targets for pharmacological therapy are emerging.
Collapse
|
43
|
Röckl KSC, Witczak CA, Goodyear LJ. Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life 2008; 60:145-53. [PMID: 18380005 DOI: 10.1002/iub.21] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Physical activity elicits physiological responses in skeletal muscle that result in a number of health benefits, in particular in disease states, such as type 2 diabetes. An acute bout of exercise/muscle contraction improves glucose homeostasis by increasing skeletal muscle glucose uptake, while chronic exercise training induces alterations in the expression of metabolic genes, such as those involved in muscle fiber type, mitochondrial biogenesis, or glucose transporter 4 (GLUT4) protein levels. A primary goal of exercise research is to elucidate the mechanisms that regulate these important metabolic and transcriptional events in skeletal muscle. In this review, we briefly summarize the current literature describing the molecular signals underlying skeletal muscle responses to acute and chronic exercise. The search for possible exercise/contraction-stimulated signaling proteins involved in glucose transport, muscle fiber type, and mitochondrial biogenesis is ongoing. Further research is needed because full elucidation of exercise-mediated signaling pathways would represent a significant step toward the development of new pharmacological targets for the treatment of metabolic diseases such as type 2 diabetes.
Collapse
Affiliation(s)
- Katja S C Röckl
- Research Division, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
44
|
Sheehan KA, Ke Y, Solaro RJ. p21-Activated kinase-1 and its role in integrated regulation of cardiac contractility. Am J Physiol Regul Integr Comp Physiol 2007; 293:R963-73. [PMID: 17609315 DOI: 10.1152/ajpregu.00253.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We review here a novel concept in the regulation of cardiac contractility involving variations in the activity of the multifunctional enzyme, p21-activated kinase 1 (Pak1), a member of a family of proteins in the small G protein-signaling pathway that is activated by Cdc42 and Rac1. There is a large body of evidence from studies in noncardiac tissue that Pak1 activity is key in regulation of a number of cellular functions, including cytoskeletal dynamics, cell motility, growth, and proliferation. Although of significant potential impact, the role of Pak1 in regulation of the heart has been investigated in only a few laboratories. In this review, we discuss the structure of Pak1 and its sites of posttranslational modification and molecular interactions. We assemble an overview of the current data on Pak1 signaling in noncardiac tissues relative to similar signaling pathways in the heart, and we identify potential roles of Pak1 in cardiac regulation. Finally, we discuss the current state of Pak1 research in the heart in regard to regulation of contractility through functional myofilament and Ca(2+)-flux modification. An important aspect of this regulation is the modulation of kinase and phosphatase activity. We have focused on Pak1 regulation of protein phosphatase 2A (PP2A), which is abundant in cardiac muscle, thereby mediating dephosphorylation of sarcomeric proteins and sensitizing the myofilaments to Ca(2+). We present a model for Pak1 signaling that provides a mechanism for specifically affecting cardiac cellular processes in which regulation of protein phosphorylation states by PP2A dephosphorylation predominates.
Collapse
Affiliation(s)
- Katherine A Sheehan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott Ave., Chicago, IL 60612-7342, USA.
| | | | | |
Collapse
|
45
|
Machuy N, Campa F, Thieck O, Rudel T. c-Abl-binding protein interacts with p21-activated kinase 2 (PAK-2) to regulate PDGF-induced membrane ruffles. J Mol Biol 2007; 370:620-32. [PMID: 17543336 DOI: 10.1016/j.jmb.2007.04.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 03/21/2007] [Accepted: 04/25/2007] [Indexed: 11/25/2022]
Abstract
p21-Activated kinases (PAKs) are serine/threonine kinases involved in multiple cellular functions including cytoskeleton regulation, proliferation and apoptosis. We performed a screen for proteins interacting with PAK-2, a ubiquitously expressed kinase involved in apoptotic signaling. Among the PAK-2 interacting proteins were different members of the Abl-binding protein family. Abl-binding proteins bound to a proline-rich region of PAK-2 located in the regulatory N terminus. Moreover, active PAK-2 phosphorylated Abl-binding proteins in vitro. Interestingly, we show that PAK-2 also interacted with c-Abl but via a different domain than with the Abl-binding proteins. PAK-2 and Abi-1 co-localized in the cytoplasm and to membrane dorsal ruffles induced by PDGF treatment. Expression of mutant PAK-2 deficient in binding to Abl-binding proteins or silencing of PAK-2 expression prevented the formation of membrane dorsal ruffles in response to PDGF. Our findings define a new class of PAK-interacting proteins, which play an important role in actin cytoskeletal reorganization.
Collapse
Affiliation(s)
- Nikolaus Machuy
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | |
Collapse
|
46
|
Abstract
The pivotal role of kinases in signal transduction and cellular regulation has lent them considerable appeal as pharmacological targets across a broad spectrum of cancers. p21-activated kinases (Paks) are serine/threonine kinases that function as downstream nodes for various oncogenic signalling pathways. Paks are well-known regulators of cytoskeletal remodelling and cell motility, but have recently also been shown to promote cell proliferation, regulate apoptosis and accelerate mitotic abnormalities, which results in tumour formation and cell invasiveness. Alterations in Pak expression have been detected in human tumours, which makes them an attractive new therapeutic target.
Collapse
Affiliation(s)
- Rakesh Kumar
- The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA.
| | | | | |
Collapse
|
47
|
Fryer BH, Wang C, Vedantam S, Zhou GL, Jin S, Fletcher L, Simon MC, Field J. cGMP-dependent protein kinase phosphorylates p21-activated kinase (Pak) 1, inhibiting Pak/Nck binding and stimulating Pak/vasodilator-stimulated phosphoprotein association. J Biol Chem 2006; 281:11487-95. [PMID: 16490784 DOI: 10.1074/jbc.m600279200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells are normally non-motile and quiescent; however, endothelial cells will become permeable and invade and proliferate to form new blood vessels (angiogenesis) in response to wounding, cancer, diabetic retinopathy, age-related macular degeneration, or rheumatoid arthritis. p21-activated kinase (Pak), an effector for the Rho GTPases Rac and Cdc42, is required for angiogenesis and regulates endothelial cell permeability and motility. Although Pak is primarily activated by Rac and Cdc42, there are additional proteins that regulate Pak activity and localization, including three AGC protein kinase family members, Akt-1, PDK-1, and cAMP-dependent protein kinase. We describe phosphorylation and regulation of Pak localization by a fourth AGC kinase family member, cGMP-dependent protein kinase (PKG). Using in vitro mapping, a phosphospecific antibody, co-transfection assays, and untransfected bovine aortic endothelial cells we determined that PKG phosphorylates Pak at serine 21. Phosphorylation was accompanied by changes in proteins associated with Pak. The adaptor protein Nck was released, whereas a novel complex with vasodilator-stimulated phosphoprotein was stimulated. Furthermore Ser-21 phosphorylation of Pak appears to be important for regulation of cell morphology. In both human umbilical vein endothelial cells and HeLa cells, activation of PKG in the presence of Pak stimulated tail retraction and cell polarization. However, in cells expressing S21A mutant Pak1, PKG activation or treatment with a peptide that blocks Nck/Pak binding caused aberrant cell morphology, blocked cell retraction, and mislocalized Pak, producing uropod (tail-like) structures. These data suggest that PKG regulates Pak and that the interaction plays a role in tail retraction.
Collapse
Affiliation(s)
- Benjamin H Fryer
- Department of Pharmacology, School of Medicine, Abramson Family Cancer Research Institute, and Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Haase H, Maret W. Fluctuations of cellular, available zinc modulate insulin signaling via inhibition of protein tyrosine phosphatases. J Trace Elem Med Biol 2005; 19:37-42. [PMID: 16240670 DOI: 10.1016/j.jtemb.2005.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Extracellular zinc ions are effectors of many signaling pathways in mammalian cells, including the insulin/IGF-1 pathway. Molecular targets of zinc are intracellular, however, because otherwise ineffective zinc concentrations alter the extent of protein phosphorylation only in the presence of the ionophore pyrithione. The tight inhibition of protein tyrosine phosphatases by zinc (nanomolar inhibition constants) is likely responsible for the known insulinomimetic effects of zinc ions, which increase net phosphorylation of the insulin/IGF-1-receptors and activate their signaling cascades. More importantly, not only do extracellular zinc ions affect signal transduction, but growth factors induce cellular zinc fluctuations that are of sufficient magnitude to inhibit protein tyrosine phosphatases. In conclusion, a pool of cellular, available zinc participates in phosphorylation/dephosphorylation cascades, suggesting the existence of a cellular signaling system based on zinc as a second messenger.
Collapse
Affiliation(s)
- Hajo Haase
- Center for Biochemical and Biophysical Sciences and Medicine, Department of Pathology, Harvard Medical School, Cambridge, MA 02115, USA.
| | | |
Collapse
|
49
|
Leng Y, Steiler TL, Zierath JR. Effects of insulin, contraction, and phorbol esters on mitogen-activated protein kinase signaling in skeletal muscle from lean and ob/ob mice. Diabetes 2004; 53:1436-44. [PMID: 15161746 DOI: 10.2337/diabetes.53.6.1436] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Effects of diverse stimuli, including insulin, muscle contraction, and phorbol 12-myristate-13-acetate (PMA), were determined on phosphorylation of mitogen-activated protein kinase (MAPK) signaling modules (c-Jun NH(2)-terminal kinase [JNK], p38 MAPK, and extracellular signal-related kinase [ERK1/2]) in skeletal muscle from lean and ob/ob mice. Insulin increased phosphorylation of JNK, p38 MAPK, and ERK1/2 in isolated extensor digitorum longus (EDL) and soleus muscle from lean mice in a time- and dose-dependent manner. Muscle contraction and PMA also elicited robust effects on these parallel MAPK modules. Insulin action on JNK, p38 MAPK, and ERK1/2 phosphorylation was significantly impaired in EDL and soleus muscle from ob/ob mice. In contrast, muscle contraction-mediated JNK, p38 MAPK, and ERK1/2 phosphorylation was preserved. PMA effects on phosphorylation of JNK and ERK1/2 were normal in ob/ob mice, whereas effects on p38 MAPK were abolished. In conclusion, insulin, contraction, and PMA activate MAPK signaling in skeletal muscle. Insulin-mediated responses on MAPK signaling are impaired in skeletal muscle from ob/ob mice, whereas the effect of contraction is generally well preserved. In addition, PMA-induced phosphorylation of JNK and ERK1/2 are preserved, whereas p38 MAPK pathways are impaired in skeletal muscle from ob/ob mice. Thus, appropriate MAPK responses can be elicited in insulin-resistant skeletal muscle via an insulin-independent mechanism.
Collapse
Affiliation(s)
- Ying Leng
- Professor of Physiology, Department of Surgical Sciences, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, II, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
50
|
Luo ZG, Je HS, Wang Q, Yang F, Dobbins GC, Yang ZH, Xiong WC, Lu B, Mei L. Implication of geranylgeranyltransferase I in synapse formation. Neuron 2004; 40:703-17. [PMID: 14622576 DOI: 10.1016/s0896-6273(03)00695-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Agrin activates the transmembrane tyrosine kinase MuSK to mediate acetylcholine receptor (AChR) clustering at the neuromuscular junction (NMJ). However, the intracellular signaling mechanism downstream of MuSK is poorly characterized. This study provides evidence that geranylgeranyltransferase I (GGT) is an important signaling component in the Agrin/MuSK pathway. Agrin causes a rapid increase in tyrosine phosphorylation of the alpha(G/F) subunit of GGT and in GGT activity. Inhibition of GGT activity or expression prevents muscle cells from forming AChR clusters in response to Agrin and attenuates the formation of neuromuscular synapses in spinal neuron-muscle cocultures. Importantly, transgenic mice expressing an alpha(G/F) mutant demonstrate NMJ defects with wider endplate bands and smaller AChR plaques. These results support the notion that prenylation is necessary for AChR clustering and the NMJ formation and/or maintenance, revealing an active role of GGT in Agrin/MuSK signaling.
Collapse
Affiliation(s)
- Zhen G Luo
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|