1
|
Abstract
Mu opioid receptor (MOR) agonists such as morphine are extremely effective treatments for acute pain. In the setting of chronic pain, however, their long-term utility is limited by the development of tolerance and physical dependence. Drug companies have tried to overcome these problems by simply "dialing up" signal transduction at the receptor, designing more potent and efficacious agonists and more long-lasting formulations. Neither of these strategies has proven to be successful, however, because the net amount of signal transduction, particularly over extended periods of drug use, is a product of much more than the pharmacokinetic properties of potency, efficacy, half-life, and bioavailability, the mainstays of traditional pharmaceutical screening. Both the quantity and quality of signal transduction are influenced by many regulated processes, including receptor desensitization, trafficking, and oligomerization. Importantly, the efficiency with which an agonist first stimulates signal transduction is not necessarily related to the efficiency with which it stimulates these other processes. Here we describe recent findings that suggest MOR agonists with diminished propensity to cause tolerance and dependence can be identified by screening drugs for the ability to induce MOR desensitization, endocytosis, and recycling. We also discuss preliminary evidence that heteromers of the delta opioid receptor and the MOR are pronociceptive, and that drugs that spare such heteromers may also induce reduced tolerance.
Collapse
Affiliation(s)
- Amy Chang Berger
- Department of Neurology, University of California, San Francisco, Ernest Gallo Clinic and Research Center, Emeryville, CA, USA
| | | |
Collapse
|
2
|
Tao J, Wang HY, Malbon CC. Src Docks to A-kinase Anchoring Protein Gravin, Regulating β2-Adrenergic Receptor Resensitization and Recycling. J Biol Chem 2007; 282:6597-608. [PMID: 17200117 DOI: 10.1074/jbc.m608927200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gravin (AKAP12) is a membrane-associated scaffold that provides docking for protein kinases, phosphatases, and adaptor molecules obligate for resensitization and recycling of beta(2)-adrenergic receptors. Gravin binds to the cell membrane in a Ca(2+)-sensitive manner and to receptors through well characterized protein-protein interactions. Although the interaction of serine/threonine, cyclic AMP-dependent protein kinase with protein kinase A-anchoring proteins is well described and involves a kinase regulatory subunit binding domain in the C terminus of these proteins, far less is known about tyrosine kinase docking to members of this family of scaffolds. The non-receptor tyrosine kinase Src regulates resensitization of beta(2)-adrenergic receptors and docks to gravin. Gravin displays nine proline-rich domains distributed throughout the molecule. One class I ligand for Src homology domain 3 docking, found in the N terminus ((10)RXPXXP(15)) of gravin, is shown to bind Src. Binding of Src to gravin activates the intrinsic tyrosine kinase of Src. Mutagenesis/deletion of the class I ligand (P15A,P16A) on the N terminus of gravin abolishes both the docking of Src to gravin as well as the receptor resensitization and recycling catalyzed by gravin. The Src-binding peptide-(1-51) of gravin behaves as a dominant-negative for AKAP gravin regulation of receptor resensitization/recycling. The tyrosine kinase Src plays an essential role in the AKAP gravin-mediated receptor resensitization and recycling, an essential aspect of receptor biology.
Collapse
Affiliation(s)
- Jiangchuan Tao
- Department of Pharmacology, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
3
|
Tao J, Shumay E, McLaughlin S, Wang HY, Malbon CC. Regulation of AKAP-Membrane Interactions by Calcium. J Biol Chem 2006; 281:23932-44. [PMID: 16762919 DOI: 10.1074/jbc.m601813200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AKAP gravin is a scaffold for protein kinases, phosphatases, and adaptor molecules obligate for resensitization and recycling of beta2-adrenergic receptors. Gravin binds to the receptor through well characterized protein-protein interactions. These interactions are facilitated approximately 1000-fold when gravin is anchored to the cytoplasmic leaflet of the plasma membrane. Although the N-terminal region (approximately 550 residues) is highly negatively charged and probably natively unfolded, it could anchor gravin to the inner leaflet through hydrophobic insertion of its N-terminal myristate and electrostatic binding of three short positively charged domains (PCDs). Loss of the site of N-myristoylation was found to affect neither AKAP macroscopic localization nor AKAP function. Synthetic peptides corresponding to PCD1-3 bound in vitro to unilamellar phospholipid vesicles with high affinity, a binding reversed by calmodulin in the presence of Ca2+. In vivo gravin localization is regulated by intracellular Ca2+, a function mapping to the N terminus of the protein harboring PCD1, PCD2, and PCD3. Mutation of any two PCDs eliminates membrane association of the non-myristoylated gravin, the sensitivity to Ca2+/calmodulin, and the ability of this scaffold to catalyze receptor resensitization and recycling.
Collapse
Affiliation(s)
- Jiangchuan Tao
- Department of Pharmacology, School of Medicine, Heath Sciences Center, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | | | |
Collapse
|
4
|
Hamel C, Millette E, Lamontagne D. Role of nitric oxide and protein kinase C in the tachyphylaxis to vasopressin in rat aortic rings. Life Sci 2005; 77:1069-81. [PMID: 15978263 DOI: 10.1016/j.lfs.2004.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Accepted: 12/10/2004] [Indexed: 11/20/2022]
Abstract
The contribution of endothelium-derived mediators and protein kinase C in the tachyphylaxis to arginine vasopressin (AVP) was assessed in the rat aorta. Endothelium-intact (E+) and denuded rings (E-) obtained from the rat thoracic aorta were exposed to three administrations of a supramaximal concentration of AVP (100 nM), lasting 20 min and 45 min apart. N-Omega-nitro-L-arginine (NNLA), a non-selective inhibitor of all isoforms of NO synthase, and AMT, a selective inhibitor for the inducible (iNOS) and neuronal (nNOS) isoforms, diminished the tachyphylaxis to AVP significantly in both E+ and in E- rings. No iNOS could be detected by Western blots in freshly isolated rings or in rings exposed to AVP, despite a strong signal in rings isolated from LPS-treated rats, while nNOS could be constitutively detected. Inhibition of prostaglandins or epoxyeicosatrienoic acids (EETs) synthesis by diclofenac or clotrimazole, respectively, had no effect on tachyphylaxis while combination of these agents diminished tachyphylaxis in E+ only. Combination of NNLA, diclofenac and clotrimazole blocked completely the tachyphylaxis. Inhibition of PKC by either chelerythrine or bisindolylmaleimide I-HCl (BisI) led to a significant diminution of AVP tachyphylaxis only in E-. Activation of PKC with phorbol-12-myristate-13-acetate (PMA) simulated tachyphylaxis to AVP in E- only, effect blocked by the NO donor, SNP. In conclusion, NO produced from constitutive nNOS present in vascular smooth muscle cells participates in tachyphylaxis to AVP. PKC is involved in this tachyphylaxis only in E- rings, the presence of NO probably diminishing the effects of this kinase.
Collapse
Affiliation(s)
- Christine Hamel
- Faculté de Pharmacie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC, Canada H3C 3J7
| | | | | |
Collapse
|
5
|
Abstract
Tolerance and dependence result from long-term exposure to opioids, and there is growing evidence linking acute receptor desensitization to these more long-term processes. Receptor desensitization encompasses a series of events leading to the loss of receptor function and internalization. This study examines the onset and recovery from desensitization in locus ceruleus neurons recorded in brain slices taken from animals that have been chronically treated with morphine. After chronic morphine treatment, desensitization was altered as follows. First, the rate of desensitization was increased. Second, recovery from desensitization was always incomplete, even after a brief (1-2 min) exposure to agonist. This contrasts with experiments in controls in which recovery from desensitization, after a brief exposure to agonist, was complete within 25 min. Finally, morphine-6-beta-D-glucuronide, a metabolite of morphine that was ineffective at causing desensitization in controls, induced significant desensitization in slices from morphine-treated animals. When brain slices from controls were treated with inhibitors of PKC or monensin, agents known to compromise G-protein-coupled receptor resensitization, desensitization was increased, and recovery was significantly reduced. These results indicate that receptor resensitization maintains signaling during periods of intense and sustained stimulation. After chronic morphine treatment, desensitization is potentiated, and receptor resensitization is compromised.
Collapse
Affiliation(s)
- Vu C Dang
- Vollum Institute and Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97239, USA
| | | |
Collapse
|
6
|
Malbon CC, Tao J, Wang HY. AKAPs (A-kinase anchoring proteins) and molecules that compose their G-protein-coupled receptor signalling complexes. Biochem J 2004; 379:1-9. [PMID: 14715081 PMCID: PMC1224059 DOI: 10.1042/bj20031648] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 12/08/2003] [Accepted: 01/09/2004] [Indexed: 11/17/2022]
Abstract
Cell signalling mediated via GPCRs (G-protein-coupled receptors) is a major paradigm in biology, involving the assembly of receptors, G-proteins, effectors and downstream elements into complexes that approach in design 'solid-state' signalling devices. Scaffold molecules, such as the AKAPs (A-kinase anchoring proteins), were discovered more than a decade ago and represent dynamic platforms, enabling multivalent signalling. AKAP79 and AKAP250 were the first to be shown to bind to membrane-embedded GPCRs, orchestrating the interactions of various protein kinases (including tyrosine kinases), protein phosphatases (e.g. calcineurin) and cytoskeletal elements with at least one member of the superfamily of GPCRs, the prototypical beta2-adrenergic receptor. In this review, the multivalent interactions of AKAP250 with the cell membrane, receptor, cytoskeleton and constituent components are detailed, providing a working model for AKAP-based GPCR signalling complexes. Dynamic regulation of the AKAP-receptor complex is mediated by ordered protein phosphorylation.
Collapse
Affiliation(s)
- Craig C Malbon
- Department of Molecular Pharmacology, University Medical Center, Stony Brook University, Stony Brook, NY 11794-8651, USA.
| | | | | |
Collapse
|
7
|
Taskén K, Aandahl EM. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 2004; 84:137-67. [PMID: 14715913 DOI: 10.1152/physrev.00021.2003] [Citation(s) in RCA: 583] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
More than 20% of the human genome encodes proteins involved in transmembrane and intracellular signaling pathways. The cAMP-protein kinase A (PKA) pathway is one of the most common and versatile signal pathways in eukaryotic cells and is involved in regulation of cellular functions in almost all tissues in mammals. Various extracellular signals converge on this signal pathway through ligand binding to G protein-coupled receptors, and the cAMP-PKA pathway is therefore tightly regulated at several levels to maintain specificity in the multitude of signal inputs. Ligand-induced changes in cAMP concentration vary in duration, amplitude, and extension into the cell, and cAMP microdomains are shaped by adenylyl cyclases that form cAMP as well as phosphodiesterases that degrade cAMP. Different PKA isozymes with distinct biochemical properties and cell-specific expression contribute to cell and organ specificity. A kinase anchoring proteins (AKAPs) target PKA to specific substrates and distinct subcellular compartments providing spatial and temporal specificity for mediation of biological effects channeled through the cAMP-PKA pathway. AKAPs also serve as scaffolding proteins that assemble PKA together with signal terminators such as phosphatases and cAMP-specific phosphodiesterases as well as components of other signaling pathways into multiprotein signaling complexes that serve as crossroads for different paths of cell signaling. Targeting of PKA and integration of a wide repertoire of proteins involved in signal transduction into complex signal networks further increase the specificity required for the precise regulation of numerous cellular and physiological processes.
Collapse
Affiliation(s)
- Kjetil Taskén
- The Biotechnology Centre of Oslo, University of Oslo, Norway.
| | | |
Collapse
|
8
|
Schutzer WE, Mader SL. Age-related changes in vascular adrenergic signaling: clinical and mechanistic implications. Ageing Res Rev 2003; 2:169-90. [PMID: 12605959 DOI: 10.1016/s1568-1637(02)00063-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A large and growing segment of the general population are age 65 or older, and this percentage will continue to rise. Primary care of this population has, and is becoming a priority for clinicians. Hypertension, orthostatic hypotension, arterial insufficiency, and atherosclerosis are common disorders in the elderly that lead to significant morbidity and mortality. One common factor to these conditions is an age-related decline in beta-adrenergic receptor (beta-AR)-mediated function and subsequent cAMP generation. Presently, there is no single cellular factor that can explain this age-related decline, and thus the primary cause of this homeostatic imbalance is yet to be identified. However, the etiology is clearly associated with an age-related change in the ability of beta-AR receptor to respond to agonist at the cellular level. This article will review what is presently understood regarding the molecular and biochemical basis of age-impaired beta-AR receptor-mediated signaling. A fundamental understanding of why beta-AR-mediated vasorelaxation is impaired with age will provide new insights and innovative strategies for the management of the multiple clinical disorders that effect older people.
Collapse
Affiliation(s)
- William E Schutzer
- Research Service, Portland VA Medical Center and School of Medicine, Oregon Health & Science University, PO Box 1034, Portland, OR 97201, USA
| | | |
Collapse
|
9
|
Shumay E, Song X, Wang HY, Malbon CC. pp60Src mediates insulin-stimulated sequestration of the beta(2)-adrenergic receptor: insulin stimulates pp60Src phosphorylation and activation. Mol Biol Cell 2002; 13:3943-54. [PMID: 12429837 PMCID: PMC133605 DOI: 10.1091/mbc.e02-03-0174] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Insulin stimulates a rapid phosphorylation and sequestration of the beta(2)-adrenergic receptor. Analysis of the signaling downstream of the insulin receptor with enzyme inhibitors revealed roles for both phosphatidylinositol 3-kinase and pp60Src. Inhibition of Src with PP2, like the inhibition of phosphatidylinositol 3-kinase with LY294002 [2-(4-morpholynyl)-8-phenyl-4H-1-benzopyran-4-one], blocked the activation of Src as well as insulin-stimulated sequestration of the beta(2)-adrenergic receptor. Depletion of Src with antisense morpholinos also suppressed insulin-stimulated receptor sequestration. Src is shown to be phosphorylated/activated in response to insulin in human epidermoid carcinoma A431 cells as well as in mouse 3T3-L1 adipocytes and their derivative 3T3-F422A cells, well-known models of insulin signaling. Inhibition of Src with PP2 blocks the ability of insulin to sequester beta(2)-adrenergic receptors and the translocation of the GLUT4 glucose transporters. Insulin stimulates Src to associate with the beta(2)-adrenergic receptor/AKAP250/protein kinase A/protein kinase C signaling complex. We report a novel positioning of Src, mediating signals from insulin to phosphatidylinositol 3-kinase and to beta(2)-adrenergic receptor trafficking.
Collapse
Affiliation(s)
- Elena Shumay
- Department of Pharmacology, Diabetes and Metabolic Diseases Research Center-Health Sciences Center, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | | | |
Collapse
|
10
|
Fan G, Shumay E, Wang H, Malbon CC. The scaffold protein gravin (cAMP-dependent protein kinase-anchoring protein 250) binds the beta 2-adrenergic receptor via the receptor cytoplasmic Arg-329 to Leu-413 domain and provides a mobile scaffold during desensitization. J Biol Chem 2001; 276:24005-14. [PMID: 11309381 DOI: 10.1074/jbc.m011199200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclic AMP-dependent kinase-anchoring proteins (AKAPs) function as scaffolds for a wide-range of protein-protein interactions. The 250-kDa AKAP known as gravin plays a central role in organizing G-protein-coupled receptors to the protein kinases and phosphatases that regulate receptor function in desensitization, resensitization, and sequestration. Although gravin is critical for G-protein-linked receptor biology, the molecular features of the receptor necessary for interaction with this scaffold are not known. Herein, we map the regions of the beta(2)-adrenergic receptor that are required for binding to gravin. Intracellular loops 1, 2, and 3 appear not to participate in the binding of the receptor to the scaffold. In contrast, the C-terminal cytoplasmic region of the receptor (Arg-329 to Leu-413) competes readily for the binding of the beta(2)-adrenergic receptor by gravin, both using in vitro and in vivo assays. C-terminally truncated peptides with sequences ranging from Arg-329 to Leu-342 (13 aminoacyl residues), to Asn-352 (23 residues), to Tyr-366 (37 residues), to Asp-380 (51 residues), or to His-390 (61 residues), as well as N-terminally truncated peptides from Gln-391 to Leu-413 (23 residues) or Leu-381 to Leu-413 (33 residues) displayed no ability to block binding of receptor to gravin. The combination of Arg-329 to His-390 peptide and Gln-391 to Leu-413 peptide, however, reconstitutes a fragmented but full-length C-terminal region and also potently blocks the ability of gravin to bind the beta(2)-adrenergic receptor. The gravin-receptor interaction was examined in response to agonist by confocal microscopy. Remarkably, the association of the receptor with gravin was not disrupted during agonist-induced sequestration. The receptor-scaffold complex was maintained during agonist-induced sequestration. These data, in agreement with the biochemical data, reveal that gravin binds the receptor through the beta(2)-adrenergic receptor C-terminal cytoplasmic domain and that this interaction is maintained as the receptor is internalized. This is the first report of an AKAP scaffold protein translocating with its receptor, in this case a G-protein-coupled receptor.
Collapse
MESH Headings
- A Kinase Anchor Proteins
- Arginine/chemistry
- Arrestins/metabolism
- Binding Sites
- Cell Cycle Proteins
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Down-Regulation
- G-Protein-Coupled Receptor Kinase 2
- Humans
- Leucine/chemistry
- Macromolecular Substances
- Microscopy, Fluorescence
- Models, Biological
- Peptide Fragments/pharmacology
- Protein Binding
- Protein Structure, Tertiary
- Proteins/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/genetics
- Receptors, Adrenergic, beta-2/metabolism
- Recombinant Fusion Proteins/metabolism
- Tumor Cells, Cultured
- beta-Adrenergic Receptor Kinases
- beta-Arrestins
Collapse
Affiliation(s)
- G Fan
- Department of Molecular Pharmacology, Diabetes & Metabolic Diseases Research Program, University Medical Center, SUNY/Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | | | |
Collapse
|
11
|
Fan G, Shumay E, Malbon CC, Wang H. c-Src tyrosine kinase binds the beta 2-adrenergic receptor via phospho-Tyr-350, phosphorylates G-protein-linked receptor kinase 2, and mediates agonist-induced receptor desensitization. J Biol Chem 2001; 276:13240-7. [PMID: 11278940 DOI: 10.1074/jbc.m011578200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The nonreceptor tyrosine kinase Src has been implicated in the switching of signaling of beta2-adrenergic receptors from adenylylcyclase coupling to the mitogen-activated protein kinase pathway. In the current work, we demonstrate that Src plays an active role in the agonist-induced desensitization of beta2-adrenergic receptors. Both the expression of dominant-negative Src and treatment with the 4-amine-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) inhibitor of Src kinase activity blocks agonist-induced desensitization. Agonist triggers tyrosine phosphorylation of the beta2-adrenergic receptor and recruitment and activation of Src. Because phosphorylation of the Tyr-350 residue of the beta2-adrenergic receptor creates a conditional, canonical SH2-binding site on the receptor, we examined the effect of the Y350F mutation on Src phosphorylation, Src recruitment, and desensitization. Mutant beta2-adrenergic receptors with a Tyr-to-Phe substitution at Tyr-350 do not display agonist-induced desensitization, Src recruitment, or Src activation. Downstream of binding to the receptor, Src phosphorylates and activates G-protein-linked receptor kinase 2 (GRK2), a response obligate for agonist-induced desensitization. Constitutively active Src increases GRK phosphorylation, whereas either expression of dominant-negative Src or treatment with the PP2 inhibitor abolishes tyrosine phosphorylation of GRK and desensitization. Thus, in addition to its role in signal switching to the mitogen-activated protein kinase pathway, Src recruitment to the beta2-adrenergic receptor and activation are obligate for normal agonist-induced desensitization.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Amino Acid Substitution
- Animals
- Binding Sites
- CHO Cells
- CSK Tyrosine-Protein Kinase
- Carcinoma, Squamous Cell
- Cricetinae
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Genes, Reporter
- Green Fluorescent Proteins
- Humans
- Iodocyanopindolol/pharmacology
- Isoproterenol/pharmacology
- Luminescent Proteins/analysis
- Luminescent Proteins/biosynthesis
- Mutagenesis, Site-Directed
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Phosphorylation
- Phosphotyrosine
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Receptors, Adrenergic, beta-2/chemistry
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/physiology
- Recombinant Proteins/chemistry
- Recombinant Proteins/drug effects
- Recombinant Proteins/metabolism
- Transfection
- Tumor Cells, Cultured
- beta-Adrenergic Receptor Kinases
- src Homology Domains
- src-Family Kinases
Collapse
Affiliation(s)
- G Fan
- Department of Molecular Pharmacology, Diabetes and Metabolic Diseases Research Program, University Medical Center, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | |
Collapse
|
12
|
Dautzenberg FM, Braun S, Hauger RL. GRK3 mediates desensitization of CRF1 receptors: a potential mechanism regulating stress adaptation. Am J Physiol Regul Integr Comp Physiol 2001; 280:R935-46. [PMID: 11247813 DOI: 10.1152/ajpregu.2001.280.4.r935] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Potential G protein-coupled receptor kinase (GRK) and protein kinase A (PKA) mediation of homologous desensitization of corticotropin-releasing factor type 1 (CRF1) receptors was investigated in human retinoblastoma Y-79 cells. Inhibition of PKA activity by PKI(5-22) or H-89 failed to attenuate homologous desensitization of CRF1 receptors, and direct activation of PKA by forskolin or dibutyryl cAMP failed to desensitize CRF-induced cAMP accumulation. However, treatment of permeabilized Y-79 cells with heparin, a nonselective GRK inhibitor, reduced homologous desensitization of CRF1 receptors by approximately 35%. Furthermore, Y-79 cell uptake of a GRK3 antisense oligonucleotide (ODN), but not of a random or mismatched ODN, reduced GRK3 mRNA expression by approximately 50% without altering GRK2 mRNA expression and inhibited homologous desensitization of CRF1 receptors by approximately 55%. Finally, Y-79 cells transfected with a GRK3 antisense cDNA construct exhibited an approximately 50% reduction in GRK3 protein expression and an ~65% reduction in homologous desensitization of CRF1 receptors. We conclude that GRK3 contributes importantly to the homologous desensitization of CRF1 receptors in Y-79 cells, a brain-derived cell line.
Collapse
MESH Headings
- Colforsin/pharmacology
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/genetics
- Cyclic AMP-Dependent Protein Kinases/metabolism
- DNA, Antisense
- Enzyme Inhibitors/pharmacology
- Eye Neoplasms
- G-Protein-Coupled Receptor Kinase 3
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Humans
- Isoquinolines/pharmacology
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Peptide Fragments/pharmacology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/genetics
- Receptors, Corticotropin-Releasing Hormone/drug effects
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/physiology
- Recombinant Proteins/metabolism
- Retinoblastoma
- Sulfonamides
- Transcription, Genetic/drug effects
- Transfection
- Tumor Cells, Cultured
- beta-Adrenergic Receptor Kinases
Collapse
Affiliation(s)
- F M Dautzenberg
- Pharma Division, Preclinical Research, F-Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | | | | |
Collapse
|
13
|
Dautzenberg FM, Hauger RL. G-protein-coupled receptor kinase 3- and protein kinase C-mediated desensitization of the PACAP receptor type 1 in human Y-79 retinoblastoma cells. Neuropharmacology 2001; 40:394-407. [PMID: 11166332 DOI: 10.1016/s0028-3908(00)00167-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pituitary adenylyl cyclase-activating polypeptide (PACAP) receptor type 1 (PAC(1)) signaling and desensitization were investigated in human retinoblastoma Y-79 cells. Concentration-dependent stimulation of cAMP accumulation was observed in Y-79 cells incubated for 30 min with PACAP38, PACAP27, or VIP (10(-12) to 10(-6) M). The following EC(50) values were calculated: PACAP38, 24+/-3 pM; PACAP27, 99+/-8 pM; and VIP, 29+/-3 nM. Homologous desensitization of PAC(1) receptors in Y-79 cells pretreated with 10 nM PACAP38 or PACAP27 for 60 min was characterized by a 30-50% reduction in PACAP-stimulated cAMP accumulation (p<0.0001) and a two- to fivefold rightward shift in EC(50) values (p<0.0001). PAC(1) receptor desensitization was not accompanied by a reduction in PAC(1) mRNA expression. We concluded that the desensitizing effect of PACAP38 was homologous because neither corticotropin-releasing factor- nor (-)-isoproterenol-stimulated cAMP accumulation was altered by PACAP38 preincubation. Pretreating Y-79 cells with the protein kinase A (PKA) inhibitor H89 failed to inhibit homologous PAC(1) receptor desensitization. Similarly, pretreating Y-79 cells with the protein kinase C (PKC) inhibitors staurosporine or bisindolylmaleimide failed to alter homologous PAC(1) receptor desensitization. Although activation of PKA by dibutyryl cAMP or forskolin did not desensitize PAC(1) receptors, direct activation of PKC by PMA heterologously desensitized PAC(1) receptors, reducing cAMP accumulation 34.2+/-2.2% (p<0.001). Using RT-PCR, mRNA levels for G-protein-coupled receptor kinase 3 (GRK3), but not GRK2, were found to increase 2.2- to 4.8-fold in Y-79 cells exposed to PACAP38 for 10 min to 24 h (p<0.001). PAC(1) receptor desensitization decreased 72.5+/-4.3% (p<0.001) in Y-79 cells transfected with a GRK3 antisense cDNA construct that also reduced GRK3 protein expression 48.5+/-7.9% (p<0.0005). These experiments demonstrate that GRK3 plays an important role in the homologous desensitization of retinoblastoma PAC(1) receptors, whereas PKC, but not PKA, contributes to the heterologous desensitization of retinoblastoma PAC(1) receptors.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Alternative Splicing
- Corticotropin-Releasing Hormone/pharmacology
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/metabolism
- DNA, Antisense/pharmacology
- Enzyme Inhibitors/pharmacology
- G-Protein-Coupled Receptor Kinase 3
- Humans
- Intracellular Fluid/metabolism
- Neuropeptides/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Protein Kinase C/antagonists & inhibitors
- Protein Kinase C/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/metabolism
- Receptors, Adrenergic, beta/metabolism
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Retinoblastoma/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Tumor Cells, Cultured
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- F M Dautzenberg
- Pharma Division, Preclinical Research, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | |
Collapse
|
14
|
Schutzer WE, Xue H, Reed JF, Roullet JB, Anderson S, Mader SL. Angiotensin II enhances beta-adrenergic receptor-mediated vasorelaxation in aortas from young but not old rats. Am J Physiol Heart Circ Physiol 2000; 279:H2807-14. [PMID: 11087235 DOI: 10.1152/ajpheart.2000.279.6.h2807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
beta-Adrenergic receptor (beta-AR)-mediated (cAMP-dependent) vasorelaxation declines with advancing age. It has been shown that angiotensin II (ANG II), a potent vasoconstrictor, enhances cAMP-mediated vasorelaxation. Therefore, we questioned whether ANG II could reverse age-related, impaired beta-AR-mediated vasorelaxation and cAMP production. Pretreatment of aortic rings from 6-wk-old or 6-mo-old male Fischer 344 rats with ANG II significantly enhanced vasorelaxation induced by isoproterenol (Iso), a beta-AR agonist, and forskolin, a direct activator of adenylyl cyclase, but not dibutyryl-cAMP or isobutylmethylxanthine. The ANG II effect was blocked by losartan but not PD-123319 and was not observed in the aortas from 12- and 24-mo-old animals. Iso-stimulated cAMP production in the aorta was enhanced in the presence of ANG II in the 6-wk-old and 6-mo-old age groups only. Results suggest ANG II cannot reverse the age-related impairment in beta-AR-dependent vasorelaxation. We conclude aging may affect a factor common to both ANG II-receptors and beta-AR signaling pathways or aging may impair cross-talk between these two receptor pathways.
Collapse
Affiliation(s)
- W E Schutzer
- Research Service, Portland Veterans Affairs Medical Center, Portland, Oregon 97201, USA
| | | | | | | | | | | |
Collapse
|
15
|
Wang HY, Doronin S, Malbon CC. Insulin activation of mitogen-activated protein kinases Erk1,2 is amplified via beta-adrenergic receptor expression and requires the integrity of the Tyr350 of the receptor. J Biol Chem 2000; 275:36086-93. [PMID: 10940302 DOI: 10.1074/jbc.m004404200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin activates a complex set of intracellular responses, including the activation of mitogen-activated protein kinases Erk1,2. The counterregulatory actions of insulin on catecholamine action are well known and include phosphorylation of the beta(2)-adrenergic receptor on Tyr(350), Tyr(354), and Tyr(364) in the C-terminal cytoplasmic domain, as well as enhanced sequestration of the beta(2)-adrenergic receptor. Both beta-adrenergic agonists and insulin provoke sequestration of beta(2)-adrenergic receptors in a synergistic manner. In the current work, cross-talk between insulin action and beta(2)-adrenergic receptors revealed that insulin activation of Erk1,2 was amplified via beta(2)-adrenergic receptors. In Chinese hamster ovary cells, expression of beta(2)-adrenergic receptors enhanced 5-10-fold the activation of Erk1,2 by insulin and prolonged the activation, the greatest enhancement occurring at 5 min post-insulin. The potentiation of insulin signaling on Erk1,2 was proportional to the level of expression of beta(2)-adrenergic receptor. The potentiation of insulin signaling requires the integrity of Tyr(350) of the beta(2)-adrenergic receptor, a residue phosphorylated in response to insulin. beta(2)-adrenergic receptors with a Y350F mutation failed to potentiate insulin activation of Erk1,2. Expression of the C-terminal domain of the beta(2)-adrenergic receptor (Pro(323)-Leu(418)) in cells expressing the intact beta(2)-adrenergic receptor acts as a dominant negative, blocking the potentiation of insulin activation of Erk1,2 via the beta(2)-adrenergic receptor. Blockade of beta(2)-adrenergic receptor sequestration does not alter the ability of the beta(2)-adrenergic receptor to potentiate insulin action on Erk1,2. We propose a new paradigm in which a G-protein-linked receptor, such as the beta(2)-adrenergic receptor, itself acts as a receptor-based scaffold via its binding site for Src homology 2 domains, facilitating signaling of the mitogen-activated protein kinase pathway by insulin.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- CHO Cells
- Chromones/pharmacology
- Cricetinae
- Dose-Response Relationship, Drug
- Enzyme Activation/drug effects
- Fluorescent Antibody Technique
- Gene Expression Regulation/drug effects
- Humans
- Insulin/pharmacology
- Isoproterenol/pharmacology
- Microscopy, Fluorescence
- Mitogen-Activated Protein Kinases/metabolism
- Morpholines/pharmacology
- Mutation
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation/drug effects
- Protein Structure, Tertiary
- Receptors, Adrenergic, beta/chemistry
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Recombinant Fusion Proteins
- Signal Transduction/drug effects
- Transfection
- Tumor Cells, Cultured
- Tyrosine/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- H y Wang
- Department of Physiology and Biophysics, Diabetes and Metabolic Diseases Research Program, University Medical Center, State University of New York, Stony Brook, New York 11794-8661, USA
| | | | | |
Collapse
|
16
|
Abstract
Several lines of evidence show that neurohumoral systems, especially those involving catecholamines, play a crucial role in cardiac diseases. Changes in the beta-adrenergic receptor (beta-AR) system such as receptor down-regulation, uncoupling from G-proteins, receptor internalization and receptor degradation may account for some of the abnormalities of contractile function in this disease. Increases in the level of inhibitory G-protein subunits also appears to be involved in attenuating the beta-AR signal. Finally beta-AR signalling is strongly regulated by members of the G-protein-coupled receptor kinase family (GRKs), the best known of which is beta-adrenergic receptor kinase 1 (beta-ARK1). beta-ARK1 mRNA, protein level and enzymatic activity is increased in heart disease, further contributing to an attenuation in beta-AR signalling. The combination of these negative alterations are presumably related to the contractile dysfunction seen in human heart disease. The combination of biochemical, physiological and molecular biological studies bearing on the normal function and regulation of these various molecules should provide strategies for elucidating the pharmacological basis of the regulation of myocardial contractility in the normal and failing heart.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Aging
- Animals
- Calcium/metabolism
- Cyclic AMP-Dependent Protein Kinases/chemistry
- Cytoskeleton/metabolism
- Ethanol/pharmacology
- Heart/drug effects
- Heart/physiology
- Heart Diseases/enzymology
- Heart Diseases/metabolism
- Heart Diseases/therapy
- Humans
- Mice
- Mice, Transgenic
- Models, Biological
- Myocardium/enzymology
- Myocardium/metabolism
- Oxidants/physiology
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- Signal Transduction
- beta-Adrenergic Receptor Kinases
Collapse
Affiliation(s)
- S Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | | | | |
Collapse
|
17
|
Lin F, Wang HY, Malbon CC. Gravin-mediated formation of signaling complexes in beta 2-adrenergic receptor desensitization and resensitization. J Biol Chem 2000; 275:19025-34. [PMID: 10858453 DOI: 10.1074/jbc.275.25.19025] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agonist-induced desensitization and resensitization of G-protein-linked receptors involve the interaction of receptors with protein kinases, phosphatases, beta-arrestin, and clathrin organized by at least one scaffold protein. The dynamic composition of the signaling complexes and the role of the scaffold protein AKAP250 (gravin) in agonist-induced attenuation and recovery of beta-adrenergic receptors were explored by co-immunoprecipitation of target elements, antisense suppression, and confocal microscopy. Gravin associated with unstimulated receptor, and the association was increased significantly after agonist stimulation for up to 60 min. Agonist stimulation also induced a robust association of the receptor-gravin complex with protein kinases A and C, G-protein-linked receptor kinase-2, beta-arrestin, and clathrin. Confocal microscopy of the green fluorescence protein-tagged beta(2)-adrenergic receptor showed that the receptor underwent sequestration after agonist stimulation. Suppression of gravin expression via antisense oligodeoxynucleotides disrupted agonist-induced association of the receptor with G-protein-linked receptor kinase-2, beta-arrestin, and clathrin as well as receptor recovery from desensitization. Gravin deficiency also inhibited agonist-induced sequestration. These data reveal that gravin-mediated formation of signaling complexes with protein kinases/phosphatases, beta-arrestin, and clathrin is essential in agonist-induced internalization and resensitization of G-protein-linked receptors.
Collapse
Affiliation(s)
- F Lin
- Department of Molecular Pharmacology, Diabetes and Metabolic Diseases Research Program, University Medical Center, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | |
Collapse
|
18
|
Abstract
Heterotrimeric G proteins in vertebrates constitute a family molecular switches that transduce the activation of a populous group of cell-surface receptors to a group of diverse effector units. The receptors include the photopigments such as rhodopsin and prominent families such as the adrenergic, muscarinic acetylcholine, and chemokine receptors involved in regulating a broad spectrum of responses in humans. Signals from receptors are sensed by heterotrimeric G proteins and transduced to effectors such as adenylyl cyclases, phospholipases, and various ion channels. Physiological regulation of G protein-linked receptors allows for integration of signals that directly or indirectly effect the signaling from receptor-->G protein-->effector(s). Steroid hormones can regulate signaling via transcriptional control of the activities of the genes encoding members of G protein-linked pathways. Posttranscriptional mechanisms are under physiological control, altering the stability of preexisting mRNA and affording an additional level for regulation. Protein phosphorylation, protein prenylation, and proteolysis constitute major posttranslational mechanisms employed in the physiological regulation of G protein-linked signaling. Drawing upon mechanisms at all three levels, physiological regulation permits integration of demands placed on G protein-linked signaling.
Collapse
Affiliation(s)
- A J Morris
- Department of Molecular Pharmacology, Diabetes and Metabolic Diseases Research Center, University Medical Center, State University of New York/Stony Brook, Stony Brook, New York 11794-8651, USA
| | | |
Collapse
|
19
|
Bouaboula M, Dussossoy D, Casellas P. Regulation of peripheral cannabinoid receptor CB2 phosphorylation by the inverse agonist SR 144528. Implications for receptor biological responses. J Biol Chem 1999; 274:20397-405. [PMID: 10400664 DOI: 10.1074/jbc.274.29.20397] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently demonstrated that the selective cannabinoid receptor antagonist SR 144528 acts as an inverse agonist that blocks constitutive mitogen-activated protein kinase activity coupled to the spontaneous autoactivated peripheral cannabinoid receptor (CB2) in the Chinese hamster ovary cell line stably transfected with human CB2. In the present report, we studied the effect of SR 144528 on CB2 phosphorylation. The CB2 phosphorylation status was monitored by immunodetection using an antibody specific to the COOH-terminal CB2 which can discriminate between phosphorylated and non-phosphorylated CB2 isoforms at serine 352. We first showed that CB2 is constitutively active, phosphorylated, and internalized at the basal level. By blocking autoactivated receptors, inverse agonist SR 144528 treatment completely inhibited this phosphorylation state, leading to an up-regulated CB2 receptor level at the cell surface, and enhanced cannabinoid agonist sensitivity for mitogen-activated protein kinase activation of Chinese hamster ovary-CB2 cells. After acute agonist treatment, serine 352 was extensively phosphorylated and maintained in this phosphorylated state for more than 8 h after agonist treatment. The cellular responses to CP-55,940 were concomitantly abolished. Surprisingly, CP-55,940-induced CB2 phosphorylation was reversed by SR 144528, paradoxically leading to a non-phosphorylated CB2 which could then be fully activated by CP-55,940. The process of CP-55,940-induced receptor phosphorylation followed by SR 144528-induced receptor dephosphorylation kept recurring many times on the same cells, indicating that the agonist switches the system off but the inverse agonist switches the system back on. Finally, we showed that autophosphorylation and CP-55, 940-induced serine 352 CB2 phosphorylation involve an acidotropic GRK kinase, which does not use Gibetagamma. In contrast, SR 144528-induced CB2 dephosphorylation was found to involve an okadaic acid and calyculin A-sensitive type 2A phosphatase.
Collapse
Affiliation(s)
- M Bouaboula
- Sanofi Recherche, 371 rue du Pr. Joseph Blayac, 34184 Montpellier cedex, France
| | | | | |
Collapse
|
20
|
Ohnishi H, Mine T, Shibata H, Ueda N, Tsuchida T, Fujita T. Involvement of Rab4 in regulated exocytosis of rat pancreatic acini. Gastroenterology 1999; 116:943-52. [PMID: 10092317 DOI: 10.1016/s0016-5085(99)70078-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Rab4, a Ras-related small guanosine triphosphate (GTP)-binding protein, has been suggested to participate in exocytosis. The function of Rab4 in regulated exocytosis of pancreatic acini was examined in this study. METHODS Subcellular localization of Rab4 was determined by Western blotting and immunohistochemistry. The Rab4 function in regulated exocytosis was examined by introducing Rab4 hypervariable carboxy-terminal domain peptide (Rab4 peptide) and anti-Rab4 antibody into streptolysin O-permeabilized acini. The regulation of Rab4 by cholecystokinin (CCK) and 12-O-tetradecanoyl-phorbol 13-acetate (TPA) was investigated by examining their effects on [32P]GTP binding rate into the Rab4 immunoprecipitates. The participation of protein kinase C in the Rab4 regulation by CCK was confirmed by calphostin C pretreatment of acini. RESULTS Rab4 was localized on zymogen granule membranes. Both Rab4 peptide and anti-Rab4 antibody enhanced calcium-stimulated amylase release from streptolysin O-permeabilized acini, suggesting the inhibitory role of Rab4 in exocytosis. CCK and TPA increased GTP binding to Rab4. Calphostin C attenuated the stimulatory effect of CCK on GTP binding to Rab4. CONCLUSIONS Rab4 negatively modulates regulated exocytosis of pancreatic acini and is controlled by CCK through a protein kinase C pathway.
Collapse
Affiliation(s)
- H Ohnishi
- Fourth Department of Internal Medicine, University of Tokyo School of Medicine, Tokyo.
| | | | | | | | | | | |
Collapse
|
21
|
Smalley KS, Feniuk W, Humphrey PP. Differential agonist activity of somatostatin and L-362855 at human recombinant sst4 receptors. Br J Pharmacol 1998; 125:833-41. [PMID: 9831922 PMCID: PMC1571016 DOI: 10.1038/sj.bjp.0702133] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The operational characteristics of somatostatin (SRIF) sst4 receptors are poorly understood. In this study, we have characterized human recombinant sst4 receptors expressed in CHO cells (CHOsst4) by radioligand binding and microphysiometry. 2. Increasing concentrations SRIF or other SRIF receptor ligands inhibited specific [125I]-Tyr11-SRIF binding in CHOsst4 cell membranes with respective pIC50 values of SRIF (8.82), L-362855 (7.40), BIM-23027 (<5.5) and MK-678 (<5.5). 3. These ligands displayed agonist activity, producing concentration-dependent increases in rates of extracellular acidification (EAR) with pEC50 values of SRIF (9.6) and L-362855 (8.0), respectively. BIM-23027 and MK-678 were at least 1000 times weaker than SRIF. The SRIF maximum was about 40% of that observed with L-362855. 4. In the presence of SRIF (0.1-1 nM), concentration-effect curves to L-362855 were displaced to the right with a progressive reduction in the L-362855 maximum. 5. When cells were only exposed to a single maximally effective concentration of SRIF or L-362855, there was no difference in the magnitude of the agonist-induced increase in EAR. However, a second agonist challenge, 30 min later showed that responses to SRIF but not L-362855 were markedly desensitized. 6. When concentration-effect curves to SRIF and L-362855 were obtained by combining data from cells exposed to only a single agonist concentration, SRIF (pEC50 9.2) was approximately 20 times more potent than L-362855 (pEC50 8.0) but the maxima were the same. Responses to both SRIF and L-362855 were abolished by pertussis toxin. 7. SRIF and L-362855-induced increases in EAR were inhibited by N-ethyl isopropyl amiloride (10 microM) but were not modified by inhibitors of PKC (Go-6976), MAP kinase (PD-98059), tyrosine kinase (genistein) or tyrosine phosphatase (sodium orthovanadate). 8. The results suggest that SRIF-induced increases in EAR in CHOsst4 cells involved activation of the Na+/H+ antiporter and were mediated via Gi/Go G proteins. Responses to SRIF, but not L-362855, were subject to marked desensitization which may be a consequence of differential activation of receptor-effector coupling pathways.
Collapse
Affiliation(s)
- K S Smalley
- Glaxo Institute of Applied Pharmacology, Department of Pharmacology, University of Cambridge
| | | | | |
Collapse
|
22
|
Smeets RL, Fouraux MA, Pouwels W, van Emst-de Vries SE, Ronken E, De Pont JJ, Willems PH. Mutational analysis of the potential phosphorylation sites for protein kinase C on the CCK(A) receptor. Br J Pharmacol 1998; 124:935-45. [PMID: 9692779 PMCID: PMC1565466 DOI: 10.1038/sj.bjp.0701913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. Many G protein-coupled receptors contain potential phosphorylation sites for protein kinase C (PKC), the exact role of which is poorly understood. In the present study, a mutant cholecystokininA (CCK(A)) receptor was generated in which the four consensus sites for PKC action were changed in an alanine. Both the wild-type (CCK(A)WT) and mutant (CCK(A)MT) receptor were stably expressed in Chinese hamster ovary (CHO) cells. 2. Binding of [3H]-cholecystokinin-(26-33)-peptide amide (CCK-8) to membranes prepared from CHO-CCK(A)WT cells and CHO-CCK(A)MT cells revealed no difference in binding affinity (Kd values of 0.72 nM and 0.86 nM CCK-8, respectively). 3. The dose-response curves for CCK-8-induced cyclic AMP accumulation and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) formation were shifted to the left in CHO-CCK(A)MT cells. This leftward shift was mimicked by the potent inhibitor of protein kinase activity, staurosporine. However, the effect of staurosporine was restricted to CHO-CCK(A)WT cells. This demonstrates that attenuation of CCK-8-induced activation of adenylyl cyclase and phospholipase C-beta involves a staurosporine-sensitive kinase, which acts directly at the potential sites of PKC action on the CCK(A) receptor in CCK-8-stimulated CHO-CCK(A)WT cells. 4. The potent PKC activator, 12-O-tetradecanoylphorbol 13-acetate (TPA), evoked a rightward shift of the dose-response curve for CCK-8-induced cyclic AMP accumulation in CHO-CCK(A)WT cells but not CHO-CCK(A)MT cells. This is in agreement with the idea that PKC acts directly at the CCK(A) receptor to attenuate adenylyl cyclase activation. 5. In contrast, TPA evoked a rightward shift of the dose-response curve for CCK-8-induced Ins(1,4,5)P3 formation in both cell lines. This demonstrates that high-level PKC activation inhibits CCK-8-induced Ins(1,4,5)P3 formation also at a post-receptor site. 6. TPA inhibition of agonist-induced Ca2+ mobilization was only partly reversed in CHO-CCK(A)MT cells. TPA also inhibited Ca2+ mobilization in response to the G protein activator, Mas-7. These findings are in agreement with the idea that partial reversal of agonist-induced Ca2+ mobilization is due to the presence of an additional site of PKC inhibition downstream of the receptor and that the mutant receptor itself is not inhibited by the action of PKC. 7. The data presented demonstrate that the predicted sites for PKC action on the CCK(A) receptor are the only sites involved in TPA-induced uncoupling of the receptor from its G proteins. In addition, the present study unveils a post-receptor site of PKC action, the physiological relevance of which may be that it provides a means for the cell to inhibit phospholipase C-beta activation by receptors that are not phosphorylated by PKC.
Collapse
Affiliation(s)
- R L Smeets
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Fakata KL, Swanson SA, Vorce RL, Stemmer PM. Pyrethroid insecticides as phosphatase inhibitors. Biochem Pharmacol 1998; 55:2017-22. [PMID: 9714322 DOI: 10.1016/s0006-2952(98)00076-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study we tested the hypothesis that pyrethroid insecticides inhibit calcineurin directly and that inhibition is unaffected by the immunophilin cofactors necessary for calcineurin inhibition by cyclosporin A and FK506. The type II pyrethroid insecticides cis-cypermethrin (c-Cyp), trans-cypermethrin, deltamethrin (Delt), and fenvalerate A alpha (Fen), as well as the type I pyrethroid insecticides cis- and trans-permethrin and S-bioallethrin, were unable to inhibit the phosphatase activity of purified calcineurin under conditions of maximal activation by Ca2+ and calmodulin. Furthermore, c-Cyp, Delt, and Fen did not affect the Ca2+ dependence of calcineurin at 0.1 microM of calmodulin, indicating that Ca2+ binding to calmodulin was not affected by these agents. c-Cyp, Delt, and Fen also failed to inhibit calcineurin phosphatase activity in rat brain supernatant and cultured IMR-32 cells, although potent inhibition was displayed by both cyclosporin A and FK506 in each of these systems. Neither the Ca2+-dependent nor the okadaic acid-inhibitable phosphatase activity toward a 24-amino acid 32P-phospho-peptide substrate was affected by any of the pyrethroid insecticides, indicating that neither type-1 or type-2A phosphatase nor calcineurin is inhibited by pyrethroids. To determine if these results were dependent upon experimental conditions, experiments were repeated using polyethylene glycol-treated glass tubes in place of the standard polypropylene tubes. Regardless of the type of tube, no inhibition of calcineurin by any of the pyrethroid insecticides was observed. These data indicate that the pyrethroid insecticides are not effective inhibitors of calcineurin or other phosphatases.
Collapse
Affiliation(s)
- K L Fakata
- Department of Pediatrics, College of Medicine, University of Nebraska Medical Center, Omaha 68198, USA
| | | | | | | |
Collapse
|
24
|
Rühlmann A, Nordheim A. Effects of the immunosuppressive drugs CsA and FK506 on intracellular signalling and gene regulation. Immunobiology 1997; 198:192-206. [PMID: 9442391 DOI: 10.1016/s0171-2985(97)80040-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The isolation of Cyclosporin A (CsA) from cultures of the fungus Tolypocladium inflatum and its subsequent elucidation of immunosuppressive properties by Borel et al. (1) was of great clinical consequence. In the early 80s CsA was introduced in the field of organ transplantation resulting in extraordinary improvements of graft survival. CsA has become a first choice drug for patients with allograft organs. The discovery of FK506 by Kino et al. (2) as a novel immuno-suppressant and its introduction into clinics in 1989 (3) extended the available regimen for immunosuppressive therapy. Yet despite their advantages both CsA and FK506 display unwanted side effects and a possible preference of one drug over another remains controversial (4, 5). Although identification of the involvement of the transcription factor NF-AT was an important step forward (6), it has become clear that immunosuppressant action is more complex. CsA and FK506 selectively interact with certain cellular signal transduction pathways. This review briefly describes these effects on signal transduction. We further concentrate on the major known effect of these immunosuppressants, namely the inhibition of the PP2B phosphatase calcineurin. In addition we provide a compilation of effects of CsA and FK506 on gene expression at the level of transcription.
Collapse
Affiliation(s)
- A Rühlmann
- Hannover Medical School, Institute for Molecular Biology, Germany.
| | | |
Collapse
|